Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / mtd / nand / au1550nd.c
1 /*
2  *  drivers/mtd/nand/au1550nd.c
3  *
4  *  Copyright (C) 2004 Embedded Edge, LLC
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  */
11
12 #include <linux/slab.h>
13 #include <linux/gpio.h>
14 #include <linux/module.h>
15 #include <linux/interrupt.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/nand.h>
18 #include <linux/mtd/partitions.h>
19 #include <linux/platform_device.h>
20 #include <asm/io.h>
21 #include <asm/mach-au1x00/au1000.h>
22 #include <asm/mach-au1x00/au1550nd.h>
23
24
25 struct au1550nd_ctx {
26         struct mtd_info info;
27         struct nand_chip chip;
28
29         int cs;
30         void __iomem *base;
31         void (*write_byte)(struct mtd_info *, u_char);
32 };
33
34 /**
35  * au_read_byte -  read one byte from the chip
36  * @mtd:        MTD device structure
37  *
38  * read function for 8bit buswidth
39  */
40 static u_char au_read_byte(struct mtd_info *mtd)
41 {
42         struct nand_chip *this = mtd->priv;
43         u_char ret = readb(this->IO_ADDR_R);
44         wmb(); /* drain writebuffer */
45         return ret;
46 }
47
48 /**
49  * au_write_byte -  write one byte to the chip
50  * @mtd:        MTD device structure
51  * @byte:       pointer to data byte to write
52  *
53  * write function for 8it buswidth
54  */
55 static void au_write_byte(struct mtd_info *mtd, u_char byte)
56 {
57         struct nand_chip *this = mtd->priv;
58         writeb(byte, this->IO_ADDR_W);
59         wmb(); /* drain writebuffer */
60 }
61
62 /**
63  * au_read_byte16 -  read one byte endianness aware from the chip
64  * @mtd:        MTD device structure
65  *
66  * read function for 16bit buswidth with endianness conversion
67  */
68 static u_char au_read_byte16(struct mtd_info *mtd)
69 {
70         struct nand_chip *this = mtd->priv;
71         u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
72         wmb(); /* drain writebuffer */
73         return ret;
74 }
75
76 /**
77  * au_write_byte16 -  write one byte endianness aware to the chip
78  * @mtd:        MTD device structure
79  * @byte:       pointer to data byte to write
80  *
81  * write function for 16bit buswidth with endianness conversion
82  */
83 static void au_write_byte16(struct mtd_info *mtd, u_char byte)
84 {
85         struct nand_chip *this = mtd->priv;
86         writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
87         wmb(); /* drain writebuffer */
88 }
89
90 /**
91  * au_read_word -  read one word from the chip
92  * @mtd:        MTD device structure
93  *
94  * read function for 16bit buswidth without endianness conversion
95  */
96 static u16 au_read_word(struct mtd_info *mtd)
97 {
98         struct nand_chip *this = mtd->priv;
99         u16 ret = readw(this->IO_ADDR_R);
100         wmb(); /* drain writebuffer */
101         return ret;
102 }
103
104 /**
105  * au_write_buf -  write buffer to chip
106  * @mtd:        MTD device structure
107  * @buf:        data buffer
108  * @len:        number of bytes to write
109  *
110  * write function for 8bit buswidth
111  */
112 static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
113 {
114         int i;
115         struct nand_chip *this = mtd->priv;
116
117         for (i = 0; i < len; i++) {
118                 writeb(buf[i], this->IO_ADDR_W);
119                 wmb(); /* drain writebuffer */
120         }
121 }
122
123 /**
124  * au_read_buf -  read chip data into buffer
125  * @mtd:        MTD device structure
126  * @buf:        buffer to store date
127  * @len:        number of bytes to read
128  *
129  * read function for 8bit buswidth
130  */
131 static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len)
132 {
133         int i;
134         struct nand_chip *this = mtd->priv;
135
136         for (i = 0; i < len; i++) {
137                 buf[i] = readb(this->IO_ADDR_R);
138                 wmb(); /* drain writebuffer */
139         }
140 }
141
142 /**
143  * au_write_buf16 -  write buffer to chip
144  * @mtd:        MTD device structure
145  * @buf:        data buffer
146  * @len:        number of bytes to write
147  *
148  * write function for 16bit buswidth
149  */
150 static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
151 {
152         int i;
153         struct nand_chip *this = mtd->priv;
154         u16 *p = (u16 *) buf;
