Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / misc / vmw_vmci / vmci_queue_pair.c
1 /*
2  * VMware VMCI Driver
3  *
4  * Copyright (C) 2012 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  */
15
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30 #include <linux/skbuff.h>
31
32 #include "vmci_handle_array.h"
33 #include "vmci_queue_pair.h"
34 #include "vmci_datagram.h"
35 #include "vmci_resource.h"
36 #include "vmci_context.h"
37 #include "vmci_driver.h"
38 #include "vmci_event.h"
39 #include "vmci_route.h"
40
41 /*
42  * In the following, we will distinguish between two kinds of VMX processes -
43  * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
44  * VMCI page files in the VMX and supporting VM to VM communication and the
45  * newer ones that use the guest memory directly. We will in the following
46  * refer to the older VMX versions as old-style VMX'en, and the newer ones as
47  * new-style VMX'en.
48  *
49  * The state transition datagram is as follows (the VMCIQPB_ prefix has been
50  * removed for readability) - see below for more details on the transtions:
51  *
52  *            --------------  NEW  -------------
53  *            |                                |
54  *           \_/                              \_/
55  *     CREATED_NO_MEM <-----------------> CREATED_MEM
56  *            |    |                           |
57  *            |    o-----------------------o   |
58  *            |                            |   |
59  *           \_/                          \_/ \_/
60  *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
61  *            |                            |   |
62  *            |     o----------------------o   |
63  *            |     |                          |
64  *           \_/   \_/                        \_/
65  *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
66  *            |                                |
67  *            |                                |
68  *            -------------> gone <-------------
69  *
70  * In more detail. When a VMCI queue pair is first created, it will be in the
71  * VMCIQPB_NEW state. It will then move into one of the following states:
72  *
73  * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
74  *
75  *     - the created was performed by a host endpoint, in which case there is
76  *       no backing memory yet.
77  *
78  *     - the create was initiated by an old-style VMX, that uses
79  *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
80  *       a later point in time. This state can be distinguished from the one
81  *       above by the context ID of the creator. A host side is not allowed to
82  *       attach until the page store has been set.
83  *
84  * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
85  *     is created by a VMX using the queue pair device backend that
86  *     sets the UVAs of the queue pair immediately and stores the
87  *     information for later attachers. At this point, it is ready for
88  *     the host side to attach to it.
89  *
90  * Once the queue pair is in one of the created states (with the exception of
91  * the case mentioned for older VMX'en above), it is possible to attach to the
92  * queue pair. Again we have two new states possible:
93  *
94  * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
95  *   paths:
96  *
97  *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
98  *       pair, and attaches to a queue pair previously created by the host side.
99  *
100  *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
101  *       already created by a guest.
102  *
103  *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
104  *       vmci_qp_broker_set_page_store (see below).
105  *
106  * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
107  *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
108  *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
109  *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
110  *     will be entered.
111  *
112  * From the attached queue pair, the queue pair can enter the shutdown states
113  * when either side of the queue pair detaches. If the guest side detaches
114  * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
115  * the content of the queue pair will no longer be available. If the host
116  * side detaches first, the queue pair will either enter the
117  * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
118  * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
119  * (e.g., the host detaches while a guest is stunned).
120  *
121  * New-style VMX'en will also unmap guest memory, if the guest is
122  * quiesced, e.g., during a snapshot operation. In that case, the guest
123  * memory will no longer be available, and the queue pair will transition from
124  * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
125  * in which case the queue pair will transition from the *_NO_MEM state at that
126  * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
127  * since the peer may have either attached or detached in the meantime. The
128  * values are laid out such that ++ on a state will move from a *_NO_MEM to a
129  * *_MEM state, and vice versa.
130  */
131
132 /*
133  * VMCIMemcpy{To,From}QueueFunc() prototypes.  Functions of these
134  * types are passed around to enqueue and dequeue routines.  Note that
135  * often the functions passed are simply wrappers around memcpy
136  * itself.
137  *
138  * Note: In order for the memcpy typedefs to be compatible with the VMKernel,
139  * there's an unused last parameter for the hosted side.  In
140  * ESX, that parameter holds a buffer type.
141  */
142 typedef int vmci_memcpy_to_queue_func(struct vmci_queue *queue,
143                                       u64 queue_offset, const void *src,
144                                       size_t src_offset, size_t size);
145 typedef int vmci_memcpy_from_queue_func(void *dest, size_t dest_offset,
146                                         const struct vmci_queue *queue,
147                                         u64 queue_offset, size_t size);
148
149 /* The Kernel specific component of the struct vmci_queue structure. */
150 struct vmci_queue_kern_if {
151         struct mutex __mutex;   /* Protects the queue. */
152         struct mutex *mutex;    /* Shared by producer and consumer queues. */
153         size_t num_pages;       /* Number of pages incl. header. */
154         bool host;              /* Host or guest? */
155         union {
156                 struct {
157                         dma_addr_t *pas;
158                         void **vas;
159                 } g;            /* Used by the guest. */
160                 struct {
161                         struct page **page;
162                         struct page **header_page;
163                 } h;            /* Used by the host. */
164         } u;
165 };
166
167 /*
168  * This structure is opaque to the clients.
169  */
170 struct vmci_qp {
171         struct vmci_handle handle;
172         struct vmci_queue *produce_q;
173         struct vmci_queue *consume_q;
174         u64 produce_q_size;
175         u64 consume_q_size;
176         u32 peer;
177         u32 flags;
178         u32 priv_flags;
179         bool guest_endpoint;
180         unsigned int blocked;
181         unsigned int generation;
182         wait_queue_head_t event;
183 };
184
185 enum qp_broker_state {
186         VMCIQPB_NEW,
187         VMCIQPB_CREATED_NO_MEM,
188         VMCIQPB_CREATED_MEM,
189         VMCIQPB_ATTACHED_NO_MEM,
190         VMCIQPB_ATTACHED_MEM,
191         VMCIQPB_SHUTDOWN_NO_MEM,
192         VMCIQPB_SHUTDOWN_MEM,
193         VMCIQPB_GONE
194 };
195
196 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
197                                      _qpb->state == VMCIQPB_ATTACHED_MEM || \
198                                      _qpb->state == VMCIQPB_SHUTDOWN_MEM)
199
200 /*
201  * In the queue pair broker, we always use the guest point of view for
202  * the produce and consume queue values and references, e.g., the
203  * produce queue size stored is the guests produce queue size. The
204  * host endpoint will need to swap these around. The only exception is
205  * the local queue pairs on the host, in which case the host endpoint
206  * that creates the queue pair will have the right orientation, and
207  * the attaching host endpoint will need to swap.
208  */
209 struct qp_entry {
210         struct list_head list_item;
211         struct vmci_handle handle;
212         u32 peer;
213         u32 flags;
214         u64 produce_size;
215         u64 consume_size;
216         u32 ref_count;
217 };
218
219 struct qp_broker_entry {
220         struct vmci_resource resource;
221         struct qp_entry qp;
222         u32 create_id;
223         u32 attach_id;
224         enum qp_broker_state state;
225         bool require_trusted_attach;
226         bool created_by_trusted;
227         bool vmci_page_files;   /* Created by VMX using VMCI page files */
228         struct vmci_queue *produce_q;
229         struct vmci_queue *consume_q;
230         struct vmci_queue_header saved_produce_q;
231         struct vmci_queue_header saved_consume_q;
232         vmci_event_release_cb wakeup_cb;
233         void *client_data;
234         void *local_mem;        /* Kernel memory for local queue pair */
235 };
236
237 struct qp_guest_endpoint {
238         struct vmci_resource resource;
239         struct qp_entry qp;
240         u64 num_ppns;
241         void *produce_q;
242         void *consume_q;
243         struct ppn_set ppn_set;
244 };
245
246 struct qp_list {
247         struct list_head head;
248         struct mutex mutex;     /* Protect queue list. */
249 };
250
251 static struct qp_list qp_broker_list = {
252         .head = LIST_HEAD_INIT(qp_broker_list.head),
253         .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
254 };
255
256 static struct qp_list qp_guest_endpoints = {
257         .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
258         .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
259 };
260
261 #define INVALID_VMCI_GUEST_MEM_ID  0
262 #define QPE_NUM_PAGES(_QPE) ((u32) \
263                              (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
264                               DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
265
266
267 /*
268  * Frees kernel VA space for a given queue and its queue header, and
269  * frees physical data pages.
270  */
271 static void qp_free_queue(void *q, u64 size)
272 {
273         struct vmci_queue *queue = q;
274
275         if (queue) {
276                 u64 i;
277
278                 /* Given size does not include header, so add in a page here. */
279                 for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
280                         dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
281                                           queue->kernel_if->u.g.vas[i],
282                                           queue->kernel_if->u.g.pas[i]);
283                 }
284
285                 vfree(queue);
286         }
287 }
288
289 /*
290  * Allocates kernel queue pages of specified size with IOMMU mappings,
291  * plus space for the queue structure/kernel interface and the queue
292  * header.
293  */
294 static void *qp_alloc_queue(u64 size, u32 flags)
295 {
296         u64 i;
297         struct vmci_queue *queue;
298         size_t pas_size;
299         size_t vas_size;
300         size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
301         const u64 num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
302
303         if (num_pages >
304                  (SIZE_MAX - queue_size) /
305                  (sizeof(*queue->kernel_if->u.g.pas) +
306                   sizeof(*queue->kernel_if->u.g.vas)))
307                 return NULL;
308
309         pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
310         vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
311         queue_size += pas_size + vas_size;
312
313         queue = vmalloc(queue_size);
314         if (!queue)
315                 return NULL;
316
317         queue->q_header = NULL;
318         queue->saved_header = NULL;
319         queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
320         queue->kernel_if->mutex = NULL;
321         queue->kernel_if->num_pages = num_pages;
322         queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
323         queue->kernel_if->u.g.vas =
324                 (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
325         queue->kernel_if->host = false;
326
327         for (i = 0; i < num_pages; i++) {
328                 queue->kernel_if->u.g.vas[i] =
329                         dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
330                                            &queue->kernel_if->u.g.pas[i],
331                                            GFP_KERNEL);
332                 if (!queue->kernel_if->u.g.vas[i]) {
333                         /* Size excl. the header. */
334                         qp_free_queue(queue, i * PAGE_SIZE);
335                         return NULL;
336                 }
337         }
338
339         /* Queue header is the first page. */
340         queue->q_header = queue->kernel_if->u.g.vas[0];
341
342         return queue;
343 }
344
345 /*
346  * Copies from a given buffer or iovector to a VMCI Queue.  Uses
347  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
348  * by traversing the offset -> page translation structure for the queue.
349  * Assumes that offset + size does not wrap around in the queue.
350  */
351 static int __qp_memcpy_to_queue(struct vmci_queue *queue,
352                                 u64 queue_offset,
353                                 const void *src,
354                                 size_t size,
355                                 bool is_iovec)
356 {
357         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
358         size_t bytes_copied = 0;
359
360         while (bytes_copied < size) {
361                 const u64 page_index =
362                         (queue_offset + bytes_copied) / PAGE_SIZE;
363                 const size_t page_offset =
364                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
365                 void *va;
366                 size_t to_copy;
367
368                 if (kernel_if->host)
369                         va = kmap(kernel_if->u.h.page[page_index]);
370                 else
371                         va = kernel_if->u.g.vas[page_index + 1];
372                         /* Skip header. */
373
374                 if (size - bytes_copied > PAGE_SIZE - page_offset)
375                         /* Enough payload to fill up from this page. */
376                         to_copy = PAGE_SIZE - page_offset;
377                 else
378                         to_copy = size - bytes_copied;
379
380                 if (is_iovec) {
381                         struct msghdr *msg = (struct msghdr *)src;
382                         int err;
383
384                         /* The iovec will track bytes_copied internally. */
385                         err = memcpy_from_msg((u8 *)va + page_offset,
386                                               msg, to_copy);
387                         if (err != 0) {
388                                 if (kernel_if->host)
389                                         kunmap(kernel_if->u.h.page[page_index]);
390                                 return VMCI_ERROR_INVALID_ARGS;
391                         }
392                 } else {
393                         memcpy((u8 *)va + page_offset,
394                                (u8 *)src + bytes_copied, to_copy);
395                 }
396
397                 bytes_copied += to_copy;
398                 if (kernel_if->host)
399                         kunmap(kernel_if->u.h.page[page_index]);
400         }
401
402         return VMCI_SUCCESS;
403 }
404
405 /*
406  * Copies to a given buffer or iovector from a VMCI Queue.  Uses
407  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
408  * by traversing the offset -> page translation structure for the queue.
409  * Assumes that offset + size does not wrap around in the queue.
410  */
411 static int __qp_memcpy_from_queue(void *dest,
412                                   const struct vmci_queue *queue,
413                                   u64 queue_offset,
414                                   size_t size,
415                                   bool is_iovec)
416 {
417         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
418         size_t bytes_copied = 0;
419
420         while (bytes_copied < size) {
421                 const u64 page_index =
422                         (queue_offset + bytes_copied) / PAGE_SIZE;
423                 const size_t page_offset =
424                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
425                 void *va;
426                 size_t to_copy;
427
428                 if (kernel_if->host)
429                         va = kmap(kernel_if->u.h.page[page_index]);
430                 else
431                         va = kernel_if->u.g.vas[page_index + 1];
432                         /* Skip header. */
433
434                 if (size - bytes_copied > PAGE_SIZE - page_offset)
435                         /* Enough payload to fill up this page. */
436                         to_copy = PAGE_SIZE - page_offset;
437                 else
438                         to_copy = size - bytes_copied;
439
440                 if (is_iovec) {
441                         struct msghdr *msg = dest;
442                         int err;
443
444                         /* The iovec will track bytes_copied internally. */
445                         err = memcpy_to_msg(msg, (u8 *)va + page_offset,
446                                              to_copy);
447                         if (err != 0) {
448                                 if (kernel_if->host)
449                                         kunmap(kernel_if->u.h.page[page_index]);
450                                 return VMCI_ERROR_INVALID_ARGS;
451                         }
452                 } else {
453                         memcpy((u8 *)dest + bytes_copied,
454                                (u8 *)va + page_offset, to_copy);
455                 }
456
457                 bytes_copied += to_copy;
458                 if (kernel_if->host)
459                         kunmap(kernel_if->u.h.page[page_index]);
460         }
461
462         return VMCI_SUCCESS;
463 }
464
465 /*
466  * Allocates two list of PPNs --- one for the pages in the produce queue,
467  * and the other for the pages in the consume queue. Intializes the list
468  * of PPNs with the page frame numbers of the KVA for the two queues (and
469  * the queue headers).
