Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / mmc / card / queue.c
1 /*
2  *  linux/drivers/mmc/card/queue.c
3  *
4  *  Copyright (C) 2003 Russell King, All Rights Reserved.
5  *  Copyright 2006-2007 Pierre Ossman
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  */
12 #include <linux/slab.h>
13 #include <linux/module.h>
14 #include <linux/blkdev.h>
15 #include <linux/freezer.h>
16 #include <linux/kthread.h>
17 #include <linux/scatterlist.h>
18 #include <linux/dma-mapping.h>
19
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/host.h>
22 #include "queue.h"
23
24 #define MMC_QUEUE_BOUNCESZ      65536
25
26 /*
27  * Prepare a MMC request. This just filters out odd stuff.
28  */
29 static int mmc_prep_request(struct request_queue *q, struct request *req)
30 {
31         struct mmc_queue *mq = q->queuedata;
32
33         /*
34          * We only like normal block requests and discards.
35          */
36         if (req->cmd_type != REQ_TYPE_FS && !(req->cmd_flags & REQ_DISCARD)) {
37                 blk_dump_rq_flags(req, "MMC bad request");
38                 return BLKPREP_KILL;
39         }
40
41         if (mq && (mmc_card_removed(mq->card) || mmc_access_rpmb(mq)))
42                 return BLKPREP_KILL;
43
44         req->cmd_flags |= REQ_DONTPREP;
45
46         return BLKPREP_OK;
47 }
48
49 static int mmc_queue_thread(void *d)
50 {
51         struct mmc_queue *mq = d;
52         struct request_queue *q = mq->queue;
53
54         current->flags |= PF_MEMALLOC;
55
56         down(&mq->thread_sem);
57         do {
58                 struct request *req = NULL;
59                 struct mmc_queue_req *tmp;
60                 unsigned int cmd_flags = 0;
61
62                 spin_lock_irq(q->queue_lock);
63                 set_current_state(TASK_INTERRUPTIBLE);
64                 req = blk_fetch_request(q);
65                 mq->mqrq_cur->req = req;
66                 spin_unlock_irq(q->queue_lock);
67
68                 if (req || mq->mqrq_prev->req) {
69                         set_current_state(TASK_RUNNING);
70                         cmd_flags = req ? req->cmd_flags : 0;
71                         mq->issue_fn(mq, req);
72                         if (mq->flags & MMC_QUEUE_NEW_REQUEST) {
73                                 mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
74                                 continue; /* fetch again */
75                         }
76
77                         /*
78                          * Current request becomes previous request
79                          * and vice versa.
80                          * In case of special requests, current request
81                          * has been finished. Do not assign it to previous
82                          * request.
83                          */
84                         if (cmd_flags & MMC_REQ_SPECIAL_MASK)
85                                 mq->mqrq_cur->req = NULL;
86
87                         mq->mqrq_prev->brq.mrq.data = NULL;
88                         mq->mqrq_prev->req = NULL;
89                         tmp = mq->mqrq_prev;
90                         mq->mqrq_prev = mq->mqrq_cur;
91                         mq->mqrq_cur = tmp;
92                 } else {
93                         if (kthread_should_stop()) {
94                                 set_current_state(TASK_RUNNING);
95                                 break;
96                         }
97                         up(&mq->thread_sem);
98                         schedule();
99                         down(&mq->thread_sem);
100                 }
101         } while (1);
102         up(&mq->thread_sem);
103
104         return 0;
105 }
106
107 /*
108  * Generic MMC request handler.  This is called for any queue on a
109  * particular host.  When the host is not busy, we look for a request
110  * on any queue on this host, and attempt to issue it.  This may
111  * not be the queue we were asked to process.
