These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / mtd / nand / denali.c
1 /*
2  * NAND Flash Controller Device Driver
3  * Copyright © 2009-2010, Intel Corporation and its suppliers.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  *
18  */
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/wait.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/module.h>
27
28 #include "denali.h"
29
30 MODULE_LICENSE("GPL");
31
32 /*
33  * We define a module parameter that allows the user to override
34  * the hardware and decide what timing mode should be used.
35  */
36 #define NAND_DEFAULT_TIMINGS    -1
37
38 static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
39 module_param(onfi_timing_mode, int, S_IRUGO);
40 MODULE_PARM_DESC(onfi_timing_mode,
41            "Overrides default ONFI setting. -1 indicates use default timings");
42
43 #define DENALI_NAND_NAME    "denali-nand"
44
45 /*
46  * We define a macro here that combines all interrupts this driver uses into
47  * a single constant value, for convenience.
48  */
49 #define DENALI_IRQ_ALL  (INTR_STATUS__DMA_CMD_COMP | \
50                         INTR_STATUS__ECC_TRANSACTION_DONE | \
51                         INTR_STATUS__ECC_ERR | \
52                         INTR_STATUS__PROGRAM_FAIL | \
53                         INTR_STATUS__LOAD_COMP | \
54                         INTR_STATUS__PROGRAM_COMP | \
55                         INTR_STATUS__TIME_OUT | \
56                         INTR_STATUS__ERASE_FAIL | \
57                         INTR_STATUS__RST_COMP | \
58                         INTR_STATUS__ERASE_COMP)
59
60 /*
61  * indicates whether or not the internal value for the flash bank is
62  * valid or not
63  */
64 #define CHIP_SELECT_INVALID     -1
65
66 #define SUPPORT_8BITECC         1
67
68 /*
69  * This macro divides two integers and rounds fractional values up
70  * to the nearest integer value.
71  */
72 #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
73
74 /*
75  * this macro allows us to convert from an MTD structure to our own
76  * device context (denali) structure.
77  */
78 #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
79
80 /*
81  * These constants are defined by the driver to enable common driver
82  * configuration options.
83  */
84 #define SPARE_ACCESS            0x41
85 #define MAIN_ACCESS             0x42
86 #define MAIN_SPARE_ACCESS       0x43
87 #define PIPELINE_ACCESS         0x2000
88
89 #define DENALI_READ     0
90 #define DENALI_WRITE    0x100
91
92 /* types of device accesses. We can issue commands and get status */
93 #define COMMAND_CYCLE   0
94 #define ADDR_CYCLE      1
95 #define STATUS_CYCLE    2
96
97 /*
98  * this is a helper macro that allows us to
99  * format the bank into the proper bits for the controller
100  */
101 #define BANK(x) ((x) << 24)
102
103 /* forward declarations */
104 static void clear_interrupts(struct denali_nand_info *denali);
105 static uint32_t wait_for_irq(struct denali_nand_info *denali,
106                                                         uint32_t irq_mask);
107 static void denali_irq_enable(struct denali_nand_info *denali,
108                                                         uint32_t int_mask);
109 static uint32_t read_interrupt_status(struct denali_nand_info *denali);
110
111 /*
112  * Certain operations for the denali NAND controller use an indexed mode to
113  * read/write data. The operation is performed by writing the address value
114  * of the command to the device memory followed by the data. This function
115  * abstracts this common operation.
116  */
117 static void index_addr(struct denali_nand_info *denali,
118                                 uint32_t address, uint32_t data)
119 {
120         iowrite32(address, denali->flash_mem);
121         iowrite32(data, denali->flash_mem + 0x10);
122 }
123
124 /* Perform an indexed read of the device */
125 static void index_addr_read_data(struct denali_nand_info *denali,
126                                  uint32_t address, uint32_t *pdata)
127 {
128         iowrite32(address, denali->flash_mem);
129         *pdata = ioread32(denali->flash_mem + 0x10);
130 }
131
132 /*
133  * We need to buffer some data for some of the NAND core routines.
134  * The operations manage buffering that data.
135  */
136 static void reset_buf(struct denali_nand_info *denali)
137 {
138         denali->buf.head = denali->buf.tail = 0;
139 }
140
141 static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
142 {
143         denali->buf.buf[denali->buf.tail++] = byte;
144 }
145
146 /* reads the status of the device */
147 static void read_status(struct denali_nand_info *denali)
148 {
149         uint32_t cmd;
150
151         /* initialize the data buffer to store status */
152         reset_buf(denali);
153
154         cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
155         if (cmd)
156                 write_byte_to_buf(denali, NAND_STATUS_WP);
157         else
158                 write_byte_to_buf(denali, 0);
159 }
160
161 /* resets a specific device connected to the core */
162 static void reset_bank(struct denali_nand_info *denali)
163 {
164         uint32_t irq_status;
165         uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT;
166
167         clear_interrupts(denali);
168
169         iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
170
171         irq_status = wait_for_irq(denali, irq_mask);
172
173         if (irq_status & INTR_STATUS__TIME_OUT)
174                 dev_err(denali->dev, "reset bank failed.\n");
175 }
176
177 /* Reset the flash controller */
178 static uint16_t denali_nand_reset(struct denali_nand_info *denali)
179 {
180         int i;
181
182         dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
183                 __FILE__, __LINE__, __func__);
184
185         for (i = 0; i < denali->max_banks; i++)
186                 iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
187                 denali->flash_reg + INTR_STATUS(i));
188
189         for (i = 0; i < denali->max_banks; i++) {
190                 iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
191                 while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
192                         (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
193                         cpu_relax();
194                 if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
195                         INTR_STATUS__TIME_OUT)
196                         dev_dbg(denali->dev,
197                         "NAND Reset operation timed out on bank %d\n", i);
198         }
199
200         for (i = 0; i < denali->max_banks; i++)
201                 iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
202                           denali->flash_reg + INTR_STATUS(i));
203
204         return PASS;
205 }
206
207 /*
208  * this routine calculates the ONFI timing values for a given mode and
209  * programs the clocking register accordingly. The mode is determined by
210  * the get_onfi_nand_para routine.
