Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / mtd / nand / davinci_nand.c
1 /*
2  * davinci_nand.c - NAND Flash Driver for DaVinci family chips
3  *
4  * Copyright © 2006 Texas Instruments.
5  *
6  * Port to 2.6.23 Copyright © 2008 by:
7  *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
8  *   Troy Kisky <troy.kisky@boundarydevices.com>
9  *   Dirk Behme <Dirk.Behme@gmail.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/err.h>
30 #include <linux/clk.h>
31 #include <linux/io.h>
32 #include <linux/mtd/nand.h>
33 #include <linux/mtd/partitions.h>
34 #include <linux/slab.h>
35 #include <linux/of_device.h>
36 #include <linux/of.h>
37 #include <linux/of_mtd.h>
38
39 #include <linux/platform_data/mtd-davinci.h>
40 #include <linux/platform_data/mtd-davinci-aemif.h>
41
42 /*
43  * This is a device driver for the NAND flash controller found on the
44  * various DaVinci family chips.  It handles up to four SoC chipselects,
45  * and some flavors of secondary chipselect (e.g. based on A12) as used
46  * with multichip packages.
47  *
48  * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
49  * available on chips like the DM355 and OMAP-L137 and needed with the
50  * more error-prone MLC NAND chips.
51  *
52  * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
53  * outputs in a "wire-AND" configuration, with no per-chip signals.
54  */
55 struct davinci_nand_info {
56         struct mtd_info         mtd;
57         struct nand_chip        chip;
58         struct nand_ecclayout   ecclayout;
59
60         struct device           *dev;
61         struct clk              *clk;
62
63         bool                    is_readmode;
64
65         void __iomem            *base;
66         void __iomem            *vaddr;
67
68         uint32_t                ioaddr;
69         uint32_t                current_cs;
70
71         uint32_t                mask_chipsel;
72         uint32_t                mask_ale;
73         uint32_t                mask_cle;
74
75         uint32_t                core_chipsel;
76
77         struct davinci_aemif_timing     *timing;
78 };
79
80 static DEFINE_SPINLOCK(davinci_nand_lock);
81 static bool ecc4_busy;
82
83 #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
84
85
86 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
87                 int offset)
88 {
89         return __raw_readl(info->base + offset);
90 }
91
92 static inline void davinci_nand_writel(struct davinci_nand_info *info,
93                 int offset, unsigned long value)
94 {
95         __raw_writel(value, info->base + offset);
96 }
97
98 /*----------------------------------------------------------------------*/
99
100 /*
101  * Access to hardware control lines:  ALE, CLE, secondary chipselect.
102  */
103
104 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
105                                    unsigned int ctrl)
106 {
107         struct davinci_nand_info        *info = to_davinci_nand(mtd);
108         uint32_t                        addr = info->current_cs;
109         struct nand_chip                *nand = mtd->priv;
110
111         /* Did the control lines change? */
112         if (ctrl & NAND_CTRL_CHANGE) {
113                 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
114                         addr |= info->mask_cle;
115                 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
116                         addr |= info->mask_ale;
117
118                 nand->IO_ADDR_W = (void __iomem __force *)addr;
119         }
120
121         if (cmd != NAND_CMD_NONE)
122                 iowrite8(cmd, nand->IO_ADDR_W);
123 }
124
125 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
126 {
127         struct davinci_nand_info        *info = to_davinci_nand(mtd);
128         uint32_t                        addr = info->ioaddr;
129
130         /* maybe kick in a second chipselect */
131         if (chip > 0)
132                 addr |= info->mask_chipsel;
133         info->current_cs = addr;
134
135         info->chip.IO_ADDR_W = (void __iomem __force *)addr;
136         info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
137 }
138
139 /*----------------------------------------------------------------------*/
140
141 /*
142  * 1-bit hardware ECC ... context maintained for each core chipselect
143  */
144
145 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
146 {
147         struct davinci_nand_info *info = to_davinci_nand(mtd);
148
149         return davinci_nand_readl(info, NANDF1ECC_OFFSET
150                         + 4 * info->core_chipsel);
151 }
152
153 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
154 {
155         struct davinci_nand_info *info;
156         uint32_t nandcfr;
157         unsigned long flags;
158
159         info = to_davinci_nand(mtd);
160
161         /* Reset ECC hardware */
162         nand_davinci_readecc_1bit(mtd);
163
164         spin_lock_irqsave(&davinci_nand_lock, flags);
165
166         /* Restart ECC hardware */
