Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / mfd / db8500-prcmu.c
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/of.h>
28 #include <linux/of_irq.h>
29 #include <linux/platform_device.h>
30 #include <linux/uaccess.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/dbx500-prcmu.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/regulator/db8500-prcmu.h>
35 #include <linux/regulator/machine.h>
36 #include <linux/cpufreq.h>
37 #include <linux/platform_data/ux500_wdt.h>
38 #include <linux/platform_data/db8500_thermal.h>
39 #include "dbx500-prcmu-regs.h"
40
41 /* Index of different voltages to be used when accessing AVSData */
42 #define PRCM_AVS_BASE           0x2FC
43 #define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
44 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
45 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
46 #define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
47 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
48 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
49 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
50 #define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
51 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
52 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
53 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
54 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
55 #define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
56
57 #define PRCM_AVS_VOLTAGE                0
58 #define PRCM_AVS_VOLTAGE_MASK           0x3f
59 #define PRCM_AVS_ISSLOWSTARTUP          6
60 #define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
61 #define PRCM_AVS_ISMODEENABLE           7
62 #define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
63
64 #define PRCM_BOOT_STATUS        0xFFF
65 #define PRCM_ROMCODE_A2P        0xFFE
66 #define PRCM_ROMCODE_P2A        0xFFD
67 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
68
69 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
70
71 #define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
72 #define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
73 #define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
74 #define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
75 #define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
76 #define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
77 #define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
78 #define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
79
80 /* Req Mailboxes */
81 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
82 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
83 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
84 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
85 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
86 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
87
88 /* Ack Mailboxes */
89 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
90 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
95
96 /* Mailbox 0 headers */
97 #define MB0H_POWER_STATE_TRANS          0
98 #define MB0H_CONFIG_WAKEUPS_EXE         1
99 #define MB0H_READ_WAKEUP_ACK            3
100 #define MB0H_CONFIG_WAKEUPS_SLEEP       4
101
102 #define MB0H_WAKEUP_EXE 2
103 #define MB0H_WAKEUP_SLEEP 5
104
105 /* Mailbox 0 REQs */
106 #define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
107 #define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
108 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
109 #define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
110 #define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
111 #define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
112
113 /* Mailbox 0 ACKs */
114 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
115 #define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
116 #define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
117 #define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
118 #define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
119 #define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
120 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
121
122 /* Mailbox 1 headers */
123 #define MB1H_ARM_APE_OPP 0x0
124 #define MB1H_RESET_MODEM 0x2
125 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127 #define MB1H_RELEASE_USB_WAKEUP 0x5
128 #define MB1H_PLL_ON_OFF 0x6
129
130 /* Mailbox 1 Requests */
131 #define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
132 #define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
133 #define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
134 #define PLL_SOC0_OFF    0x1
135 #define PLL_SOC0_ON     0x2
136 #define PLL_SOC1_OFF    0x4
137 #define PLL_SOC1_ON     0x8
138
139 /* Mailbox 1 ACKs */
140 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
141 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
142 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
143 #define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
144
145 /* Mailbox 2 headers */
146 #define MB2H_DPS        0x0
147 #define MB2H_AUTO_PWR   0x1
148
149 /* Mailbox 2 REQs */
150 #define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
151 #define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
152 #define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
153 #define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
154 #define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
155 #define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
156 #define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
157 #define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
158 #define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
159 #define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
160
161 /* Mailbox 2 ACKs */
162 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163 #define HWACC_PWR_ST_OK 0xFE
164
165 /* Mailbox 3 headers */
166 #define MB3H_ANC        0x0
167 #define MB3H_SIDETONE   0x1
168 #define MB3H_SYSCLK     0xE
