Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / mtd / lpddr / lpddr_cmds.c
1 /*
2  * LPDDR flash memory device operations. This module provides read, write,
3  * erase, lock/unlock support for LPDDR flash memories
4  * (C) 2008 Korolev Alexey <akorolev@infradead.org>
5  * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
6  * Many thanks to Roman Borisov for initial enabling
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version 2
11  * of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21  * 02110-1301, USA.
22  * TODO:
23  * Implement VPP management
24  * Implement XIP support
25  * Implement OTP support
26  */
27 #include <linux/mtd/pfow.h>
28 #include <linux/mtd/qinfo.h>
29 #include <linux/slab.h>
30 #include <linux/module.h>
31
32 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
33                                         size_t *retlen, u_char *buf);
34 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
35                                 size_t len, size_t *retlen, const u_char *buf);
36 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
37                                 unsigned long count, loff_t to, size_t *retlen);
38 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
39 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
40 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
41 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
42                         size_t *retlen, void **mtdbuf, resource_size_t *phys);
43 static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
44 static int get_chip(struct map_info *map, struct flchip *chip, int mode);
45 static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
46 static void put_chip(struct map_info *map, struct flchip *chip);
47
48 struct mtd_info *lpddr_cmdset(struct map_info *map)
49 {
50         struct lpddr_private *lpddr = map->fldrv_priv;
51         struct flchip_shared *shared;
52         struct flchip *chip;
53         struct mtd_info *mtd;
54         int numchips;
55         int i, j;
56
57         mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
58         if (!mtd)
59                 return NULL;
60         mtd->priv = map;
61         mtd->type = MTD_NORFLASH;
62
63         /* Fill in the default mtd operations */
64         mtd->_read = lpddr_read;
65         mtd->type = MTD_NORFLASH;
66         mtd->flags = MTD_CAP_NORFLASH;
67         mtd->flags &= ~MTD_BIT_WRITEABLE;
68         mtd->_erase = lpddr_erase;
69         mtd->_write = lpddr_write_buffers;
70         mtd->_writev = lpddr_writev;
71         mtd->_lock = lpddr_lock;
72         mtd->_unlock = lpddr_unlock;
73         if (map_is_linear(map)) {
74                 mtd->_point = lpddr_point;
75                 mtd->_unpoint = lpddr_unpoint;
76         }
77         mtd->size = 1 << lpddr->qinfo->DevSizeShift;
78         mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
79         mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
80
81         shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
82                                                 GFP_KERNEL);
83         if (!shared) {
84                 kfree(lpddr);
85                 kfree(mtd);
86                 return NULL;
87         }
88
89         chip = &lpddr->chips[0];
90         numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
91         for (i = 0; i < numchips; i++) {
92                 shared[i].writing = shared[i].erasing = NULL;
93                 mutex_init(&shared[i].lock);
94                 for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
95                         *chip = lpddr->chips[i];
96                         chip->start += j << lpddr->chipshift;
97                         chip->oldstate = chip->state = FL_READY;
98                         chip->priv = &shared[i];
99                         /* those should be reset too since
100                            they create memory references. */
101                         init_waitqueue_head(&chip->wq);
102                         mutex_init(&chip->mutex);
103                         chip++;
104                 }
105         }
106
107         return mtd;
108 }
109 EXPORT_SYMBOL(lpddr_cmdset);
110
111 static int wait_for_ready(struct map_info *map, struct flchip *chip,
112                 unsigned int chip_op_time)
113 {
114         unsigned int timeo, reset_timeo, sleep_time;
115         unsigned int dsr;
116         flstate_t chip_state = chip->state;
117         int ret = 0;
118
119         /* set our timeout to 8 times the expected delay */
120         timeo = chip_op_time * 8;
121         if (!timeo)
122                 timeo = 500000;
123         reset_timeo = timeo;
124         sleep_time = chip_op_time / 2;
125
126         for (;;) {
127                 dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
128                 if (dsr & DSR_READY_STATUS)
129                         break;
130                 if (!timeo) {
131                         printk(KERN_ERR "%s: Flash timeout error state %d \n",
132                                                         map->name, chip_state);
133                         ret = -ETIME;
134                         break;
135                 }
136
137                 /* OK Still waiting. Drop the lock, wait a while and retry. */
138                 mutex_unlock(&chip->mutex);
139                 if (sleep_time >= 1000000/HZ) {
140                         /*
141                          * Half of the normal delay still remaining
142                          * can be performed with a sleeping delay instead
143                          * of busy waiting.