167         nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
168         nandcfr |= BIT(8 + info->core_chipsel);
169         davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
170
171         spin_unlock_irqrestore(&davinci_nand_lock, flags);
172 }
173
174 /*
175  * Read hardware ECC value and pack into three bytes
176  */
177 static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
178                                       const u_char *dat, u_char *ecc_code)
179 {
180         unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
181         unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
182
183         /* invert so that erased block ecc is correct */
184         ecc24 = ~ecc24;
185         ecc_code[0] = (u_char)(ecc24);
186         ecc_code[1] = (u_char)(ecc24 >> 8);
187         ecc_code[2] = (u_char)(ecc24 >> 16);
188
189         return 0;
190 }
191
192 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
193                                      u_char *read_ecc, u_char *calc_ecc)
194 {
195         struct nand_chip *chip = mtd->priv;
196         uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
197                                           (read_ecc[2] << 16);
198         uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
199                                           (calc_ecc[2] << 16);
200         uint32_t diff = eccCalc ^ eccNand;
201
202         if (diff) {
203                 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
204                         /* Correctable error */
205                         if ((diff >> (12 + 3)) < chip->ecc.size) {
206                                 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
207                                 return 1;
208                         } else {
209                                 return -1;
210                         }
211                 } else if (!(diff & (diff - 1))) {
212                         /* Single bit ECC error in the ECC itself,
213                          * nothing to fix */
214                         return 1;
215                 } else {
216                         /* Uncorrectable error */
217                         return -1;
218                 }
219
220         }
221         return 0;
222 }
223
224 /*----------------------------------------------------------------------*/
225
226 /*
227  * 4-bit hardware ECC ... context maintained over entire AEMIF
228  *
229  * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
230  * since that forces use of a problematic "infix OOB" layout.
231  * Among other things, it trashes manufacturer bad block markers.
232  * Also, and specific to this hardware, it ECC-protects the "prepad"
233  * in the OOB ... while having ECC protection for parts of OOB would
234  * seem useful, the current MTD stack sometimes wants to update the
235  * OOB without recomputing ECC.
236  */
237
238 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
239 {
240         struct davinci_nand_info *info = to_davinci_nand(mtd);
241         unsigned long flags;
242         u32 val;
243
244         spin_lock_irqsave(&davinci_nand_lock, flags);
245
246         /* Start 4-bit ECC calculation for read/write */
247         val = davinci_nand_readl(info, NANDFCR_OFFSET);
248         val &= ~(0x03 << 4);
249         val |= (info->core_chipsel << 4) | BIT(12);
250         davinci_nand_writel(info, NANDFCR_OFFSET, val);
251
252         info->is_readmode = (mode == NAND_ECC_READ);
253
254         spin_unlock_irqrestore(&davinci_nand_lock, flags);
255 }
256
257 /* Read raw ECC code after writing to NAND. */
258 static void
259 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
260 {
261         const u32 mask = 0x03ff03ff;
262
263         code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
264         code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
265         code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
266         code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
267 }
268
269 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
270 static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
271                 const u_char *dat, u_char *ecc_code)
272 {
273         struct davinci_nand_info *info = to_davinci_nand(mtd);
274         u32 raw_ecc[4], *p;
275         unsigned i;
276
277         /* After a read, terminate ECC calculation by a dummy read
278          * of some 4-bit ECC register.  ECC covers everything that
279          * was read; correct() just uses the hardware state, so
280          * ecc_code is not needed.
281          */
282         if (info->is_readmode) {
283                 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
284                 return 0;
285         }
286
287         /* Pack eight raw 10-bit ecc values into ten bytes, making
288          * two passes which each convert four values (in upper and
289          * lower halves of two 32-bit words) into five bytes.  The
290          * ROM boot loader uses this same packing scheme.