169
170 /* Mailbox 3 Requests */
171 #define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
172 #define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
173 #define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
174 #define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
177 #define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
178
179 /* Mailbox 4 headers */
180 #define MB4H_DDR_INIT   0x0
181 #define MB4H_MEM_ST     0x1
182 #define MB4H_HOTDOG     0x12
183 #define MB4H_HOTMON     0x13
184 #define MB4H_HOT_PERIOD 0x14
185 #define MB4H_A9WDOG_CONF 0x16
186 #define MB4H_A9WDOG_EN   0x17
187 #define MB4H_A9WDOG_DIS  0x18
188 #define MB4H_A9WDOG_LOAD 0x19
189 #define MB4H_A9WDOG_KICK 0x20
190
191 /* Mailbox 4 Requests */
192 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
193 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
194 #define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
195 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
199 #define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
200 #define HOTMON_CONFIG_LOW                       BIT(0)
201 #define HOTMON_CONFIG_HIGH                      BIT(1)
202 #define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
203 #define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
204 #define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
205 #define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
206 #define A9WDOG_AUTO_OFF_EN                      BIT(7)
207 #define A9WDOG_AUTO_OFF_DIS                     0
208 #define A9WDOG_ID_MASK                          0xf
209
210 /* Mailbox 5 Requests */
211 #define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
212 #define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
213 #define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
214 #define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
215 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
217 #define PRCMU_I2C_STOP_EN               BIT(3)
218
219 /* Mailbox 5 ACKs */
220 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
221 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
222 #define I2C_WR_OK 0x1
223 #define I2C_RD_OK 0x2
224
225 #define NUM_MB 8
226 #define MBOX_BIT BIT
227 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
228
229 /*
230  * Wakeups/IRQs
231  */
232
233 #define WAKEUP_BIT_RTC BIT(0)
234 #define WAKEUP_BIT_RTT0 BIT(1)
235 #define WAKEUP_BIT_RTT1 BIT(2)
236 #define WAKEUP_BIT_HSI0 BIT(3)
237 #define WAKEUP_BIT_HSI1 BIT(4)
238 #define WAKEUP_BIT_CA_WAKE BIT(5)
239 #define WAKEUP_BIT_USB BIT(6)
240 #define WAKEUP_BIT_ABB BIT(7)
241 #define WAKEUP_BIT_ABB_FIFO BIT(8)
242 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
243 #define WAKEUP_BIT_CA_SLEEP BIT(10)
244 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246 #define WAKEUP_BIT_ANC_OK BIT(13)
247 #define WAKEUP_BIT_SW_ERROR BIT(14)
248 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249 #define WAKEUP_BIT_ARM BIT(17)
250 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
251 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253 #define WAKEUP_BIT_GPIO0 BIT(23)
254 #define WAKEUP_BIT_GPIO1 BIT(24)
255 #define WAKEUP_BIT_GPIO2 BIT(25)
256 #define WAKEUP_BIT_GPIO3 BIT(26)
257 #define WAKEUP_BIT_GPIO4 BIT(27)
258 #define WAKEUP_BIT_GPIO5 BIT(28)
259 #define WAKEUP_BIT_GPIO6 BIT(29)
260 #define WAKEUP_BIT_GPIO7 BIT(30)
261 #define WAKEUP_BIT_GPIO8 BIT(31)
262
263 static struct {
264         bool valid;
265         struct prcmu_fw_version version;
266 } fw_info;
267
268 static struct irq_domain *db8500_irq_domain;
269
270 /*
271  * This vector maps irq numbers to the bits in the bit field used in
272  * communication with the PRCMU firmware.
273  *
274  * The reason for having this is to keep the irq numbers contiguous even though
275  * the bits in the bit field are not. (The bits also have a tendency to move
276  * around, to further complicate matters.)
277  */
278 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
279 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
280
281 #define IRQ_PRCMU_RTC 0
282 #define IRQ_PRCMU_RTT0 1
283 #define IRQ_PRCMU_RTT1 2
284 #define IRQ_PRCMU_HSI0 3
285 #define IRQ_PRCMU_HSI1 4
286 #define IRQ_PRCMU_CA_WAKE 5
287 #define IRQ_PRCMU_USB 6
288 #define IRQ_PRCMU_ABB 7
289 #define IRQ_PRCMU_ABB_FIFO 8
290 #define IRQ_PRCMU_ARM 9
291 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292 #define IRQ_PRCMU_GPIO0 11
293 #define IRQ_PRCMU_GPIO1 12
294 #define IRQ_PRCMU_GPIO2 13
295 #define IRQ_PRCMU_GPIO3 14
296 #define IRQ_PRCMU_GPIO4 15
297 #define IRQ_PRCMU_GPIO5 16
298 #define IRQ_PRCMU_GPIO6 17
299 #define IRQ_PRCMU_GPIO7 18
300 #define IRQ_PRCMU_GPIO8 19
301 #define IRQ_PRCMU_CA_SLEEP 20
302 #define IRQ_PRCMU_HOTMON_LOW 21
303 #define IRQ_PRCMU_HOTMON_HIGH 22
304 #define NUM_PRCMU_WAKEUPS 23
305
306 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
307         IRQ_ENTRY(RTC),
308         IRQ_ENTRY(RTT0),
309         IRQ_ENTRY(RTT1),
310         IRQ_ENTRY(HSI0),
311         IRQ_ENTRY(HSI1),
312         IRQ_ENTRY(CA_WAKE),
313         IRQ_ENTRY(USB),
314         IRQ_ENTRY(ABB),
315         IRQ_ENTRY(ABB_FIFO),
316         IRQ_ENTRY(CA_SLEEP),
317         IRQ_ENTRY(ARM),
318         IRQ_ENTRY(HOTMON_LOW),
319         IRQ_ENTRY(HOTMON_HIGH),
320         IRQ_ENTRY(MODEM_SW_RESET_REQ),
321         IRQ_ENTRY(GPIO0),
322         IRQ_ENTRY(GPIO1),
323         IRQ_ENTRY(GPIO2),
324         IRQ_ENTRY(GPIO3),
325         IRQ_ENTRY(GPIO4),
326         IRQ_ENTRY(GPIO5),
327         IRQ_ENTRY(GPIO6),
328         IRQ_ENTRY(GPIO7),
329         IRQ_ENTRY(GPIO8)
330 };
331
332 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
335         WAKEUP_ENTRY(RTC),
336         WAKEUP_ENTRY(RTT0),
337         WAKEUP_ENTRY(RTT1),
338         WAKEUP_ENTRY(HSI0),
339         WAKEUP_ENTRY(HSI1),
340         WAKEUP_ENTRY(USB),
341         WAKEUP_ENTRY(ABB),
342         WAKEUP_ENTRY(ABB_FIFO),
343         WAKEUP_ENTRY(ARM)
344 };
345
346 /*
347  * mb0_transfer - state needed for mailbox 0 communication.