211  */
212 static void nand_onfi_timing_set(struct denali_nand_info *denali,
213                                                                 uint16_t mode)
214 {
215         uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
216         uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
217         uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
218         uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
219         uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
220         uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
221         uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
222         uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
223         uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
224         uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
225         uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
226         uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
227
228         uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
229         uint16_t dv_window = 0;
230         uint16_t en_lo, en_hi;
231         uint16_t acc_clks;
232         uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
233
234         dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
235                 __FILE__, __LINE__, __func__);
236
237         en_lo = CEIL_DIV(Trp[mode], CLK_X);
238         en_hi = CEIL_DIV(Treh[mode], CLK_X);
239 #if ONFI_BLOOM_TIME
240         if ((en_hi * CLK_X) < (Treh[mode] + 2))
241                 en_hi++;
242 #endif
243
244         if ((en_lo + en_hi) * CLK_X < Trc[mode])
245                 en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
246
247         if ((en_lo + en_hi) < CLK_MULTI)
248                 en_lo += CLK_MULTI - en_lo - en_hi;
249
250         while (dv_window < 8) {
251                 data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
252
253                 data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
254
255                 data_invalid = data_invalid_rhoh < data_invalid_rloh ?
256                                         data_invalid_rhoh : data_invalid_rloh;
257
258                 dv_window = data_invalid - Trea[mode];
259
260                 if (dv_window < 8)
261                         en_lo++;
262         }
263
264         acc_clks = CEIL_DIV(Trea[mode], CLK_X);
265
266         while (acc_clks * CLK_X - Trea[mode] < 3)
267                 acc_clks++;
268
269         if (data_invalid - acc_clks * CLK_X < 2)
270                 dev_warn(denali->dev, "%s, Line %d: Warning!\n",
271                          __FILE__, __LINE__);
272
273         addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
274         re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
275         re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
276         we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
277         cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
278         if (cs_cnt == 0)
279                 cs_cnt = 1;
280
281         if (Tcea[mode]) {
282                 while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
283                         cs_cnt++;
284         }
285
286 #if MODE5_WORKAROUND
287         if (mode == 5)
288                 acc_clks = 5;
289 #endif
290
291         /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
292         if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
293                 ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
294                 acc_clks = 6;
295
296         iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
297         iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
298         iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
299         iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
300         iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
301         iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
302         iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
303         iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
304 }
305
306 /* queries the NAND device to see what ONFI modes it supports. */
307 static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
308 {
309         int i;
310
311         /*
312          * we needn't to do a reset here because driver has already
313          * reset all the banks before
314          */
315         if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
316                 ONFI_TIMING_MODE__VALUE))
317                 return FAIL;
318
319         for (i = 5; i > 0; i--) {
320                 if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
321                         (0x01 << i))
322                         break;
323         }
324
325         nand_onfi_timing_set(denali, i);
326
327         /*
328          * By now, all the ONFI devices we know support the page cache
329          * rw feature. So here we enable the pipeline_rw_ahead feature
330          */
331         /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
332         /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */
333
334         return PASS;
335 }
336
337 static void get_samsung_nand_para(struct denali_nand_info *denali,
338                                                         uint8_t device_id)
339 {
340         if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
341                 /* Set timing register values according to datasheet */
342                 iowrite32(5, denali->flash_reg + ACC_CLKS);
343                 iowrite32(20, denali->flash_reg + RE_2_WE);
344                 iowrite32(12, denali->flash_reg + WE_2_RE);
345                 iowrite32(14, denali->flash_reg + ADDR_2_DATA);
346                 iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
347                 iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
348                 iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
349         }
350 }
351
352 static void get_toshiba_nand_para(struct denali_nand_info *denali)
353 {
354         uint32_t tmp;
355
356         /*
357          * Workaround to fix a controller bug which reports a wrong
358          * spare area size for some kind of Toshiba NAND device
359          */
360         if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
361                 (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
362                 iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
363                 tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
364                         ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
365                 iowrite32(tmp,
366                                 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
367 #if SUPPORT_15BITECC
368                 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
369 #elif SUPPORT_8BITECC
370                 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
371 #endif
372         }
373 }
374
375 static void get_hynix_nand_para(struct denali_nand_info *denali,
376                                                         uint8_t device_id)
377 {
378         uint32_t main_size, spare_size;
379
380         switch (device_id) {
381         case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
382         case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
383                 iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
384                 iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
385                 iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
386                 main_size = 4096 *
387                         ioread32(denali->flash_reg + DEVICES_CONNECTED);
388                 spare_size = 224 *
389                         ioread32(denali->flash_reg + DEVICES_CONNECTED);
390                 iowrite32(main_size,
391                                 denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
392                 iowrite32(spare_size,
393                                 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
394                 iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
395 #if SUPPORT_15BITECC
396                 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
397 #elif SUPPORT_8BITECC
398                 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
399 #endif
400                 break;
401         default:
402                 dev_warn(denali->dev,
403                          "Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n"
404                          "Will use default parameter values instead.\n",
405                          device_id);
406         }
407 }
408
409 /*
410  * determines how many NAND chips are connected to the controller. Note for
411  * Intel CE4100 devices we don't support more than one device.
412  */
413 static void find_valid_banks(struct denali_nand_info *denali)
414 {
415         uint32_t id[denali->max_banks];
416         int i;
417
418         denali->total_used_banks = 1;
419         for (i = 0; i < denali->max_banks; i++) {
420                 index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
421                 index_addr(denali, MODE_11 | (i << 24) | 1, 0);
422                 index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
423
424                 dev_dbg(denali->dev,
425                         "Return 1st ID for bank[%d]: %x\n", i, id[i]);
426
427                 if (i == 0) {
428                         if (!(id[i] & 0x0ff))
429                                 break; /* WTF? */
430                 } else {
431                         if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
432                                 denali->total_used_banks++;
433                         else
434                                 break;
435                 }
436         }
437
438         if (denali->platform == INTEL_CE4100) {
439                 /*
440                  * Platform limitations of the CE4100 device limit
441                  * users to a single chip solution for NAND.
442                  * Multichip support is not enabled.
443                  */
444                 if (denali->total_used_banks != 1) {
445                         dev_err(denali->dev,
446                                 "Sorry, Intel CE4100 only supports a single NAND device.\n");
447                         BUG();
448                 }
449         }
450         dev_dbg(denali->dev,
451                 "denali->total_used_banks: %d\n", denali->total_used_banks);
452 }
453
454 /*
455  * Use the configuration feature register to determine the maximum number of
456  * banks that the hardware supports.