291          */
292         nand_davinci_readecc_4bit(info, raw_ecc);
293         for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
294                 *ecc_code++ =   p[0]        & 0xff;
295                 *ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
296                 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
297                 *ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
298                 *ecc_code++ =  (p[1] >> 18) & 0xff;
299         }
300
301         return 0;
302 }
303
304 /* Correct up to 4 bits in data we just read, using state left in the
305  * hardware plus the ecc_code computed when it was first written.
306  */
307 static int nand_davinci_correct_4bit(struct mtd_info *mtd,
308                 u_char *data, u_char *ecc_code, u_char *null)
309 {
310         int i;
311         struct davinci_nand_info *info = to_davinci_nand(mtd);
312         unsigned short ecc10[8];
313         unsigned short *ecc16;
314         u32 syndrome[4];
315         u32 ecc_state;
316         unsigned num_errors, corrected;
317         unsigned long timeo;
318
319         /* All bytes 0xff?  It's an erased page; ignore its ECC. */
320         for (i = 0; i < 10; i++) {
321                 if (ecc_code[i] != 0xff)
322                         goto compare;
323         }
324         return 0;
325
326 compare:
327         /* Unpack ten bytes into eight 10 bit values.  We know we're
328          * little-endian, and use type punning for less shifting/masking.
329          */
330         if (WARN_ON(0x01 & (unsigned) ecc_code))
331                 return -EINVAL;
332         ecc16 = (unsigned short *)ecc_code;
333
334         ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
335         ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
336         ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
337         ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
338         ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
339         ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
340         ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
341         ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
342
343         /* Tell ECC controller about the expected ECC codes. */
344         for (i = 7; i >= 0; i--)
345                 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
346
347         /* Allow time for syndrome calculation ... then read it.
348          * A syndrome of all zeroes 0 means no detected errors.
349          */
350         davinci_nand_readl(info, NANDFSR_OFFSET);
351         nand_davinci_readecc_4bit(info, syndrome);
352         if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
353                 return 0;
354
355         /*
356          * Clear any previous address calculation by doing a dummy read of an
357          * error address register.
358          */
359         davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
360
361         /* Start address calculation, and wait for it to complete.
362          * We _could_ start reading more data while this is working,
363          * to speed up the overall page read.
364          */
365         davinci_nand_writel(info, NANDFCR_OFFSET,
366                         davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
367
368         /*
369          * ECC_STATE field reads 0x3 (Error correction complete) immediately
370          * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
371          * begin trying to poll for the state, you may fall right out of your
372          * loop without any of the correction calculations having taken place.
373          * The recommendation from the hardware team is to initially delay as
374          * long as ECC_STATE reads less than 4. After that, ECC HW has entered
375          * correction state.
376          */
377         timeo = jiffies + usecs_to_jiffies(100);
378         do {
379                 ecc_state = (davinci_nand_readl(info,
380                                 NANDFSR_OFFSET) >> 8) & 0x0f;
381                 cpu_relax();
382         } while ((ecc_state < 4) && time_before(jiffies, timeo));
383
384         for (;;) {
385                 u32     fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
386
387                 switch ((fsr >> 8) & 0x0f) {
388                 case 0:         /* no error, should not happen */
389                         davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
390                         return 0;
391                 case 1:         /* five or more errors detected */
392                         davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
393                         return -EIO;
394                 case 2:         /* error addresses computed */
395                 case 3:
396                         num_errors = 1 + ((fsr >> 16) & 0x03);
397                         goto correct;
398                 default:        /* still working on it */
399                         cpu_relax();
400                         continue;
401                 }
402         }
403
404 correct:
405         /* correct each error */
406         for (i = 0, corrected = 0; i < num_errors; i++) {
407                 int error_address, error_value;
408
409                 if (i > 1) {
410                         error_address = davinci_nand_readl(info,
411                                                 NAND_ERR_ADD2_OFFSET);
412                         error_value = davinci_nand_readl(info,
413                                                 NAND_ERR_ERRVAL2_OFFSET);
414                 } else {
415                         error_address = davinci_nand_readl(info,
416                                                 NAND_ERR_ADD1_OFFSET);
417                         error_value = davinci_nand_readl(info,
418                                                 NAND_ERR_ERRVAL1_OFFSET);
419                 }
420
421                 if (i & 1) {
422                         error_address >>= 16;
423                         error_value >>= 16;
424                 }
425                 error_address &= 0x3ff;
426                 error_address = (512 + 7) - error_address;
427
428                 if (error_address < 512) {
429                         data[error_address] ^= error_value;
430                         corrected++;
431                 }
432         }
433
434         return corrected;
435 }
436
437 /*----------------------------------------------------------------------*/
438
439 /*
440  * NOTE:  NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
441  * how these chips are normally wired.  This translates to both 8 and 16
442  * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
443  *
444  * For now we assume that configuration, or any other one which ignores
445  * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
446  * and have that transparently morphed into multiple NAND operations.