155         len >>= 1;
156
157         for (i = 0; i < len; i++) {
158                 writew(p[i], this->IO_ADDR_W);
159                 wmb(); /* drain writebuffer */
160         }
161
162 }
163
164 /**
165  * au_read_buf16 -  read chip data into buffer
166  * @mtd:        MTD device structure
167  * @buf:        buffer to store date
168  * @len:        number of bytes to read
169  *
170  * read function for 16bit buswidth
171  */
172 static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
173 {
174         int i;
175         struct nand_chip *this = mtd->priv;
176         u16 *p = (u16 *) buf;
177         len >>= 1;
178
179         for (i = 0; i < len; i++) {
180                 p[i] = readw(this->IO_ADDR_R);
181                 wmb(); /* drain writebuffer */
182         }
183 }
184
185 /* Select the chip by setting nCE to low */
186 #define NAND_CTL_SETNCE         1
187 /* Deselect the chip by setting nCE to high */
188 #define NAND_CTL_CLRNCE         2
189 /* Select the command latch by setting CLE to high */
190 #define NAND_CTL_SETCLE         3
191 /* Deselect the command latch by setting CLE to low */
192 #define NAND_CTL_CLRCLE         4
193 /* Select the address latch by setting ALE to high */
194 #define NAND_CTL_SETALE         5
195 /* Deselect the address latch by setting ALE to low */
196 #define NAND_CTL_CLRALE         6
197
198 static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
199 {
200         struct au1550nd_ctx *ctx = container_of(mtd, struct au1550nd_ctx, info);
201         struct nand_chip *this = mtd->priv;
202
203         switch (cmd) {
204
205         case NAND_CTL_SETCLE:
206                 this->IO_ADDR_W = ctx->base + MEM_STNAND_CMD;
207                 break;
208
209         case NAND_CTL_CLRCLE:
210                 this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
211                 break;
212
213         case NAND_CTL_SETALE:
214                 this->IO_ADDR_W = ctx->base + MEM_STNAND_ADDR;
215                 break;
216
217         case NAND_CTL_CLRALE:
218                 this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
219                 /* FIXME: Nobody knows why this is necessary,
220                  * but it works only that way */
221                 udelay(1);
222                 break;
223
224         case NAND_CTL_SETNCE:
225                 /* assert (force assert) chip enable */
226                 alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL);
227                 break;
228
229         case NAND_CTL_CLRNCE:
230                 /* deassert chip enable */
231                 alchemy_wrsmem(0, AU1000_MEM_STNDCTL);
232                 break;
233         }
234
235         this->IO_ADDR_R = this->IO_ADDR_W;
236
237         wmb(); /* Drain the writebuffer */
238 }
239
240 int au1550_device_ready(struct mtd_info *mtd)
241 {
242         return (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1) ? 1 : 0;
243 }
244
245 /**
246  * au1550_select_chip - control -CE line
247  *      Forbid driving -CE manually permitting the NAND controller to do this.
248  *      Keeping -CE asserted during the whole sector reads interferes with the
249  *      NOR flash and PCMCIA drivers as it causes contention on the static bus.
250  *      We only have to hold -CE low for the NAND read commands since the flash
251  *      chip needs it to be asserted during chip not ready time but the NAND
252  *      controller keeps it released.
253  *
254  * @mtd:        MTD device structure
255  * @chip:       chipnumber to select, -1 for deselect
256  */
257 static void au1550_select_chip(struct mtd_info *mtd, int chip)
258 {
259 }
260
261 /**
262  * au1550_command - Send command to NAND device
263  * @mtd:        MTD device structure
264  * @command:    the command to be sent
265  * @column:     the column address for this command, -1 if none
266  * @page_addr:  the page address for this command, -1 if none
267  */
268 static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
269 {
270         struct au1550nd_ctx *ctx = container_of(mtd, struct au1550nd_ctx, info);
271         struct nand_chip *this = mtd->priv;
272         int ce_override = 0, i;
273         unsigned long flags = 0;
274
275         /* Begin command latch cycle */
276         au1550_hwcontrol(mtd, NAND_CTL_SETCLE);
277         /*
278          * Write out the command to the device.