470  */
471 static int qp_alloc_ppn_set(void *prod_q,
472                             u64 num_produce_pages,
473                             void *cons_q,
474                             u64 num_consume_pages, struct ppn_set *ppn_set)
475 {
476         u32 *produce_ppns;
477         u32 *consume_ppns;
478         struct vmci_queue *produce_q = prod_q;
479         struct vmci_queue *consume_q = cons_q;
480         u64 i;
481
482         if (!produce_q || !num_produce_pages || !consume_q ||
483             !num_consume_pages || !ppn_set)
484                 return VMCI_ERROR_INVALID_ARGS;
485
486         if (ppn_set->initialized)
487                 return VMCI_ERROR_ALREADY_EXISTS;
488
489         produce_ppns =
490             kmalloc(num_produce_pages * sizeof(*produce_ppns), GFP_KERNEL);
491         if (!produce_ppns)
492                 return VMCI_ERROR_NO_MEM;
493
494         consume_ppns =
495             kmalloc(num_consume_pages * sizeof(*consume_ppns), GFP_KERNEL);
496         if (!consume_ppns) {
497                 kfree(produce_ppns);
498                 return VMCI_ERROR_NO_MEM;
499         }
500
501         for (i = 0; i < num_produce_pages; i++) {
502                 unsigned long pfn;
503
504                 produce_ppns[i] =
505                         produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
506                 pfn = produce_ppns[i];
507
508                 /* Fail allocation if PFN isn't supported by hypervisor. */
509                 if (sizeof(pfn) > sizeof(*produce_ppns)
510                     && pfn != produce_ppns[i])
511                         goto ppn_error;
512         }
513
514         for (i = 0; i < num_consume_pages; i++) {
515                 unsigned long pfn;
516
517                 consume_ppns[i] =
518                         consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
519                 pfn = consume_ppns[i];
520
521                 /* Fail allocation if PFN isn't supported by hypervisor. */
522                 if (sizeof(pfn) > sizeof(*consume_ppns)
523                     && pfn != consume_ppns[i])
524                         goto ppn_error;
525         }
526
527         ppn_set->num_produce_pages = num_produce_pages;
528         ppn_set->num_consume_pages = num_consume_pages;
529         ppn_set->produce_ppns = produce_ppns;
530         ppn_set->consume_ppns = consume_ppns;
531         ppn_set->initialized = true;
532         return VMCI_SUCCESS;
533
534  ppn_error:
535         kfree(produce_ppns);
536         kfree(consume_ppns);
537         return VMCI_ERROR_INVALID_ARGS;
538 }
539
540 /*
541  * Frees the two list of PPNs for a queue pair.
542  */
543 static void qp_free_ppn_set(struct ppn_set *ppn_set)
544 {
545         if (ppn_set->initialized) {
546                 /* Do not call these functions on NULL inputs. */
547                 kfree(ppn_set->produce_ppns);
548                 kfree(ppn_set->consume_ppns);
549         }
550         memset(ppn_set, 0, sizeof(*ppn_set));
551 }
552
553 /*
554  * Populates the list of PPNs in the hypercall structure with the PPNS
555  * of the produce queue and the consume queue.
556  */
557 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
558 {
559         memcpy(call_buf, ppn_set->produce_ppns,
560                ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
561         memcpy(call_buf +
562                ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
563                ppn_set->consume_ppns,
564                ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
565
566         return VMCI_SUCCESS;
567 }
568
569 static int qp_memcpy_to_queue(struct vmci_queue *queue,
570                               u64 queue_offset,
571                               const void *src, size_t src_offset, size_t size)
572 {
573         return __qp_memcpy_to_queue(queue, queue_offset,
574                                     (u8 *)src + src_offset, size, false);
575 }
576
577 static int qp_memcpy_from_queue(void *dest,
578                                 size_t dest_offset,
579                                 const struct vmci_queue *queue,
580                                 u64 queue_offset, size_t size)
581 {
582         return __qp_memcpy_from_queue((u8 *)dest + dest_offset,
583                                       queue, queue_offset, size, false);
584 }
585
586 /*
587  * Copies from a given iovec from a VMCI Queue.
588  */
589 static int qp_memcpy_to_queue_iov(struct vmci_queue *queue,
590                                   u64 queue_offset,
591                                   const void *msg,
592                                   size_t src_offset, size_t size)
593 {
594
595         /*
596          * We ignore src_offset because src is really a struct iovec * and will
597          * maintain offset internally.
598          */
599         return __qp_memcpy_to_queue(queue, queue_offset, msg, size, true);
600 }
601
602 /*
603  * Copies to a given iovec from a VMCI Queue.
604  */
605 static int qp_memcpy_from_queue_iov(void *dest,
606                                     size_t dest_offset,
607                                     const struct vmci_queue *queue,
608                                     u64 queue_offset, size_t size)
609 {
610         /*
611          * We ignore dest_offset because dest is really a struct iovec * and
612          * will maintain offset internally.
613          */
614         return __qp_memcpy_from_queue(dest, queue, queue_offset, size, true);
615 }
616
617 /*
618  * Allocates kernel VA space of specified size plus space for the queue
619  * and kernel interface.  This is different from the guest queue allocator,
620  * because we do not allocate our own queue header/data pages here but
621  * share those of the guest.
622  */
623 static struct vmci_queue *qp_host_alloc_queue(u64 size)
624 {
625         struct vmci_queue *queue;
626         size_t queue_page_size;
627         const u64 num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
628         const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
629
630         if (num_pages > (SIZE_MAX - queue_size) /
631                  sizeof(*queue->kernel_if->u.h.page))
632                 return NULL;
633
634         queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
635
636         queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
637         if (queue) {
638                 queue->q_header = NULL;
639                 queue->saved_header = NULL;
640                 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
641                 queue->kernel_if->host = true;
642                 queue->kernel_if->mutex = NULL;
643                 queue->kernel_if->num_pages = num_pages;
644                 queue->kernel_if->u.h.header_page =
645                     (struct page **)((u8 *)queue + queue_size);
646                 queue->kernel_if->u.h.page =
647                         &queue->kernel_if->u.h.header_page[1];
648         }
649
650         return queue;
651 }
652
653 /*
654  * Frees kernel memory for a given queue (header plus translation
655  * structure).
656  */
657 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
658 {
659         kfree(queue);
660 }
661
662 /*
663  * Initialize the mutex for the pair of queues.  This mutex is used to
664  * protect the q_header and the buffer from changing out from under any
665  * users of either queue.  Of course, it's only any good if the mutexes
666  * are actually acquired.  Queue structure must lie on non-paged memory
667  * or we cannot guarantee access to the mutex.
668  */
669 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
670                                 struct vmci_queue *consume_q)
671 {
672         /*
673          * Only the host queue has shared state - the guest queues do not
674          * need to synchronize access using a queue mutex.
675          */
676
677         if (produce_q->kernel_if->host) {
678                 produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
679                 consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
680                 mutex_init(produce_q->kernel_if->mutex);
681         }
682 }
683
684 /*
685  * Cleans up the mutex for the pair of queues.
686  */
687 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
688                                    struct vmci_queue *consume_q)
689 {
690         if (produce_q->kernel_if->host) {
691                 produce_q->kernel_if->mutex = NULL;
692                 consume_q->kernel_if->mutex = NULL;
693         }
694 }
695
696 /*
697  * Acquire the mutex for the queue.  Note that the produce_q and
698  * the consume_q share a mutex.  So, only one of the two need to
699  * be passed in to this routine.  Either will work just fine.
700  */
701 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
702 {
703         if (queue->kernel_if->host)
704                 mutex_lock(queue->kernel_if->mutex);
705 }
706
707 /*
708  * Release the mutex for the queue.  Note that the produce_q and
709  * the consume_q share a mutex.  So, only one of the two need to
710  * be passed in to this routine.  Either will work just fine.
711  */
712 static void qp_release_queue_mutex(struct vmci_queue *queue)
713 {
714         if (queue->kernel_if->host)
715                 mutex_unlock(queue->kernel_if->mutex);
716 }
717
718 /*
719  * Helper function to release pages in the PageStoreAttachInfo
720  * previously obtained using get_user_pages.
721  */
722 static void qp_release_pages(struct page **pages,
723                              u64 num_pages, bool dirty)
724 {
725         int i;
726
727         for (i = 0; i < num_pages; i++) {
728                 if (dirty)
729                         set_page_dirty(pages[i]);
730
731                 page_cache_release(pages[i]);
732                 pages[i] = NULL;
733         }
734 }
735
736 /*
737  * Lock the user pages referenced by the {produce,consume}Buffer
738  * struct into memory and populate the {produce,consume}Pages
739  * arrays in the attach structure with them.
740  */
741 static int qp_host_get_user_memory(u64 produce_uva,
742                                    u64 consume_uva,
743                                    struct vmci_queue *produce_q,
744                                    struct vmci_queue *consume_q)
745 {
746         int retval;
747         int err = VMCI_SUCCESS;
748
749         retval = get_user_pages_fast((uintptr_t) produce_uva,
750                                      produce_q->kernel_if->num_pages, 1,
751                                      produce_q->kernel_if->u.h.header_page);
752         if (retval < produce_q->kernel_if->num_pages) {
753                 pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
754                         retval);
755                 qp_release_pages(produce_q->kernel_if->u.h.header_page,
756                                  retval, false);
757                 err = VMCI_ERROR_NO_MEM;
758                 goto out;
759         }
760
761         retval = get_user_pages_fast((uintptr_t) consume_uva,
762                                      consume_q->kernel_if->num_pages, 1,
763                                      consume_q->kernel_if->u.h.header_page);
764         if (retval < consume_q->kernel_if->num_pages) {
765                 pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
766                         retval);
767                 qp_release_pages(consume_q->kernel_if->u.h.header_page,
768                                  retval, false);
769                 qp_release_pages(produce_q->kernel_if->u.h.header_page,
770                                  produce_q->kernel_if->num_pages, false);
771                 err = VMCI_ERROR_NO_MEM;
772         }
773
774  out:
775         return err;
776 }
777
778 /*
779  * Registers the specification of the user pages used for backing a queue
780  * pair. Enough information to map in pages is stored in the OS specific
781  * part of the struct vmci_queue structure.
782  */
783 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
784                                         struct vmci_queue *produce_q,
785                                         struct vmci_queue *consume_q)
786 {
787         u64 produce_uva;
788         u64 consume_uva;
789
790         /*
791          * The new style and the old style mapping only differs in
792          * that we either get a single or two UVAs, so we split the
793          * single UVA range at the appropriate spot.
794          */
795         produce_uva = page_store->pages;
796         consume_uva = page_store->pages +
797             produce_q->kernel_if->num_pages * PAGE_SIZE;
798         return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
799                                        consume_q);
800 }
801
802 /*
803  * Releases and removes the references to user pages stored in the attach
804  * struct.  Pages are released from the page cache and may become
805  * swappable again.
806  */
807 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
808                                            struct vmci_queue *consume_q)
809 {
810         qp_release_pages(produce_q->kernel_if->u.h.header_page,
811                          produce_q->kernel_if->num_pages, true);
812         memset(produce_q->kernel_if->u.h.header_page, 0,
813                sizeof(*produce_q->kernel_if->u.h.header_page) *
814                produce_q->kernel_if->num_pages);
815         qp_release_pages(consume_q->kernel_if->u.h.header_page,
816                          consume_q->kernel_if->num_pages, true);
817         memset(consume_q->kernel_if->u.h.header_page, 0,
818                sizeof(*consume_q->kernel_if->u.h.header_page) *
819                consume_q->kernel_if->num_pages);
820 }
821
822 /*
823  * Once qp_host_register_user_memory has been performed on a
824  * queue, the queue pair headers can be mapped into the
825  * kernel. Once mapped, they must be unmapped with
826  * qp_host_unmap_queues prior to calling
827  * qp_host_unregister_user_memory.
828  * Pages are pinned.
829  */
830 static int qp_host_map_queues(struct vmci_queue *produce_q,
831                               struct vmci_queue *consume_q)
832 {
833         int result;
834
835         if (!produce_q->q_header || !consume_q->q_header) {
836                 struct page *headers[2];
837
838                 if (produce_q->q_header != consume_q->q_header)
839                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
840
841                 if (produce_q->kernel_if->u.h.header_page == NULL ||
842                     *produce_q->kernel_if->u.h.header_page == NULL)
843                         return VMCI_ERROR_UNAVAILABLE;
844
845                 headers[0] = *produce_q->kernel_if->u.h.header_page;
846                 headers[1] = *consume_q->kernel_if->u.h.header_page;
847
848                 produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
849                 if (produce_q->q_header != NULL) {
850                         consume_q->q_header =
851                             (struct vmci_queue_header *)((u8 *)
852                                                          produce_q->q_header +
853                                                          PAGE_SIZE);
854                         result = VMCI_SUCCESS;
855                 } else {
856                         pr_warn("vmap failed\n");
857                         result = VMCI_ERROR_NO_MEM;
858                 }
859         } else {
860                 result = VMCI_SUCCESS;
861         }
862
863         return result;
864 }
865
866 /*
867  * Unmaps previously mapped queue pair headers from the kernel.