447  */
448 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
449 {
450         struct nand_chip *chip = mtd->priv;
451
452         if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
453                 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
454         else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
455                 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
456         else
457                 ioread8_rep(chip->IO_ADDR_R, buf, len);
458 }
459
460 static void nand_davinci_write_buf(struct mtd_info *mtd,
461                 const uint8_t *buf, int len)
462 {
463         struct nand_chip *chip = mtd->priv;
464
465         if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
466                 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
467         else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
468                 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
469         else
470                 iowrite8_rep(chip->IO_ADDR_R, buf, len);
471 }
472
473 /*
474  * Check hardware register for wait status. Returns 1 if device is ready,
475  * 0 if it is still busy.
476  */
477 static int nand_davinci_dev_ready(struct mtd_info *mtd)
478 {
479         struct davinci_nand_info *info = to_davinci_nand(mtd);
480
481         return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
482 }
483
484 /*----------------------------------------------------------------------*/
485
486 /* An ECC layout for using 4-bit ECC with small-page flash, storing
487  * ten ECC bytes plus the manufacturer's bad block marker byte, and
488  * and not overlapping the default BBT markers.
489  */
490 static struct nand_ecclayout hwecc4_small = {
491         .eccbytes = 10,
492         .eccpos = { 0, 1, 2, 3, 4,
493                 /* offset 5 holds the badblock marker */
494                 6, 7,
495                 13, 14, 15, },
496         .oobfree = {
497                 {.offset = 8, .length = 5, },
498                 {.offset = 16, },
499         },
500 };
501
502 /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
503  * storing ten ECC bytes plus the manufacturer's bad block marker byte,
504  * and not overlapping the default BBT markers.
505  */
506 static struct nand_ecclayout hwecc4_2048 = {
507         .eccbytes = 40,
508         .eccpos = {
509                 /* at the end of spare sector */
510                 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
511                 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
512                 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
513                 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
514                 },
515         .oobfree = {
516                 /* 2 bytes at offset 0 hold manufacturer badblock markers */
517                 {.offset = 2, .length = 22, },
518                 /* 5 bytes at offset 8 hold BBT markers */
519                 /* 8 bytes at offset 16 hold JFFS2 clean markers */
520         },
521 };
522
523 #if defined(CONFIG_OF)
524 static const struct of_device_id davinci_nand_of_match[] = {
525         {.compatible = "ti,davinci-nand", },
526         {.compatible = "ti,keystone-nand", },
527         {},
528 };
529 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
530
531 static struct davinci_nand_pdata
532         *nand_davinci_get_pdata(struct platform_device *pdev)
533 {
534         if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
535                 struct davinci_nand_pdata *pdata;
536                 const char *mode;
537                 u32 prop;
538
539                 pdata =  devm_kzalloc(&pdev->dev,
540                                 sizeof(struct davinci_nand_pdata),
541                                 GFP_KERNEL);
542                 pdev->dev.platform_data = pdata;
543                 if (!pdata)
544                         return ERR_PTR(-ENOMEM);
545                 if (!of_property_read_u32(pdev->dev.of_node,
546                         "ti,davinci-chipselect", &prop))
547                         pdev->id = prop;
548                 else
549                         return ERR_PTR(-EINVAL);
550
551                 if (!of_property_read_u32(pdev->dev.of_node,
552                         "ti,davinci-mask-ale", &prop))
