Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / mmc / host / sh_mmcif.c
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/pagemap.h>
61 #include <linux/platform_device.h>
62 #include <linux/pm_qos.h>
63 #include <linux/pm_runtime.h>
64 #include <linux/sh_dma.h>
65 #include <linux/spinlock.h>
66 #include <linux/module.h>
67
68 #define DRIVER_NAME     "sh_mmcif"
69 #define DRIVER_VERSION  "2010-04-28"
70
71 /* CE_CMD_SET */
72 #define CMD_MASK                0x3f000000
73 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
74 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
75 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
76 #define CMD_SET_RBSY            (1 << 21) /* R1b */
77 #define CMD_SET_CCSEN           (1 << 20)
78 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
79 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
80 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
81 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
82 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
83 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
84 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
85 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
86 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
87 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
88 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
89 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
90 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
91 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
92 #define CMD_SET_CCSH            (1 << 5)
93 #define CMD_SET_DARS            (1 << 2) /* Dual Data Rate */
94 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
95 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
96 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
97
98 /* CE_CMD_CTRL */
99 #define CMD_CTRL_BREAK          (1 << 0)
100
101 /* CE_BLOCK_SET */
102 #define BLOCK_SIZE_MASK         0x0000ffff
103
104 /* CE_INT */
105 #define INT_CCSDE               (1 << 29)
106 #define INT_CMD12DRE            (1 << 26)
107 #define INT_CMD12RBE            (1 << 25)
108 #define INT_CMD12CRE            (1 << 24)
109 #define INT_DTRANE              (1 << 23)
110 #define INT_BUFRE               (1 << 22)
111 #define INT_BUFWEN              (1 << 21)
112 #define INT_BUFREN              (1 << 20)
113 #define INT_CCSRCV              (1 << 19)
114 #define INT_RBSYE               (1 << 17)
115 #define INT_CRSPE               (1 << 16)
116 #define INT_CMDVIO              (1 << 15)
117 #define INT_BUFVIO              (1 << 14)
118 #define INT_WDATERR             (1 << 11)
119 #define INT_RDATERR             (1 << 10)
120 #define INT_RIDXERR             (1 << 9)
121 #define INT_RSPERR              (1 << 8)
122 #define INT_CCSTO               (1 << 5)
123 #define INT_CRCSTO              (1 << 4)
124 #define INT_WDATTO              (1 << 3)
125 #define INT_RDATTO              (1 << 2)
126 #define INT_RBSYTO              (1 << 1)
127 #define INT_RSPTO               (1 << 0)
128 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
129                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
130                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
131                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
132
133 #define INT_ALL                 (INT_RBSYE | INT_CRSPE | INT_BUFREN |    \
134                                  INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
135                                  INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
136
137 #define INT_CCS                 (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
138
139 /* CE_INT_MASK */
140 #define MASK_ALL                0x00000000
141 #define MASK_MCCSDE             (1 << 29)
142 #define MASK_MCMD12DRE          (1 << 26)
143 #define MASK_MCMD12RBE          (1 << 25)
144 #define MASK_MCMD12CRE          (1 << 24)
145 #define MASK_MDTRANE            (1 << 23)
146 #define MASK_MBUFRE             (1 << 22)
147 #define MASK_MBUFWEN            (1 << 21)
148 #define MASK_MBUFREN            (1 << 20)
149 #define MASK_MCCSRCV            (1 << 19)
150 #define MASK_MRBSYE             (1 << 17)
151 #define MASK_MCRSPE             (1 << 16)
152 #define MASK_MCMDVIO            (1 << 15)
153 #define MASK_MBUFVIO            (1 << 14)
154 #define MASK_MWDATERR           (1 << 11)
155 #define MASK_MRDATERR           (1 << 10)
156 #define MASK_MRIDXERR           (1 << 9)
157 #define MASK_MRSPERR            (1 << 8)
158 #define MASK_MCCSTO             (1 << 5)
159 #define MASK_MCRCSTO            (1 << 4)
160 #define MASK_MWDATTO            (1 << 3)
161 #define MASK_MRDATTO            (1 << 2)
162 #define MASK_MRBSYTO            (1 << 1)
163 #define MASK_MRSPTO             (1 << 0)
164
165 #define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
166                                  MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
167                                  MASK_MCRCSTO | MASK_MWDATTO | \
168                                  MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
169
170 #define MASK_CLEAN              (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |      \
171                                  MASK_MBUFREN | MASK_MBUFWEN |                  \
172                                  MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |  \
173                                  MASK_MCMD12RBE | MASK_MCMD12CRE)
174
175 /* CE_HOST_STS1 */
176 #define STS1_CMDSEQ             (1 << 31)
177
178 /* CE_HOST_STS2 */
179 #define STS2_CRCSTE             (1 << 31)
180 #define STS2_CRC16E             (1 << 30)
181 #define STS2_AC12CRCE           (1 << 29)
182 #define STS2_RSPCRC7E           (1 << 28)
183 #define STS2_CRCSTEBE           (1 << 27)
184 #define STS2_RDATEBE            (1 << 26)
185 #define STS2_AC12REBE           (1 << 25)
186 #define STS2_RSPEBE             (1 << 24)
187 #define STS2_AC12IDXE           (1 << 23)
188 #define STS2_RSPIDXE            (1 << 22)
189 #define STS2_CCSTO              (1 << 15)
190 #define STS2_RDATTO             (1 << 14)
191 #define STS2_DATBSYTO           (1 << 13)
192 #define STS2_CRCSTTO            (1 << 12)
193 #define STS2_AC12BSYTO          (1 << 11)
194 #define STS2_RSPBSYTO           (1 << 10)
195 #define STS2_AC12RSPTO          (1 << 9)
196 #define STS2_RSPTO              (1 << 8)
197 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
198                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
199 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
200                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
201                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
202                                  STS2_AC12RSPTO | STS2_RSPTO)
203
204 #define CLKDEV_EMMC_DATA        52000000 /* 52MHz */
205 #define CLKDEV_MMC_DATA         20000000 /* 20MHz */
206 #define CLKDEV_INIT             400000   /* 400 KHz */
207
208 enum mmcif_state {
209         STATE_IDLE,