868  * Pages are unpinned.
869  */
870 static int qp_host_unmap_queues(u32 gid,
871                                 struct vmci_queue *produce_q,
872                                 struct vmci_queue *consume_q)
873 {
874         if (produce_q->q_header) {
875                 if (produce_q->q_header < consume_q->q_header)
876                         vunmap(produce_q->q_header);
877                 else
878                         vunmap(consume_q->q_header);
879
880                 produce_q->q_header = NULL;
881                 consume_q->q_header = NULL;
882         }
883
884         return VMCI_SUCCESS;
885 }
886
887 /*
888  * Finds the entry in the list corresponding to a given handle. Assumes
889  * that the list is locked.
890  */
891 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
892                                      struct vmci_handle handle)
893 {
894         struct qp_entry *entry;
895
896         if (vmci_handle_is_invalid(handle))
897                 return NULL;
898
899         list_for_each_entry(entry, &qp_list->head, list_item) {
900                 if (vmci_handle_is_equal(entry->handle, handle))
901                         return entry;
902         }
903
904         return NULL;
905 }
906
907 /*
908  * Finds the entry in the list corresponding to a given handle.
909  */
910 static struct qp_guest_endpoint *
911 qp_guest_handle_to_entry(struct vmci_handle handle)
912 {
913         struct qp_guest_endpoint *entry;
914         struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
915
916         entry = qp ? container_of(
917                 qp, struct qp_guest_endpoint, qp) : NULL;
918         return entry;
919 }
920
921 /*
922  * Finds the entry in the list corresponding to a given handle.
923  */
924 static struct qp_broker_entry *
925 qp_broker_handle_to_entry(struct vmci_handle handle)
926 {
927         struct qp_broker_entry *entry;
928         struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
929
930         entry = qp ? container_of(
931                 qp, struct qp_broker_entry, qp) : NULL;
932         return entry;
933 }
934
935 /*
936  * Dispatches a queue pair event message directly into the local event
937  * queue.
938  */
939 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
940 {
941         u32 context_id = vmci_get_context_id();
942         struct vmci_event_qp ev;
943
944         ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
945         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
946                                           VMCI_CONTEXT_RESOURCE_ID);
947         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
948         ev.msg.event_data.event =
949             attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
950         ev.payload.peer_id = context_id;
951         ev.payload.handle = handle;
952
953         return vmci_event_dispatch(&ev.msg.hdr);
954 }
955
956 /*
957  * Allocates and initializes a qp_guest_endpoint structure.
958  * Allocates a queue_pair rid (and handle) iff the given entry has
959  * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
960  * are reserved handles.  Assumes that the QP list mutex is held
961  * by the caller.
962  */
963 static struct qp_guest_endpoint *
964 qp_guest_endpoint_create(struct vmci_handle handle,
965                          u32 peer,
966                          u32 flags,
967                          u64 produce_size,
968                          u64 consume_size,
969                          void *produce_q,
970                          void *consume_q)
971 {
972         int result;
973         struct qp_guest_endpoint *entry;
974         /* One page each for the queue headers. */
975         const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
976             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
977
978         if (vmci_handle_is_invalid(handle)) {
979                 u32 context_id = vmci_get_context_id();
980
981                 handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
982         }
983
984         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
985         if (entry) {
986                 entry->qp.peer = peer;
987                 entry->qp.flags = flags;
988                 entry->qp.produce_size = produce_size;
989                 entry->qp.consume_size = consume_size;
990                 entry->qp.ref_count = 0;
991                 entry->num_ppns = num_ppns;
992                 entry->produce_q = produce_q;
993                 entry->consume_q = consume_q;
994                 INIT_LIST_HEAD(&entry->qp.list_item);
995
996                 /* Add resource obj */
997                 result = vmci_resource_add(&entry->resource,
998                                            VMCI_RESOURCE_TYPE_QPAIR_GUEST,
999                                            handle);
1000                 entry->qp.handle = vmci_resource_handle(&entry->resource);
1001                 if ((result != VMCI_SUCCESS) ||
1002                     qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
1003                         pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1004                                 handle.context, handle.resource, result);
1005                         kfree(entry);
1006                         entry = NULL;
1007                 }
1008         }
1009         return entry;
1010 }
1011
1012 /*
1013  * Frees a qp_guest_endpoint structure.
1014  */
1015 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
1016 {
1017         qp_free_ppn_set(&entry->ppn_set);
1018         qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
1019         qp_free_queue(entry->produce_q, entry->qp.produce_size);
1020         qp_free_queue(entry->consume_q, entry->qp.consume_size);
1021         /* Unlink from resource hash table and free callback */
1022         vmci_resource_remove(&entry->resource);
1023
1024         kfree(entry);
1025 }
1026
1027 /*
1028  * Helper to make a queue_pairAlloc hypercall when the driver is
1029  * supporting a guest device.
1030  */
1031 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
1032 {
1033         struct vmci_qp_alloc_msg *alloc_msg;
1034         size_t msg_size;
1035         int result;
1036
1037         if (!entry || entry->num_ppns <= 2)
1038                 return VMCI_ERROR_INVALID_ARGS;
1039
1040         msg_size = sizeof(*alloc_msg) +
1041             (size_t) entry->num_ppns * sizeof(u32);
1042         alloc_msg = kmalloc(msg_size, GFP_KERNEL);
1043         if (!alloc_msg)
1044                 return VMCI_ERROR_NO_MEM;
1045
1046         alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1047                                               VMCI_QUEUEPAIR_ALLOC);
1048         alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
1049         alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
1050         alloc_msg->handle = entry->qp.handle;
1051         alloc_msg->peer = entry->qp.peer;
1052         alloc_msg->flags = entry->qp.flags;
1053         alloc_msg->produce_size = entry->qp.produce_size;
1054         alloc_msg->consume_size = entry->qp.consume_size;
1055         alloc_msg->num_ppns = entry->num_ppns;
1056
1057         result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
1058                                      &entry->ppn_set);
1059         if (result == VMCI_SUCCESS)
1060                 result = vmci_send_datagram(&alloc_msg->hdr);
1061
1062         kfree(alloc_msg);
1063
1064         return result;
1065 }
1066
1067 /*
1068  * Helper to make a queue_pairDetach hypercall when the driver is
1069  * supporting a guest device.
1070  */
1071 static int qp_detatch_hypercall(struct vmci_handle handle)
1072 {
1073         struct vmci_qp_detach_msg detach_msg;
1074
1075         detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1076                                               VMCI_QUEUEPAIR_DETACH);
1077         detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
1078         detach_msg.hdr.payload_size = sizeof(handle);
1079         detach_msg.handle = handle;
1080
1081         return vmci_send_datagram(&detach_msg.hdr);
1082 }
1083
1084 /*
1085  * Adds the given entry to the list. Assumes that the list is locked.
1086  */
1087 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1088 {
1089         if (entry)
1090                 list_add(&entry->list_item, &qp_list->head);
1091 }
1092
1093 /*
1094  * Removes the given entry from the list. Assumes that the list is locked.
1095  */
1096 static void qp_list_remove_entry(struct qp_list *qp_list,
1097                                  struct qp_entry *entry)
1098 {
1099         if (entry)
1100                 list_del(&entry->list_item);
1101 }
1102
1103 /*
1104  * Helper for VMCI queue_pair detach interface. Frees the physical
1105  * pages for the queue pair.
1106  */
1107 static int qp_detatch_guest_work(struct vmci_handle handle)
1108 {
1109         int result;
1110         struct qp_guest_endpoint *entry;
1111         u32 ref_count = ~0;     /* To avoid compiler warning below */
1112
1113         mutex_lock(&qp_guest_endpoints.mutex);
1114
1115         entry = qp_guest_handle_to_entry(handle);
1116         if (!entry) {
1117                 mutex_unlock(&qp_guest_endpoints.mutex);
1118                 return VMCI_ERROR_NOT_FOUND;
1119         }
1120
1121         if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1122                 result = VMCI_SUCCESS;
1123
1124                 if (entry->qp.ref_count > 1) {
1125                         result = qp_notify_peer_local(false, handle);
1126                         /*
1127                          * We can fail to notify a local queuepair
1128                          * because we can't allocate.  We still want
1129                          * to release the entry if that happens, so
1130                          * don't bail out yet.
1131                          */
1132                 }
1133         } else {
1134                 result = qp_detatch_hypercall(handle);
1135                 if (result < VMCI_SUCCESS) {
1136                         /*
1137                          * We failed to notify a non-local queuepair.
1138                          * That other queuepair might still be
1139                          * accessing the shared memory, so don't
1140                          * release the entry yet.  It will get cleaned
1141                          * up by VMCIqueue_pair_Exit() if necessary
1142                          * (assuming we are going away, otherwise why
1143                          * did this fail?).
1144                          */
1145
1146                         mutex_unlock(&qp_guest_endpoints.mutex);
1147                         return result;
1148                 }
1149         }
1150
1151         /*
1152          * If we get here then we either failed to notify a local queuepair, or
1153          * we succeeded in all cases.  Release the entry if required.
1154          */
1155
1156         entry->qp.ref_count--;
1157         if (entry->qp.ref_count == 0)
1158                 qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1159
1160         /* If we didn't remove the entry, this could change once we unlock. */
1161         if (entry)
1162                 ref_count = entry->qp.ref_count;
1163
1164         mutex_unlock(&qp_guest_endpoints.mutex);
1165
1166         if (ref_count == 0)
1167                 qp_guest_endpoint_destroy(entry);
1168
1169         return result;
1170 }
1171
1172 /*
1173  * This functions handles the actual allocation of a VMCI queue
1174  * pair guest endpoint. Allocates physical pages for the queue
1175  * pair. It makes OS dependent calls through generic wrappers.
1176  */
1177 static int qp_alloc_guest_work(struct vmci_handle *handle,
1178                                struct vmci_queue **produce_q,
1179                                u64 produce_size,
1180                                struct vmci_queue **consume_q,
1181                                u64 consume_size,
1182                                u32 peer,
1183                                u32 flags,
1184                                u32 priv_flags)
1185 {
1186         const u64 num_produce_pages =
1187             DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1188         const u64 num_consume_pages =
1189             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1190         void *my_produce_q = NULL;
1191         void *my_consume_q = NULL;
1192         int result;
1193         struct qp_guest_endpoint *queue_pair_entry = NULL;
1194
1195         if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1196                 return VMCI_ERROR_NO_ACCESS;
1197
1198         mutex_lock(&qp_guest_endpoints.mutex);
1199
1200         queue_pair_entry = qp_guest_handle_to_entry(*handle);
1201         if (queue_pair_entry) {
1202                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1203                         /* Local attach case. */
1204                         if (queue_pair_entry->qp.ref_count > 1) {
1205                                 pr_devel("Error attempting to attach more than once\n");
1206                                 result = VMCI_ERROR_UNAVAILABLE;
1207                                 goto error_keep_entry;
1208                         }
1209
1210                         if (queue_pair_entry->qp.produce_size != consume_size ||
1211                             queue_pair_entry->qp.consume_size !=
1212                             produce_size ||
1213                             queue_pair_entry->qp.flags !=
1214                             (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1215                                 pr_devel("Error mismatched queue pair in local attach\n");
1216                                 result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1217                                 goto error_keep_entry;
1218                         }
1219
1220                         /*
1221                          * Do a local attach.  We swap the consume and
1222                          * produce queues for the attacher and deliver
1223                          * an attach event.
1224                          */
1225                         result = qp_notify_peer_local(true, *handle);
1226                         if (result < VMCI_SUCCESS)
1227                                 goto error_keep_entry;
1228
1229                         my_produce_q = queue_pair_entry->consume_q;
1230                         my_consume_q = queue_pair_entry->produce_q;
1231                         goto out;
1232                 }
1233
1234                 result = VMCI_ERROR_ALREADY_EXISTS;
1235                 goto error_keep_entry;
1236         }
1237
1238         my_produce_q = qp_alloc_queue(produce_size, flags);
1239         if (!my_produce_q) {
1240                 pr_warn("Error allocating pages for produce queue\n");
1241                 result = VMCI_ERROR_NO_MEM;
1242                 goto error;
1243         }
1244
1245         my_consume_q = qp_alloc_queue(consume_size, flags);
1246         if (!my_consume_q) {
1247                 pr_warn("Error allocating pages for consume queue\n");
1248                 result = VMCI_ERROR_NO_MEM;
1249                 goto error;
1250         }
1251
1252         queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1253                                                     produce_size, consume_size,
1254                                                     my_produce_q, my_consume_q);
1255         if (!queue_pair_entry) {
1256                 pr_warn("Error allocating memory in %s\n", __func__);
1257                 result = VMCI_ERROR_NO_MEM;
1258                 goto error;
1259         }
1260
1261         result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1262                                   num_consume_pages,
1263                                   &queue_pair_entry->ppn_set);
1264         if (result < VMCI_SUCCESS) {
1265                 pr_warn("qp_alloc_ppn_set failed\n");
1266                 goto error;
1267         }
1268
1269         /*
1270          * It's only necessary to notify the host if this queue pair will be
1271          * attached to from another context.
1272          */
1273         if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1274                 /* Local create case. */
1275                 u32 context_id = vmci_get_context_id();
1276
1277                 /*
1278                  * Enforce similar checks on local queue pairs as we
1279                  * do for regular ones.  The handle's context must
1280                  * match the creator or attacher context id (here they
1281                  * are both the current context id) and the
1282                  * attach-only flag cannot exist during create.  We
1283                  * also ensure specified peer is this context or an
1284                  * invalid one.