144                          */
145                         msleep(sleep_time/1000);
146                         timeo -= sleep_time;
147                         sleep_time = 1000000/HZ;
148                 } else {
149                         udelay(1);
150                         cond_resched();
151                         timeo--;
152                 }
153                 mutex_lock(&chip->mutex);
154
155                 while (chip->state != chip_state) {
156                         /* Someone's suspended the operation: sleep */
157                         DECLARE_WAITQUEUE(wait, current);
158                         set_current_state(TASK_UNINTERRUPTIBLE);
159                         add_wait_queue(&chip->wq, &wait);
160                         mutex_unlock(&chip->mutex);
161                         schedule();
162                         remove_wait_queue(&chip->wq, &wait);
163                         mutex_lock(&chip->mutex);
164                 }
165                 if (chip->erase_suspended || chip->write_suspended)  {
166                         /* Suspend has occurred while sleep: reset timeout */
167                         timeo = reset_timeo;
168                         chip->erase_suspended = chip->write_suspended = 0;
169                 }
170         }
171         /* check status for errors */
172         if (dsr & DSR_ERR) {
173                 /* Clear DSR*/
174                 map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
175                 printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
176                                 map->name, dsr);
177                 print_drs_error(dsr);
178                 ret = -EIO;
179         }
180         chip->state = FL_READY;
181         return ret;
182 }
183
184 static int get_chip(struct map_info *map, struct flchip *chip, int mode)
185 {
186         int ret;
187         DECLARE_WAITQUEUE(wait, current);
188
189  retry:
190         if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
191                 && chip->state != FL_SYNCING) {
192                 /*
193                  * OK. We have possibility for contension on the write/erase
194                  * operations which are global to the real chip and not per
195                  * partition.  So let's fight it over in the partition which
196                  * currently has authority on the operation.
197                  *
198                  * The rules are as follows:
199                  *
200                  * - any write operation must own shared->writing.
201                  *
202                  * - any erase operation must own _both_ shared->writing and
203                  *   shared->erasing.
204                  *
205                  * - contension arbitration is handled in the owner's context.
206                  *
207                  * The 'shared' struct can be read and/or written only when
208                  * its lock is taken.
209                  */
210                 struct flchip_shared *shared = chip->priv;
211                 struct flchip *contender;
212                 mutex_lock(&shared->lock);
213                 contender = shared->writing;
214                 if (contender && contender != chip) {
215                         /*
216                          * The engine to perform desired operation on this
217                          * partition is already in use by someone else.
218                          * Let's fight over it in the context of the chip
219                          * currently using it.  If it is possible to suspend,
220                          * that other partition will do just that, otherwise
221                          * it'll happily send us to sleep.  In any case, when
222                          * get_chip returns success we're clear to go ahead.
223                          */
224                         ret = mutex_trylock(&contender->mutex);
225                         mutex_unlock(&shared->lock);
226                         if (!ret)
227                                 goto retry;
228                         mutex_unlock(&chip->mutex);
229                         ret = chip_ready(map, contender, mode);
230                         mutex_lock(&chip->mutex);
231
232                         if (ret == -EAGAIN) {
233                                 mutex_unlock(&contender->mutex);
234                                 goto retry;
235                         }
236                         if (ret) {
237                                 mutex_unlock(&contender->mutex);
238                                 return ret;
239                         }
240                         mutex_lock(&shared->lock);
241
242                         /* We should not own chip if it is already in FL_SYNCING
243                          * state. Put contender and retry. */
244                         if (chip->state == FL_SYNCING) {
245                                 put_chip(map, contender);
246                                 mutex_unlock(&contender->mutex);
247                                 goto retry;
248                         }
249                         mutex_unlock(&contender->mutex);
250                 }
251
252                 /* Check if we have suspended erase on this chip.