553                         pdata->mask_ale = prop;
554                 if (!of_property_read_u32(pdev->dev.of_node,
555                         "ti,davinci-mask-cle", &prop))
556                         pdata->mask_cle = prop;
557                 if (!of_property_read_u32(pdev->dev.of_node,
558                         "ti,davinci-mask-chipsel", &prop))
559                         pdata->mask_chipsel = prop;
560                 if (!of_property_read_string(pdev->dev.of_node,
561                         "nand-ecc-mode", &mode) ||
562                     !of_property_read_string(pdev->dev.of_node,
563                         "ti,davinci-ecc-mode", &mode)) {
564                         if (!strncmp("none", mode, 4))
565                                 pdata->ecc_mode = NAND_ECC_NONE;
566                         if (!strncmp("soft", mode, 4))
567                                 pdata->ecc_mode = NAND_ECC_SOFT;
568                         if (!strncmp("hw", mode, 2))
569                                 pdata->ecc_mode = NAND_ECC_HW;
570                 }
571                 if (!of_property_read_u32(pdev->dev.of_node,
572                         "ti,davinci-ecc-bits", &prop))
573                         pdata->ecc_bits = prop;
574
575                 prop = of_get_nand_bus_width(pdev->dev.of_node);
576                 if (0 < prop || !of_property_read_u32(pdev->dev.of_node,
577                         "ti,davinci-nand-buswidth", &prop))
578                         if (prop == 16)
579                                 pdata->options |= NAND_BUSWIDTH_16;
580                 if (of_property_read_bool(pdev->dev.of_node,
581                         "nand-on-flash-bbt") ||
582                     of_property_read_bool(pdev->dev.of_node,
583                         "ti,davinci-nand-use-bbt"))
584                         pdata->bbt_options = NAND_BBT_USE_FLASH;
585
586                 if (of_device_is_compatible(pdev->dev.of_node,
587                                             "ti,keystone-nand")) {
588                         pdata->options |= NAND_NO_SUBPAGE_WRITE;
589                 }
590         }
591
592         return dev_get_platdata(&pdev->dev);
593 }
594 #else
595 static struct davinci_nand_pdata
596         *nand_davinci_get_pdata(struct platform_device *pdev)
597 {
598         return dev_get_platdata(&pdev->dev);
599 }
600 #endif
601
602 static int nand_davinci_probe(struct platform_device *pdev)
603 {
604         struct davinci_nand_pdata       *pdata;
605         struct davinci_nand_info        *info;
606         struct resource                 *res1;
607         struct resource                 *res2;
608         void __iomem                    *vaddr;
609         void __iomem                    *base;
610         int                             ret;
611         uint32_t                        val;
612         nand_ecc_modes_t                ecc_mode;
613
614         pdata = nand_davinci_get_pdata(pdev);
615         if (IS_ERR(pdata))
616                 return PTR_ERR(pdata);
617
618         /* insist on board-specific configuration */
619         if (!pdata)
620                 return -ENODEV;
621
622         /* which external chipselect will we be managing? */
623         if (pdev->id < 0 || pdev->id > 3)
624                 return -ENODEV;
625
626         info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
627         if (!info)
628                 return -ENOMEM;
629
630         platform_set_drvdata(pdev, info);
631
632         res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
633         res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
634         if (!res1 || !res2) {
635                 dev_err(&pdev->dev, "resource missing\n");
636                 return -EINVAL;
637         }
638
639         vaddr = devm_ioremap_resource(&pdev->dev, res1);
640         if (IS_ERR(vaddr))
641                 return PTR_ERR(vaddr);
642
643         /*
644          * This registers range is used to setup NAND settings. In case with
645          * TI AEMIF driver, the same memory address range is requested already
646          * by AEMIF, so we cannot request it twice, just ioremap.
647          * The AEMIF and NAND drivers not use the same registers in this range.