1285                  */
1286                 if (queue_pair_entry->qp.handle.context != context_id ||
1287                     (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1288                      queue_pair_entry->qp.peer != context_id)) {
1289                         result = VMCI_ERROR_NO_ACCESS;
1290                         goto error;
1291                 }
1292
1293                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1294                         result = VMCI_ERROR_NOT_FOUND;
1295                         goto error;
1296                 }
1297         } else {
1298                 result = qp_alloc_hypercall(queue_pair_entry);
1299                 if (result < VMCI_SUCCESS) {
1300                         pr_warn("qp_alloc_hypercall result = %d\n", result);
1301                         goto error;
1302                 }
1303         }
1304
1305         qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1306                             (struct vmci_queue *)my_consume_q);
1307
1308         qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1309
1310  out:
1311         queue_pair_entry->qp.ref_count++;
1312         *handle = queue_pair_entry->qp.handle;
1313         *produce_q = (struct vmci_queue *)my_produce_q;
1314         *consume_q = (struct vmci_queue *)my_consume_q;
1315
1316         /*
1317          * We should initialize the queue pair header pages on a local
1318          * queue pair create.  For non-local queue pairs, the
1319          * hypervisor initializes the header pages in the create step.
1320          */
1321         if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1322             queue_pair_entry->qp.ref_count == 1) {
1323                 vmci_q_header_init((*produce_q)->q_header, *handle);
1324                 vmci_q_header_init((*consume_q)->q_header, *handle);
1325         }
1326
1327         mutex_unlock(&qp_guest_endpoints.mutex);
1328
1329         return VMCI_SUCCESS;
1330
1331  error:
1332         mutex_unlock(&qp_guest_endpoints.mutex);
1333         if (queue_pair_entry) {
1334                 /* The queues will be freed inside the destroy routine. */
1335                 qp_guest_endpoint_destroy(queue_pair_entry);
1336         } else {
1337                 qp_free_queue(my_produce_q, produce_size);
1338                 qp_free_queue(my_consume_q, consume_size);
1339         }
1340         return result;
1341
1342  error_keep_entry:
1343         /* This path should only be used when an existing entry was found. */
1344         mutex_unlock(&qp_guest_endpoints.mutex);
1345         return result;
1346 }
1347
1348 /*
1349  * The first endpoint issuing a queue pair allocation will create the state
1350  * of the queue pair in the queue pair broker.
1351  *
1352  * If the creator is a guest, it will associate a VMX virtual address range
1353  * with the queue pair as specified by the page_store. For compatibility with
1354  * older VMX'en, that would use a separate step to set the VMX virtual
1355  * address range, the virtual address range can be registered later using
1356  * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1357  * used.
1358  *
1359  * If the creator is the host, a page_store of NULL should be used as well,
1360  * since the host is not able to supply a page store for the queue pair.
1361  *
1362  * For older VMX and host callers, the queue pair will be created in the
1363  * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1364  * created in VMCOQPB_CREATED_MEM state.
1365  */
1366 static int qp_broker_create(struct vmci_handle handle,
1367                             u32 peer,
1368                             u32 flags,
1369                             u32 priv_flags,
1370                             u64 produce_size,
1371                             u64 consume_size,
1372                             struct vmci_qp_page_store *page_store,
1373                             struct vmci_ctx *context,
1374                             vmci_event_release_cb wakeup_cb,
1375                             void *client_data, struct qp_broker_entry **ent)
1376 {
1377         struct qp_broker_entry *entry = NULL;
1378         const u32 context_id = vmci_ctx_get_id(context);
1379         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1380         int result;
1381         u64 guest_produce_size;
1382         u64 guest_consume_size;
1383
1384         /* Do not create if the caller asked not to. */
1385         if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1386                 return VMCI_ERROR_NOT_FOUND;
1387
1388         /*
1389          * Creator's context ID should match handle's context ID or the creator
1390          * must allow the context in handle's context ID as the "peer".
1391          */
1392         if (handle.context != context_id && handle.context != peer)
1393                 return VMCI_ERROR_NO_ACCESS;
1394
1395         if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1396                 return VMCI_ERROR_DST_UNREACHABLE;
1397
1398         /*
1399          * Creator's context ID for local queue pairs should match the
1400          * peer, if a peer is specified.
1401          */
1402         if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1403                 return VMCI_ERROR_NO_ACCESS;
1404
1405         entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1406         if (!entry)
1407                 return VMCI_ERROR_NO_MEM;
1408
1409         if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1410                 /*
1411                  * The queue pair broker entry stores values from the guest
1412                  * point of view, so a creating host side endpoint should swap
1413                  * produce and consume values -- unless it is a local queue
1414                  * pair, in which case no swapping is necessary, since the local
1415                  * attacher will swap queues.
1416                  */
1417
1418                 guest_produce_size = consume_size;
1419                 guest_consume_size = produce_size;
1420         } else {
1421                 guest_produce_size = produce_size;
1422                 guest_consume_size = consume_size;
1423         }
1424
1425         entry->qp.handle = handle;
1426         entry->qp.peer = peer;
1427         entry->qp.flags = flags;
1428         entry->qp.produce_size = guest_produce_size;
1429         entry->qp.consume_size = guest_consume_size;
1430         entry->qp.ref_count = 1;
1431         entry->create_id = context_id;
1432         entry->attach_id = VMCI_INVALID_ID;
1433         entry->state = VMCIQPB_NEW;
1434         entry->require_trusted_attach =
1435             !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1436         entry->created_by_trusted =
1437             !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1438         entry->vmci_page_files = false;
1439         entry->wakeup_cb = wakeup_cb;
1440         entry->client_data = client_data;
1441         entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1442         if (entry->produce_q == NULL) {
1443                 result = VMCI_ERROR_NO_MEM;
1444                 goto error;
1445         }
1446         entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1447         if (entry->consume_q == NULL) {
1448                 result = VMCI_ERROR_NO_MEM;
1449                 goto error;
1450         }
1451
1452         qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1453
1454         INIT_LIST_HEAD(&entry->qp.list_item);
1455
1456         if (is_local) {
1457                 u8 *tmp;
1458
1459                 entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1460                                            PAGE_SIZE, GFP_KERNEL);
1461                 if (entry->local_mem == NULL) {
1462                         result = VMCI_ERROR_NO_MEM;
1463                         goto error;
1464                 }
1465                 entry->state = VMCIQPB_CREATED_MEM;
1466                 entry->produce_q->q_header = entry->local_mem;
1467                 tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1468                     (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1469                 entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1470         } else if (page_store) {
1471                 /*
1472                  * The VMX already initialized the queue pair headers, so no
1473                  * need for the kernel side to do that.
1474                  */
1475                 result = qp_host_register_user_memory(page_store,
1476                                                       entry->produce_q,
1477                                                       entry->consume_q);
1478                 if (result < VMCI_SUCCESS)
1479                         goto error;
1480
1481                 entry->state = VMCIQPB_CREATED_MEM;
1482         } else {
1483                 /*
1484                  * A create without a page_store may be either a host
1485                  * side create (in which case we are waiting for the
1486                  * guest side to supply the memory) or an old style
1487                  * queue pair create (in which case we will expect a
1488                  * set page store call as the next step).
1489                  */
1490                 entry->state = VMCIQPB_CREATED_NO_MEM;
1491         }
1492
1493         qp_list_add_entry(&qp_broker_list, &entry->qp);
1494         if (ent != NULL)
1495                 *ent = entry;
1496
1497         /* Add to resource obj */
1498         result = vmci_resource_add(&entry->resource,
1499                                    VMCI_RESOURCE_TYPE_QPAIR_HOST,
1500                                    handle);
1501         if (result != VMCI_SUCCESS) {
1502                 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1503                         handle.context, handle.resource, result);
1504                 goto error;
1505         }
1506
1507         entry->qp.handle = vmci_resource_handle(&entry->resource);
1508         if (is_local) {
1509                 vmci_q_header_init(entry->produce_q->q_header,
1510                                    entry->qp.handle);
1511                 vmci_q_header_init(entry->consume_q->q_header,
1512                                    entry->qp.handle);
1513         }
1514
1515         vmci_ctx_qp_create(context, entry->qp.handle);
1516
1517         return VMCI_SUCCESS;
1518
1519  error:
1520         if (entry != NULL) {
1521                 qp_host_free_queue(entry->produce_q, guest_produce_size);
1522                 qp_host_free_queue(entry->consume_q, guest_consume_size);
1523                 kfree(entry);
1524         }
1525
1526         return result;
1527 }
1528
1529 /*
1530  * Enqueues an event datagram to notify the peer VM attached to
1531  * the given queue pair handle about attach/detach event by the
1532  * given VM.  Returns Payload size of datagram enqueued on
1533  * success, error code otherwise.
1534  */
1535 static int qp_notify_peer(bool attach,
1536                           struct vmci_handle handle,
1537                           u32 my_id,
1538                           u32 peer_id)
1539 {
1540         int rv;
1541         struct vmci_event_qp ev;
1542
1543         if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1544             peer_id == VMCI_INVALID_ID)
1545                 return VMCI_ERROR_INVALID_ARGS;
1546
1547         /*
1548          * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1549          * number of pending events from the hypervisor to a given VM
1550          * otherwise a rogue VM could do an arbitrary number of attach
1551          * and detach operations causing memory pressure in the host
1552          * kernel.
1553          */
1554
1555         ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1556         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1557                                           VMCI_CONTEXT_RESOURCE_ID);
1558         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1559         ev.msg.event_data.event = attach ?
1560             VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1561         ev.payload.handle = handle;
1562         ev.payload.peer_id = my_id;
1563
1564         rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1565                                     &ev.msg.hdr, false);
1566         if (rv < VMCI_SUCCESS)
1567                 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1568                         attach ? "ATTACH" : "DETACH", peer_id);
1569
1570         return rv;
1571 }
1572
1573 /*
1574  * The second endpoint issuing a queue pair allocation will attach to
1575  * the queue pair registered with the queue pair broker.
1576  *
1577  * If the attacher is a guest, it will associate a VMX virtual address
1578  * range with the queue pair as specified by the page_store. At this
1579  * point, the already attach host endpoint may start using the queue
1580  * pair, and an attach event is sent to it. For compatibility with
1581  * older VMX'en, that used a separate step to set the VMX virtual
1582  * address range, the virtual address range can be registered later
1583  * using vmci_qp_broker_set_page_store. In that case, a page_store of
1584  * NULL should be used, and the attach event will be generated once
1585  * the actual page store has been set.
1586  *
1587  * If the attacher is the host, a page_store of NULL should be used as
1588  * well, since the page store information is already set by the guest.
1589  *
1590  * For new VMX and host callers, the queue pair will be moved to the
1591  * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1592  * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1593  */
1594 static int qp_broker_attach(struct qp_broker_entry *entry,
1595                             u32 peer,
1596                             u32 flags,
1597                             u32 priv_flags,
1598                             u64 produce_size,
1599                             u64 consume_size,
1600                             struct vmci_qp_page_store *page_store,
1601                             struct vmci_ctx *context,
1602                             vmci_event_release_cb wakeup_cb,
1603                             void *client_data,
1604                             struct qp_broker_entry **ent)
1605 {
1606         const u32 context_id = vmci_ctx_get_id(context);
1607         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1608         int result;
1609
1610         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1611             entry->state != VMCIQPB_CREATED_MEM)
1612                 return VMCI_ERROR_UNAVAILABLE;
1613
1614         if (is_local) {
1615                 if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1616                     context_id != entry->create_id) {
1617                         return VMCI_ERROR_INVALID_ARGS;
1618                 }
1619         } else if (context_id == entry->create_id ||
1620                    context_id == entry->attach_id) {
1621                 return VMCI_ERROR_ALREADY_EXISTS;
1622         }
1623
1624         if (VMCI_CONTEXT_IS_VM(context_id) &&
1625             VMCI_CONTEXT_IS_VM(entry->create_id))
1626                 return VMCI_ERROR_DST_UNREACHABLE;
1627
1628         /*
1629          * If we are attaching from a restricted context then the queuepair
1630          * must have been created by a trusted endpoint.
1631          */
1632         if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1633             !entry->created_by_trusted)
1634                 return VMCI_ERROR_NO_ACCESS;
1635
1636         /*
1637          * If we are attaching to a queuepair that was created by a restricted
1638          * context then we must be trusted.
1639          */
1640         if (entry->require_trusted_attach &&
1641             (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1642                 return VMCI_ERROR_NO_ACCESS;
1643
1644         /*
1645          * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1646          * control check is not performed.
1647          */
1648         if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1649                 return VMCI_ERROR_NO_ACCESS;
1650
1651         if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1652                 /*
1653                  * Do not attach if the caller doesn't support Host Queue Pairs
1654                  * and a host created this queue pair.
1655                  */
1656
1657                 if (!vmci_ctx_supports_host_qp(context))
1658                         return VMCI_ERROR_INVALID_RESOURCE;
1659
1660         } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1661                 struct vmci_ctx *create_context;
1662                 bool supports_host_qp;
1663
1664                 /*
1665                  * Do not attach a host to a user created queue pair if that
1666                  * user doesn't support host queue pair end points.
1667                  */
1668
1669                 create_context = vmci_ctx_get(entry->create_id);
1670                 supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1671                 vmci_ctx_put(create_context);
1672
1673                 if (!supports_host_qp)
1674                         return VMCI_ERROR_INVALID_RESOURCE;
1675         }
1676
1677         if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1678                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1679
1680         if (context_id != VMCI_HOST_CONTEXT_ID) {
1681                 /*
1682                  * The queue pair broker entry stores values from the guest
1683                  * point of view, so an attaching guest should match the values
1684                  * stored in the entry.