348  * @lock:               The transaction lock.
349  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
350  *                      the request data.
351  * @mask_work:          Work structure used for (un)masking wakeup interrupts.
352  * @req:                Request data that need to persist between requests.
353  */
354 static struct {
355         spinlock_t lock;
356         spinlock_t dbb_irqs_lock;
357         struct work_struct mask_work;
358         struct mutex ac_wake_lock;
359         struct completion ac_wake_work;
360         struct {
361                 u32 dbb_irqs;
362                 u32 dbb_wakeups;
363                 u32 abb_events;
364         } req;
365 } mb0_transfer;
366
367 /*
368  * mb1_transfer - state needed for mailbox 1 communication.
369  * @lock:       The transaction lock.
370  * @work:       The transaction completion structure.
371  * @ape_opp:    The current APE OPP.
372  * @ack:        Reply ("acknowledge") data.
373  */
374 static struct {
375         struct mutex lock;
376         struct completion work;
377         u8 ape_opp;
378         struct {
379                 u8 header;
380                 u8 arm_opp;
381                 u8 ape_opp;
382                 u8 ape_voltage_status;
383         } ack;
384 } mb1_transfer;
385
386 /*
387  * mb2_transfer - state needed for mailbox 2 communication.
388  * @lock:            The transaction lock.
389  * @work:            The transaction completion structure.
390  * @auto_pm_lock:    The autonomous power management configuration lock.
391  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392  * @req:             Request data that need to persist between requests.
393  * @ack:             Reply ("acknowledge") data.
394  */
395 static struct {
396         struct mutex lock;
397         struct completion work;
398         spinlock_t auto_pm_lock;
399         bool auto_pm_enabled;
400         struct {
401                 u8 status;
402         } ack;
403 } mb2_transfer;
404
405 /*
406  * mb3_transfer - state needed for mailbox 3 communication.
407  * @lock:               The request lock.
408  * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
409  * @sysclk_work:        Work structure used for sysclk requests.
410  */
411 static struct {
412         spinlock_t lock;
413         struct mutex sysclk_lock;
414         struct completion sysclk_work;
415 } mb3_transfer;
416
417 /*
418  * mb4_transfer - state needed for mailbox 4 communication.
419  * @lock:       The transaction lock.
420  * @work:       The transaction completion structure.
421  */
422 static struct {
423         struct mutex lock;
424         struct completion work;
425 } mb4_transfer;
426
427 /*
428  * mb5_transfer - state needed for mailbox 5 communication.
429  * @lock:       The transaction lock.
430  * @work:       The transaction completion structure.
431  * @ack:        Reply ("acknowledge") data.