112  */
113 static void mmc_request_fn(struct request_queue *q)
114 {
115         struct mmc_queue *mq = q->queuedata;
116         struct request *req;
117         unsigned long flags;
118         struct mmc_context_info *cntx;
119
120         if (!mq) {
121                 while ((req = blk_fetch_request(q)) != NULL) {
122                         req->cmd_flags |= REQ_QUIET;
123                         __blk_end_request_all(req, -EIO);
124                 }
125                 return;
126         }
127
128         cntx = &mq->card->host->context_info;
129         if (!mq->mqrq_cur->req && mq->mqrq_prev->req) {
130                 /*
131                  * New MMC request arrived when MMC thread may be
132                  * blocked on the previous request to be complete
133                  * with no current request fetched
134                  */
135                 spin_lock_irqsave(&cntx->lock, flags);
136                 if (cntx->is_waiting_last_req) {
137                         cntx->is_new_req = true;
138                         wake_up_interruptible(&cntx->wait);
139                 }
140                 spin_unlock_irqrestore(&cntx->lock, flags);
141         } else if (!mq->mqrq_cur->req && !mq->mqrq_prev->req)
142                 wake_up_process(mq->thread);
143 }
144
145 static struct scatterlist *mmc_alloc_sg(int sg_len, int *err)
146 {
147         struct scatterlist *sg;
148
149         sg = kmalloc(sizeof(struct scatterlist)*sg_len, GFP_KERNEL);
150         if (!sg)
151                 *err = -ENOMEM;
152         else {
153                 *err = 0;
154                 sg_init_table(sg, sg_len);
155         }
156
157         return sg;
158 }
159
160 static void mmc_queue_setup_discard(struct request_queue *q,
161                                     struct mmc_card *card)
162 {
163         unsigned max_discard;
164
165         max_discard = mmc_calc_max_discard(card);
166         if (!max_discard)
167                 return;
168
169         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
170         q->limits.max_discard_sectors = max_discard;
171         if (card->erased_byte == 0 && !mmc_can_discard(card))
172                 q->limits.discard_zeroes_data = 1;
173         q->limits.discard_granularity = card->pref_erase << 9;
174         /* granularity must not be greater than max. discard */
175         if (card->pref_erase > max_discard)
176                 q->limits.discard_granularity = 0;
177         if (mmc_can_secure_erase_trim(card))
178                 queue_flag_set_unlocked(QUEUE_FLAG_SECDISCARD, q);
179 }
180
181 /**
182  * mmc_init_queue - initialise a queue structure.
183  * @mq: mmc queue
184  * @card: mmc card to attach this queue
185  * @lock: queue lock
186  * @subname: partition subname
187  *
188  * Initialise a MMC card request queue.
189  */
190 int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card,
191                    spinlock_t *lock, const char *subname)
192 {
193         struct mmc_host *host = card->host;
194         u64 limit = BLK_BOUNCE_HIGH;
195         int ret;
196         struct mmc_queue_req *mqrq_cur = &mq->mqrq[0];
197         struct mmc_queue_req *mqrq_prev = &mq->mqrq[1];
198
199         if (mmc_dev(host)->dma_mask && *mmc_dev(host)->dma_mask)
200                 limit = (u64)dma_max_pfn(mmc_dev(host)) << PAGE_SHIFT;
201
202         mq->card = card;
203         mq->queue = blk_init_queue(mmc_request_fn, lock);
204         if (!mq->queue)
205                 return -ENOMEM;
206
207         mq->mqrq_cur = mqrq_cur;
208         mq->mqrq_prev = mqrq_prev;
209         mq->queue->queuedata = mq;
210
211         blk_queue_prep_rq(mq->queue, mmc_prep_request);
212         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mq->queue);