210         STATE_REQUEST,
211         STATE_IOS,
212         STATE_TIMEOUT,
213 };
214
215 enum mmcif_wait_for {
216         MMCIF_WAIT_FOR_REQUEST,
217         MMCIF_WAIT_FOR_CMD,
218         MMCIF_WAIT_FOR_MREAD,
219         MMCIF_WAIT_FOR_MWRITE,
220         MMCIF_WAIT_FOR_READ,
221         MMCIF_WAIT_FOR_WRITE,
222         MMCIF_WAIT_FOR_READ_END,
223         MMCIF_WAIT_FOR_WRITE_END,
224         MMCIF_WAIT_FOR_STOP,
225 };
226
227 struct sh_mmcif_host {
228         struct mmc_host *mmc;
229         struct mmc_request *mrq;
230         struct platform_device *pd;
231         struct clk *hclk;
232         unsigned int clk;
233         int bus_width;
234         unsigned char timing;
235         bool sd_error;
236         bool dying;
237         long timeout;
238         void __iomem *addr;
239         u32 *pio_ptr;
240         spinlock_t lock;                /* protect sh_mmcif_host::state */
241         enum mmcif_state state;
242         enum mmcif_wait_for wait_for;
243         struct delayed_work timeout_work;
244         size_t blocksize;
245         int sg_idx;
246         int sg_blkidx;
247         bool power;
248         bool card_present;
249         bool ccs_enable;                /* Command Completion Signal support */
250         bool clk_ctrl2_enable;
251         struct mutex thread_lock;
252
253         /* DMA support */
254         struct dma_chan         *chan_rx;
255         struct dma_chan         *chan_tx;
256         struct completion       dma_complete;
257         bool                    dma_active;
258 };
259
260 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261                                         unsigned int reg, u32 val)
262 {
263         writel(val | readl(host->addr + reg), host->addr + reg);
264 }
265
266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267                                         unsigned int reg, u32 val)
268 {
269         writel(~val & readl(host->addr + reg), host->addr + reg);
270 }
271
272 static void mmcif_dma_complete(void *arg)
273 {
274         struct sh_mmcif_host *host = arg;
275         struct mmc_request *mrq = host->mrq;
276
277         dev_dbg(&host->pd->dev, "Command completed\n");
278
279         if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
280                  dev_name(&host->pd->dev)))
281                 return;
282
283         complete(&host->dma_complete);
284 }
285
286 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
287 {
288         struct mmc_data *data = host->mrq->data;
289         struct scatterlist *sg = data->sg;
290         struct dma_async_tx_descriptor *desc = NULL;
291         struct dma_chan *chan = host->chan_rx;
292         dma_cookie_t cookie = -EINVAL;
293         int ret;
294
295         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
296                          DMA_FROM_DEVICE);
297         if (ret > 0) {
298                 host->dma_active = true;
299                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
300                         DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
301         }
302
303         if (desc) {
304                 desc->callback = mmcif_dma_complete;
305                 desc->callback_param = host;
306                 cookie = dmaengine_submit(desc);
307                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
308                 dma_async_issue_pending(chan);
309         }
310         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
311                 __func__, data->sg_len, ret, cookie);
312
313         if (!desc) {
314                 /* DMA failed, fall back to PIO */
315                 if (ret >= 0)
316                         ret = -EIO;
317                 host->chan_rx = NULL;
318                 host->dma_active = false;
319                 dma_release_channel(chan);
320                 /* Free the Tx channel too */
321                 chan = host->chan_tx;
322                 if (chan) {
323                         host->chan_tx = NULL;
324                         dma_release_channel(chan);
325                 }
326                 dev_warn(&host->pd->dev,
327                          "DMA failed: %d, falling back to PIO\n", ret);
328                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
329         }
330
331         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
332                 desc, cookie, data->sg_len);
333 }
334
335 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
336 {
337         struct mmc_data *data = host->mrq->data;
338         struct scatterlist *sg = data->sg;
339         struct dma_async_tx_descriptor *desc = NULL;
340         struct dma_chan *chan = host->chan_tx;
341         dma_cookie_t cookie = -EINVAL;
342         int ret;
343
344         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
345                          DMA_TO_DEVICE);
346         if (ret > 0) {
347                 host->dma_active = true;
348                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
349                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
350         }
351
352         if (desc) {
353                 desc->callback = mmcif_dma_complete;
354                 desc->callback_param = host;
355                 cookie = dmaengine_submit(desc);
356                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
357                 dma_async_issue_pending(chan);
358         }
359         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
360                 __func__, data->sg_len, ret, cookie);
361
362         if (!desc) {
363                 /* DMA failed, fall back to PIO */
364                 if (ret >= 0)
365                         ret = -EIO;
366                 host->chan_tx = NULL;
367                 host->dma_active = false;
368                 dma_release_channel(chan);
369                 /* Free the Rx channel too */
370                 chan = host->chan_rx;
371                 if (chan) {
372                         host->chan_rx = NULL;
373                         dma_release_channel(chan);
374                 }
375                 dev_warn(&host->pd->dev,
376                          "DMA failed: %d, falling back to PIO\n", ret);
377                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
378         }
379
380         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
381                 desc, cookie);
382 }
383
384 static struct dma_chan *
385 sh_mmcif_request_dma_one(struct sh_mmcif_host *host,
386                          struct sh_mmcif_plat_data *pdata,
387                          enum dma_transfer_direction direction)
388 {
389         struct dma_slave_config cfg = { 0, };
390         struct dma_chan *chan;
391         void *slave_data = NULL;
392         struct resource *res;
393         dma_cap_mask_t mask;
394         int ret;
395
396         dma_cap_zero(mask);
397         dma_cap_set(DMA_SLAVE, mask);
398
399         if (pdata)
400                 slave_data = direction == DMA_MEM_TO_DEV ?