1685                  */
1686
1687                 if (entry->qp.produce_size != produce_size ||
1688                     entry->qp.consume_size != consume_size) {
1689                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1690                 }
1691         } else if (entry->qp.produce_size != consume_size ||
1692                    entry->qp.consume_size != produce_size) {
1693                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1694         }
1695
1696         if (context_id != VMCI_HOST_CONTEXT_ID) {
1697                 /*
1698                  * If a guest attached to a queue pair, it will supply
1699                  * the backing memory.  If this is a pre NOVMVM vmx,
1700                  * the backing memory will be supplied by calling
1701                  * vmci_qp_broker_set_page_store() following the
1702                  * return of the vmci_qp_broker_alloc() call. If it is
1703                  * a vmx of version NOVMVM or later, the page store
1704                  * must be supplied as part of the
1705                  * vmci_qp_broker_alloc call.  Under all circumstances
1706                  * must the initially created queue pair not have any
1707                  * memory associated with it already.
1708                  */
1709
1710                 if (entry->state != VMCIQPB_CREATED_NO_MEM)
1711                         return VMCI_ERROR_INVALID_ARGS;
1712
1713                 if (page_store != NULL) {
1714                         /*
1715                          * Patch up host state to point to guest
1716                          * supplied memory. The VMX already
1717                          * initialized the queue pair headers, so no
1718                          * need for the kernel side to do that.
1719                          */
1720
1721                         result = qp_host_register_user_memory(page_store,
1722                                                               entry->produce_q,
1723                                                               entry->consume_q);
1724                         if (result < VMCI_SUCCESS)
1725                                 return result;
1726
1727                         entry->state = VMCIQPB_ATTACHED_MEM;
1728                 } else {
1729                         entry->state = VMCIQPB_ATTACHED_NO_MEM;
1730                 }
1731         } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1732                 /*
1733                  * The host side is attempting to attach to a queue
1734                  * pair that doesn't have any memory associated with
1735                  * it. This must be a pre NOVMVM vmx that hasn't set
1736                  * the page store information yet, or a quiesced VM.
1737                  */
1738
1739                 return VMCI_ERROR_UNAVAILABLE;
1740         } else {
1741                 /* The host side has successfully attached to a queue pair. */
1742                 entry->state = VMCIQPB_ATTACHED_MEM;
1743         }
1744
1745         if (entry->state == VMCIQPB_ATTACHED_MEM) {
1746                 result =
1747                     qp_notify_peer(true, entry->qp.handle, context_id,
1748                                    entry->create_id);
1749                 if (result < VMCI_SUCCESS)
1750                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1751                                 entry->create_id, entry->qp.handle.context,
1752                                 entry->qp.handle.resource);
1753         }
1754
1755         entry->attach_id = context_id;
1756         entry->qp.ref_count++;
1757         if (wakeup_cb) {
1758                 entry->wakeup_cb = wakeup_cb;
1759                 entry->client_data = client_data;
1760         }
1761
1762         /*
1763          * When attaching to local queue pairs, the context already has
1764          * an entry tracking the queue pair, so don't add another one.
1765          */
1766         if (!is_local)
1767                 vmci_ctx_qp_create(context, entry->qp.handle);
1768
1769         if (ent != NULL)
1770                 *ent = entry;
1771
1772         return VMCI_SUCCESS;
1773 }
1774
1775 /*
1776  * queue_pair_Alloc for use when setting up queue pair endpoints
1777  * on the host.
1778  */
1779 static int qp_broker_alloc(struct vmci_handle handle,
1780                            u32 peer,
1781                            u32 flags,
1782                            u32 priv_flags,
1783                            u64 produce_size,
1784                            u64 consume_size,
1785                            struct vmci_qp_page_store *page_store,
1786                            struct vmci_ctx *context,
1787                            vmci_event_release_cb wakeup_cb,
1788                            void *client_data,
1789                            struct qp_broker_entry **ent,
1790                            bool *swap)
1791 {
1792         const u32 context_id = vmci_ctx_get_id(context);
1793         bool create;
1794         struct qp_broker_entry *entry = NULL;
1795         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1796         int result;
1797
1798         if (vmci_handle_is_invalid(handle) ||
1799             (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1800             !(produce_size || consume_size) ||
1801             !context || context_id == VMCI_INVALID_ID ||
1802             handle.context == VMCI_INVALID_ID) {
1803                 return VMCI_ERROR_INVALID_ARGS;
1804         }
1805
1806         if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1807                 return VMCI_ERROR_INVALID_ARGS;
1808
1809         /*
1810          * In the initial argument check, we ensure that non-vmkernel hosts
1811          * are not allowed to create local queue pairs.
1812          */
1813
1814         mutex_lock(&qp_broker_list.mutex);
1815
1816         if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1817                 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1818                          context_id, handle.context, handle.resource);
1819                 mutex_unlock(&qp_broker_list.mutex);
1820                 return VMCI_ERROR_ALREADY_EXISTS;
1821         }
1822
1823         if (handle.resource != VMCI_INVALID_ID)
1824                 entry = qp_broker_handle_to_entry(handle);
1825
1826         if (!entry) {
1827                 create = true;
1828                 result =
1829                     qp_broker_create(handle, peer, flags, priv_flags,
1830                                      produce_size, consume_size, page_store,
1831                                      context, wakeup_cb, client_data, ent);
1832         } else {
1833                 create = false;
1834                 result =
1835                     qp_broker_attach(entry, peer, flags, priv_flags,
1836                                      produce_size, consume_size, page_store,
1837                                      context, wakeup_cb, client_data, ent);
1838         }
1839
1840         mutex_unlock(&qp_broker_list.mutex);
1841
1842         if (swap)
1843                 *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1844                     !(create && is_local);
1845
1846         return result;
1847 }
1848
1849 /*
1850  * This function implements the kernel API for allocating a queue
1851  * pair.
1852  */
1853 static int qp_alloc_host_work(struct vmci_handle *handle,
1854                               struct vmci_queue **produce_q,
1855                               u64 produce_size,
1856                               struct vmci_queue **consume_q,
1857                               u64 consume_size,
1858                               u32 peer,
1859                               u32 flags,
1860                               u32 priv_flags,
1861                               vmci_event_release_cb wakeup_cb,
1862                               void *client_data)
1863 {
1864         struct vmci_handle new_handle;
1865         struct vmci_ctx *context;
1866         struct qp_broker_entry *entry;
1867         int result;
1868         bool swap;
1869
1870         if (vmci_handle_is_invalid(*handle)) {
1871                 new_handle = vmci_make_handle(
1872                         VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1873         } else
1874                 new_handle = *handle;
1875
1876         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1877         entry = NULL;
1878         result =
1879             qp_broker_alloc(new_handle, peer, flags, priv_flags,
1880                             produce_size, consume_size, NULL, context,
1881                             wakeup_cb, client_data, &entry, &swap);
1882         if (result == VMCI_SUCCESS) {
1883                 if (swap) {
1884                         /*
1885                          * If this is a local queue pair, the attacher
1886                          * will swap around produce and consume
1887                          * queues.
1888                          */
1889
1890                         *produce_q = entry->consume_q;
1891                         *consume_q = entry->produce_q;
1892                 } else {
1893                         *produce_q = entry->produce_q;
1894                         *consume_q = entry->consume_q;
1895                 }
1896
1897                 *handle = vmci_resource_handle(&entry->resource);
1898         } else {
1899                 *handle = VMCI_INVALID_HANDLE;
1900                 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1901                          result);
1902         }
1903         vmci_ctx_put(context);
1904         return result;
1905 }
1906
1907 /*
1908  * Allocates a VMCI queue_pair. Only checks validity of input
1909  * arguments. The real work is done in the host or guest
1910  * specific function.
1911  */
1912 int vmci_qp_alloc(struct vmci_handle *handle,
1913                   struct vmci_queue **produce_q,
1914                   u64 produce_size,
1915                   struct vmci_queue **consume_q,
1916                   u64 consume_size,
1917                   u32 peer,
1918                   u32 flags,
1919                   u32 priv_flags,
1920                   bool guest_endpoint,
1921                   vmci_event_release_cb wakeup_cb,
1922                   void *client_data)
1923 {
1924         if (!handle || !produce_q || !consume_q ||
1925             (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1926                 return VMCI_ERROR_INVALID_ARGS;
1927
1928         if (guest_endpoint) {
1929                 return qp_alloc_guest_work(handle, produce_q,
1930                                            produce_size, consume_q,
1931                                            consume_size, peer,
1932                                            flags, priv_flags);
1933         } else {
1934                 return qp_alloc_host_work(handle, produce_q,
1935                                           produce_size, consume_q,
1936                                           consume_size, peer, flags,
1937                                           priv_flags, wakeup_cb, client_data);
1938         }
1939 }
1940
1941 /*
1942  * This function implements the host kernel API for detaching from
1943  * a queue pair.
1944  */
1945 static int qp_detatch_host_work(struct vmci_handle handle)
1946 {
1947         int result;
1948         struct vmci_ctx *context;
1949
1950         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1951
1952         result = vmci_qp_broker_detach(handle, context);
1953
1954         vmci_ctx_put(context);
1955         return result;
1956 }
1957
1958 /*
1959  * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1960  * Real work is done in the host or guest specific function.
1961  */
1962 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1963 {
1964         if (vmci_handle_is_invalid(handle))
1965                 return VMCI_ERROR_INVALID_ARGS;
1966
1967         if (guest_endpoint)
1968                 return qp_detatch_guest_work(handle);
1969         else
1970                 return qp_detatch_host_work(handle);
1971 }
1972
1973 /*
1974  * Returns the entry from the head of the list. Assumes that the list is
1975  * locked.
1976  */
1977 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1978 {
1979         if (!list_empty(&qp_list->head)) {
1980                 struct qp_entry *entry =
1981                     list_first_entry(&qp_list->head, struct qp_entry,
1982                                      list_item);
1983                 return entry;
1984         }
1985
1986         return NULL;
1987 }
1988
1989 void vmci_qp_broker_exit(void)
1990 {
1991         struct qp_entry *entry;
1992         struct qp_broker_entry *be;
1993
1994         mutex_lock(&qp_broker_list.mutex);
1995
1996         while ((entry = qp_list_get_head(&qp_broker_list))) {
1997                 be = (struct qp_broker_entry *)entry;
1998
1999                 qp_list_remove_entry(&qp_broker_list, entry);
2000                 kfree(be);
2001         }
2002
2003         mutex_unlock(&qp_broker_list.mutex);
2004 }
2005
2006 /*
2007  * Requests that a queue pair be allocated with the VMCI queue
2008  * pair broker. Allocates a queue pair entry if one does not
2009  * exist. Attaches to one if it exists, and retrieves the page
2010  * files backing that queue_pair.  Assumes that the queue pair
2011  * broker lock is held.
2012  */
2013 int vmci_qp_broker_alloc(struct vmci_handle handle,
2014                          u32 peer,
2015                          u32 flags,
2016                          u32 priv_flags,
2017                          u64 produce_size,
2018                          u64 consume_size,
2019                          struct vmci_qp_page_store *page_store,
2020                          struct vmci_ctx *context)
2021 {
2022         return qp_broker_alloc(handle, peer, flags, priv_flags,
2023                                produce_size, consume_size,
2024                                page_store, context, NULL, NULL, NULL, NULL);
2025 }
2026
2027 /*
2028  * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
2029  * step to add the UVAs of the VMX mapping of the queue pair. This function
2030  * provides backwards compatibility with such VMX'en, and takes care of
2031  * registering the page store for a queue pair previously allocated by the
2032  * VMX during create or attach. This function will move the queue pair state
2033  * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
2034  * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
2035  * attached state with memory, the queue pair is ready to be used by the
2036  * host peer, and an attached event will be generated.
2037  *
2038  * Assumes that the queue pair broker lock is held.
2039  *
2040  * This function is only used by the hosted platform, since there is no
2041  * issue with backwards compatibility for vmkernel.
2042  */
2043 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
2044                                   u64 produce_uva,
2045                                   u64 consume_uva,
2046                                   struct vmci_ctx *context)
2047 {
2048         struct qp_broker_entry *entry;
2049         int result;
2050         const u32 context_id = vmci_ctx_get_id(context);
2051
2052         if (vmci_handle_is_invalid(handle) || !context ||
2053             context_id == VMCI_INVALID_ID)
2054                 return VMCI_ERROR_INVALID_ARGS;
2055
2056         /*
2057          * We only support guest to host queue pairs, so the VMX must
2058          * supply UVAs for the mapped page files.
2059          */
2060
2061         if (produce_uva == 0 || consume_uva == 0)
2062                 return VMCI_ERROR_INVALID_ARGS;
2063
2064         mutex_lock(&qp_broker_list.mutex);
2065
2066         if (!vmci_ctx_qp_exists(context, handle)) {
2067                 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2068                         context_id, handle.context, handle.resource);
2069                 result = VMCI_ERROR_NOT_FOUND;
2070                 goto out;
2071         }
2072
2073         entry = qp_broker_handle_to_entry(handle);
2074         if (!entry) {
2075                 result = VMCI_ERROR_NOT_FOUND;
2076                 goto out;
2077         }
2078
2079         /*
2080          * If I'm the owner then I can set the page store.
2081          *
2082          * Or, if a host created the queue_pair and I'm the attached peer
2083          * then I can set the page store.