253                    Must sleep in such a case. */
254                 if (mode == FL_ERASING && shared->erasing
255                     && shared->erasing->oldstate == FL_ERASING) {
256                         mutex_unlock(&shared->lock);
257                         set_current_state(TASK_UNINTERRUPTIBLE);
258                         add_wait_queue(&chip->wq, &wait);
259                         mutex_unlock(&chip->mutex);
260                         schedule();
261                         remove_wait_queue(&chip->wq, &wait);
262                         mutex_lock(&chip->mutex);
263                         goto retry;
264                 }
265
266                 /* We now own it */
267                 shared->writing = chip;
268                 if (mode == FL_ERASING)
269                         shared->erasing = chip;
270                 mutex_unlock(&shared->lock);
271         }
272
273         ret = chip_ready(map, chip, mode);
274         if (ret == -EAGAIN)
275                 goto retry;
276
277         return ret;
278 }
279
280 static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
281 {
282         struct lpddr_private *lpddr = map->fldrv_priv;
283         int ret = 0;
284         DECLARE_WAITQUEUE(wait, current);
285
286         /* Prevent setting state FL_SYNCING for chip in suspended state. */
287         if (FL_SYNCING == mode && FL_READY != chip->oldstate)
288                 goto sleep;
289
290         switch (chip->state) {
291         case FL_READY:
292         case FL_JEDEC_QUERY:
293                 return 0;
294
295         case FL_ERASING:
296                 if (!lpddr->qinfo->SuspEraseSupp ||
297                         !(mode == FL_READY || mode == FL_POINT))
298                         goto sleep;
299
300                 map_write(map, CMD(LPDDR_SUSPEND),
301                         map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
302                 chip->oldstate = FL_ERASING;
303                 chip->state = FL_ERASE_SUSPENDING;
304                 ret = wait_for_ready(map, chip, 0);
305                 if (ret) {
306                         /* Oops. something got wrong. */
307                         /* Resume and pretend we weren't here.  */
308                         put_chip(map, chip);
309                         printk(KERN_ERR "%s: suspend operation failed."
310                                         "State may be wrong \n", map->name);
311                         return -EIO;
312                 }
313                 chip->erase_suspended = 1;
314                 chip->state = FL_READY;
315                 return 0;
316                 /* Erase suspend */
317         case FL_POINT:
318                 /* Only if there's no operation suspended... */
319                 if (mode == FL_READY && chip->oldstate == FL_READY)
320                         return 0;
321
322         default:
323 sleep:
324                 set_current_state(TASK_UNINTERRUPTIBLE);
325                 add_wait_queue(&chip->wq, &wait);
326                 mutex_unlock(&chip->mutex);
327                 schedule();
328                 remove_wait_queue(&chip->wq, &wait);
329                 mutex_lock(&chip->mutex);
330                 return -EAGAIN;
331         }
332 }
333
334 static void put_chip(struct map_info *map, struct flchip *chip)
335 {
336         if (chip->priv) {
337                 struct flchip_shared *shared = chip->priv;
338                 mutex_lock(&shared->lock);
339                 if (shared->writing == chip && chip->oldstate == FL_READY) {
340                         /* We own the ability to write, but we're done */
341                         shared->writing = shared->erasing;
342                         if (shared->writing && shared->writing != chip) {
343                                 /* give back the ownership */
344                                 struct flchip *loaner = shared->writing;
345                                 mutex_lock(&loaner->mutex);
346                                 mutex_unlock(&shared->lock);
347                                 mutex_unlock(&chip->mutex);
348                                 put_chip(map, loaner);
349                                 mutex_lock(&chip->mutex);
350                                 mutex_unlock(&loaner->mutex);
351                                 wake_up(&chip->wq);
352                                 return;
353                         }
354                         shared->erasing = NULL;
355                         shared->writing = NULL;
356                 } else if (shared->erasing == chip && shared->writing != chip) {
357                         /*
358                          * We own the ability to erase without the ability
359                          * to write, which means the erase was suspended
360                          * and some other partition is currently writing.