279          */
280         if (command == NAND_CMD_SEQIN) {
281                 int readcmd;
282
283                 if (column >= mtd->writesize) {
284                         /* OOB area */
285                         column -= mtd->writesize;
286                         readcmd = NAND_CMD_READOOB;
287                 } else if (column < 256) {
288                         /* First 256 bytes --> READ0 */
289                         readcmd = NAND_CMD_READ0;
290                 } else {
291                         column -= 256;
292                         readcmd = NAND_CMD_READ1;
293                 }
294                 ctx->write_byte(mtd, readcmd);
295         }
296         ctx->write_byte(mtd, command);
297
298         /* Set ALE and clear CLE to start address cycle */
299         au1550_hwcontrol(mtd, NAND_CTL_CLRCLE);
300
301         if (column != -1 || page_addr != -1) {
302                 au1550_hwcontrol(mtd, NAND_CTL_SETALE);
303
304                 /* Serially input address */
305                 if (column != -1) {
306                         /* Adjust columns for 16 bit buswidth */
307                         if (this->options & NAND_BUSWIDTH_16 &&
308                                         !nand_opcode_8bits(command))
309                                 column >>= 1;
310                         ctx->write_byte(mtd, column);
311                 }
312                 if (page_addr != -1) {
313                         ctx->write_byte(mtd, (u8)(page_addr & 0xff));
314
315                         if (command == NAND_CMD_READ0 ||
316                             command == NAND_CMD_READ1 ||
317                             command == NAND_CMD_READOOB) {
318                                 /*
319                                  * NAND controller will release -CE after
320                                  * the last address byte is written, so we'll
321                                  * have to forcibly assert it. No interrupts
322                                  * are allowed while we do this as we don't
323                                  * want the NOR flash or PCMCIA drivers to
324                                  * steal our precious bytes of data...
325                                  */
326                                 ce_override = 1;
327                                 local_irq_save(flags);
328                                 au1550_hwcontrol(mtd, NAND_CTL_SETNCE);
329                         }
330
331                         ctx->write_byte(mtd, (u8)(page_addr >> 8));
332
333                         /* One more address cycle for devices > 32MiB */
334                         if (this->chipsize > (32 << 20))
335                                 ctx->write_byte(mtd,
336                                                 ((page_addr >> 16) & 0x0f));
337                 }
338                 /* Latch in address */
339                 au1550_hwcontrol(mtd, NAND_CTL_CLRALE);
340         }
341
342         /*
343          * Program and erase have their own busy handlers.
344          * Status and sequential in need no delay.
345          */
346         switch (command) {
347
348         case NAND_CMD_PAGEPROG:
349         case NAND_CMD_ERASE1:
350         case NAND_CMD_ERASE2:
351         case NAND_CMD_SEQIN:
352         case NAND_CMD_STATUS:
353                 return;
354
355         case NAND_CMD_RESET:
356                 break;
357
358         case NAND_CMD_READ0:
359         case NAND_CMD_READ1:
360         case NAND_CMD_READOOB:
361                 /* Check if we're really driving -CE low (just in case) */
362                 if (unlikely(!ce_override))
363                         break;
364
365                 /* Apply a short delay always to ensure that we do wait tWB. */
366                 ndelay(100);
367                 /* Wait for a chip to become ready... */
368                 for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i)
369                         udelay(1);
370
371                 /* Release -CE and re-enable interrupts. */
372                 au1550_hwcontrol(mtd, NAND_CTL_CLRNCE);
373                 local_irq_restore(flags);
374                 return;
375         }
376         /* Apply this short delay always to ensure that we do wait tWB. */
377         ndelay(100);
378
379         while(!this->dev_ready(mtd));
380 }
381
382 static int find_nand_cs(unsigned long nand_base)
383 {
384         void __iomem *base =
385                         (void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR);