2084          */
2085         if (entry->create_id != context_id &&
2086             (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2087              entry->attach_id != context_id)) {
2088                 result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2089                 goto out;
2090         }
2091
2092         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2093             entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2094                 result = VMCI_ERROR_UNAVAILABLE;
2095                 goto out;
2096         }
2097
2098         result = qp_host_get_user_memory(produce_uva, consume_uva,
2099                                          entry->produce_q, entry->consume_q);
2100         if (result < VMCI_SUCCESS)
2101                 goto out;
2102
2103         result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2104         if (result < VMCI_SUCCESS) {
2105                 qp_host_unregister_user_memory(entry->produce_q,
2106                                                entry->consume_q);
2107                 goto out;
2108         }
2109
2110         if (entry->state == VMCIQPB_CREATED_NO_MEM)
2111                 entry->state = VMCIQPB_CREATED_MEM;
2112         else
2113                 entry->state = VMCIQPB_ATTACHED_MEM;
2114
2115         entry->vmci_page_files = true;
2116
2117         if (entry->state == VMCIQPB_ATTACHED_MEM) {
2118                 result =
2119                     qp_notify_peer(true, handle, context_id, entry->create_id);
2120                 if (result < VMCI_SUCCESS) {
2121                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2122                                 entry->create_id, entry->qp.handle.context,
2123                                 entry->qp.handle.resource);
2124                 }
2125         }
2126
2127         result = VMCI_SUCCESS;
2128  out:
2129         mutex_unlock(&qp_broker_list.mutex);
2130         return result;
2131 }
2132
2133 /*
2134  * Resets saved queue headers for the given QP broker
2135  * entry. Should be used when guest memory becomes available
2136  * again, or the guest detaches.
2137  */
2138 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2139 {
2140         entry->produce_q->saved_header = NULL;
2141         entry->consume_q->saved_header = NULL;
2142 }
2143
2144 /*
2145  * The main entry point for detaching from a queue pair registered with the
2146  * queue pair broker. If more than one endpoint is attached to the queue
2147  * pair, the first endpoint will mainly decrement a reference count and
2148  * generate a notification to its peer. The last endpoint will clean up
2149  * the queue pair state registered with the broker.
2150  *
2151  * When a guest endpoint detaches, it will unmap and unregister the guest
2152  * memory backing the queue pair. If the host is still attached, it will
2153  * no longer be able to access the queue pair content.
2154  *
2155  * If the queue pair is already in a state where there is no memory
2156  * registered for the queue pair (any *_NO_MEM state), it will transition to
2157  * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2158  * endpoint is the first of two endpoints to detach. If the host endpoint is
2159  * the first out of two to detach, the queue pair will move to the
2160  * VMCIQPB_SHUTDOWN_MEM state.
2161  */
2162 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2163 {
2164         struct qp_broker_entry *entry;
2165         const u32 context_id = vmci_ctx_get_id(context);
2166         u32 peer_id;
2167         bool is_local = false;
2168         int result;
2169
2170         if (vmci_handle_is_invalid(handle) || !context ||
2171             context_id == VMCI_INVALID_ID) {
2172                 return VMCI_ERROR_INVALID_ARGS;
2173         }
2174
2175         mutex_lock(&qp_broker_list.mutex);
2176
2177         if (!vmci_ctx_qp_exists(context, handle)) {
2178                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2179                          context_id, handle.context, handle.resource);
2180                 result = VMCI_ERROR_NOT_FOUND;
2181                 goto out;
2182         }
2183
2184         entry = qp_broker_handle_to_entry(handle);
2185         if (!entry) {
2186                 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2187                          context_id, handle.context, handle.resource);
2188                 result = VMCI_ERROR_NOT_FOUND;
2189                 goto out;
2190         }
2191
2192         if (context_id != entry->create_id && context_id != entry->attach_id) {
2193                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2194                 goto out;
2195         }
2196
2197         if (context_id == entry->create_id) {
2198                 peer_id = entry->attach_id;
2199                 entry->create_id = VMCI_INVALID_ID;
2200         } else {
2201                 peer_id = entry->create_id;
2202                 entry->attach_id = VMCI_INVALID_ID;
2203         }
2204         entry->qp.ref_count--;
2205
2206         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2207
2208         if (context_id != VMCI_HOST_CONTEXT_ID) {
2209                 bool headers_mapped;
2210
2211                 /*
2212                  * Pre NOVMVM vmx'en may detach from a queue pair
2213                  * before setting the page store, and in that case
2214                  * there is no user memory to detach from. Also, more
2215                  * recent VMX'en may detach from a queue pair in the
2216                  * quiesced state.
2217                  */
2218
2219                 qp_acquire_queue_mutex(entry->produce_q);
2220                 headers_mapped = entry->produce_q->q_header ||
2221                     entry->consume_q->q_header;
2222                 if (QPBROKERSTATE_HAS_MEM(entry)) {
2223                         result =
2224                             qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2225                                                  entry->produce_q,
2226                                                  entry->consume_q);
2227                         if (result < VMCI_SUCCESS)
2228                                 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2229                                         handle.context, handle.resource,
2230                                         result);
2231
2232                         if (entry->vmci_page_files)
2233                                 qp_host_unregister_user_memory(entry->produce_q,
2234                                                                entry->
2235                                                                consume_q);
2236                         else
2237                                 qp_host_unregister_user_memory(entry->produce_q,
2238                                                                entry->
2239                                                                consume_q);
2240
2241                 }
2242
2243                 if (!headers_mapped)
2244                         qp_reset_saved_headers(entry);
2245
2246                 qp_release_queue_mutex(entry->produce_q);
2247
2248                 if (!headers_mapped && entry->wakeup_cb)
2249                         entry->wakeup_cb(entry->client_data);
2250
2251         } else {
2252                 if (entry->wakeup_cb) {
2253                         entry->wakeup_cb = NULL;
2254                         entry->client_data = NULL;
2255                 }
2256         }
2257
2258         if (entry->qp.ref_count == 0) {
2259                 qp_list_remove_entry(&qp_broker_list, &entry->qp);
2260
2261                 if (is_local)
2262                         kfree(entry->local_mem);
2263
2264                 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2265                 qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2266                 qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2267                 /* Unlink from resource hash table and free callback */
2268                 vmci_resource_remove(&entry->resource);
2269
2270                 kfree(entry);
2271
2272                 vmci_ctx_qp_destroy(context, handle);
2273         } else {
2274                 qp_notify_peer(false, handle, context_id, peer_id);
2275                 if (context_id == VMCI_HOST_CONTEXT_ID &&
2276                     QPBROKERSTATE_HAS_MEM(entry)) {
2277                         entry->state = VMCIQPB_SHUTDOWN_MEM;
2278                 } else {
2279                         entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2280                 }
2281
2282                 if (!is_local)
2283                         vmci_ctx_qp_destroy(context, handle);
2284
2285         }
2286         result = VMCI_SUCCESS;
2287  out:
2288         mutex_unlock(&qp_broker_list.mutex);
2289         return result;
2290 }
2291
2292 /*
2293  * Establishes the necessary mappings for a queue pair given a
2294  * reference to the queue pair guest memory. This is usually
2295  * called when a guest is unquiesced and the VMX is allowed to
2296  * map guest memory once again.
2297  */
2298 int vmci_qp_broker_map(struct vmci_handle handle,
2299                        struct vmci_ctx *context,
2300                        u64 guest_mem)
2301 {
2302         struct qp_broker_entry *entry;
2303         const u32 context_id = vmci_ctx_get_id(context);
2304         bool is_local = false;
2305         int result;
2306
2307         if (vmci_handle_is_invalid(handle) || !context ||
2308             context_id == VMCI_INVALID_ID)
2309                 return VMCI_ERROR_INVALID_ARGS;
2310
2311         mutex_lock(&qp_broker_list.mutex);
2312
2313         if (!vmci_ctx_qp_exists(context, handle)) {
2314                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2315                          context_id, handle.context, handle.resource);
2316                 result = VMCI_ERROR_NOT_FOUND;
2317                 goto out;
2318         }
2319
2320         entry = qp_broker_handle_to_entry(handle);
2321         if (!entry) {
2322                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2323                          context_id, handle.context, handle.resource);
2324                 result = VMCI_ERROR_NOT_FOUND;
2325                 goto out;
2326         }
2327
2328         if (context_id != entry->create_id && context_id != entry->attach_id) {
2329                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2330                 goto out;
2331         }
2332
2333         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2334         result = VMCI_SUCCESS;
2335
2336         if (context_id != VMCI_HOST_CONTEXT_ID) {
2337                 struct vmci_qp_page_store page_store;
2338
2339                 page_store.pages = guest_mem;
2340                 page_store.len = QPE_NUM_PAGES(entry->qp);
2341
2342                 qp_acquire_queue_mutex(entry->produce_q);
2343                 qp_reset_saved_headers(entry);
2344                 result =
2345                     qp_host_register_user_memory(&page_store,
2346                                                  entry->produce_q,
2347                                                  entry->consume_q);
2348                 qp_release_queue_mutex(entry->produce_q);
2349                 if (result == VMCI_SUCCESS) {
2350                         /* Move state from *_NO_MEM to *_MEM */
2351
2352                         entry->state++;
2353
2354                         if (entry->wakeup_cb)
2355                                 entry->wakeup_cb(entry->client_data);
2356                 }
2357         }
2358
2359  out:
2360         mutex_unlock(&qp_broker_list.mutex);
2361         return result;
2362 }
2363
2364 /*
2365  * Saves a snapshot of the queue headers for the given QP broker
2366  * entry. Should be used when guest memory is unmapped.
2367  * Results:
2368  * VMCI_SUCCESS on success, appropriate error code if guest memory
2369  * can't be accessed..
2370  */
2371 static int qp_save_headers(struct qp_broker_entry *entry)
2372 {
2373         int result;
2374
2375         if (entry->produce_q->saved_header != NULL &&
2376             entry->consume_q->saved_header != NULL) {
2377                 /*
2378                  *  If the headers have already been saved, we don't need to do
2379                  *  it again, and we don't want to map in the headers
2380                  *  unnecessarily.
2381                  */
2382
2383                 return VMCI_SUCCESS;
2384         }
2385
2386         if (NULL == entry->produce_q->q_header ||
2387             NULL == entry->consume_q->q_header) {
2388                 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2389                 if (result < VMCI_SUCCESS)
2390                         return result;
2391         }
2392
2393         memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2394                sizeof(entry->saved_produce_q));
2395         entry->produce_q->saved_header = &entry->saved_produce_q;
2396         memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2397                sizeof(entry->saved_consume_q));
2398         entry->consume_q->saved_header = &entry->saved_consume_q;
2399
2400         return VMCI_SUCCESS;
2401 }
2402
2403 /*
2404  * Removes all references to the guest memory of a given queue pair, and
2405  * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2406  * called when a VM is being quiesced where access to guest memory should
2407  * avoided.
2408  */
2409 int vmci_qp_broker_unmap(struct vmci_handle handle,
2410                          struct vmci_ctx *context,
2411                          u32 gid)
2412 {
2413         struct qp_broker_entry *entry;
2414         const u32 context_id = vmci_ctx_get_id(context);
2415         bool is_local = false;
2416         int result;
2417
2418         if (vmci_handle_is_invalid(handle) || !context ||
2419             context_id == VMCI_INVALID_ID)
2420                 return VMCI_ERROR_INVALID_ARGS;
2421
2422         mutex_lock(&qp_broker_list.mutex);
2423
2424         if (!vmci_ctx_qp_exists(context, handle)) {
2425                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2426                          context_id, handle.context, handle.resource);
2427                 result = VMCI_ERROR_NOT_FOUND;
2428                 goto out;
2429         }
2430
2431         entry = qp_broker_handle_to_entry(handle);
2432         if (!entry) {
2433                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2434                          context_id, handle.context, handle.resource);
2435                 result = VMCI_ERROR_NOT_FOUND;
2436                 goto out;
2437         }
2438
2439         if (context_id != entry->create_id && context_id != entry->attach_id) {
2440                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2441                 goto out;
2442         }
2443
2444         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2445
2446         if (context_id != VMCI_HOST_CONTEXT_ID) {
2447                 qp_acquire_queue_mutex(entry->produce_q);
2448                 result = qp_save_headers(entry);
2449                 if (result < VMCI_SUCCESS)
2450                         pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2451                                 handle.context, handle.resource, result);
2452
2453                 qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2454
2455                 /*
2456                  * On hosted, when we unmap queue pairs, the VMX will also
2457                  * unmap the guest memory, so we invalidate the previously
2458                  * registered memory. If the queue pair is mapped again at a
2459                  * later point in time, we will need to reregister the user
2460                  * memory with a possibly new user VA.
2461                  */
2462                 qp_host_unregister_user_memory(entry->produce_q,
2463                                                entry->consume_q);
2464
2465                 /*
2466                  * Move state from *_MEM to *_NO_MEM.
2467                  */
2468                 entry->state--;
2469
2470                 qp_release_queue_mutex(entry->produce_q);
2471         }
2472
2473         result = VMCI_SUCCESS;
2474
2475  out:
2476         mutex_unlock(&qp_broker_list.mutex);
2477         return result;
2478 }
2479
2480 /*
2481  * Destroys all guest queue pair endpoints. If active guest queue
2482  * pairs still exist, hypercalls to attempt detach from these
2483  * queue pairs will be made. Any failure to detach is silently
2484  * ignored.
2485  */
2486 void vmci_qp_guest_endpoints_exit(void)
2487 {
2488         struct qp_entry *entry;
2489         struct qp_guest_endpoint *ep;
2490
2491         mutex_lock(&qp_guest_endpoints.mutex);
2492
2493         while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2494                 ep = (struct qp_guest_endpoint *)entry;
2495
2496                 /* Don't make a hypercall for local queue_pairs. */
2497                 if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2498                         qp_detatch_hypercall(entry->handle);
2499
2500                 /* We cannot fail the exit, so let's reset ref_count. */
2501                 entry->ref_count = 0;
2502                 qp_list_remove_entry(&qp_guest_endpoints, entry);
2503
2504                 qp_guest_endpoint_destroy(ep);
2505         }
2506
2507         mutex_unlock(&qp_guest_endpoints.mutex);
2508 }
2509
2510 /*
2511  * Helper routine that will lock the queue pair before subsequent
2512  * operations.