361                          * Don't let the switch below mess things up since
362                          * we don't have ownership to resume anything.
363                          */
364                         mutex_unlock(&shared->lock);
365                         wake_up(&chip->wq);
366                         return;
367                 }
368                 mutex_unlock(&shared->lock);
369         }
370
371         switch (chip->oldstate) {
372         case FL_ERASING:
373                 map_write(map, CMD(LPDDR_RESUME),
374                                 map->pfow_base + PFOW_COMMAND_CODE);
375                 map_write(map, CMD(LPDDR_START_EXECUTION),
376                                 map->pfow_base + PFOW_COMMAND_EXECUTE);
377                 chip->oldstate = FL_READY;
378                 chip->state = FL_ERASING;
379                 break;
380         case FL_READY:
381                 break;
382         default:
383                 printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
384                                 map->name, chip->oldstate);
385         }
386         wake_up(&chip->wq);
387 }
388
389 static int do_write_buffer(struct map_info *map, struct flchip *chip,
390                         unsigned long adr, const struct kvec **pvec,
391                         unsigned long *pvec_seek, int len)
392 {
393         struct lpddr_private *lpddr = map->fldrv_priv;
394         map_word datum;
395         int ret, wbufsize, word_gap, words;
396         const struct kvec *vec;
397         unsigned long vec_seek;
398         unsigned long prog_buf_ofs;
399
400         wbufsize = 1 << lpddr->qinfo->BufSizeShift;
401
402         mutex_lock(&chip->mutex);
403         ret = get_chip(map, chip, FL_WRITING);
404         if (ret) {
405                 mutex_unlock(&chip->mutex);
406                 return ret;
407         }
408         /* Figure out the number of words to write */
409         word_gap = (-adr & (map_bankwidth(map)-1));
410         words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
411         if (!word_gap) {
412                 words--;
413         } else {
414                 word_gap = map_bankwidth(map) - word_gap;
415                 adr -= word_gap;
416                 datum = map_word_ff(map);
417         }
418         /* Write data */
419         /* Get the program buffer offset from PFOW register data first*/
420         prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
421                                 map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
422         vec = *pvec;
423         vec_seek = *pvec_seek;
424         do {
425                 int n = map_bankwidth(map) - word_gap;
426
427                 if (n > vec->iov_len - vec_seek)
428                         n = vec->iov_len - vec_seek;
429                 if (n > len)
430                         n = len;
431
432                 if (!word_gap && (len < map_bankwidth(map)))
433                         datum = map_word_ff(map);
434
435                 datum = map_word_load_partial(map, datum,
436                                 vec->iov_base + vec_seek, word_gap, n);
437
438                 len -= n;
439                 word_gap += n;
440                 if (!len || word_gap == map_bankwidth(map)) {
441                         map_write(map, datum, prog_buf_ofs);
442                         prog_buf_ofs += map_bankwidth(map);
443                         word_gap = 0;
444                 }
445
446                 vec_seek += n;
447                 if (vec_seek == vec->iov_len) {
448                         vec++;
449                         vec_seek = 0;
450                 }
451         } while (len);
452         *pvec = vec;
453         *pvec_seek = vec_seek;
454
455         /* GO GO GO */
456         send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
457         chip->state = FL_WRITING;
458         ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
459         if (ret)        {
460                 printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
461                         map->name, ret, adr);
462                 goto out;
463         }
464
465  out:   put_chip(map, chip);
466         mutex_unlock(&chip->mutex);
467         return ret;
468 }
469
470 static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
471 {
472         struct map_info *map = mtd->priv;
473         struct lpddr_private *lpddr = map->fldrv_priv;
474         int chipnum = adr >> lpddr->chipshift;
475         struct flchip *chip = &lpddr->chips[chipnum];
476         int ret;
477
478         mutex_lock(&chip->mutex);
479         ret = get_chip(map, chip, FL_ERASING);