432  */
433 static struct {
434         struct mutex lock;
435         struct completion work;
436         struct {
437                 u8 status;
438                 u8 value;
439         } ack;
440 } mb5_transfer;
441
442 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
443
444 /* Spinlocks */
445 static DEFINE_SPINLOCK(prcmu_lock);
446 static DEFINE_SPINLOCK(clkout_lock);
447
448 /* Global var to runtime determine TCDM base for v2 or v1 */
449 static __iomem void *tcdm_base;
450 static __iomem void *prcmu_base;
451
452 struct clk_mgt {
453         u32 offset;
454         u32 pllsw;
455         int branch;
456         bool clk38div;
457 };
458
459 enum {
460         PLL_RAW,
461         PLL_FIX,
462         PLL_DIV
463 };
464
465 static DEFINE_SPINLOCK(clk_mgt_lock);
466
467 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468         { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
469 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
470         CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
471         CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
472         CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
473         CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
474         CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
475         CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
476         CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
477         CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
478         CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
479         CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
480         CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
481         CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
482         CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
483         CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
484         CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
485         CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
486         CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
487         CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
488         CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
489         CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
490         CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
491         CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
492         CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
493         CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
494         CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
495         CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
496         CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
497         CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
498         CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
499 };
500
501 struct dsiclk {
502         u32 divsel_mask;
503         u32 divsel_shift;
504         u32 divsel;
505 };
506
507 static struct dsiclk dsiclk[2] = {
508         {
509                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
510                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
511                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
512         },
513         {
514                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
515                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
516                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
517         }
518 };
519
520 struct dsiescclk {
521         u32 en;
522         u32 div_mask;
523         u32 div_shift;
524 };
525
526 static struct dsiescclk dsiescclk[3] = {
527         {
528                 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
529                 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
530                 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
531         },
532         {
533                 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
534                 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
535                 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
536         },
537         {
538                 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
539                 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
540                 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
541         }
542 };
543
544
545 /*
546 * Used by MCDE to setup all necessary PRCMU registers
547 */
548 #define PRCMU_RESET_DSIPLL              0x00004000
549 #define PRCMU_UNCLAMP_DSIPLL            0x00400800
550
551 #define PRCMU_CLK_PLL_DIV_SHIFT         0
552 #define PRCMU_CLK_PLL_SW_SHIFT          5
553 #define PRCMU_CLK_38                    (1 << 9)
554 #define PRCMU_CLK_38_SRC                (1 << 10)
555 #define PRCMU_CLK_38_DIV                (1 << 11)
556
557 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
558 #define PRCMU_DSI_CLOCK_SETTING         0x0000008C
559
560 /* DPI 50000000 Hz */
561 #define PRCMU_DPI_CLOCK_SETTING         ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
562                                           (16 << PRCMU_CLK_PLL_DIV_SHIFT))
563 #define PRCMU_DSI_LP_CLOCK_SETTING      0x00000E00
564
565 /* D=101, N=1, R=4, SELDIV2=0 */
566 #define PRCMU_PLLDSI_FREQ_SETTING       0x00040165
567
568 #define PRCMU_ENABLE_PLLDSI             0x00000001
569 #define PRCMU_DISABLE_PLLDSI            0x00000000
570 #define PRCMU_RELEASE_RESET_DSS         0x0000400C
571 #define PRCMU_DSI_PLLOUT_SEL_SETTING    0x00000202
572 /* ESC clk, div0=1, div1=1, div2=3 */
573 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV   0x07030101
574 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV  0x00030101
575 #define PRCMU_DSI_RESET_SW              0x00000007
576
577 #define PRCMU_PLLDSI_LOCKP_LOCKED       0x3
578
579 int db8500_prcmu_enable_dsipll(void)
580 {
581         int i;
582
583         /* Clear DSIPLL_RESETN */
584         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
585         /* Unclamp DSIPLL in/out */
586         writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
587
588         /* Set DSI PLL FREQ */
589         writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
590         writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
591         /* Enable Escape clocks */
592         writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
593
594         /* Start DSI PLL */
595         writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
596         /* Reset DSI PLL */
597         writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
598         for (i = 0; i < 10; i++) {
599                 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
600                                         == PRCMU_PLLDSI_LOCKP_LOCKED)
601                         break;
602                 udelay(100);
603         }
604         /* Set DSIPLL_RESETN */
605         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
606         return 0;
607 }
608
609 int db8500_prcmu_disable_dsipll(void)
610 {
611         /* Disable dsi pll */
612         writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
613         /* Disable  escapeclock */
614         writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
615         return 0;
616 }
617
618 int db8500_prcmu_set_display_clocks(void)
619 {
620         unsigned long flags;
621
622         spin_lock_irqsave(&clk_mgt_lock, flags);
623
624         /* Grab the HW semaphore. */
625         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
626                 cpu_relax();
627
628         writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
629         writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
630         writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
631
632         /* Release the HW semaphore. */
633         writel(0, PRCM_SEM);
634
635         spin_unlock_irqrestore(&clk_mgt_lock, flags);
636
637         return 0;
638 }
639
640 u32 db8500_prcmu_read(unsigned int reg)
641 {
642         return readl(prcmu_base + reg);
643 }
644
645 void db8500_prcmu_write(unsigned int reg, u32 value)
646 {
647         unsigned long flags;
648
649         spin_lock_irqsave(&prcmu_lock, flags);
650         writel(value, (prcmu_base + reg));
651         spin_unlock_irqrestore(&prcmu_lock, flags);
652 }
653
654 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
655 {
656         u32 val;
657         unsigned long flags;
658
659         spin_lock_irqsave(&prcmu_lock, flags);
660         val = readl(prcmu_base + reg);
661         val = ((val & ~mask) | (value & mask));
662         writel(val, (prcmu_base + reg));
663         spin_unlock_irqrestore(&prcmu_lock, flags);
664 }
665
666 struct prcmu_fw_version *prcmu_get_fw_version(void)
667 {
668         return fw_info.valid ? &fw_info.version : NULL;
669 }
670
671 bool prcmu_has_arm_maxopp(void)
672 {
673         return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
674                 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
675 }
676
677 /**
678  * prcmu_set_rc_a2p - This function is used to run few power state sequences
679  * @val: Value to be set, i.e. transition requested
680  * Returns: 0 on success, -EINVAL on invalid argument
681  *
682  * This function is used to run the following power state sequences -
683  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
684  */
685 int prcmu_set_rc_a2p(enum romcode_write val)
686 {
687         if (val < RDY_2_DS || val > RDY_2_XP70_RST)
688                 return -EINVAL;
689         writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
690         return 0;
691 }
692
693 /**
694  * prcmu_get_rc_p2a - This function is used to get power state sequences
695  * Returns: the power transition that has last happened
696  *
697  * This function can return the following transitions-
698  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
699  */
700 enum romcode_read prcmu_get_rc_p2a(void)
701 {
702         return readb(tcdm_base + PRCM_ROMCODE_P2A);
703 }
704
705 /**
706  * prcmu_get_current_mode - Return the current XP70 power mode
707  * Returns: Returns the current AP(ARM) power mode: init,
708  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
709  */
710 enum ap_pwrst prcmu_get_xp70_current_state(void)
711 {
712         return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
713 }
714
715 /**
716  * prcmu_config_clkout - Configure one of the programmable clock outputs.