648          */
649         base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
650         if (!base) {
651                 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
652                 return -EADDRNOTAVAIL;
653         }
654
655         info->dev               = &pdev->dev;
656         info->base              = base;
657         info->vaddr             = vaddr;
658
659         info->mtd.priv          = &info->chip;
660         info->mtd.name          = dev_name(&pdev->dev);
661         info->mtd.owner         = THIS_MODULE;
662
663         info->mtd.dev.parent    = &pdev->dev;
664
665         info->chip.IO_ADDR_R    = vaddr;
666         info->chip.IO_ADDR_W    = vaddr;
667         info->chip.chip_delay   = 0;
668         info->chip.select_chip  = nand_davinci_select_chip;
669
670         /* options such as NAND_BBT_USE_FLASH */
671         info->chip.bbt_options  = pdata->bbt_options;
672         /* options such as 16-bit widths */
673         info->chip.options      = pdata->options;
674         info->chip.bbt_td       = pdata->bbt_td;
675         info->chip.bbt_md       = pdata->bbt_md;
676         info->timing            = pdata->timing;
677
678         info->ioaddr            = (uint32_t __force) vaddr;
679
680         info->current_cs        = info->ioaddr;
681         info->core_chipsel      = pdev->id;
682         info->mask_chipsel      = pdata->mask_chipsel;
683
684         /* use nandboot-capable ALE/CLE masks by default */
685         info->mask_ale          = pdata->mask_ale ? : MASK_ALE;
686         info->mask_cle          = pdata->mask_cle ? : MASK_CLE;
687
688         /* Set address of hardware control function */
689         info->chip.cmd_ctrl     = nand_davinci_hwcontrol;
690         info->chip.dev_ready    = nand_davinci_dev_ready;
691
692         /* Speed up buffer I/O */
693         info->chip.read_buf     = nand_davinci_read_buf;
694         info->chip.write_buf    = nand_davinci_write_buf;
695
696         /* Use board-specific ECC config */
697         ecc_mode                = pdata->ecc_mode;
698
699         ret = -EINVAL;
700         switch (ecc_mode) {
701         case NAND_ECC_NONE:
702         case NAND_ECC_SOFT:
703                 pdata->ecc_bits = 0;
704                 break;
705         case NAND_ECC_HW:
706                 if (pdata->ecc_bits == 4) {
707                         /* No sanity checks:  CPUs must support this,
708                          * and the chips may not use NAND_BUSWIDTH_16.
709                          */
710
711                         /* No sharing 4-bit hardware between chipselects yet */
712                         spin_lock_irq(&davinci_nand_lock);
713                         if (ecc4_busy)
714                                 ret = -EBUSY;
715                         else
716                                 ecc4_busy = true;
717                         spin_unlock_irq(&davinci_nand_lock);
718
719                         if (ret == -EBUSY)
720                                 return ret;
721
722                         info->chip.ecc.calculate = nand_davinci_calculate_4bit;
723                         info->chip.ecc.correct = nand_davinci_correct_4bit;
724                         info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
725                         info->chip.ecc.bytes = 10;
726                 } else {
727                         info->chip.ecc.calculate = nand_davinci_calculate_1bit;
728                         info->chip.ecc.correct = nand_davinci_correct_1bit;
729                         info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
730                         info->chip.ecc.bytes = 3;
731                 }
732                 info->chip.ecc.size = 512;
733                 info->chip.ecc.strength = pdata->ecc_bits;
734                 break;
735         default:
736                 return -EINVAL;
737         }
738         info->chip.ecc.mode = ecc_mode;
739
740         info->clk = devm_clk_get(&pdev->dev, "aemif");
741         if (IS_ERR(info->clk)) {
742                 ret = PTR_ERR(info->clk);
743                 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
744                 return ret;
745         }
746
747         ret = clk_prepare_enable(info->clk);
748         if (ret < 0) {
749                 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
750                         ret);
751                 goto err_clk_enable;
752         }
753
754         spin_lock_irq(&davinci_nand_lock);
755
756         /* put CSxNAND into NAND mode */
757         val = davinci_nand_readl(info, NANDFCR_OFFSET);
758         val |= BIT(info->core_chipsel);
759         davinci_nand_writel(info, NANDFCR_OFFSET, val);
760
761         spin_unlock_irq(&davinci_nand_lock);
762
763         /* Scan to find existence of the device(s) */
764         ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
765         if (ret < 0) {
766                 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
767                 goto err;
768         }
769
770         /* Update ECC layout if needed ... for 1-bit HW ECC, the default
771          * is OK, but it allocates 6 bytes when only 3 are needed (for
772          * each 512 bytes).  For the 4-bit HW ECC, that default is not
773          * usable:  10 bytes are needed, not 6.