457  */
458 static void detect_max_banks(struct denali_nand_info *denali)
459 {
460         uint32_t features = ioread32(denali->flash_reg + FEATURES);
461         /*
462          * Read the revision register, so we can calculate the max_banks
463          * properly: the encoding changed from rev 5.0 to 5.1
464          */
465         u32 revision = MAKE_COMPARABLE_REVISION(
466                                 ioread32(denali->flash_reg + REVISION));
467
468         if (revision < REVISION_5_1)
469                 denali->max_banks = 2 << (features & FEATURES__N_BANKS);
470         else
471                 denali->max_banks = 1 << (features & FEATURES__N_BANKS);
472 }
473
474 static void detect_partition_feature(struct denali_nand_info *denali)
475 {
476         /*
477          * For MRST platform, denali->fwblks represent the
478          * number of blocks firmware is taken,
479          * FW is in protect partition and MTD driver has no
480          * permission to access it. So let driver know how many
481          * blocks it can't touch.
482          */
483         if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
484                 if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
485                         PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
486                         denali->fwblks =
487                             ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
488                               MIN_MAX_BANK__MIN_VALUE) *
489                              denali->blksperchip)
490                             +
491                             (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
492                             MIN_BLK_ADDR__VALUE);
493                 } else {
494                         denali->fwblks = SPECTRA_START_BLOCK;
495                 }
496         } else {
497                 denali->fwblks = SPECTRA_START_BLOCK;
498         }
499 }
500
501 static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
502 {
503         uint16_t status = PASS;
504         uint32_t id_bytes[8], addr;
505         uint8_t maf_id, device_id;
506         int i;
507
508         dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
509                         __FILE__, __LINE__, __func__);
510
511         /*
512          * Use read id method to get device ID and other params.
513          * For some NAND chips, controller can't report the correct
514          * device ID by reading from DEVICE_ID register
515          */
516         addr = MODE_11 | BANK(denali->flash_bank);
517         index_addr(denali, addr | 0, 0x90);
518         index_addr(denali, addr | 1, 0);
519         for (i = 0; i < 8; i++)
520                 index_addr_read_data(denali, addr | 2, &id_bytes[i]);
521         maf_id = id_bytes[0];
522         device_id = id_bytes[1];
523
524         if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
525                 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
526                 if (FAIL == get_onfi_nand_para(denali))
527                         return FAIL;
528         } else if (maf_id == 0xEC) { /* Samsung NAND */
529                 get_samsung_nand_para(denali, device_id);
530         } else if (maf_id == 0x98) { /* Toshiba NAND */
531                 get_toshiba_nand_para(denali);
532         } else if (maf_id == 0xAD) { /* Hynix NAND */
533                 get_hynix_nand_para(denali, device_id);
534         }
535
536         dev_info(denali->dev,
537                         "Dump timing register values:\n"
538                         "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
539                         "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
540                         "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
541                         ioread32(denali->flash_reg + ACC_CLKS),
542                         ioread32(denali->flash_reg + RE_2_WE),
543                         ioread32(denali->flash_reg + RE_2_RE),
544                         ioread32(denali->flash_reg + WE_2_RE),
545                         ioread32(denali->flash_reg + ADDR_2_DATA),
546                         ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
547                         ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
548                         ioread32(denali->flash_reg + CS_SETUP_CNT));
549
550         find_valid_banks(denali);
551
552         detect_partition_feature(denali);
553
554         /*
555          * If the user specified to override the default timings
556          * with a specific ONFI mode, we apply those changes here.
557          */
558         if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
559                 nand_onfi_timing_set(denali, onfi_timing_mode);
560
561         return status;
562 }
563
564 static void denali_set_intr_modes(struct denali_nand_info *denali,
565                                         uint16_t INT_ENABLE)
566 {
567         dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
568                 __FILE__, __LINE__, __func__);
569
570         if (INT_ENABLE)
571                 iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
572         else
573                 iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
574 }
575
576 /*
577  * validation function to verify that the controlling software is making
578  * a valid request
579  */
580 static inline bool is_flash_bank_valid(int flash_bank)
581 {
582         return flash_bank >= 0 && flash_bank < 4;
583 }
584
585 static void denali_irq_init(struct denali_nand_info *denali)
586 {
587         uint32_t int_mask;
588         int i;
589
590         /* Disable global interrupts */
591         denali_set_intr_modes(denali, false);
592
593         int_mask = DENALI_IRQ_ALL;
594
595         /* Clear all status bits */
596         for (i = 0; i < denali->max_banks; ++i)
597                 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
598
599         denali_irq_enable(denali, int_mask);
600 }
601
602 static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
603 {
604         denali_set_intr_modes(denali, false);
605         free_irq(irqnum, denali);
606 }
607
608 static void denali_irq_enable(struct denali_nand_info *denali,
609                                                         uint32_t int_mask)
610 {
611         int i;
612
613         for (i = 0; i < denali->max_banks; ++i)
614                 iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
615 }
616
617 /*
618  * This function only returns when an interrupt that this driver cares about
619  * occurs. This is to reduce the overhead of servicing interrupts
620  */
621 static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
622 {
623         return read_interrupt_status(denali) & DENALI_IRQ_ALL;
624 }
625
626 /* Interrupts are cleared by writing a 1 to the appropriate status bit */
627 static inline void clear_interrupt(struct denali_nand_info *denali,
628                                                         uint32_t irq_mask)
629 {
630         uint32_t intr_status_reg;
631
632         intr_status_reg = INTR_STATUS(denali->flash_bank);
633
634         iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
635 }
636
637 static void clear_interrupts(struct denali_nand_info *denali)
638 {
639         uint32_t status;
640
641         spin_lock_irq(&denali->irq_lock);
642
643         status = read_interrupt_status(denali);
644         clear_interrupt(denali, status);
645
646         denali->irq_status = 0x0;
647         spin_unlock_irq(&denali->irq_lock);
648 }
649
650 static uint32_t read_interrupt_status(struct denali_nand_info *denali)
651 {
652         uint32_t intr_status_reg;
653
654         intr_status_reg = INTR_STATUS(denali->flash_bank);
655
656         return ioread32(denali->flash_reg + intr_status_reg);
657 }
658
659 /*
660  * This is the interrupt service routine. It handles all interrupts
661  * sent to this device. Note that on CE4100, this is a shared interrupt.