717  * @clkout:     The CLKOUT number (0 or 1).
718  * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
719  * @div:        The divider to be applied.
720  *
721  * Configures one of the programmable clock outputs (CLKOUTs).
722  * @div should be in the range [1,63] to request a configuration, or 0 to
723  * inform that the configuration is no longer requested.
724  */
725 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
726 {
727         static int requests[2];
728         int r = 0;
729         unsigned long flags;
730         u32 val;
731         u32 bits;
732         u32 mask;
733         u32 div_mask;
734
735         BUG_ON(clkout > 1);
736         BUG_ON(div > 63);
737         BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
738
739         if (!div && !requests[clkout])
740                 return -EINVAL;
741
742         switch (clkout) {
743         case 0:
744                 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
745                 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
746                 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
747                         (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
748                 break;
749         case 1:
750                 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
751                 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
752                         PRCM_CLKOCR_CLK1TYPE);
753                 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
754                         (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
755                 break;
756         }
757         bits &= mask;
758
759         spin_lock_irqsave(&clkout_lock, flags);
760
761         val = readl(PRCM_CLKOCR);
762         if (val & div_mask) {
763                 if (div) {
764                         if ((val & mask) != bits) {
765                                 r = -EBUSY;
766                                 goto unlock_and_return;
767                         }
768                 } else {
769                         if ((val & mask & ~div_mask) != bits) {
770                                 r = -EINVAL;
771                                 goto unlock_and_return;
772                         }
773                 }
774         }
775         writel((bits | (val & ~mask)), PRCM_CLKOCR);
776         requests[clkout] += (div ? 1 : -1);
777
778 unlock_and_return:
779         spin_unlock_irqrestore(&clkout_lock, flags);
780
781         return r;
782 }
783
784 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
785 {
786         unsigned long flags;
787
788         BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
789
790         spin_lock_irqsave(&mb0_transfer.lock, flags);
791
792         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
793                 cpu_relax();
794
795         writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
796         writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
797         writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
798         writeb((keep_ulp_clk ? 1 : 0),
799                 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
800         writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
801         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
802
803         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
804
805         return 0;
806 }
807
808 u8 db8500_prcmu_get_power_state_result(void)
809 {
810         return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
811 }
812
813 /* This function should only be called while mb0_transfer.lock is held. */
814 static void config_wakeups(void)
815 {
816         const u8 header[2] = {
817                 MB0H_CONFIG_WAKEUPS_EXE,
818                 MB0H_CONFIG_WAKEUPS_SLEEP
819         };
820         static u32 last_dbb_events;
821         static u32 last_abb_events;
822         u32 dbb_events;
823         u32 abb_events;
824         unsigned int i;
825
826         dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
827         dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
828
829         abb_events = mb0_transfer.req.abb_events;
830
831         if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
832                 return;
833
834         for (i = 0; i < 2; i++) {
835                 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
836                         cpu_relax();
837                 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
838                 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
839                 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
840                 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
841         }
842         last_dbb_events = dbb_events;
843         last_abb_events = abb_events;
844 }
845
846 void db8500_prcmu_enable_wakeups(u32 wakeups)
847 {
848         unsigned long flags;
849         u32 bits;
850         int i;
851
852         BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
853
854         for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
855                 if (wakeups & BIT(i))
856                         bits |= prcmu_wakeup_bit[i];
857         }
858
859         spin_lock_irqsave(&mb0_transfer.lock, flags);
860
861         mb0_transfer.req.dbb_wakeups = bits;
862         config_wakeups();
863
864         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
865 }
866
867 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
868 {
869         unsigned long flags;
870
871         spin_lock_irqsave(&mb0_transfer.lock, flags);
872
873         mb0_transfer.req.abb_events = abb_events;
874         config_wakeups();
875
876         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
877 }
878
879 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
880 {
881         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
882                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
883         else
884                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
885 }
886
887 /**
888  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
889  * @opp: The new ARM operating point to which transition is to be made
890  * Returns: 0 on success, non-zero on failure
891  *
892  * This function sets the the operating point of the ARM.