774          */
775         if (pdata->ecc_bits == 4) {
776                 int     chunks = info->mtd.writesize / 512;
777
778                 if (!chunks || info->mtd.oobsize < 16) {
779                         dev_dbg(&pdev->dev, "too small\n");
780                         ret = -EINVAL;
781                         goto err;
782                 }
783
784                 /* For small page chips, preserve the manufacturer's
785                  * badblock marking data ... and make sure a flash BBT
786                  * table marker fits in the free bytes.
787                  */
788                 if (chunks == 1) {
789                         info->ecclayout = hwecc4_small;
790                         info->ecclayout.oobfree[1].length =
791                                 info->mtd.oobsize - 16;
792                         goto syndrome_done;
793                 }
794                 if (chunks == 4) {
795                         info->ecclayout = hwecc4_2048;
796                         info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
797                         goto syndrome_done;
798                 }
799
800                 /* 4KiB page chips are not yet supported. The eccpos from
801                  * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
802                  * breaks userspace ioctl interface with mtd-utils. Once we
803                  * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
804                  * for the 4KiB page chips.
805                  *
806                  * TODO: Note that nand_ecclayout has now been expanded and can
807                  *  hold plenty of OOB entries.
808                  */
809                 dev_warn(&pdev->dev, "no 4-bit ECC support yet "
810                                 "for 4KiB-page NAND\n");
811                 ret = -EIO;
812                 goto err;
813
814 syndrome_done:
815                 info->chip.ecc.layout = &info->ecclayout;
816         }
817
818         ret = nand_scan_tail(&info->mtd);
819         if (ret < 0)
820                 goto err;
821
822         if (pdata->parts)
823                 ret = mtd_device_parse_register(&info->mtd, NULL, NULL,
824                                         pdata->parts, pdata->nr_parts);
825         else {
826                 struct mtd_part_parser_data     ppdata;
827
828                 ppdata.of_node = pdev->dev.of_node;
829                 ret = mtd_device_parse_register(&info->mtd, NULL, &ppdata,
830                                                 NULL, 0);
831         }
832         if (ret < 0)
833                 goto err;
834
835         val = davinci_nand_readl(info, NRCSR_OFFSET);
836         dev_info(&pdev->dev, "controller rev. %d.%d\n",
837                (val >> 8) & 0xff, val & 0xff);
838
839         return 0;
840
841 err:
842         clk_disable_unprepare(info->clk);
843
844 err_clk_enable:
845         spin_lock_irq(&davinci_nand_lock);
846         if (ecc_mode == NAND_ECC_HW_SYNDROME)
847                 ecc4_busy = false;
848         spin_unlock_irq(&davinci_nand_lock);
849         return ret;
850 }
851
852 static int nand_davinci_remove(struct platform_device *pdev)
853 {
854         struct davinci_nand_info *info = platform_get_drvdata(pdev);
855
856         spin_lock_irq(&davinci_nand_lock);
857         if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
858                 ecc4_busy = false;
859         spin_unlock_irq(&davinci_nand_lock);
860
861         nand_release(&info->mtd);
862
863         clk_disable_unprepare(info->clk);
864
865         return 0;
866 }
867
868 static struct platform_driver nand_davinci_driver = {
869         .probe          = nand_davinci_probe,
870         .remove         = nand_davinci_remove,
871         .driver         = {
872                 .name   = "davinci_nand",
873                 .of_match_table = of_match_ptr(davinci_nand_of_match),
874         },
875 };
876 MODULE_ALIAS("platform:davinci_nand");
877
878 module_platform_driver(nand_davinci_driver);
879
880 MODULE_LICENSE("GPL");
881 MODULE_AUTHOR("Texas Instruments");
882 MODULE_DESCRIPTION("Davinci NAND flash driver");
883