662  */
663 static irqreturn_t denali_isr(int irq, void *dev_id)
664 {
665         struct denali_nand_info *denali = dev_id;
666         uint32_t irq_status;
667         irqreturn_t result = IRQ_NONE;
668
669         spin_lock(&denali->irq_lock);
670
671         /* check to see if a valid NAND chip has been selected. */
672         if (is_flash_bank_valid(denali->flash_bank)) {
673                 /*
674                  * check to see if controller generated the interrupt,
675                  * since this is a shared interrupt
676                  */
677                 irq_status = denali_irq_detected(denali);
678                 if (irq_status != 0) {
679                         /* handle interrupt */
680                         /* first acknowledge it */
681                         clear_interrupt(denali, irq_status);
682                         /*
683                          * store the status in the device context for someone
684                          * to read
685                          */
686                         denali->irq_status |= irq_status;
687                         /* notify anyone who cares that it happened */
688                         complete(&denali->complete);
689                         /* tell the OS that we've handled this */
690                         result = IRQ_HANDLED;
691                 }
692         }
693         spin_unlock(&denali->irq_lock);
694         return result;
695 }
696 #define BANK(x) ((x) << 24)
697
698 static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
699 {
700         unsigned long comp_res;
701         uint32_t intr_status;
702         unsigned long timeout = msecs_to_jiffies(1000);
703
704         do {
705                 comp_res =
706                         wait_for_completion_timeout(&denali->complete, timeout);
707                 spin_lock_irq(&denali->irq_lock);
708                 intr_status = denali->irq_status;
709
710                 if (intr_status & irq_mask) {
711                         denali->irq_status &= ~irq_mask;
712                         spin_unlock_irq(&denali->irq_lock);
713                         /* our interrupt was detected */
714                         break;
715                 }
716
717                 /*
718                  * these are not the interrupts you are looking for -
719                  * need to wait again
720                  */
721                 spin_unlock_irq(&denali->irq_lock);
722         } while (comp_res != 0);
723
724         if (comp_res == 0) {
725                 /* timeout */
726                 pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
727                                 intr_status, irq_mask);
728
729                 intr_status = 0;
730         }
731         return intr_status;
732 }
733
734 /*
735  * This helper function setups the registers for ECC and whether or not
736  * the spare area will be transferred.
737  */
738 static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
739                                 bool transfer_spare)
740 {
741         int ecc_en_flag, transfer_spare_flag;
742
743         /* set ECC, transfer spare bits if needed */
744         ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
745         transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
746
747         /* Enable spare area/ECC per user's request. */
748         iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
749         iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
750 }
751
752 /*
753  * sends a pipeline command operation to the controller. See the Denali NAND
754  * controller's user guide for more information (section 4.2.3.6).
755  */
756 static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
757                                     bool ecc_en, bool transfer_spare,
758                                     int access_type, int op)
759 {
760         int status = PASS;
761         uint32_t page_count = 1;
762         uint32_t addr, cmd, irq_status, irq_mask;
763
764         if (op == DENALI_READ)
765                 irq_mask = INTR_STATUS__LOAD_COMP;
766         else if (op == DENALI_WRITE)
767                 irq_mask = 0;
768         else
769                 BUG();
770
771         setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
772
773         clear_interrupts(denali);
774
775         addr = BANK(denali->flash_bank) | denali->page;
776
777         if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
778                 cmd = MODE_01 | addr;
779                 iowrite32(cmd, denali->flash_mem);
780         } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
781                 /* read spare area */
782                 cmd = MODE_10 | addr;
783                 index_addr(denali, cmd, access_type);
784
785                 cmd = MODE_01 | addr;
786                 iowrite32(cmd, denali->flash_mem);
787         } else if (op == DENALI_READ) {
788                 /* setup page read request for access type */
789                 cmd = MODE_10 | addr;
790                 index_addr(denali, cmd, access_type);
791
792                 /*
793                  * page 33 of the NAND controller spec indicates we should not
794                  * use the pipeline commands in Spare area only mode.
795                  * So we don't.
796                  */
797                 if (access_type == SPARE_ACCESS) {
798                         cmd = MODE_01 | addr;
799                         iowrite32(cmd, denali->flash_mem);
800                 } else {
801                         index_addr(denali, cmd,
802                                         PIPELINE_ACCESS | op | page_count);
803
804                         /*
805                          * wait for command to be accepted
806                          * can always use status0 bit as the
807                          * mask is identical for each bank.
808                          */
809                         irq_status = wait_for_irq(denali, irq_mask);
810
811                         if (irq_status == 0) {
812                                 dev_err(denali->dev,
813                                         "cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n",
814                                         cmd, denali->page, addr);
815                                 status = FAIL;
816                         } else {
817                                 cmd = MODE_01 | addr;
818                                 iowrite32(cmd, denali->flash_mem);
819                         }
820                 }
821         }
822         return status;
823 }
824
825 /* helper function that simply writes a buffer to the flash */
826 static int write_data_to_flash_mem(struct denali_nand_info *denali,
827                                    const uint8_t *buf, int len)
828 {
829         uint32_t *buf32;
830         int i;
831
832         /*
833          * verify that the len is a multiple of 4.
834          * see comment in read_data_from_flash_mem()
835          */
836         BUG_ON((len % 4) != 0);
837
838         /* write the data to the flash memory */
839         buf32 = (uint32_t *)buf;
840         for (i = 0; i < len / 4; i++)
841                 iowrite32(*buf32++, denali->flash_mem + 0x10);
842         return i * 4; /* intent is to return the number of bytes read */
843 }
844
845 /* helper function that simply reads a buffer from the flash */
846 static int read_data_from_flash_mem(struct denali_nand_info *denali,
847                                     uint8_t *buf, int len)
848 {
849         uint32_t *buf32;
850         int i;
851
852         /*
853          * we assume that len will be a multiple of 4, if not it would be nice
854          * to know about it ASAP rather than have random failures...
855          * This assumption is based on the fact that this function is designed
856          * to be used to read flash pages, which are typically multiples of 4.