213         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, mq->queue);
214         if (mmc_can_erase(card))
215                 mmc_queue_setup_discard(mq->queue, card);
216
217 #ifdef CONFIG_MMC_BLOCK_BOUNCE
218         if (host->max_segs == 1) {
219                 unsigned int bouncesz;
220
221                 bouncesz = MMC_QUEUE_BOUNCESZ;
222
223                 if (bouncesz > host->max_req_size)
224                         bouncesz = host->max_req_size;
225                 if (bouncesz > host->max_seg_size)
226                         bouncesz = host->max_seg_size;
227                 if (bouncesz > (host->max_blk_count * 512))
228                         bouncesz = host->max_blk_count * 512;
229
230                 if (bouncesz > 512) {
231                         mqrq_cur->bounce_buf = kmalloc(bouncesz, GFP_KERNEL);
232                         if (!mqrq_cur->bounce_buf) {
233                                 pr_warn("%s: unable to allocate bounce cur buffer\n",
234                                         mmc_card_name(card));
235                         } else {
236                                 mqrq_prev->bounce_buf =
237                                                 kmalloc(bouncesz, GFP_KERNEL);
238                                 if (!mqrq_prev->bounce_buf) {
239                                         pr_warn("%s: unable to allocate bounce prev buffer\n",
240                                                 mmc_card_name(card));
241                                         kfree(mqrq_cur->bounce_buf);
242                                         mqrq_cur->bounce_buf = NULL;
243                                 }
244                         }
245                 }
246
247                 if (mqrq_cur->bounce_buf && mqrq_prev->bounce_buf) {
248                         blk_queue_bounce_limit(mq->queue, BLK_BOUNCE_ANY);
249                         blk_queue_max_hw_sectors(mq->queue, bouncesz / 512);
250                         blk_queue_max_segments(mq->queue, bouncesz / 512);
251                         blk_queue_max_segment_size(mq->queue, bouncesz);
252
253                         mqrq_cur->sg = mmc_alloc_sg(1, &ret);
254                         if (ret)
255                                 goto cleanup_queue;
256
257                         mqrq_cur->bounce_sg =
258                                 mmc_alloc_sg(bouncesz / 512, &ret);
259                         if (ret)
260                                 goto cleanup_queue;
261
262                         mqrq_prev->sg = mmc_alloc_sg(1, &ret);
263                         if (ret)
264                                 goto cleanup_queue;
265
266                         mqrq_prev->bounce_sg =
267                                 mmc_alloc_sg(bouncesz / 512, &ret);
268                         if (ret)
269                                 goto cleanup_queue;
270                 }
271         }
272 #endif
273
274         if (!mqrq_cur->bounce_buf && !mqrq_prev->bounce_buf) {
275                 blk_queue_bounce_limit(mq->queue, limit);
276                 blk_queue_max_hw_sectors(mq->queue,
277                         min(host->max_blk_count, host->max_req_size / 512));
278                 blk_queue_max_segments(mq->queue, host->max_segs);
279                 blk_queue_max_segment_size(mq->queue, host->max_seg_size);
280
281                 mqrq_cur->sg = mmc_alloc_sg(host->max_segs, &ret);
282                 if (ret)
283                         goto cleanup_queue;
284
285
286                 mqrq_prev->sg = mmc_alloc_sg(host->max_segs, &ret);
287                 if (ret)
288                         goto cleanup_queue;
289         }
290
291         sema_init(&mq->thread_sem, 1);
292
293         mq->thread = kthread_run(mmc_queue_thread, mq, "mmcqd/%d%s",
294                 host->index, subname ? subname : "");