480         if (ret) {
481                 mutex_unlock(&chip->mutex);
482                 return ret;
483         }
484         send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
485         chip->state = FL_ERASING;
486         ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
487         if (ret) {
488                 printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
489                         map->name, ret, adr);
490                 goto out;
491         }
492  out:   put_chip(map, chip);
493         mutex_unlock(&chip->mutex);
494         return ret;
495 }
496
497 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
498                         size_t *retlen, u_char *buf)
499 {
500         struct map_info *map = mtd->priv;
501         struct lpddr_private *lpddr = map->fldrv_priv;
502         int chipnum = adr >> lpddr->chipshift;
503         struct flchip *chip = &lpddr->chips[chipnum];
504         int ret = 0;
505
506         mutex_lock(&chip->mutex);
507         ret = get_chip(map, chip, FL_READY);
508         if (ret) {
509                 mutex_unlock(&chip->mutex);
510                 return ret;
511         }
512
513         map_copy_from(map, buf, adr, len);
514         *retlen = len;
515
516         put_chip(map, chip);
517         mutex_unlock(&chip->mutex);
518         return ret;
519 }
520
521 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
522                         size_t *retlen, void **mtdbuf, resource_size_t *phys)
523 {
524         struct map_info *map = mtd->priv;
525         struct lpddr_private *lpddr = map->fldrv_priv;
526         int chipnum = adr >> lpddr->chipshift;
527         unsigned long ofs, last_end = 0;
528         struct flchip *chip = &lpddr->chips[chipnum];
529         int ret = 0;
530
531         if (!map->virt)
532                 return -EINVAL;
533
534         /* ofs: offset within the first chip that the first read should start */
535         ofs = adr - (chipnum << lpddr->chipshift);
536         *mtdbuf = (void *)map->virt + chip->start + ofs;
537
538         while (len) {
539                 unsigned long thislen;
540
541                 if (chipnum >= lpddr->numchips)
542                         break;
543
544                 /* We cannot point across chips that are virtually disjoint */
545                 if (!last_end)
546                         last_end = chip->start;
547                 else if (chip->start != last_end)
548                         break;
549
550                 if ((len + ofs - 1) >> lpddr->chipshift)
551                         thislen = (1<<lpddr->chipshift) - ofs;
552                 else
553                         thislen = len;
554                 /* get the chip */
555                 mutex_lock(&chip->mutex);
556                 ret = get_chip(map, chip, FL_POINT);
557                 mutex_unlock(&chip->mutex);
558                 if (ret)
559                         break;
560
561                 chip->state = FL_POINT;
562                 chip->ref_point_counter++;
563                 *retlen += thislen;
564                 len -= thislen;
565
566                 ofs = 0;
567                 last_end += 1 << lpddr->chipshift;
568                 chipnum++;
569                 chip = &lpddr->chips[chipnum];
570         }
571         return 0;
572 }
573
574 static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
575 {
576         struct map_info *map = mtd->priv;
577         struct lpddr_private *lpddr = map->fldrv_priv;
578         int chipnum = adr >> lpddr->chipshift, err = 0;
579         unsigned long ofs;
580
581         /* ofs: offset within the first chip that the first read should start */
582         ofs = adr - (chipnum << lpddr->chipshift);
583
584         while (len) {
585                 unsigned long thislen;
586                 struct flchip *chip;
587
588                 chip = &lpddr->chips[chipnum];
589                 if (chipnum >= lpddr->numchips)
590                         break;
591
592                 if ((len + ofs - 1) >> lpddr->chipshift)
593                         thislen = (1<<lpddr->chipshift) - ofs;
594                 else
595                         thislen = len;
596
597                 mutex_lock(&chip->mutex);
598                 if (chip->state == FL_POINT) {
599                         chip->ref_point_counter--;
600                         if (chip->ref_point_counter == 0)
601                                 chip->state = FL_READY;
602                 } else {
603                         printk(KERN_WARNING "%s: Warning: unpoint called on non"
604                                         "pointed region\n", map->name);