857          */
858         BUG_ON((len % 4) != 0);
859
860         /* transfer the data from the flash */
861         buf32 = (uint32_t *)buf;
862         for (i = 0; i < len / 4; i++)
863                 *buf32++ = ioread32(denali->flash_mem + 0x10);
864         return i * 4; /* intent is to return the number of bytes read */
865 }
866
867 /* writes OOB data to the device */
868 static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
869 {
870         struct denali_nand_info *denali = mtd_to_denali(mtd);
871         uint32_t irq_status;
872         uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
873                                                 INTR_STATUS__PROGRAM_FAIL;
874         int status = 0;
875
876         denali->page = page;
877
878         if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
879                                                         DENALI_WRITE) == PASS) {
880                 write_data_to_flash_mem(denali, buf, mtd->oobsize);
881
882                 /* wait for operation to complete */
883                 irq_status = wait_for_irq(denali, irq_mask);
884
885                 if (irq_status == 0) {
886                         dev_err(denali->dev, "OOB write failed\n");
887                         status = -EIO;
888                 }
889         } else {
890                 dev_err(denali->dev, "unable to send pipeline command\n");
891                 status = -EIO;
892         }
893         return status;
894 }
895
896 /* reads OOB data from the device */
897 static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
898 {
899         struct denali_nand_info *denali = mtd_to_denali(mtd);
900         uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
901         uint32_t irq_status, addr, cmd;
902
903         denali->page = page;
904
905         if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
906                                                         DENALI_READ) == PASS) {
907                 read_data_from_flash_mem(denali, buf, mtd->oobsize);
908
909                 /*
910                  * wait for command to be accepted
911                  * can always use status0 bit as the
912                  * mask is identical for each bank.
913                  */
914                 irq_status = wait_for_irq(denali, irq_mask);
915
916                 if (irq_status == 0)
917                         dev_err(denali->dev, "page on OOB timeout %d\n",
918                                         denali->page);
919
920                 /*
921                  * We set the device back to MAIN_ACCESS here as I observed
922                  * instability with the controller if you do a block erase
923                  * and the last transaction was a SPARE_ACCESS. Block erase
924                  * is reliable (according to the MTD test infrastructure)
925                  * if you are in MAIN_ACCESS.
926                  */
927                 addr = BANK(denali->flash_bank) | denali->page;
928                 cmd = MODE_10 | addr;
929                 index_addr(denali, cmd, MAIN_ACCESS);
930         }
931 }
932
933 /*
934  * this function examines buffers to see if they contain data that
935  * indicate that the buffer is part of an erased region of flash.
936  */
937 static bool is_erased(uint8_t *buf, int len)
938 {
939         int i;
940
941         for (i = 0; i < len; i++)
942                 if (buf[i] != 0xFF)
943                         return false;
944         return true;
945 }
946 #define ECC_SECTOR_SIZE 512
947
948 #define ECC_SECTOR(x)   (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
949 #define ECC_BYTE(x)     (((x) & ECC_ERROR_ADDRESS__OFFSET))
950 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
951 #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
952 #define ECC_ERR_DEVICE(x)       (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
953 #define ECC_LAST_ERR(x)         ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
954
955 static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
956                        uint32_t irq_status, unsigned int *max_bitflips)
957 {
958         bool check_erased_page = false;
959         unsigned int bitflips = 0;
960
961         if (irq_status & INTR_STATUS__ECC_ERR) {
962                 /* read the ECC errors. we'll ignore them for now */
963                 uint32_t err_address, err_correction_info, err_byte,
964                          err_sector, err_device, err_correction_value;
965                 denali_set_intr_modes(denali, false);
966
967                 do {
968                         err_address = ioread32(denali->flash_reg +
969                                                 ECC_ERROR_ADDRESS);
970                         err_sector = ECC_SECTOR(err_address);
971                         err_byte = ECC_BYTE(err_address);
972
973                         err_correction_info = ioread32(denali->flash_reg +
974                                                 ERR_CORRECTION_INFO);
975                         err_correction_value =
976                                 ECC_CORRECTION_VALUE(err_correction_info);
977                         err_device = ECC_ERR_DEVICE(err_correction_info);
978
979                         if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
980                                 /*
981                                  * If err_byte is larger than ECC_SECTOR_SIZE,
982                                  * means error happened in OOB, so we ignore
983                                  * it. It's no need for us to correct it
984                                  * err_device is represented the NAND error
985                                  * bits are happened in if there are more
986                                  * than one NAND connected.
987                                  */
988                                 if (err_byte < ECC_SECTOR_SIZE) {
989                                         int offset;
990
991                                         offset = (err_sector *
992                                                         ECC_SECTOR_SIZE +
993                                                         err_byte) *
994                                                         denali->devnum +
995                                                         err_device;
996                                         /* correct the ECC error */
997                                         buf[offset] ^= err_correction_value;
998                                         denali->mtd.ecc_stats.corrected++;
999                                         bitflips++;
1000                                 }
1001                         } else {
1002                                 /*
1003                                  * if the error is not correctable, need to
1004                                  * look at the page to see if it is an erased
1005                                  * page. if so, then it's not a real ECC error
1006                                  */
1007                                 check_erased_page = true;
1008                         }
1009                 } while (!ECC_LAST_ERR(err_correction_info));
1010                 /*
1011                  * Once handle all ecc errors, controller will triger
1012                  * a ECC_TRANSACTION_DONE interrupt, so here just wait
1013                  * for a while for this interrupt
1014                  */
1015                 while (!(read_interrupt_status(denali) &
1016                                 INTR_STATUS__ECC_TRANSACTION_DONE))
1017                         cpu_relax();
1018                 clear_interrupts(denali);
1019                 denali_set_intr_modes(denali, true);
1020         }
1021         *max_bitflips = bitflips;
1022         return check_erased_page;
1023 }
1024
1025 /* programs the controller to either enable/disable DMA transfers */
1026 static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1027 {
1028         iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
1029         ioread32(denali->flash_reg + DMA_ENABLE);
1030 }
1031
1032 /* setups the HW to perform the data DMA */
1033 static void denali_setup_dma(struct denali_nand_info *denali, int op)
1034 {
1035         uint32_t mode;
1036         const int page_count = 1;
1037         uint32_t addr = denali->buf.dma_buf;
1038
1039         mode = MODE_10 | BANK(denali->flash_bank);
1040
1041         /* DMA is a four step process */
1042
1043         /* 1. setup transfer type and # of pages */
1044         index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1045
1046         /* 2. set memory high address bits 23:8 */
1047         index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
1048
1049         /* 3. set memory low address bits 23:8 */
1050         index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
1051
1052         /* 4. interrupt when complete, burst len = 64 bytes */
1053         index_addr(denali, mode | 0x14000, 0x2400);
1054 }
1055
1056 /*
1057  * writes a page. user specifies type, and this function handles the
1058  * configuration details.