893  */
894 int db8500_prcmu_set_arm_opp(u8 opp)
895 {
896         int r;
897
898         if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
899                 return -EINVAL;
900
901         r = 0;
902
903         mutex_lock(&mb1_transfer.lock);
904
905         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
906                 cpu_relax();
907
908         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
909         writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
910         writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
911
912         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
913         wait_for_completion(&mb1_transfer.work);
914
915         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
916                 (mb1_transfer.ack.arm_opp != opp))
917                 r = -EIO;
918
919         mutex_unlock(&mb1_transfer.lock);
920
921         return r;
922 }
923
924 /**
925  * db8500_prcmu_get_arm_opp - get the current ARM OPP
926  *
927  * Returns: the current ARM OPP
928  */
929 int db8500_prcmu_get_arm_opp(void)
930 {
931         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
932 }
933
934 /**
935  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
936  *
937  * Returns: the current DDR OPP
938  */
939 int db8500_prcmu_get_ddr_opp(void)
940 {
941         return readb(PRCM_DDR_SUBSYS_APE_MINBW);
942 }
943
944 /**
945  * db8500_set_ddr_opp - set the appropriate DDR OPP
946  * @opp: The new DDR operating point to which transition is to be made
947  * Returns: 0 on success, non-zero on failure
948  *
949  * This function sets the operating point of the DDR.
950  */
951 static bool enable_set_ddr_opp;
952 int db8500_prcmu_set_ddr_opp(u8 opp)
953 {
954         if (opp < DDR_100_OPP || opp > DDR_25_OPP)
955                 return -EINVAL;
956         /* Changing the DDR OPP can hang the hardware pre-v21 */
957         if (enable_set_ddr_opp)
958                 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
959
960         return 0;
961 }
962
963 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
964 static void request_even_slower_clocks(bool enable)
965 {
966         u32 clock_reg[] = {
967                 PRCM_ACLK_MGT,
968                 PRCM_DMACLK_MGT
969         };
970         unsigned long flags;
971         unsigned int i;
972
973         spin_lock_irqsave(&clk_mgt_lock, flags);
974
975         /* Grab the HW semaphore. */
976         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
977                 cpu_relax();
978
979         for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
980                 u32 val;
981                 u32 div;
982
983                 val = readl(prcmu_base + clock_reg[i]);
984                 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
985                 if (enable) {
986                         if ((div <= 1) || (div > 15)) {
987                                 pr_err("prcmu: Bad clock divider %d in %s\n",
988                                         div, __func__);
989                                 goto unlock_and_return;
990                         }
991                         div <<= 1;
992                 } else {
993                         if (div <= 2)
994                                 goto unlock_and_return;
995                         div >>= 1;
996                 }
997                 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
998                         (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
999                 writel(val, prcmu_base + clock_reg[i]);
1000         }
1001
1002 unlock_and_return:
1003         /* Release the HW semaphore. */
1004         writel(0, PRCM_SEM);
1005
1006         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1007 }
1008
1009 /**
1010  * db8500_set_ape_opp - set the appropriate APE OPP
1011  * @opp: The new APE operating point to which transition is to be made
1012  * Returns: 0 on success, non-zero on failure
1013  *
1014  * This function sets the operating point of the APE.
1015  */
1016 int db8500_prcmu_set_ape_opp(u8 opp)
1017 {
1018         int r = 0;
1019
1020         if (opp == mb1_transfer.ape_opp)
1021                 return 0;
1022
1023         mutex_lock(&mb1_transfer.lock);
1024
1025         if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1026                 request_even_slower_clocks(false);
1027
1028         if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1029                 goto skip_message;
1030
1031         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1032                 cpu_relax();
1033
1034         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1035         writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1036         writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1037                 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1038
1039         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1040         wait_for_completion(&mb1_transfer.work);
1041
1042         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1043                 (mb1_transfer.ack.ape_opp != opp))
1044                 r = -EIO;
1045
1046 skip_message:
1047         if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1048                 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1049                 request_even_slower_clocks(true);
1050         if (!r)
1051                 mb1_transfer.ape_opp = opp;
1052
1053         mutex_unlock(&mb1_transfer.lock);
1054
1055         return r;
1056 }
1057
1058 /**
1059  * db8500_prcmu_get_ape_opp - get the current APE OPP
1060  *
1061  * Returns: the current APE OPP
1062  */
1063 int db8500_prcmu_get_ape_opp(void)
1064 {
1065         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1066 }
1067
1068 /**
1069  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1070  * @enable: true to request the higher voltage, false to drop a request.