295
296         if (IS_ERR(mq->thread)) {
297                 ret = PTR_ERR(mq->thread);
298                 goto free_bounce_sg;
299         }
300
301         return 0;
302  free_bounce_sg:
303         kfree(mqrq_cur->bounce_sg);
304         mqrq_cur->bounce_sg = NULL;
305         kfree(mqrq_prev->bounce_sg);
306         mqrq_prev->bounce_sg = NULL;
307
308  cleanup_queue:
309         kfree(mqrq_cur->sg);
310         mqrq_cur->sg = NULL;
311         kfree(mqrq_cur->bounce_buf);
312         mqrq_cur->bounce_buf = NULL;
313
314         kfree(mqrq_prev->sg);
315         mqrq_prev->sg = NULL;
316         kfree(mqrq_prev->bounce_buf);
317         mqrq_prev->bounce_buf = NULL;
318
319         blk_cleanup_queue(mq->queue);
320         return ret;
321 }
322
323 void mmc_cleanup_queue(struct mmc_queue *mq)
324 {
325         struct request_queue *q = mq->queue;
326         unsigned long flags;
327         struct mmc_queue_req *mqrq_cur = mq->mqrq_cur;
328         struct mmc_queue_req *mqrq_prev = mq->mqrq_prev;
329
330         /* Make sure the queue isn't suspended, as that will deadlock */
331         mmc_queue_resume(mq);
332
333         /* Then terminate our worker thread */
334         kthread_stop(mq->thread);
335
336         /* Empty the queue */
337         spin_lock_irqsave(q->queue_lock, flags);
338         q->queuedata = NULL;
339         blk_start_queue(q);
340         spin_unlock_irqrestore(q->queue_lock, flags);
341
342         kfree(mqrq_cur->bounce_sg);
343         mqrq_cur->bounce_sg = NULL;
344
345         kfree(mqrq_cur->sg);
346         mqrq_cur->sg = NULL;
347
348         kfree(mqrq_cur->bounce_buf);
349         mqrq_cur->bounce_buf = NULL;
350
351         kfree(mqrq_prev->bounce_sg);
352         mqrq_prev->bounce_sg = NULL;
353
354         kfree(mqrq_prev->sg);
355         mqrq_prev->sg = NULL;
356
357         kfree(mqrq_prev->bounce_buf);
358         mqrq_prev->bounce_buf = NULL;
359
360         mq->card = NULL;
361 }
362 EXPORT_SYMBOL(mmc_cleanup_queue);
363
364 int mmc_packed_init(struct mmc_queue *mq, struct mmc_card *card)
365 {
366         struct mmc_queue_req *mqrq_cur = &mq->mqrq[0];
367         struct mmc_queue_req *mqrq_prev = &mq->mqrq[1];
368         int ret = 0;
369
370
371         mqrq_cur->packed = kzalloc(sizeof(struct mmc_packed), GFP_KERNEL);
372         if (!mqrq_cur->packed) {
373                 pr_warn("%s: unable to allocate packed cmd for mqrq_cur\n",
374                         mmc_card_name(card));
375                 ret = -ENOMEM;
376                 goto out;
377         }
378
379         mqrq_prev->packed = kzalloc(sizeof(struct mmc_packed), GFP_KERNEL);
380         if (!mqrq_prev->packed) {
381                 pr_warn("%s: unable to allocate packed cmd for mqrq_prev\n",
382                         mmc_card_name(card));
383                 kfree(mqrq_cur->packed);
384                 mqrq_cur->packed = NULL;
385                 ret = -ENOMEM;
386                 goto out;
387         }
388
389         INIT_LIST_HEAD(&mqrq_cur->packed->list);
390         INIT_LIST_HEAD(&mqrq_prev->packed->list);
391
392 out:
393         return ret;
394 }
395
396 void mmc_packed_clean(struct mmc_queue *mq)
397 {
398         struct mmc_queue_req *mqrq_cur = &mq->mqrq[0];
399         struct mmc_queue_req *mqrq_prev = &mq->mqrq[1];
400
401         kfree(mqrq_cur->packed);
402         mqrq_cur->packed = NULL;
403         kfree(mqrq_prev->packed);
404         mqrq_prev->packed = NULL;
405 }
406
407 /**
408  * mmc_queue_suspend - suspend a MMC request queue
409  * @mq: MMC queue to suspend
410  *
411  * Stop the block request queue, and wait for our thread to
412  * complete any outstanding requests.  This ensures that we
413  * won't suspend while a request is being processed.