1059  */
1060 static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1061                         const uint8_t *buf, bool raw_xfer)
1062 {
1063         struct denali_nand_info *denali = mtd_to_denali(mtd);
1064         dma_addr_t addr = denali->buf.dma_buf;
1065         size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1066         uint32_t irq_status;
1067         uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
1068                                                 INTR_STATUS__PROGRAM_FAIL;
1069
1070         /*
1071          * if it is a raw xfer, we want to disable ecc and send the spare area.
1072          * !raw_xfer - enable ecc
1073          * raw_xfer - transfer spare
1074          */
1075         setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1076
1077         /* copy buffer into DMA buffer */
1078         memcpy(denali->buf.buf, buf, mtd->writesize);
1079
1080         if (raw_xfer) {
1081                 /* transfer the data to the spare area */
1082                 memcpy(denali->buf.buf + mtd->writesize,
1083                         chip->oob_poi,
1084                         mtd->oobsize);
1085         }
1086
1087         dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1088
1089         clear_interrupts(denali);
1090         denali_enable_dma(denali, true);
1091
1092         denali_setup_dma(denali, DENALI_WRITE);
1093
1094         /* wait for operation to complete */
1095         irq_status = wait_for_irq(denali, irq_mask);
1096
1097         if (irq_status == 0) {
1098                 dev_err(denali->dev, "timeout on write_page (type = %d)\n",
1099                         raw_xfer);
1100                 denali->status = NAND_STATUS_FAIL;
1101         }
1102
1103         denali_enable_dma(denali, false);
1104         dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1105
1106         return 0;
1107 }
1108
1109 /* NAND core entry points */
1110
1111 /*
1112  * this is the callback that the NAND core calls to write a page. Since
1113  * writing a page with ECC or without is similar, all the work is done
1114  * by write_page above.
1115  */
1116 static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1117                                 const uint8_t *buf, int oob_required, int page)
1118 {
1119         /*
1120          * for regular page writes, we let HW handle all the ECC
1121          * data written to the device.
1122          */
1123         return write_page(mtd, chip, buf, false);
1124 }
1125
1126 /*
1127  * This is the callback that the NAND core calls to write a page without ECC.
1128  * raw access is similar to ECC page writes, so all the work is done in the
1129  * write_page() function above.
1130  */
1131 static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1132                                  const uint8_t *buf, int oob_required,
1133                                  int page)
1134 {
1135         /*
1136          * for raw page writes, we want to disable ECC and simply write
1137          * whatever data is in the buffer.
1138          */
1139         return write_page(mtd, chip, buf, true);
1140 }
1141
1142 static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1143                             int page)
1144 {
1145         return write_oob_data(mtd, chip->oob_poi, page);
1146 }
1147
1148 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1149                            int page)
1150 {
1151         read_oob_data(mtd, chip->oob_poi, page);
1152
1153         return 0;
1154 }
1155
1156 static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1157                             uint8_t *buf, int oob_required, int page)
1158 {
1159         unsigned int max_bitflips;
1160         struct denali_nand_info *denali = mtd_to_denali(mtd);
1161
1162         dma_addr_t addr = denali->buf.dma_buf;
1163         size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1164
1165         uint32_t irq_status;
1166         uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
1167                             INTR_STATUS__ECC_ERR;
1168         bool check_erased_page = false;
1169
1170         if (page != denali->page) {
1171                 dev_err(denali->dev,
1172                         "IN %s: page %d is not equal to denali->page %d",
1173                         __func__, page, denali->page);
1174                 BUG();
1175         }
1176
1177         setup_ecc_for_xfer(denali, true, false);
1178
1179         denali_enable_dma(denali, true);
1180         dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1181
1182         clear_interrupts(denali);
1183         denali_setup_dma(denali, DENALI_READ);
1184
1185         /* wait for operation to complete */
1186         irq_status = wait_for_irq(denali, irq_mask);
1187
1188         dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1189
1190         memcpy(buf, denali->buf.buf, mtd->writesize);
1191
1192         check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1193         denali_enable_dma(denali, false);
1194
1195         if (check_erased_page) {
1196                 read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
1197
1198                 /* check ECC failures that may have occurred on erased pages */
1199                 if (check_erased_page) {
1200                         if (!is_erased(buf, denali->mtd.writesize))
1201                                 denali->mtd.ecc_stats.failed++;
1202                         if (!is_erased(buf, denali->mtd.oobsize))
1203                                 denali->mtd.ecc_stats.failed++;
1204                 }
1205         }
1206         return max_bitflips;
1207 }
1208
1209 static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1210                                 uint8_t *buf, int oob_required, int page)
1211 {
1212         struct denali_nand_info *denali = mtd_to_denali(mtd);
1213         dma_addr_t addr = denali->buf.dma_buf;
1214         size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1215         uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1216
1217         if (page != denali->page) {
1218                 dev_err(denali->dev,
1219                         "IN %s: page %d is not equal to denali->page %d",
1220                         __func__, page, denali->page);
1221                 BUG();
1222         }
1223
1224         setup_ecc_for_xfer(denali, false, true);
1225         denali_enable_dma(denali, true);
1226
1227         dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1228
1229         clear_interrupts(denali);
1230         denali_setup_dma(denali, DENALI_READ);
1231
1232         /* wait for operation to complete */
1233         wait_for_irq(denali, irq_mask);
1234
1235         dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1236
1237         denali_enable_dma(denali, false);
1238
1239         memcpy(buf, denali->buf.buf, mtd->writesize);
1240         memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1241
1242         return 0;
1243 }
1244