1071  *
1072  * Calls to this function to enable and disable requests must be balanced.
1073  */
1074 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1075 {
1076         int r = 0;
1077         u8 header;
1078         static unsigned int requests;
1079
1080         mutex_lock(&mb1_transfer.lock);
1081
1082         if (enable) {
1083                 if (0 != requests++)
1084                         goto unlock_and_return;
1085                 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1086         } else {
1087                 if (requests == 0) {
1088                         r = -EIO;
1089                         goto unlock_and_return;
1090                 } else if (1 != requests--) {
1091                         goto unlock_and_return;
1092                 }
1093                 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1094         }
1095
1096         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1097                 cpu_relax();
1098
1099         writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1100
1101         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1102         wait_for_completion(&mb1_transfer.work);
1103
1104         if ((mb1_transfer.ack.header != header) ||
1105                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1106                 r = -EIO;
1107
1108 unlock_and_return:
1109         mutex_unlock(&mb1_transfer.lock);
1110
1111         return r;
1112 }
1113
1114 /**
1115  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1116  *
1117  * This function releases the power state requirements of a USB wakeup.
1118  */
1119 int prcmu_release_usb_wakeup_state(void)
1120 {
1121         int r = 0;
1122
1123         mutex_lock(&mb1_transfer.lock);
1124
1125         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1126                 cpu_relax();
1127
1128         writeb(MB1H_RELEASE_USB_WAKEUP,
1129                 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1130
1131         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1132         wait_for_completion(&mb1_transfer.work);
1133
1134         if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1135                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1136                 r = -EIO;
1137
1138         mutex_unlock(&mb1_transfer.lock);
1139
1140         return r;
1141 }
1142
1143 static int request_pll(u8 clock, bool enable)
1144 {
1145         int r = 0;
1146
1147         if (clock == PRCMU_PLLSOC0)
1148                 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1149         else if (clock == PRCMU_PLLSOC1)
1150                 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1151         else
1152                 return -EINVAL;
1153
1154         mutex_lock(&mb1_transfer.lock);
1155
1156         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1157                 cpu_relax();
1158
1159         writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1160         writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1161
1162         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1163         wait_for_completion(&mb1_transfer.work);
1164
1165         if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1166                 r = -EIO;
1167
1168         mutex_unlock(&mb1_transfer.lock);
1169
1170         return r;
1171 }
1172
1173 /**
1174  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1175  * @epod_id: The EPOD to set
1176  * @epod_state: The new EPOD state
1177  *
1178  * This function sets the state of a EPOD (power domain). It may not be called
1179  * from interrupt context.
1180  */
1181 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1182 {
1183         int r = 0;
1184         bool ram_retention = false;
1185         int i;
1186
1187         /* check argument */
1188         BUG_ON(epod_id >= NUM_EPOD_ID);
1189
1190         /* set flag if retention is possible */
1191         switch (epod_id) {
1192         case EPOD_ID_SVAMMDSP:
1193         case EPOD_ID_SIAMMDSP:
1194         case EPOD_ID_ESRAM12:
1195         case EPOD_ID_ESRAM34:
1196                 ram_retention = true;
1197                 break;
1198         }
1199
1200         /* check argument */
1201         BUG_ON(epod_state > EPOD_STATE_ON);
1202         BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1203
1204         /* get lock */
1205         mutex_lock(&mb2_transfer.lock);
1206
1207         /* wait for mailbox */
1208         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1209                 cpu_relax();
1210
1211         /* fill in mailbox */
1212         for (i = 0; i < NUM_EPOD_ID; i++)
1213                 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1214         writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1215
1216         writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1217
1218         writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1219
1220         /*
1221          * The current firmware version does not handle errors correctly,
1222          * and we cannot recover if there is an error.
1223          * This is expected to change when the firmware is updated.
1224          */
1225         if (!wait_for_completion_timeout(&mb2_transfer.work,
1226                         msecs_to_jiffies(20000))) {
1227                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1228                         __func__);
1229                 r = -EIO;
1230                 goto unlock_and_return;
1231         }
1232
1233         if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1234                 r = -EIO;
1235
1236 unlock_and_return:
1237         mutex_unlock(&mb2_transfer.lock);
1238         return r;
1239 }
1240
1241 /**
1242  * prcmu_configure_auto_pm - Configure autonomous power management.
1243  * @sleep: Configuration for ApSleep.
1244  * @idle:  Configuration for ApIdle.