414  */
415 void mmc_queue_suspend(struct mmc_queue *mq)
416 {
417         struct request_queue *q = mq->queue;
418         unsigned long flags;
419
420         if (!(mq->flags & MMC_QUEUE_SUSPENDED)) {
421                 mq->flags |= MMC_QUEUE_SUSPENDED;
422
423                 spin_lock_irqsave(q->queue_lock, flags);
424                 blk_stop_queue(q);
425                 spin_unlock_irqrestore(q->queue_lock, flags);
426
427                 down(&mq->thread_sem);
428         }
429 }
430
431 /**
432  * mmc_queue_resume - resume a previously suspended MMC request queue
433  * @mq: MMC queue to resume
434  */
435 void mmc_queue_resume(struct mmc_queue *mq)
436 {
437         struct request_queue *q = mq->queue;
438         unsigned long flags;
439
440         if (mq->flags & MMC_QUEUE_SUSPENDED) {
441                 mq->flags &= ~MMC_QUEUE_SUSPENDED;
442
443                 up(&mq->thread_sem);
444
445                 spin_lock_irqsave(q->queue_lock, flags);
446                 blk_start_queue(q);
447                 spin_unlock_irqrestore(q->queue_lock, flags);
448         }
449 }
450
451 static unsigned int mmc_queue_packed_map_sg(struct mmc_queue *mq,
452                                             struct mmc_packed *packed,
453                                             struct scatterlist *sg,
454                                             enum mmc_packed_type cmd_type)
455 {
456         struct scatterlist *__sg = sg;
457         unsigned int sg_len = 0;
458         struct request *req;
459
460         if (mmc_packed_wr(cmd_type)) {
461                 unsigned int hdr_sz = mmc_large_sector(mq->card) ? 4096 : 512;
462                 unsigned int max_seg_sz = queue_max_segment_size(mq->queue);
463                 unsigned int len, remain, offset = 0;
464                 u8 *buf = (u8 *)packed->cmd_hdr;
465
466                 remain = hdr_sz;
467                 do {
468                         len = min(remain, max_seg_sz);
469                         sg_set_buf(__sg, buf + offset, len);
470                         offset += len;
471                         remain -= len;
472                         (__sg++)->page_link &= ~0x02;
473                         sg_len++;
474                 } while (remain);
475         }
476
477         list_for_each_entry(req, &packed->list, queuelist) {
478                 sg_len += blk_rq_map_sg(mq->queue, req, __sg);
479                 __sg = sg + (sg_len - 1);
480                 (__sg++)->page_link &= ~0x02;
481         }
482         sg_mark_end(sg + (sg_len - 1));
483         return sg_len;
484 }
485
486 /*
487  * Prepare the sg list(s) to be handed of to the host driver
488  */
489 unsigned int mmc_queue_map_sg(struct mmc_queue *mq, struct mmc_queue_req *mqrq)
490 {
491         unsigned int sg_len;
492         size_t buflen;
493         struct scatterlist *sg;
494         enum mmc_packed_type cmd_type;
495         int i;
496
497         cmd_type = mqrq->cmd_type;
498
499         if (!mqrq->bounce_buf) {
500                 if (mmc_packed_cmd(cmd_type))
501                         return mmc_queue_packed_map_sg(mq, mqrq->packed,
502                                                        mqrq->sg, cmd_type);
503                 else
504                         return blk_rq_map_sg(mq->queue, mqrq->req, mqrq->sg);
505         }
506
507         BUG_ON(!mqrq->bounce_sg);
508
509         if (mmc_packed_cmd(cmd_type))
510                 sg_len = mmc_queue_packed_map_sg(mq, mqrq->packed,
511                                                  mqrq->bounce_sg, cmd_type);
512         else
513                 sg_len = blk_rq_map_sg(mq->queue, mqrq->req, mqrq->bounce_sg);
514
515         mqrq->bounce_sg_len = sg_len;
516
517         buflen = 0;
518         for_each_sg(mqrq->bounce_sg, sg, sg_len, i)
519                 buflen += sg->length;
520
521         sg_init_one(mqrq->sg, mqrq->bounce_buf, buflen);
522
523         return 1;
524 }
525
526 /*
527  * If writing, bounce the data to the buffer before the request
528  * is sent to the host driver
529  */
530 void mmc_queue_bounce_pre(struct mmc_queue_req *mqrq)
531 {
532         if (!mqrq->bounce_buf)
533                 return;
534
535         if (rq_data_dir(mqrq->req) != WRITE)
536                 return;
537
538         sg_copy_to_buffer(mqrq->bounce_sg, mqrq->bounce_sg_len,
539                 mqrq->bounce_buf, mqrq->sg[0].length);
540 }
541
542 /*
543  * If reading, bounce the data from the buffer after the request
544  * has been handled by the host driver
545  */
546 void mmc_queue_bounce_post(struct mmc_queue_req *mqrq)
547 {
548         if (!mqrq->bounce_buf)
549                 return;
550
551         if (rq_data_dir(mqrq->req) != READ)
552                 return;
553
554         sg_copy_from_buffer(mqrq->bounce_sg, mqrq->bounce_sg_len,
555                 mqrq->bounce_buf, mqrq->sg[0].length);
556 }