401                         (void *)pdata->slave_id_tx :
402                         (void *)pdata->slave_id_rx;
403
404         chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
405                                 slave_data, &host->pd->dev,
406                                 direction == DMA_MEM_TO_DEV ? "tx" : "rx");
407
408         dev_dbg(&host->pd->dev, "%s: %s: got channel %p\n", __func__,
409                 direction == DMA_MEM_TO_DEV ? "TX" : "RX", chan);
410
411         if (!chan)
412                 return NULL;
413
414         res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
415
416         cfg.direction = direction;
417
418         if (direction == DMA_DEV_TO_MEM) {
419                 cfg.src_addr = res->start + MMCIF_CE_DATA;
420                 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
421         } else {
422                 cfg.dst_addr = res->start + MMCIF_CE_DATA;
423                 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
424         }
425
426         ret = dmaengine_slave_config(chan, &cfg);
427         if (ret < 0) {
428                 dma_release_channel(chan);
429                 return NULL;
430         }
431
432         return chan;
433 }
434
435 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
436                                  struct sh_mmcif_plat_data *pdata)
437 {
438         host->dma_active = false;
439
440         if (pdata) {
441                 if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
442                         return;
443         } else if (!host->pd->dev.of_node) {
444                 return;
445         }
446
447         /* We can only either use DMA for both Tx and Rx or not use it at all */
448         host->chan_tx = sh_mmcif_request_dma_one(host, pdata, DMA_MEM_TO_DEV);
449         if (!host->chan_tx)
450                 return;
451
452         host->chan_rx = sh_mmcif_request_dma_one(host, pdata, DMA_DEV_TO_MEM);
453         if (!host->chan_rx) {
454                 dma_release_channel(host->chan_tx);
455                 host->chan_tx = NULL;
456         }
457 }
458
459 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
460 {
461         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
462         /* Descriptors are freed automatically */
463         if (host->chan_tx) {
464                 struct dma_chan *chan = host->chan_tx;
465                 host->chan_tx = NULL;
466                 dma_release_channel(chan);
467         }
468         if (host->chan_rx) {
469                 struct dma_chan *chan = host->chan_rx;
470                 host->chan_rx = NULL;
471                 dma_release_channel(chan);
472         }
473
474         host->dma_active = false;
475 }
476
477 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
478 {
479         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
480         bool sup_pclk = p ? p->sup_pclk : false;
481
482         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
483         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
484
485         if (!clk)
486                 return;
487         if (sup_pclk && clk == host->clk)
488                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
489         else
490                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
491                                 ((fls(DIV_ROUND_UP(host->clk,
492                                                    clk) - 1) - 1) << 16));
493
494         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
495 }
496
497 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
498 {
499         u32 tmp;
500
501         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
502
503         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
504         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
505         if (host->ccs_enable)
506                 tmp |= SCCSTO_29;
507         if (host->clk_ctrl2_enable)
508                 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
509         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
510                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
511         /* byte swap on */
512         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
513 }
514
515 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
516 {
517         u32 state1, state2;
518         int ret, timeout;
519
520         host->sd_error = false;
521
522         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
523         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
524         dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
525         dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
526
527         if (state1 & STS1_CMDSEQ) {
528                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
529                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
530                 for (timeout = 10000000; timeout; timeout--) {
531                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
532                               & STS1_CMDSEQ))
533                                 break;
534                         mdelay(1);
535                 }
536                 if (!timeout) {
537                         dev_err(&host->pd->dev,
538                                 "Forced end of command sequence timeout err\n");
539                         return -EIO;
540                 }
541                 sh_mmcif_sync_reset(host);
542                 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
543                 return -EIO;
544         }
545
546         if (state2 & STS2_CRC_ERR) {
547                 dev_err(&host->pd->dev, " CRC error: state %u, wait %u\n",
548                         host->state, host->wait_for);
549                 ret = -EIO;
550         } else if (state2 & STS2_TIMEOUT_ERR) {
551                 dev_err(&host->pd->dev, " Timeout: state %u, wait %u\n",
552                         host->state, host->wait_for);
553                 ret = -ETIMEDOUT;
554         } else {
555                 dev_dbg(&host->pd->dev, " End/Index error: state %u, wait %u\n",
556                         host->state, host->wait_for);
557                 ret = -EIO;
558         }
559         return ret;
560 }
561
562 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
563 {
564         struct mmc_data *data = host->mrq->data;
565
566         host->sg_blkidx += host->blocksize;
567
568         /* data->sg->length must be a multiple of host->blocksize? */
569         BUG_ON(host->sg_blkidx > data->sg->length);
570
571         if (host->sg_blkidx == data->sg->length) {
572                 host->sg_blkidx = 0;
573                 if (++host->sg_idx < data->sg_len)
574                         host->pio_ptr = sg_virt(++data->sg);
575         } else {
576                 host->pio_ptr = p;
577         }
578
579         return host->sg_idx != data->sg_len;
580 }
581
582 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
583                                  struct mmc_request *mrq)
584 {
585         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
586                            BLOCK_SIZE_MASK) + 3;
587
588         host->wait_for = MMCIF_WAIT_FOR_READ;
589
590         /* buf read enable */
591         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
592 }
593
594 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
595 {
596         struct mmc_data *data = host->mrq->data;
597         u32 *p = sg_virt(data->sg);
598         int i;
599
600         if (host->sd_error) {