605                         err = -EINVAL;
606                 }
607
608                 put_chip(map, chip);
609                 mutex_unlock(&chip->mutex);
610
611                 len -= thislen;
612                 ofs = 0;
613                 chipnum++;
614         }
615
616         return err;
617 }
618
619 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
620                                 size_t *retlen, const u_char *buf)
621 {
622         struct kvec vec;
623
624         vec.iov_base = (void *) buf;
625         vec.iov_len = len;
626
627         return lpddr_writev(mtd, &vec, 1, to, retlen);
628 }
629
630
631 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
632                                 unsigned long count, loff_t to, size_t *retlen)
633 {
634         struct map_info *map = mtd->priv;
635         struct lpddr_private *lpddr = map->fldrv_priv;
636         int ret = 0;
637         int chipnum;
638         unsigned long ofs, vec_seek, i;
639         int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
640         size_t len = 0;
641
642         for (i = 0; i < count; i++)
643                 len += vecs[i].iov_len;
644
645         if (!len)
646                 return 0;
647
648         chipnum = to >> lpddr->chipshift;
649
650         ofs = to;
651         vec_seek = 0;
652
653         do {
654                 /* We must not cross write block boundaries */
655                 int size = wbufsize - (ofs & (wbufsize-1));
656
657                 if (size > len)
658                         size = len;
659
660                 ret = do_write_buffer(map, &lpddr->chips[chipnum],
661                                           ofs, &vecs, &vec_seek, size);
662                 if (ret)
663                         return ret;
664
665                 ofs += size;
666                 (*retlen) += size;
667                 len -= size;
668
669                 /* Be nice and reschedule with the chip in a usable
670                  * state for other processes */
671                 cond_resched();
672
673         } while (len);
674
675         return 0;
676 }
677
678 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
679 {
680         unsigned long ofs, len;
681         int ret;
682         struct map_info *map = mtd->priv;
683         struct lpddr_private *lpddr = map->fldrv_priv;
684         int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
685
686         ofs = instr->addr;
687         len = instr->len;
688
689         while (len > 0) {
690                 ret = do_erase_oneblock(mtd, ofs);
691                 if (ret)
692                         return ret;
693                 ofs += size;
694                 len -= size;
695         }
696         instr->state = MTD_ERASE_DONE;
697         mtd_erase_callback(instr);
698
699         return 0;
700 }
701
702 #define DO_XXLOCK_LOCK          1
703 #define DO_XXLOCK_UNLOCK        2
704 static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
705 {
706         int ret = 0;
707         struct map_info *map = mtd->priv;
708         struct lpddr_private *lpddr = map->fldrv_priv;
709         int chipnum = adr >> lpddr->chipshift;
710         struct flchip *chip = &lpddr->chips[chipnum];
711
712         mutex_lock(&chip->mutex);
713         ret = get_chip(map, chip, FL_LOCKING);
714         if (ret) {
715                 mutex_unlock(&chip->mutex);
716                 return ret;
717         }
718
719         if (thunk == DO_XXLOCK_LOCK) {
720                 send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
721                 chip->state = FL_LOCKING;
722         } else if (thunk == DO_XXLOCK_UNLOCK) {
723                 send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
724                 chip->state = FL_UNLOCKING;
725         } else
726                 BUG();
727
728         ret = wait_for_ready(map, chip, 1);
729         if (ret)        {
730                 printk(KERN_ERR "%s: block unlock error status %d \n",
731                                 map->name, ret);
732                 goto out;
733         }
734 out:    put_chip(map, chip);
735         mutex_unlock(&chip->mutex);
736         return ret;
737 }
738
739 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
740 {
741         return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
742 }
743
744 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
745 {
746         return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
747 }
748
749 MODULE_LICENSE("GPL");
750 MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
751 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");