386         unsigned long addr, staddr, start, mask, end;
387         int i;
388
389         for (i = 0; i < 4; i++) {
390                 addr = 0x1000 + (i * 0x10);                     /* CSx */
391                 staddr = __raw_readl(base + addr + 0x08);       /* STADDRx */
392                 /* figure out the decoded range of this CS */
393                 start = (staddr << 4) & 0xfffc0000;
394                 mask = (staddr << 18) & 0xfffc0000;
395                 end = (start | (start - 1)) & ~(start ^ mask);
396                 if ((nand_base >= start) && (nand_base < end))
397                         return i;
398         }
399
400         return -ENODEV;
401 }
402
403 static int au1550nd_probe(struct platform_device *pdev)
404 {
405         struct au1550nd_platdata *pd;
406         struct au1550nd_ctx *ctx;
407         struct nand_chip *this;
408         struct resource *r;
409         int ret, cs;
410
411         pd = dev_get_platdata(&pdev->dev);
412         if (!pd) {
413                 dev_err(&pdev->dev, "missing platform data\n");
414                 return -ENODEV;
415         }
416
417         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
418         if (!ctx)
419                 return -ENOMEM;
420
421         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
422         if (!r) {
423                 dev_err(&pdev->dev, "no NAND memory resource\n");
424                 ret = -ENODEV;
425                 goto out1;
426         }
427         if (request_mem_region(r->start, resource_size(r), "au1550-nand")) {
428                 dev_err(&pdev->dev, "cannot claim NAND memory area\n");
429                 ret = -ENOMEM;
430                 goto out1;
431         }
432
433         ctx->base = ioremap_nocache(r->start, 0x1000);
434         if (!ctx->base) {
435                 dev_err(&pdev->dev, "cannot remap NAND memory area\n");
436                 ret = -ENODEV;
437                 goto out2;
438         }
439
440         this = &ctx->chip;
441         ctx->info.priv = this;
442         ctx->info.owner = THIS_MODULE;
443
444         /* figure out which CS# r->start belongs to */
445         cs = find_nand_cs(r->start);
446         if (cs < 0) {
447                 dev_err(&pdev->dev, "cannot detect NAND chipselect\n");
448                 ret = -ENODEV;
449                 goto out3;
450         }
451         ctx->cs = cs;
452
453         this->dev_ready = au1550_device_ready;
454         this->select_chip = au1550_select_chip;
455         this->cmdfunc = au1550_command;
456
457         /* 30 us command delay time */
458         this->chip_delay = 30;
459         this->ecc.mode = NAND_ECC_SOFT;
460
461         if (pd->devwidth)
462                 this->options |= NAND_BUSWIDTH_16;
463
464         this->read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte;
465         ctx->write_byte = (pd->devwidth) ? au_write_byte16 : au_write_byte;
466         this->read_word = au_read_word;
467         this->write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf;
468         this->read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf;
469
470         ret = nand_scan(&ctx->info, 1);
471         if (ret) {
472                 dev_err(&pdev->dev, "NAND scan failed with %d\n", ret);
473                 goto out3;
474         }
475
476         mtd_device_register(&ctx->info, pd->parts, pd->num_parts);
477
478         platform_set_drvdata(pdev, ctx);
479
480         return 0;
481
482 out3:
483         iounmap(ctx->base);
484 out2:
485         release_mem_region(r->start, resource_size(r));
486 out1:
487         kfree(ctx);
488         return ret;
489 }
490
491 static int au1550nd_remove(struct platform_device *pdev)
492 {
493         struct au1550nd_ctx *ctx = platform_get_drvdata(pdev);
494         struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
495
496         nand_release(&ctx->info);
497         iounmap(ctx->base);
498         release_mem_region(r->start, 0x1000);
499         kfree(ctx);
500         return 0;
501 }
502
503 static struct platform_driver au1550nd_driver = {
504         .driver = {
505                 .name   = "au1550-nand",
506         },
507         .probe          = au1550nd_probe,
508         .remove         = au1550nd_remove,
509 };
510
511 module_platform_driver(au1550nd_driver);
512
513 MODULE_LICENSE("GPL");
514 MODULE_AUTHOR("Embedded Edge, LLC");
515 MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");