601                 data->error = sh_mmcif_error_manage(host);
602                 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
603                 return false;
604         }
605
606         for (i = 0; i < host->blocksize / 4; i++)
607                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
608
609         /* buffer read end */
610         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
611         host->wait_for = MMCIF_WAIT_FOR_READ_END;
612
613         return true;
614 }
615
616 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
617                                 struct mmc_request *mrq)
618 {
619         struct mmc_data *data = mrq->data;
620
621         if (!data->sg_len || !data->sg->length)
622                 return;
623
624         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
625                 BLOCK_SIZE_MASK;
626
627         host->wait_for = MMCIF_WAIT_FOR_MREAD;
628         host->sg_idx = 0;
629         host->sg_blkidx = 0;
630         host->pio_ptr = sg_virt(data->sg);
631
632         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
633 }
634
635 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
636 {
637         struct mmc_data *data = host->mrq->data;
638         u32 *p = host->pio_ptr;
639         int i;
640
641         if (host->sd_error) {
642                 data->error = sh_mmcif_error_manage(host);
643                 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
644                 return false;
645         }
646
647         BUG_ON(!data->sg->length);
648
649         for (i = 0; i < host->blocksize / 4; i++)
650                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
651
652         if (!sh_mmcif_next_block(host, p))
653                 return false;
654
655         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
656
657         return true;
658 }
659
660 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
661                                         struct mmc_request *mrq)
662 {
663         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
664                            BLOCK_SIZE_MASK) + 3;
665
666         host->wait_for = MMCIF_WAIT_FOR_WRITE;
667
668         /* buf write enable */
669         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
670 }
671
672 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
673 {
674         struct mmc_data *data = host->mrq->data;
675         u32 *p = sg_virt(data->sg);
676         int i;
677
678         if (host->sd_error) {
679                 data->error = sh_mmcif_error_manage(host);
680                 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
681                 return false;
682         }
683
684         for (i = 0; i < host->blocksize / 4; i++)
685                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
686
687         /* buffer write end */
688         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
689         host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
690
691         return true;
692 }
693
694 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
695                                 struct mmc_request *mrq)
696 {
697         struct mmc_data *data = mrq->data;
698
699         if (!data->sg_len || !data->sg->length)
700                 return;
701
702         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
703                 BLOCK_SIZE_MASK;
704
705         host->wait_for = MMCIF_WAIT_FOR_MWRITE;
706         host->sg_idx = 0;
707         host->sg_blkidx = 0;
708         host->pio_ptr = sg_virt(data->sg);
709
710         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
711 }
712
713 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
714 {
715         struct mmc_data *data = host->mrq->data;
716         u32 *p = host->pio_ptr;
717         int i;
718
719         if (host->sd_error) {
720                 data->error = sh_mmcif_error_manage(host);
721                 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
722                 return false;
723         }
724
725         BUG_ON(!data->sg->length);
726
727         for (i = 0; i < host->blocksize / 4; i++)
728                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
729
730         if (!sh_mmcif_next_block(host, p))
731                 return false;
732
733         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
734
735         return true;
736 }
737
738 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
739                                                 struct mmc_command *cmd)
740 {
741         if (cmd->flags & MMC_RSP_136) {
742                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
743                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
744                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
745                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
746         } else
747                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
748 }
749
750 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
751                                                 struct mmc_command *cmd)
752 {
753         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
754 }
755
756 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
757                             struct mmc_request *mrq)
758 {
759         struct mmc_data *data = mrq->data;
760         struct mmc_command *cmd = mrq->cmd;
761         u32 opc = cmd->opcode;
762         u32 tmp = 0;
763
764         /* Response Type check */
765         switch (mmc_resp_type(cmd)) {
766         case MMC_RSP_NONE:
767                 tmp |= CMD_SET_RTYP_NO;
768                 break;
769         case MMC_RSP_R1:
770         case MMC_RSP_R1B:
771         case MMC_RSP_R3:
772                 tmp |= CMD_SET_RTYP_6B;
773                 break;
774         case MMC_RSP_R2:
775                 tmp |= CMD_SET_RTYP_17B;
776                 break;
777         default:
778                 dev_err(&host->pd->dev, "Unsupported response type.\n");
779                 break;
780         }
781         switch (opc) {
782         /* RBSY */
783         case MMC_SLEEP_AWAKE:
784         case MMC_SWITCH:
785         case MMC_STOP_TRANSMISSION:
786         case MMC_SET_WRITE_PROT:
787         case MMC_CLR_WRITE_PROT:
788         case MMC_ERASE:
789                 tmp |= CMD_SET_RBSY;
790                 break;
791         }
792         /* WDAT / DATW */
793         if (data) {
794                 tmp |= CMD_SET_WDAT;
795                 switch (host->bus_width) {
796                 case MMC_BUS_WIDTH_1:
797                         tmp |= CMD_SET_DATW_1;
798                         break;
799                 case MMC_BUS_WIDTH_4:
800                         tmp |= CMD_SET_DATW_4;
801                         break;
802                 case MMC_BUS_WIDTH_8:
803                         tmp |= CMD_SET_DATW_8;
804                         break;
805                 default:
806                         dev_err(&host->pd->dev, "Unsupported bus width.\n");
807                         break;
808                 }
809                 switch (host->timing) {
810                 case MMC_TIMING_MMC_DDR52:
811                         /*
812                          * MMC core will only set this timing, if the host
813                          * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
814                          * capability. MMCIF implementations with this
815                          * capability, e.g. sh73a0, will have to set it
816                          * in their platform data.