1245 static uint8_t denali_read_byte(struct mtd_info *mtd)
1246 {
1247         struct denali_nand_info *denali = mtd_to_denali(mtd);
1248         uint8_t result = 0xff;
1249
1250         if (denali->buf.head < denali->buf.tail)
1251                 result = denali->buf.buf[denali->buf.head++];
1252
1253         return result;
1254 }
1255
1256 static void denali_select_chip(struct mtd_info *mtd, int chip)
1257 {
1258         struct denali_nand_info *denali = mtd_to_denali(mtd);
1259
1260         spin_lock_irq(&denali->irq_lock);
1261         denali->flash_bank = chip;
1262         spin_unlock_irq(&denali->irq_lock);
1263 }
1264
1265 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1266 {
1267         struct denali_nand_info *denali = mtd_to_denali(mtd);
1268         int status = denali->status;
1269
1270         denali->status = 0;
1271
1272         return status;
1273 }
1274
1275 static int denali_erase(struct mtd_info *mtd, int page)
1276 {
1277         struct denali_nand_info *denali = mtd_to_denali(mtd);
1278
1279         uint32_t cmd, irq_status;
1280
1281         clear_interrupts(denali);
1282
1283         /* setup page read request for access type */
1284         cmd = MODE_10 | BANK(denali->flash_bank) | page;
1285         index_addr(denali, cmd, 0x1);
1286
1287         /* wait for erase to complete or failure to occur */
1288         irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
1289                                         INTR_STATUS__ERASE_FAIL);
1290
1291         return irq_status & INTR_STATUS__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
1292 }
1293
1294 static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1295                            int page)
1296 {
1297         struct denali_nand_info *denali = mtd_to_denali(mtd);
1298         uint32_t addr, id;
1299         int i;
1300
1301         switch (cmd) {
1302         case NAND_CMD_PAGEPROG:
1303                 break;
1304         case NAND_CMD_STATUS:
1305                 read_status(denali);
1306                 break;
1307         case NAND_CMD_READID:
1308         case NAND_CMD_PARAM:
1309                 reset_buf(denali);
1310                 /*
1311                  * sometimes ManufactureId read from register is not right
1312                  * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1313                  * So here we send READID cmd to NAND insteand
1314                  */
1315                 addr = MODE_11 | BANK(denali->flash_bank);
1316                 index_addr(denali, addr | 0, 0x90);
1317                 index_addr(denali, addr | 1, col);
1318                 for (i = 0; i < 8; i++) {
1319                         index_addr_read_data(denali, addr | 2, &id);
1320                         write_byte_to_buf(denali, id);
1321                 }
1322                 break;
1323         case NAND_CMD_READ0:
1324         case NAND_CMD_SEQIN:
1325                 denali->page = page;
1326                 break;
1327         case NAND_CMD_RESET:
1328                 reset_bank(denali);
1329                 break;
1330         case NAND_CMD_READOOB:
1331                 /* TODO: Read OOB data */
1332                 break;
1333         default:
1334                 pr_err(": unsupported command received 0x%x\n", cmd);
1335                 break;
1336         }
1337 }
1338 /* end NAND core entry points */
1339
1340 /* Initialization code to bring the device up to a known good state */
1341 static void denali_hw_init(struct denali_nand_info *denali)
1342 {
1343         /*
1344          * tell driver how many bit controller will skip before
1345          * writing ECC code in OOB, this register may be already
1346          * set by firmware. So we read this value out.
1347          * if this value is 0, just let it be.
1348          */
1349         denali->bbtskipbytes = ioread32(denali->flash_reg +
1350                                                 SPARE_AREA_SKIP_BYTES);
1351         detect_max_banks(denali);
1352         denali_nand_reset(denali);
1353         iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1354         iowrite32(CHIP_EN_DONT_CARE__FLAG,
1355                         denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1356
1357         iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1358
1359         /* Should set value for these registers when init */
1360         iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1361         iowrite32(1, denali->flash_reg + ECC_ENABLE);
1362         denali_nand_timing_set(denali);
1363         denali_irq_init(denali);
1364 }
1365
1366 /*
1367  * Althogh controller spec said SLC ECC is forceb to be 4bit,
1368  * but denali controller in MRST only support 15bit and 8bit ECC
1369  * correction
1370  */
1371 #define ECC_8BITS       14
1372 static struct nand_ecclayout nand_8bit_oob = {
1373         .eccbytes = 14,
1374 };
1375
1376 #define ECC_15BITS      26
1377 static struct nand_ecclayout nand_15bit_oob = {
1378         .eccbytes = 26,
1379 };
1380
1381 static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1382 static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1383
1384 static struct nand_bbt_descr bbt_main_descr = {
1385         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1386                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1387         .offs = 8,
1388         .len = 4,
1389         .veroffs = 12,
1390         .maxblocks = 4,
1391         .pattern = bbt_pattern,
1392 };
1393
1394 static struct nand_bbt_descr bbt_mirror_descr = {
1395         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1396                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1397         .offs = 8,
1398         .len = 4,
1399         .veroffs = 12,
1400         .maxblocks = 4,
1401         .pattern = mirror_pattern,
1402 };
1403
1404 /* initialize driver data structures */
1405 static void denali_drv_init(struct denali_nand_info *denali)
1406 {
1407         denali->idx = 0;
1408
1409         /* setup interrupt handler */
1410         /*
1411          * the completion object will be used to notify
1412          * the callee that the interrupt is done
1413          */
1414         init_completion(&denali->complete);
1415
1416         /*
1417          * the spinlock will be used to synchronize the ISR with any
1418          * element that might be access shared data (interrupt status)
1419          */
1420         spin_lock_init(&denali->irq_lock);
1421
1422         /* indicate that MTD has not selected a valid bank yet */
1423         denali->flash_bank = CHIP_SELECT_INVALID;
1424
1425         /* initialize our irq_status variable to indicate no interrupts */
1426         denali->irq_status = 0;
1427 }
1428
1429 int denali_init(struct denali_nand_info *denali)
1430 {
1431         int ret;
1432
1433         if (denali->platform == INTEL_CE4100) {
1434                 /*
1435                  * Due to a silicon limitation, we can only support
1436                  * ONFI timing mode 1 and below.