2513  * Note: Non-blocking on the host side is currently only implemented in ESX.
2514  * Since non-blocking isn't yet implemented on the host personality we
2515  * have no reason to acquire a spin lock.  So to avoid the use of an
2516  * unnecessary lock only acquire the mutex if we can block.
2517  */
2518 static void qp_lock(const struct vmci_qp *qpair)
2519 {
2520         qp_acquire_queue_mutex(qpair->produce_q);
2521 }
2522
2523 /*
2524  * Helper routine that unlocks the queue pair after calling
2525  * qp_lock.
2526  */
2527 static void qp_unlock(const struct vmci_qp *qpair)
2528 {
2529         qp_release_queue_mutex(qpair->produce_q);
2530 }
2531
2532 /*
2533  * The queue headers may not be mapped at all times. If a queue is
2534  * currently not mapped, it will be attempted to do so.
2535  */
2536 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2537                                 struct vmci_queue *consume_q)
2538 {
2539         int result;
2540
2541         if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2542                 result = qp_host_map_queues(produce_q, consume_q);
2543                 if (result < VMCI_SUCCESS)
2544                         return (produce_q->saved_header &&
2545                                 consume_q->saved_header) ?
2546                             VMCI_ERROR_QUEUEPAIR_NOT_READY :
2547                             VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2548         }
2549
2550         return VMCI_SUCCESS;
2551 }
2552
2553 /*
2554  * Helper routine that will retrieve the produce and consume
2555  * headers of a given queue pair. If the guest memory of the
2556  * queue pair is currently not available, the saved queue headers
2557  * will be returned, if these are available.
2558  */
2559 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2560                                 struct vmci_queue_header **produce_q_header,
2561                                 struct vmci_queue_header **consume_q_header)
2562 {
2563         int result;
2564
2565         result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2566         if (result == VMCI_SUCCESS) {
2567                 *produce_q_header = qpair->produce_q->q_header;
2568                 *consume_q_header = qpair->consume_q->q_header;
2569         } else if (qpair->produce_q->saved_header &&
2570                    qpair->consume_q->saved_header) {
2571                 *produce_q_header = qpair->produce_q->saved_header;
2572                 *consume_q_header = qpair->consume_q->saved_header;
2573                 result = VMCI_SUCCESS;
2574         }
2575
2576         return result;
2577 }
2578
2579 /*
2580  * Callback from VMCI queue pair broker indicating that a queue
2581  * pair that was previously not ready, now either is ready or
2582  * gone forever.
2583  */
2584 static int qp_wakeup_cb(void *client_data)
2585 {
2586         struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2587
2588         qp_lock(qpair);
2589         while (qpair->blocked > 0) {
2590                 qpair->blocked--;
2591                 qpair->generation++;
2592                 wake_up(&qpair->event);
2593         }
2594         qp_unlock(qpair);
2595
2596         return VMCI_SUCCESS;
2597 }
2598
2599 /*
2600  * Makes the calling thread wait for the queue pair to become
2601  * ready for host side access.  Returns true when thread is
2602  * woken up after queue pair state change, false otherwise.
2603  */
2604 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2605 {
2606         unsigned int generation;
2607
2608         qpair->blocked++;
2609         generation = qpair->generation;
2610         qp_unlock(qpair);
2611         wait_event(qpair->event, generation != qpair->generation);
2612         qp_lock(qpair);
2613
2614         return true;
2615 }
2616
2617 /*
2618  * Enqueues a given buffer to the produce queue using the provided
2619  * function. As many bytes as possible (space available in the queue)
2620  * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2621  * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2622  * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2623  * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2624  * an error occured when accessing the buffer,
2625  * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2626  * available.  Otherwise, the number of bytes written to the queue is
2627  * returned.  Updates the tail pointer of the produce queue.
2628  */
2629 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2630                                  struct vmci_queue *consume_q,
2631                                  const u64 produce_q_size,
2632                                  const void *buf,
2633                                  size_t buf_size,
2634                                  vmci_memcpy_to_queue_func memcpy_to_queue)
2635 {
2636         s64 free_space;
2637         u64 tail;
2638         size_t written;
2639         ssize_t result;
2640
2641         result = qp_map_queue_headers(produce_q, consume_q);
2642         if (unlikely(result != VMCI_SUCCESS))
2643                 return result;
2644
2645         free_space = vmci_q_header_free_space(produce_q->q_header,
2646                                               consume_q->q_header,
2647                                               produce_q_size);
2648         if (free_space == 0)
2649                 return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2650
2651         if (free_space < VMCI_SUCCESS)
2652                 return (ssize_t) free_space;
2653
2654         written = (size_t) (free_space > buf_size ? buf_size : free_space);
2655         tail = vmci_q_header_producer_tail(produce_q->q_header);
2656         if (likely(tail + written < produce_q_size)) {
2657                 result = memcpy_to_queue(produce_q, tail, buf, 0, written);
2658         } else {
2659                 /* Tail pointer wraps around. */
2660
2661                 const size_t tmp = (size_t) (produce_q_size - tail);
2662
2663                 result = memcpy_to_queue(produce_q, tail, buf, 0, tmp);
2664                 if (result >= VMCI_SUCCESS)
2665                         result = memcpy_to_queue(produce_q, 0, buf, tmp,
2666                                                  written - tmp);
2667         }
2668
2669         if (result < VMCI_SUCCESS)
2670                 return result;
2671
2672         vmci_q_header_add_producer_tail(produce_q->q_header, written,
2673                                         produce_q_size);
2674         return written;
2675 }
2676
2677 /*
2678  * Dequeues data (if available) from the given consume queue. Writes data
2679  * to the user provided buffer using the provided function.
2680  * Assumes the queue->mutex has been acquired.
2681  * Results:
2682  * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2683  * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2684  * (as defined by the queue size).
2685  * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2686  * Otherwise the number of bytes dequeued is returned.
2687  * Side effects:
2688  * Updates the head pointer of the consume queue.
2689  */
2690 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2691                                  struct vmci_queue *consume_q,
2692                                  const u64 consume_q_size,
2693                                  void *buf,
2694                                  size_t buf_size,
2695                                  vmci_memcpy_from_queue_func memcpy_from_queue,
2696                                  bool update_consumer)
2697 {
2698         s64 buf_ready;
2699         u64 head;
2700         size_t read;
2701         ssize_t result;
2702
2703         result = qp_map_queue_headers(produce_q, consume_q);
2704         if (unlikely(result != VMCI_SUCCESS))
2705                 return result;
2706
2707         buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2708                                             produce_q->q_header,
2709                                             consume_q_size);
2710         if (buf_ready == 0)
2711                 return VMCI_ERROR_QUEUEPAIR_NODATA;
2712
2713         if (buf_ready < VMCI_SUCCESS)
2714                 return (ssize_t) buf_ready;
2715
2716         read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2717         head = vmci_q_header_consumer_head(produce_q->q_header);
2718         if (likely(head + read < consume_q_size)) {
2719                 result = memcpy_from_queue(buf, 0, consume_q, head, read);
2720         } else {
2721                 /* Head pointer wraps around. */
2722
2723                 const size_t tmp = (size_t) (consume_q_size - head);
2724
2725                 result = memcpy_from_queue(buf, 0, consume_q, head, tmp);
2726                 if (result >= VMCI_SUCCESS)
2727                         result = memcpy_from_queue(buf, tmp, consume_q, 0,
2728                                                    read - tmp);
2729
2730         }
2731
2732         if (result < VMCI_SUCCESS)
2733                 return result;
2734
2735         if (update_consumer)
2736                 vmci_q_header_add_consumer_head(produce_q->q_header,
2737                                                 read, consume_q_size);
2738
2739         return read;
2740 }
2741
2742 /*
2743  * vmci_qpair_alloc() - Allocates a queue pair.
2744  * @qpair:      Pointer for the new vmci_qp struct.
2745  * @handle:     Handle to track the resource.
2746  * @produce_qsize:      Desired size of the producer queue.
2747  * @consume_qsize:      Desired size of the consumer queue.
2748  * @peer:       ContextID of the peer.
2749  * @flags:      VMCI flags.
2750  * @priv_flags: VMCI priviledge flags.
2751  *
2752  * This is the client interface for allocating the memory for a
2753  * vmci_qp structure and then attaching to the underlying
2754  * queue.  If an error occurs allocating the memory for the
2755  * vmci_qp structure no attempt is made to attach.  If an
2756  * error occurs attaching, then the structure is freed.
2757  */
2758 int vmci_qpair_alloc(struct vmci_qp **qpair,
2759                      struct vmci_handle *handle,
2760                      u64 produce_qsize,
2761                      u64 consume_qsize,
2762                      u32 peer,
2763                      u32 flags,
2764                      u32 priv_flags)
2765 {
2766         struct vmci_qp *my_qpair;
2767         int retval;
2768         struct vmci_handle src = VMCI_INVALID_HANDLE;
2769         struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2770         enum vmci_route route;
2771         vmci_event_release_cb wakeup_cb;
2772         void *client_data;
2773
2774         /*
2775          * Restrict the size of a queuepair.  The device already
2776          * enforces a limit on the total amount of memory that can be
2777          * allocated to queuepairs for a guest.  However, we try to
2778          * allocate this memory before we make the queuepair
2779          * allocation hypercall.  On Linux, we allocate each page
2780          * separately, which means rather than fail, the guest will
2781          * thrash while it tries to allocate, and will become
2782          * increasingly unresponsive to the point where it appears to
2783          * be hung.  So we place a limit on the size of an individual
2784          * queuepair here, and leave the device to enforce the
2785          * restriction on total queuepair memory.  (Note that this
2786          * doesn't prevent all cases; a user with only this much
2787          * physical memory could still get into trouble.)  The error
2788          * used by the device is NO_RESOURCES, so use that here too.
2789          */
2790
2791         if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2792             produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2793                 return VMCI_ERROR_NO_RESOURCES;
2794
2795         retval = vmci_route(&src, &dst, false, &route);
2796         if (retval < VMCI_SUCCESS)
2797                 route = vmci_guest_code_active() ?
2798                     VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2799
2800         if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2801                 pr_devel("NONBLOCK OR PINNED set");
2802                 return VMCI_ERROR_INVALID_ARGS;
2803         }
2804
2805         my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2806         if (!my_qpair)
2807                 return VMCI_ERROR_NO_MEM;
2808
2809         my_qpair->produce_q_size = produce_qsize;
2810         my_qpair->consume_q_size = consume_qsize;
2811         my_qpair->peer = peer;
2812         my_qpair->flags = flags;
2813         my_qpair->priv_flags = priv_flags;
2814
2815         wakeup_cb = NULL;
2816         client_data = NULL;
2817
2818         if (VMCI_ROUTE_AS_HOST == route) {
2819                 my_qpair->guest_endpoint = false;
2820                 if (!(flags & VMCI_QPFLAG_LOCAL)) {
2821                         my_qpair->blocked = 0;
2822                         my_qpair->generation = 0;
2823                         init_waitqueue_head(&my_qpair->event);
2824                         wakeup_cb = qp_wakeup_cb;
2825                         client_data = (void *)my_qpair;
2826                 }
2827         } else {
2828                 my_qpair->guest_endpoint = true;
2829         }
2830
2831         retval = vmci_qp_alloc(handle,
2832                                &my_qpair->produce_q,
2833                                my_qpair->produce_q_size,
2834                                &my_qpair->consume_q,
2835                                my_qpair->consume_q_size,
2836                                my_qpair->peer,
2837                                my_qpair->flags,
2838                                my_qpair->priv_flags,
2839                                my_qpair->guest_endpoint,
2840                                wakeup_cb, client_data);
2841
2842         if (retval < VMCI_SUCCESS) {
2843                 kfree(my_qpair);
2844                 return retval;
2845         }
2846
2847         *qpair = my_qpair;
2848         my_qpair->handle = *handle;
2849
2850         return retval;
2851 }
2852 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2853
2854 /*
2855  * vmci_qpair_detach() - Detatches the client from a queue pair.
2856  * @qpair:      Reference of a pointer to the qpair struct.
2857  *
2858  * This is the client interface for detaching from a VMCIQPair.
2859  * Note that this routine will free the memory allocated for the
2860  * vmci_qp structure too.
2861  */
2862 int vmci_qpair_detach(struct vmci_qp **qpair)
2863 {
2864         int result;
2865         struct vmci_qp *old_qpair;
2866
2867         if (!qpair || !(*qpair))
2868                 return VMCI_ERROR_INVALID_ARGS;
2869
2870         old_qpair = *qpair;
2871         result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2872
2873         /*
2874          * The guest can fail to detach for a number of reasons, and
2875          * if it does so, it will cleanup the entry (if there is one).
2876          * The host can fail too, but it won't cleanup the entry
2877          * immediately, it will do that later when the context is
2878          * freed.  Either way, we need to release the qpair struct
2879          * here; there isn't much the caller can do, and we don't want
2880          * to leak.
2881          */
2882
2883         memset(old_qpair, 0, sizeof(*old_qpair));
2884         old_qpair->handle = VMCI_INVALID_HANDLE;
2885         old_qpair->peer = VMCI_INVALID_ID;
2886         kfree(old_qpair);
2887         *qpair = NULL;
2888
2889         return result;
2890 }
2891 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2892
2893 /*
2894  * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2895  * @qpair:      Pointer to the queue pair struct.
2896  * @producer_tail:      Reference used for storing producer tail index.
2897  * @consumer_head:      Reference used for storing the consumer head index.