817                          */
818                         tmp |= CMD_SET_DARS;
819                         break;
820                 }
821         }
822         /* DWEN */
823         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
824                 tmp |= CMD_SET_DWEN;
825         /* CMLTE/CMD12EN */
826         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
827                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
828                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
829                                 data->blocks << 16);
830         }
831         /* RIDXC[1:0] check bits */
832         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
833             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
834                 tmp |= CMD_SET_RIDXC_BITS;
835         /* RCRC7C[1:0] check bits */
836         if (opc == MMC_SEND_OP_COND)
837                 tmp |= CMD_SET_CRC7C_BITS;
838         /* RCRC7C[1:0] internal CRC7 */
839         if (opc == MMC_ALL_SEND_CID ||
840                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
841                 tmp |= CMD_SET_CRC7C_INTERNAL;
842
843         return (opc << 24) | tmp;
844 }
845
846 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
847                                struct mmc_request *mrq, u32 opc)
848 {
849         switch (opc) {
850         case MMC_READ_MULTIPLE_BLOCK:
851                 sh_mmcif_multi_read(host, mrq);
852                 return 0;
853         case MMC_WRITE_MULTIPLE_BLOCK:
854                 sh_mmcif_multi_write(host, mrq);
855                 return 0;
856         case MMC_WRITE_BLOCK:
857                 sh_mmcif_single_write(host, mrq);
858                 return 0;
859         case MMC_READ_SINGLE_BLOCK:
860         case MMC_SEND_EXT_CSD:
861                 sh_mmcif_single_read(host, mrq);
862                 return 0;
863         default:
864                 dev_err(&host->pd->dev, "Unsupported CMD%d\n", opc);
865                 return -EINVAL;
866         }
867 }
868
869 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
870                                struct mmc_request *mrq)
871 {
872         struct mmc_command *cmd = mrq->cmd;
873         u32 opc = cmd->opcode;
874         u32 mask;
875         unsigned long flags;
876
877         switch (opc) {
878         /* response busy check */
879         case MMC_SLEEP_AWAKE:
880         case MMC_SWITCH:
881         case MMC_STOP_TRANSMISSION:
882         case MMC_SET_WRITE_PROT:
883         case MMC_CLR_WRITE_PROT:
884         case MMC_ERASE:
885                 mask = MASK_START_CMD | MASK_MRBSYE;
886                 break;
887         default:
888                 mask = MASK_START_CMD | MASK_MCRSPE;
889                 break;
890         }
891
892         if (host->ccs_enable)
893                 mask |= MASK_MCCSTO;
894
895         if (mrq->data) {
896                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
897                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
898                                 mrq->data->blksz);
899         }
900         opc = sh_mmcif_set_cmd(host, mrq);
901
902         if (host->ccs_enable)
903                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
904         else
905                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
906         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
907         /* set arg */
908         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
909         /* set cmd */
910         spin_lock_irqsave(&host->lock, flags);
911         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
912
913         host->wait_for = MMCIF_WAIT_FOR_CMD;
914         schedule_delayed_work(&host->timeout_work, host->timeout);
915         spin_unlock_irqrestore(&host->lock, flags);
916 }
917
918 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
919                               struct mmc_request *mrq)
920 {
921         switch (mrq->cmd->opcode) {
922         case MMC_READ_MULTIPLE_BLOCK:
923                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
924                 break;
925         case MMC_WRITE_MULTIPLE_BLOCK:
926                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
927                 break;
928         default:
929                 dev_err(&host->pd->dev, "unsupported stop cmd\n");
930                 mrq->stop->error = sh_mmcif_error_manage(host);
931                 return;
932         }
933
934         host->wait_for = MMCIF_WAIT_FOR_STOP;
935 }
936
937 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
938 {
939         struct sh_mmcif_host *host = mmc_priv(mmc);
940         unsigned long flags;
941
942         spin_lock_irqsave(&host->lock, flags);
943         if (host->state != STATE_IDLE) {
944                 dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
945                 spin_unlock_irqrestore(&host->lock, flags);
946                 mrq->cmd->error = -EAGAIN;
947                 mmc_request_done(mmc, mrq);
948                 return;
949         }
950
951         host->state = STATE_REQUEST;
952         spin_unlock_irqrestore(&host->lock, flags);
953
954         switch (mrq->cmd->opcode) {
955         /* MMCIF does not support SD/SDIO command */
956         case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
957         case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
958                 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
959                         break;
960         case MMC_APP_CMD:
961         case SD_IO_RW_DIRECT:
962                 host->state = STATE_IDLE;
963                 mrq->cmd->error = -ETIMEDOUT;
964                 mmc_request_done(mmc, mrq);
965                 return;
966         default:
967                 break;
968         }
969
970         host->mrq = mrq;
971
972         sh_mmcif_start_cmd(host, mrq);
973 }
974
975 static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
976 {
977         int ret = clk_prepare_enable(host->hclk);
978
979         if (!ret) {
980                 host->clk = clk_get_rate(host->hclk);
981                 host->mmc->f_max = host->clk / 2;
982                 host->mmc->f_min = host->clk / 512;
983         }
984
985         return ret;
986 }
987
988 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
989 {
990         struct mmc_host *mmc = host->mmc;
991
992         if (!IS_ERR(mmc->supply.vmmc))
993                 /* Errors ignored... */
994                 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
995                                       ios->power_mode ? ios->vdd : 0);
996 }
997
998 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
999 {
1000         struct sh_mmcif_host *host = mmc_priv(mmc);
1001         unsigned long flags;
1002
1003         spin_lock_irqsave(&host->lock, flags);
1004         if (host->state != STATE_IDLE) {
1005                 dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
1006                 spin_unlock_irqrestore(&host->lock, flags);
1007                 return;
1008         }
1009