1437                  */
1438                 if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1439                         pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
1440                         return -EINVAL;
1441                 }
1442         }
1443
1444         /* allocate a temporary buffer for nand_scan_ident() */
1445         denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
1446                                         GFP_DMA | GFP_KERNEL);
1447         if (!denali->buf.buf)
1448                 return -ENOMEM;
1449
1450         denali->mtd.dev.parent = denali->dev;
1451         denali_hw_init(denali);
1452         denali_drv_init(denali);
1453
1454         /*
1455          * denali_isr register is done after all the hardware
1456          * initilization is finished
1457          */
1458         if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
1459                         DENALI_NAND_NAME, denali)) {
1460                 pr_err("Spectra: Unable to allocate IRQ\n");
1461                 return -ENODEV;
1462         }
1463
1464         /* now that our ISR is registered, we can enable interrupts */
1465         denali_set_intr_modes(denali, true);
1466         denali->mtd.name = "denali-nand";
1467         denali->mtd.priv = &denali->nand;
1468
1469         /* register the driver with the NAND core subsystem */
1470         denali->nand.select_chip = denali_select_chip;
1471         denali->nand.cmdfunc = denali_cmdfunc;
1472         denali->nand.read_byte = denali_read_byte;
1473         denali->nand.waitfunc = denali_waitfunc;
1474
1475         /*
1476          * scan for NAND devices attached to the controller
1477          * this is the first stage in a two step process to register
1478          * with the nand subsystem
1479          */
1480         if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
1481                 ret = -ENXIO;
1482                 goto failed_req_irq;
1483         }
1484
1485         /* allocate the right size buffer now */
1486         devm_kfree(denali->dev, denali->buf.buf);
1487         denali->buf.buf = devm_kzalloc(denali->dev,
1488                              denali->mtd.writesize + denali->mtd.oobsize,
1489                              GFP_KERNEL);
1490         if (!denali->buf.buf) {
1491                 ret = -ENOMEM;
1492                 goto failed_req_irq;
1493         }
1494
1495         /* Is 32-bit DMA supported? */
1496         ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
1497         if (ret) {
1498                 pr_err("Spectra: no usable DMA configuration\n");
1499                 goto failed_req_irq;
1500         }
1501
1502         denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1503                              denali->mtd.writesize + denali->mtd.oobsize,
1504                              DMA_BIDIRECTIONAL);
1505         if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
1506                 dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
1507                 ret = -EIO;
1508                 goto failed_req_irq;
1509         }
1510
1511         /*
1512          * support for multi nand
1513          * MTD known nothing about multi nand, so we should tell it
1514          * the real pagesize and anything necessery
1515          */
1516         denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1517         denali->nand.chipsize <<= (denali->devnum - 1);
1518         denali->nand.page_shift += (denali->devnum - 1);
1519         denali->nand.pagemask = (denali->nand.chipsize >>
1520                                                 denali->nand.page_shift) - 1;
1521         denali->nand.bbt_erase_shift += (denali->devnum - 1);
1522         denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
1523         denali->nand.chip_shift += (denali->devnum - 1);
1524         denali->mtd.writesize <<= (denali->devnum - 1);
1525         denali->mtd.oobsize <<= (denali->devnum - 1);
1526         denali->mtd.erasesize <<= (denali->devnum - 1);
1527         denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
1528         denali->bbtskipbytes *= denali->devnum;
1529
1530         /*
1531          * second stage of the NAND scan
1532          * this stage requires information regarding ECC and
1533          * bad block management.
1534          */
1535
1536         /* Bad block management */
1537         denali->nand.bbt_td = &bbt_main_descr;
1538         denali->nand.bbt_md = &bbt_mirror_descr;
1539
1540         /* skip the scan for now until we have OOB read and write support */
1541         denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1542         denali->nand.options |= NAND_SKIP_BBTSCAN;
1543         denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1544
1545         /* no subpage writes on denali */
1546         denali->nand.options |= NAND_NO_SUBPAGE_WRITE;
1547
1548         /*
1549          * Denali Controller only support 15bit and 8bit ECC in MRST,
1550          * so just let controller do 15bit ECC for MLC and 8bit ECC for
1551          * SLC if possible.
1552          * */
1553         if (!nand_is_slc(&denali->nand) &&
1554                         (denali->mtd.oobsize > (denali->bbtskipbytes +
1555                         ECC_15BITS * (denali->mtd.writesize /
1556                         ECC_SECTOR_SIZE)))) {
1557                 /* if MLC OOB size is large enough, use 15bit ECC*/
1558                 denali->nand.ecc.strength = 15;
1559                 denali->nand.ecc.layout = &nand_15bit_oob;
1560                 denali->nand.ecc.bytes = ECC_15BITS;
1561                 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1562         } else if (denali->mtd.oobsize < (denali->bbtskipbytes +
1563                         ECC_8BITS * (denali->mtd.writesize /
1564                         ECC_SECTOR_SIZE))) {
1565                 pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
1566                 goto failed_req_irq;
1567         } else {
1568                 denali->nand.ecc.strength = 8;
1569                 denali->nand.ecc.layout = &nand_8bit_oob;
1570                 denali->nand.ecc.bytes = ECC_8BITS;
1571                 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1572         }
1573
1574         denali->nand.ecc.bytes *= denali->devnum;
1575         denali->nand.ecc.strength *= denali->devnum;
1576         denali->nand.ecc.layout->eccbytes *=
1577                 denali->mtd.writesize / ECC_SECTOR_SIZE;
1578         denali->nand.ecc.layout->oobfree[0].offset =
1579                 denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
1580         denali->nand.ecc.layout->oobfree[0].length =
1581                 denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
1582                 denali->bbtskipbytes;
1583
1584         /*
1585          * Let driver know the total blocks number and how many blocks
1586          * contained by each nand chip. blksperchip will help driver to
1587          * know how many blocks is taken by FW.
1588          */
1589         denali->totalblks = denali->mtd.size >> denali->nand.phys_erase_shift;
1590         denali->blksperchip = denali->totalblks / denali->nand.numchips;
1591
1592         /* override the default read operations */
1593         denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1594         denali->nand.ecc.read_page = denali_read_page;
1595         denali->nand.ecc.read_page_raw = denali_read_page_raw;
1596         denali->nand.ecc.write_page = denali_write_page;
1597         denali->nand.ecc.write_page_raw = denali_write_page_raw;
1598         denali->nand.ecc.read_oob = denali_read_oob;
1599         denali->nand.ecc.write_oob = denali_write_oob;
1600         denali->nand.erase = denali_erase;
1601
1602         if (nand_scan_tail(&denali->mtd)) {
1603                 ret = -ENXIO;
1604                 goto failed_req_irq;
1605         }
1606
1607         ret = mtd_device_register(&denali->mtd, NULL, 0);
1608         if (ret) {
1609                 dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
1610                                 ret);
1611                 goto failed_req_irq;
1612         }
1613         return 0;
1614
1615 failed_req_irq:
1616         denali_irq_cleanup(denali->irq, denali);
1617
1618         return ret;
1619 }
1620 EXPORT_SYMBOL(denali_init);
1621
1622 /* driver exit point */
1623 void denali_remove(struct denali_nand_info *denali)
1624 {
1625         denali_irq_cleanup(denali->irq, denali);
1626         dma_unmap_single(denali->dev, denali->buf.dma_buf,
1627                          denali->mtd.writesize + denali->mtd.oobsize,
1628                          DMA_BIDIRECTIONAL);
1629 }
1630 EXPORT_SYMBOL(denali_remove);