2898  *
2899  * This is the client interface for getting the current indexes of the
2900  * QPair from the point of the view of the caller as the producer.
2901  */
2902 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2903                                    u64 *producer_tail,
2904                                    u64 *consumer_head)
2905 {
2906         struct vmci_queue_header *produce_q_header;
2907         struct vmci_queue_header *consume_q_header;
2908         int result;
2909
2910         if (!qpair)
2911                 return VMCI_ERROR_INVALID_ARGS;
2912
2913         qp_lock(qpair);
2914         result =
2915             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2916         if (result == VMCI_SUCCESS)
2917                 vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2918                                            producer_tail, consumer_head);
2919         qp_unlock(qpair);
2920
2921         if (result == VMCI_SUCCESS &&
2922             ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2923              (consumer_head && *consumer_head >= qpair->produce_q_size)))
2924                 return VMCI_ERROR_INVALID_SIZE;
2925
2926         return result;
2927 }
2928 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2929
2930 /*
2931  * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the comsumer.
2932  * @qpair:      Pointer to the queue pair struct.
2933  * @consumer_tail:      Reference used for storing consumer tail index.
2934  * @producer_head:      Reference used for storing the producer head index.
2935  *
2936  * This is the client interface for getting the current indexes of the
2937  * QPair from the point of the view of the caller as the consumer.
2938  */
2939 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2940                                    u64 *consumer_tail,
2941                                    u64 *producer_head)
2942 {
2943         struct vmci_queue_header *produce_q_header;
2944         struct vmci_queue_header *consume_q_header;
2945         int result;
2946
2947         if (!qpair)
2948                 return VMCI_ERROR_INVALID_ARGS;
2949
2950         qp_lock(qpair);
2951         result =
2952             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2953         if (result == VMCI_SUCCESS)
2954                 vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2955                                            consumer_tail, producer_head);
2956         qp_unlock(qpair);
2957
2958         if (result == VMCI_SUCCESS &&
2959             ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2960              (producer_head && *producer_head >= qpair->consume_q_size)))
2961                 return VMCI_ERROR_INVALID_SIZE;
2962
2963         return result;
2964 }
2965 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2966
2967 /*
2968  * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2969  * @qpair:      Pointer to the queue pair struct.
2970  *
2971  * This is the client interface for getting the amount of free
2972  * space in the QPair from the point of the view of the caller as
2973  * the producer which is the common case.  Returns < 0 if err, else
2974  * available bytes into which data can be enqueued if > 0.
2975  */
2976 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2977 {
2978         struct vmci_queue_header *produce_q_header;
2979         struct vmci_queue_header *consume_q_header;
2980         s64 result;
2981
2982         if (!qpair)
2983                 return VMCI_ERROR_INVALID_ARGS;
2984
2985         qp_lock(qpair);
2986         result =
2987             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2988         if (result == VMCI_SUCCESS)
2989                 result = vmci_q_header_free_space(produce_q_header,
2990                                                   consume_q_header,
2991                                                   qpair->produce_q_size);
2992         else
2993                 result = 0;
2994
2995         qp_unlock(qpair);
2996
2997         return result;
2998 }
2999 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
3000
3001 /*
3002  * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
3003  * @qpair:      Pointer to the queue pair struct.
3004  *
3005  * This is the client interface for getting the amount of free
3006  * space in the QPair from the point of the view of the caller as
3007  * the consumer which is not the common case.  Returns < 0 if err, else
3008  * available bytes into which data can be enqueued if > 0.
3009  */
3010 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
3011 {
3012         struct vmci_queue_header *produce_q_header;
3013         struct vmci_queue_header *consume_q_header;
3014         s64 result;
3015
3016         if (!qpair)
3017                 return VMCI_ERROR_INVALID_ARGS;
3018
3019         qp_lock(qpair);
3020         result =
3021             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3022         if (result == VMCI_SUCCESS)
3023                 result = vmci_q_header_free_space(consume_q_header,
3024                                                   produce_q_header,
3025                                                   qpair->consume_q_size);
3026         else
3027                 result = 0;
3028
3029         qp_unlock(qpair);
3030
3031         return result;
3032 }
3033 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
3034
3035 /*
3036  * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
3037  * producer queue.
3038  * @qpair:      Pointer to the queue pair struct.
3039  *
3040  * This is the client interface for getting the amount of
3041  * enqueued data in the QPair from the point of the view of the
3042  * caller as the producer which is not the common case.  Returns < 0 if err,
3043  * else available bytes that may be read.
3044  */
3045 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
3046 {
3047         struct vmci_queue_header *produce_q_header;
3048         struct vmci_queue_header *consume_q_header;
3049         s64 result;
3050
3051         if (!qpair)
3052                 return VMCI_ERROR_INVALID_ARGS;
3053
3054         qp_lock(qpair);
3055         result =
3056             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3057         if (result == VMCI_SUCCESS)
3058                 result = vmci_q_header_buf_ready(produce_q_header,
3059                                                  consume_q_header,
3060                                                  qpair->produce_q_size);
3061         else
3062                 result = 0;
3063
3064         qp_unlock(qpair);
3065
3066         return result;
3067 }
3068 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
3069
3070 /*
3071  * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
3072  * consumer queue.
3073  * @qpair:      Pointer to the queue pair struct.
3074  *
3075  * This is the client interface for getting the amount of
3076  * enqueued data in the QPair from the point of the view of the
3077  * caller as the consumer which is the normal case.  Returns < 0 if err,
3078  * else available bytes that may be read.
3079  */
3080 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
3081 {
3082         struct vmci_queue_header *produce_q_header;
3083         struct vmci_queue_header *consume_q_header;
3084         s64 result;
3085
3086         if (!qpair)
3087                 return VMCI_ERROR_INVALID_ARGS;
3088
3089         qp_lock(qpair);
3090         result =
3091             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3092         if (result == VMCI_SUCCESS)
3093                 result = vmci_q_header_buf_ready(consume_q_header,
3094                                                  produce_q_header,
3095                                                  qpair->consume_q_size);
3096         else
3097                 result = 0;
3098
3099         qp_unlock(qpair);
3100
3101         return result;
3102 }
3103 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3104
3105 /*
3106  * vmci_qpair_enqueue() - Throw data on the queue.
3107  * @qpair:      Pointer to the queue pair struct.
3108  * @buf:        Pointer to buffer containing data
3109  * @buf_size:   Length of buffer.
3110  * @buf_type:   Buffer type (Unused).
3111  *
3112  * This is the client interface for enqueueing data into the queue.
3113  * Returns number of bytes enqueued or < 0 on error.
3114  */
3115 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3116                            const void *buf,
3117                            size_t buf_size,
3118                            int buf_type)
3119 {
3120         ssize_t result;
3121
3122         if (!qpair || !buf)
3123                 return VMCI_ERROR_INVALID_ARGS;
3124
3125         qp_lock(qpair);
3126
3127         do {
3128                 result = qp_enqueue_locked(qpair->produce_q,
3129                                            qpair->consume_q,
3130                                            qpair->produce_q_size,
3131                                            buf, buf_size,
3132                                            qp_memcpy_to_queue);
3133
3134                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3135                     !qp_wait_for_ready_queue(qpair))
3136                         result = VMCI_ERROR_WOULD_BLOCK;
3137
3138         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3139
3140         qp_unlock(qpair);
3141
3142         return result;
3143 }
3144 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3145
3146 /*
3147  * vmci_qpair_dequeue() - Get data from the queue.
3148  * @qpair:      Pointer to the queue pair struct.
3149  * @buf:        Pointer to buffer for the data
3150  * @buf_size:   Length of buffer.
3151  * @buf_type:   Buffer type (Unused).
3152  *
3153  * This is the client interface for dequeueing data from the queue.
3154  * Returns number of bytes dequeued or < 0 on error.
3155  */
3156 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3157                            void *buf,
3158                            size_t buf_size,
3159                            int buf_type)
3160 {
3161         ssize_t result;
3162
3163         if (!qpair || !buf)
3164                 return VMCI_ERROR_INVALID_ARGS;
3165
3166         qp_lock(qpair);
3167
3168         do {
3169                 result = qp_dequeue_locked(qpair->produce_q,
3170                                            qpair->consume_q,
3171                                            qpair->consume_q_size,
3172                                            buf, buf_size,
3173                                            qp_memcpy_from_queue, true);
3174
3175                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3176                     !qp_wait_for_ready_queue(qpair))
3177                         result = VMCI_ERROR_WOULD_BLOCK;
3178
3179         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3180
3181         qp_unlock(qpair);
3182
3183         return result;
3184 }
3185 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3186
3187 /*
3188  * vmci_qpair_peek() - Peek at the data in the queue.
3189  * @qpair:      Pointer to the queue pair struct.
3190  * @buf:        Pointer to buffer for the data
3191  * @buf_size:   Length of buffer.
3192  * @buf_type:   Buffer type (Unused on Linux).
3193  *
3194  * This is the client interface for peeking into a queue.  (I.e.,
3195  * copy data from the queue without updating the head pointer.)
3196  * Returns number of bytes dequeued or < 0 on error.
3197  */
3198 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3199                         void *buf,
3200                         size_t buf_size,
3201                         int buf_type)
3202 {
3203         ssize_t result;
3204
3205         if (!qpair || !buf)
3206                 return VMCI_ERROR_INVALID_ARGS;
3207
3208         qp_lock(qpair);
3209
3210         do {
3211                 result = qp_dequeue_locked(qpair->produce_q,
3212                                            qpair->consume_q,
3213                                            qpair->consume_q_size,
3214                                            buf, buf_size,
3215                                            qp_memcpy_from_queue, false);
3216
3217                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3218                     !qp_wait_for_ready_queue(qpair))
3219                         result = VMCI_ERROR_WOULD_BLOCK;
3220
3221         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3222
3223         qp_unlock(qpair);
3224
3225         return result;
3226 }
3227 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3228
3229 /*
3230  * vmci_qpair_enquev() - Throw data on the queue using iov.
3231  * @qpair:      Pointer to the queue pair struct.
3232  * @iov:        Pointer to buffer containing data
3233  * @iov_size:   Length of buffer.
3234  * @buf_type:   Buffer type (Unused).
3235  *
3236  * This is the client interface for enqueueing data into the queue.
3237  * This function uses IO vectors to handle the work. Returns number
3238  * of bytes enqueued or < 0 on error.
3239  */
3240 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3241                           struct msghdr *msg,
3242                           size_t iov_size,
3243                           int buf_type)
3244 {
3245         ssize_t result;
3246
3247         if (!qpair)
3248                 return VMCI_ERROR_INVALID_ARGS;
3249
3250         qp_lock(qpair);
3251
3252         do {
3253                 result = qp_enqueue_locked(qpair->produce_q,
3254                                            qpair->consume_q,
3255                                            qpair->produce_q_size,
3256                                            msg, iov_size,
3257                                            qp_memcpy_to_queue_iov);
3258
3259                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3260                     !qp_wait_for_ready_queue(qpair))
3261                         result = VMCI_ERROR_WOULD_BLOCK;
3262
3263         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3264
3265         qp_unlock(qpair);
3266
3267         return result;
3268 }
3269 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3270
3271 /*
3272  * vmci_qpair_dequev() - Get data from the queue using iov.
3273  * @qpair:      Pointer to the queue pair struct.
3274  * @iov:        Pointer to buffer for the data
3275  * @iov_size:   Length of buffer.
3276  * @buf_type:   Buffer type (Unused).
3277  *
3278  * This is the client interface for dequeueing data from the queue.
3279  * This function uses IO vectors to handle the work. Returns number
3280  * of bytes dequeued or < 0 on error.
3281  */
3282 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3283                           struct msghdr *msg,
3284                           size_t iov_size,
3285                           int buf_type)
3286 {
3287         ssize_t result;
3288
3289         if (!qpair)
3290                 return VMCI_ERROR_INVALID_ARGS;
3291
3292         qp_lock(qpair);
3293
3294         do {
3295                 result = qp_dequeue_locked(qpair->produce_q,
3296                                            qpair->consume_q,
3297                                            qpair->consume_q_size,
3298                                            msg, iov_size,
3299                                            qp_memcpy_from_queue_iov,
3300                                            true);
3301
3302                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3303                     !qp_wait_for_ready_queue(qpair))
3304                         result = VMCI_ERROR_WOULD_BLOCK;
3305
3306         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3307
3308         qp_unlock(qpair);
3309
3310         return result;
3311 }
3312 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3313
3314 /*
3315  * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3316  * @qpair:      Pointer to the queue pair struct.
3317  * @iov:        Pointer to buffer for the data
3318  * @iov_size:   Length of buffer.
3319  * @buf_type:   Buffer type (Unused on Linux).
3320  *
3321  * This is the client interface for peeking into a queue.  (I.e.,
3322  * copy data from the queue without updating the head pointer.)
3323  * This function uses IO vectors to handle the work. Returns number
3324  * of bytes peeked or < 0 on error.
3325  */
3326 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3327                          struct msghdr *msg,
3328                          size_t iov_size,
3329                          int buf_type)
3330 {
3331         ssize_t result;
3332
3333         if (!qpair)
3334                 return VMCI_ERROR_INVALID_ARGS;
3335
3336         qp_lock(qpair);
3337
3338         do {
3339                 result = qp_dequeue_locked(qpair->produce_q,
3340                                            qpair->consume_q,
3341                                            qpair->consume_q_size,
3342                                            msg, iov_size,
3343                                            qp_memcpy_from_queue_iov,
3344                                            false);
3345
3346                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3347                     !qp_wait_for_ready_queue(qpair))
3348                         result = VMCI_ERROR_WOULD_BLOCK;
3349
3350         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3351
3352         qp_unlock(qpair);
3353         return result;
3354 }
3355 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);