1010         host->state = STATE_IOS;
1011         spin_unlock_irqrestore(&host->lock, flags);
1012
1013         if (ios->power_mode == MMC_POWER_UP) {
1014                 if (!host->card_present) {
1015                         /* See if we also get DMA */
1016                         sh_mmcif_request_dma(host, host->pd->dev.platform_data);
1017                         host->card_present = true;
1018                 }
1019                 sh_mmcif_set_power(host, ios);
1020         } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1021                 /* clock stop */
1022                 sh_mmcif_clock_control(host, 0);
1023                 if (ios->power_mode == MMC_POWER_OFF) {
1024                         if (host->card_present) {
1025                                 sh_mmcif_release_dma(host);
1026                                 host->card_present = false;
1027                         }
1028                 }
1029                 if (host->power) {
1030                         pm_runtime_put_sync(&host->pd->dev);
1031                         clk_disable_unprepare(host->hclk);
1032                         host->power = false;
1033                         if (ios->power_mode == MMC_POWER_OFF)
1034                                 sh_mmcif_set_power(host, ios);
1035                 }
1036                 host->state = STATE_IDLE;
1037                 return;
1038         }
1039
1040         if (ios->clock) {
1041                 if (!host->power) {
1042                         sh_mmcif_clk_update(host);
1043                         pm_runtime_get_sync(&host->pd->dev);
1044                         host->power = true;
1045                         sh_mmcif_sync_reset(host);
1046                 }
1047                 sh_mmcif_clock_control(host, ios->clock);
1048         }
1049
1050         host->timing = ios->timing;
1051         host->bus_width = ios->bus_width;
1052         host->state = STATE_IDLE;
1053 }
1054
1055 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1056 {
1057         struct sh_mmcif_host *host = mmc_priv(mmc);
1058         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1059         int ret = mmc_gpio_get_cd(mmc);
1060
1061         if (ret >= 0)
1062                 return ret;
1063
1064         if (!p || !p->get_cd)
1065                 return -ENOSYS;
1066         else
1067                 return p->get_cd(host->pd);
1068 }
1069
1070 static struct mmc_host_ops sh_mmcif_ops = {
1071         .request        = sh_mmcif_request,
1072         .set_ios        = sh_mmcif_set_ios,
1073         .get_cd         = sh_mmcif_get_cd,
1074 };
1075
1076 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1077 {
1078         struct mmc_command *cmd = host->mrq->cmd;
1079         struct mmc_data *data = host->mrq->data;
1080         long time;
1081
1082         if (host->sd_error) {
1083                 switch (cmd->opcode) {
1084                 case MMC_ALL_SEND_CID:
1085                 case MMC_SELECT_CARD:
1086                 case MMC_APP_CMD:
1087                         cmd->error = -ETIMEDOUT;
1088                         break;
1089                 default:
1090                         cmd->error = sh_mmcif_error_manage(host);
1091                         break;
1092                 }
1093                 dev_dbg(&host->pd->dev, "CMD%d error %d\n",
1094                         cmd->opcode, cmd->error);
1095                 host->sd_error = false;
1096                 return false;
1097         }
1098         if (!(cmd->flags & MMC_RSP_PRESENT)) {
1099                 cmd->error = 0;
1100                 return false;
1101         }
1102
1103         sh_mmcif_get_response(host, cmd);
1104
1105         if (!data)
1106                 return false;
1107
1108         /*
1109          * Completion can be signalled from DMA callback and error, so, have to
1110          * reset here, before setting .dma_active
1111          */
1112         init_completion(&host->dma_complete);
1113
1114         if (data->flags & MMC_DATA_READ) {
1115                 if (host->chan_rx)
1116                         sh_mmcif_start_dma_rx(host);
1117         } else {
1118                 if (host->chan_tx)
1119                         sh_mmcif_start_dma_tx(host);
1120         }
1121
1122         if (!host->dma_active) {
1123                 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1124                 return !data->error;
1125         }
1126
1127         /* Running in the IRQ thread, can sleep */
1128         time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1129                                                          host->timeout);
1130
1131         if (data->flags & MMC_DATA_READ)
1132                 dma_unmap_sg(host->chan_rx->device->dev,
1133                              data->sg, data->sg_len,
1134                              DMA_FROM_DEVICE);
1135         else
1136                 dma_unmap_sg(host->chan_tx->device->dev,
1137                              data->sg, data->sg_len,
1138                              DMA_TO_DEVICE);
1139
1140         if (host->sd_error) {
1141                 dev_err(host->mmc->parent,
1142                         "Error IRQ while waiting for DMA completion!\n");
1143                 /* Woken up by an error IRQ: abort DMA */
1144                 data->error = sh_mmcif_error_manage(host);
1145         } else if (!time) {
1146                 dev_err(host->mmc->parent, "DMA timeout!\n");
1147                 data->error = -ETIMEDOUT;
1148         } else if (time < 0) {
1149                 dev_err(host->mmc->parent,
1150                         "wait_for_completion_...() error %ld!\n", time);
1151                 data->error = time;
1152         }
1153         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1154                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1155         host->dma_active = false;
1156
1157         if (data->error) {
1158                 data->bytes_xfered = 0;
1159                 /* Abort DMA */
1160                 if (data->flags & MMC_DATA_READ)
1161                         dmaengine_terminate_all(host->chan_rx);
1162                 else
1163                         dmaengine_terminate_all(host->chan_tx);
1164         }
1165
1166         return false;
1167 }
1168
1169 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1170 {
1171         struct sh_mmcif_host *host = dev_id;
1172         struct mmc_request *mrq;
1173         bool wait = false;
1174         unsigned long flags;
1175         int wait_work;
1176
1177         spin_lock_irqsave(&host->lock, flags);
1178         wait_work = host->wait_for;
1179         spin_unlock_irqrestore(&host->lock, flags);
1180
1181         cancel_delayed_work_sync(&host->timeout_work);
1182
1183         mutex_lock(&host->thread_lock);
1184
1185         mrq = host->mrq;
1186         if (!mrq) {
1187                 dev_dbg(&host->pd->dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1188                         host->state, host->wait_for);
1189                 mutex_unlock(&host->thread_lock);
1190                 return IRQ_HANDLED;
1191         }
1192
1193         /*
1194          * All handlers return true, if processing continues, and false, if the
1195          * request has to be completed - successfully or not
1196          */
1197         switch (wait_work) {
1198         case MMCIF_WAIT_FOR_REQUEST:
1199                 /* We're too late, the timeout has already kicked in */
1200                 mutex_unlock(&host->thread_lock);
1201                 return IRQ_HANDLED;
1202         case MMCIF_WAIT_FOR_CMD:
1203                 /* Wait for data? */
1204                 wait = sh_mmcif_end_cmd(host);
1205                 break;
1206         case MMCIF_WAIT_FOR_MREAD:
1207                 /* Wait for more data? */
1208                 wait = sh_mmcif_mread_block(host);
1209                 break;
1210         case MMCIF_WAIT_FOR_READ:
1211                 /* Wait for data end? */
1212                 wait = sh_mmcif_read_block(host);
1213                 break;
1214         case MMCIF_WAIT_FOR_MWRITE:
1215                 /* Wait data to write? */
1216                 wait = sh_mmcif_mwrite_block(host);
1217                 break;
1218         case MMCIF_WAIT_FOR_WRITE:
1219                 /* Wait for data end? */
1220                 wait = sh_mmcif_write_block(host);
1221                 break;
1222         case MMCIF_WAIT_FOR_STOP:
1223                 if (host->sd_error) {
1224                         mrq->stop->error = sh_mmcif_error_manage(host);
1225                         dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->stop->error);
1226                         break;
1227                 }
1228                 sh_mmcif_get_cmd12response(host, mrq->stop);
1229                 mrq->stop->error = 0;
1230                 break;
1231         case MMCIF_WAIT_FOR_READ_END:
1232         case MMCIF_WAIT_FOR_WRITE_END:
1233                 if (host->sd_error) {
1234                         mrq->data->error = sh_mmcif_error_manage(host);
1235                         dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->data->error);
1236                 }
1237                 break;
1238         default:
1239                 BUG();
1240         }
1241
1242         if (wait) {
1243                 schedule_delayed_work(&host->timeout_work, host->timeout);
1244                 /* Wait for more data */
1245                 mutex_unlock(&host->thread_lock);
1246                 return IRQ_HANDLED;
1247         }
1248
1249         if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1250                 struct mmc_data *data = mrq->data;
1251                 if (!mrq->cmd->error && data && !data->error)
1252                         data->bytes_xfered =
1253                                 data->blocks * data->blksz;
1254
1255                 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1256                         sh_mmcif_stop_cmd(host, mrq);
1257                         if (!mrq->stop->error) {
1258                                 schedule_delayed_work(&host->timeout_work, host->timeout);
1259                                 mutex_unlock(&host->thread_lock);
1260                                 return IRQ_HANDLED;
1261                         }
1262                 }
1263         }
1264
1265         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1266         host->state = STATE_IDLE;
1267         host->mrq = NULL;
1268         mmc_request_done(host->mmc, mrq);
1269
1270         mutex_unlock(&host->thread_lock);
1271
1272         return IRQ_HANDLED;
1273 }
1274
1275 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1276 {
1277         struct sh_mmcif_host *host = dev_id;
1278         u32 state, mask;
1279
1280         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1281         mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1282         if (host->ccs_enable)
1283                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1284         else
1285                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1286         sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1287
1288         if (state & ~MASK_CLEAN)
1289                 dev_dbg(&host->pd->dev, "IRQ state = 0x%08x incompletely cleared\n",
1290                         state);
1291
1292         if (state & INT_ERR_STS || state & ~INT_ALL) {
1293                 host->sd_error = true;
1294                 dev_dbg(&host->pd->dev, "int err state = 0x%08x\n", state);
1295         }
1296         if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1297                 if (!host->mrq)
1298                         dev_dbg(&host->pd->dev, "NULL IRQ state = 0x%08x\n", state);
1299                 if (!host->dma_active)
1300                         return IRQ_WAKE_THREAD;
1301                 else if (host->sd_error)
1302                         mmcif_dma_complete(host);
1303         } else {
1304                 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1305         }
1306
1307         return IRQ_HANDLED;
1308 }
1309
1310 static void mmcif_timeout_work(struct work_struct *work)
1311 {
1312         struct delayed_work *d = container_of(work, struct delayed_work, work);
1313         struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1314         struct mmc_request *mrq = host->mrq;
1315         unsigned long flags;
1316
1317         if (host->dying)
1318                 /* Don't run after mmc_remove_host() */
1319                 return;
1320
1321         spin_lock_irqsave(&host->lock, flags);
1322         if (host->state == STATE_IDLE) {
1323                 spin_unlock_irqrestore(&host->lock, flags);
1324                 return;
1325         }
1326
1327         dev_err(&host->pd->dev, "Timeout waiting for %u on CMD%u\n",
1328                 host->wait_for, mrq->cmd->opcode);
1329
1330         host->state = STATE_TIMEOUT;
1331         spin_unlock_irqrestore(&host->lock, flags);
1332
1333         /*
1334          * Handle races with cancel_delayed_work(), unless
1335          * cancel_delayed_work_sync() is used
1336          */
1337         switch (host->wait_for) {
1338         case MMCIF_WAIT_FOR_CMD:
1339                 mrq->cmd->error = sh_mmcif_error_manage(host);
1340                 break;
1341         case MMCIF_WAIT_FOR_STOP:
1342                 mrq->stop->error = sh_mmcif_error_manage(host);
1343                 break;
1344         case MMCIF_WAIT_FOR_MREAD:
1345         case MMCIF_WAIT_FOR_MWRITE:
1346         case MMCIF_WAIT_FOR_READ:
1347         case MMCIF_WAIT_FOR_WRITE:
1348         case MMCIF_WAIT_FOR_READ_END:
1349         case MMCIF_WAIT_FOR_WRITE_END:
1350                 mrq->data->error = sh_mmcif_error_manage(host);
1351                 break;
1352         default:
1353                 BUG();
1354         }
1355
1356         host->state = STATE_IDLE;
1357         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1358         host->mrq = NULL;
1359         mmc_request_done(host->mmc, mrq);
1360 }
1361
1362 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1363 {
1364         struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1365         struct mmc_host *mmc = host->mmc;
1366
1367         mmc_regulator_get_supply(mmc);
1368
1369         if (!pd)
1370                 return;
1371
1372         if (!mmc->ocr_avail)
1373                 mmc->ocr_avail = pd->ocr;
1374         else if (pd->ocr)
1375                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1376 }
1377
1378 static int sh_mmcif_probe(struct platform_device *pdev)
1379 {
1380         int ret = 0, irq[2];
1381         struct mmc_host *mmc;
1382         struct sh_mmcif_host *host;
1383         struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1384         struct resource *res;
1385         void __iomem *reg;
1386         const char *name;
1387
1388         irq[0] = platform_get_irq(pdev, 0);
1389         irq[1] = platform_get_irq(pdev, 1);
1390         if (irq[0] < 0) {
1391                 dev_err(&pdev->dev, "Get irq error\n");
1392                 return -ENXIO;
1393         }
1394
1395         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1396         reg = devm_ioremap_resource(&pdev->dev, res);
1397         if (IS_ERR(reg))
1398                 return PTR_ERR(reg);
1399
1400         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1401         if (!mmc)
1402                 return -ENOMEM;
1403
1404         ret = mmc_of_parse(mmc);
1405         if (ret < 0)
1406                 goto err_host;
1407
1408         host            = mmc_priv(mmc);
1409         host->mmc       = mmc;
1410         host->addr      = reg;
1411         host->timeout   = msecs_to_jiffies(10000);
1412         host->ccs_enable = !pd || !pd->ccs_unsupported;
1413         host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1414
1415         host->pd = pdev;
1416
1417         spin_lock_init(&host->lock);
1418
1419         mmc->ops = &sh_mmcif_ops;
1420         sh_mmcif_init_ocr(host);
1421
1422         mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1423         if (pd && pd->caps)
1424                 mmc->caps |= pd->caps;
1425         mmc->max_segs = 32;
1426         mmc->max_blk_size = 512;
1427         mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1428         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1429         mmc->max_seg_size = mmc->max_req_size;
1430
1431         platform_set_drvdata(pdev, host);
1432
1433         pm_runtime_enable(&pdev->dev);
1434         host->power = false;
1435
1436         host->hclk = devm_clk_get(&pdev->dev, NULL);
1437         if (IS_ERR(host->hclk)) {
1438                 ret = PTR_ERR(host->hclk);
1439                 dev_err(&pdev->dev, "cannot get clock: %d\n", ret);
1440                 goto err_pm;
1441         }
1442         ret = sh_mmcif_clk_update(host);
1443         if (ret < 0)
1444                 goto err_pm;
1445
1446         ret = pm_runtime_resume(&pdev->dev);
1447         if (ret < 0)
1448                 goto err_clk;
1449
1450         INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1451
1452         sh_mmcif_sync_reset(host);
1453         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1454
1455         name = irq[1] < 0 ? dev_name(&pdev->dev) : "sh_mmc:error";
1456         ret = devm_request_threaded_irq(&pdev->dev, irq[0], sh_mmcif_intr,
1457                                         sh_mmcif_irqt, 0, name, host);
1458         if (ret) {
1459                 dev_err(&pdev->dev, "request_irq error (%s)\n", name);
1460                 goto err_clk;
1461         }
1462         if (irq[1] >= 0) {
1463                 ret = devm_request_threaded_irq(&pdev->dev, irq[1],
1464                                                 sh_mmcif_intr, sh_mmcif_irqt,
1465                                                 0, "sh_mmc:int", host);
1466                 if (ret) {
1467                         dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1468                         goto err_clk;
1469                 }
1470         }
1471
1472         if (pd && pd->use_cd_gpio) {
1473                 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1474                 if (ret < 0)
1475                         goto err_clk;
1476         }
1477
1478         mutex_init(&host->thread_lock);
1479
1480         ret = mmc_add_host(mmc);
1481         if (ret < 0)
1482                 goto err_clk;
1483
1484         dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1485
1486         dev_info(&pdev->dev, "Chip version 0x%04x, clock rate %luMHz\n",
1487                  sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1488                  clk_get_rate(host->hclk) / 1000000UL);
1489
1490         clk_disable_unprepare(host->hclk);
1491         return ret;
1492
1493 err_clk:
1494         clk_disable_unprepare(host->hclk);
1495 err_pm:
1496         pm_runtime_disable(&pdev->dev);
1497 err_host:
1498         mmc_free_host(mmc);
1499         return ret;
1500 }
1501
1502 static int sh_mmcif_remove(struct platform_device *pdev)
1503 {
1504         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1505
1506         host->dying = true;
1507         clk_prepare_enable(host->hclk);
1508         pm_runtime_get_sync(&pdev->dev);
1509
1510         dev_pm_qos_hide_latency_limit(&pdev->dev);
1511
1512         mmc_remove_host(host->mmc);
1513         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1514
1515         /*
1516          * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1517          * mmc_remove_host() call above. But swapping order doesn't help either
1518          * (a query on the linux-mmc mailing list didn't bring any replies).
1519          */
1520         cancel_delayed_work_sync(&host->timeout_work);
1521
1522         clk_disable_unprepare(host->hclk);
1523         mmc_free_host(host->mmc);
1524         pm_runtime_put_sync(&pdev->dev);
1525         pm_runtime_disable(&pdev->dev);
1526
1527         return 0;
1528 }
1529
1530 #ifdef CONFIG_PM_SLEEP
1531 static int sh_mmcif_suspend(struct device *dev)
1532 {
1533         struct sh_mmcif_host *host = dev_get_drvdata(dev);
1534
1535         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1536
1537         return 0;
1538 }
1539
1540 static int sh_mmcif_resume(struct device *dev)
1541 {
1542         return 0;
1543 }
1544 #endif
1545
1546 static const struct of_device_id mmcif_of_match[] = {
1547         { .compatible = "renesas,sh-mmcif" },
1548         { }
1549 };
1550 MODULE_DEVICE_TABLE(of, mmcif_of_match);
1551
1552 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1553         SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1554 };
1555
1556 static struct platform_driver sh_mmcif_driver = {
1557         .probe          = sh_mmcif_probe,
1558         .remove         = sh_mmcif_remove,
1559         .driver         = {
1560                 .name   = DRIVER_NAME,
1561                 .pm     = &sh_mmcif_dev_pm_ops,
1562                 .of_match_table = mmcif_of_match,
1563         },
1564 };
1565
1566 module_platform_driver(sh_mmcif_driver);
1567
1568 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1569 MODULE_LICENSE("GPL");
1570 MODULE_ALIAS("platform:" DRIVER_NAME);
1571 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");