1245  */
1246 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1247         struct prcmu_auto_pm_config *idle)
1248 {
1249         u32 sleep_cfg;
1250         u32 idle_cfg;
1251         unsigned long flags;
1252
1253         BUG_ON((sleep == NULL) || (idle == NULL));
1254
1255         sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1256         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1257         sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1258         sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1259         sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1260         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1261
1262         idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1263         idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1264         idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1265         idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1266         idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1267         idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1268
1269         spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1270
1271         /*
1272          * The autonomous power management configuration is done through
1273          * fields in mailbox 2, but these fields are only used as shared
1274          * variables - i.e. there is no need to send a message.
1275          */
1276         writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1277         writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1278
1279         mb2_transfer.auto_pm_enabled =
1280                 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1281                  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1282                  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1283                  (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1284
1285         spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1286 }
1287 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1288
1289 bool prcmu_is_auto_pm_enabled(void)
1290 {
1291         return mb2_transfer.auto_pm_enabled;
1292 }
1293
1294 static int request_sysclk(bool enable)
1295 {
1296         int r;
1297         unsigned long flags;
1298
1299         r = 0;
1300
1301         mutex_lock(&mb3_transfer.sysclk_lock);
1302
1303         spin_lock_irqsave(&mb3_transfer.lock, flags);
1304
1305         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1306                 cpu_relax();
1307
1308         writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1309
1310         writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1311         writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1312
1313         spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1314
1315         /*
1316          * The firmware only sends an ACK if we want to enable the
1317          * SysClk, and it succeeds.
1318          */
1319         if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1320                         msecs_to_jiffies(20000))) {
1321                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1322                         __func__);
1323                 r = -EIO;
1324         }
1325
1326         mutex_unlock(&mb3_transfer.sysclk_lock);
1327
1328         return r;
1329 }
1330
1331 static int request_timclk(bool enable)
1332 {
1333         u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1334
1335         if (!enable)
1336                 val |= PRCM_TCR_STOP_TIMERS;
1337         writel(val, PRCM_TCR);
1338
1339         return 0;
1340 }
1341
1342 static int request_clock(u8 clock, bool enable)
1343 {
1344         u32 val;
1345         unsigned long flags;
1346
1347         spin_lock_irqsave(&clk_mgt_lock, flags);
1348
1349         /* Grab the HW semaphore. */
1350         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1351                 cpu_relax();
1352
1353         val = readl(prcmu_base + clk_mgt[clock].offset);
1354         if (enable) {
1355                 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1356         } else {
1357                 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1358                 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1359         }
1360         writel(val, prcmu_base + clk_mgt[clock].offset);
1361
1362         /* Release the HW semaphore. */
1363         writel(0, PRCM_SEM);
1364
1365         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1366
1367         return 0;
1368 }
1369
1370 static int request_sga_clock(u8 clock, bool enable)
1371 {
1372         u32 val;
1373         int ret;
1374
1375         if (enable) {
1376                 val = readl(PRCM_CGATING_BYPASS);
1377                 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1378         }
1379
1380         ret = request_clock(clock, enable);
1381
1382         if (!ret && !enable) {
1383                 val = readl(PRCM_CGATING_BYPASS);
1384                 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1385         }
1386
1387         return ret;
1388 }
1389
1390 static inline bool plldsi_locked(void)
1391 {
1392         return (readl(PRCM_PLLDSI_LOCKP) &
1393                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1394                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1395                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1396                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1397 }
1398
1399 static int request_plldsi(bool enable)
1400 {
1401         int r = 0;
1402         u32 val;
1403
1404         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1405                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1406                 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1407
1408         val = readl(PRCM_PLLDSI_ENABLE);
1409         if (enable)
1410                 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1411         else
1412                 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1413         writel(val, PRCM_PLLDSI_ENABLE);
1414
1415         if (enable) {
1416                 unsigned int i;
1417                 bool locked = plldsi_locked();
1418
1419                 for (i = 10; !locked && (i > 0); --i) {
1420                         udelay(100);
1421                         locked = plldsi_locked();
1422                 }
1423                 if (locked) {
1424                         writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1425                                 PRCM_APE_RESETN_SET);
1426                 } else {
1427                         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1428                                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1429                                 PRCM_MMIP_LS_CLAMP_SET);
1430                         val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1431                         writel(val, PRCM_PLLDSI_ENABLE);
1432                         r = -EAGAIN;
1433                 }
1434         } else {
1435                 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1436         }
1437         return r;
1438 }
1439
1440 static int request_dsiclk(u8 n, bool enable)
1441 {
1442         u32 val;
1443
1444         val = readl(PRCM_DSI_PLLOUT_SEL);
1445         val &= ~dsiclk[n].divsel_mask;
1446         val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1447                 dsiclk[n].divsel_shift);
1448         writel(val, PRCM_DSI_PLLOUT_SEL);
1449         return 0;
1450 }
1451
1452 static int request_dsiescclk(u8 n, bool enable)
1453 {
1454         u32 val;
1455
1456         val = readl(PRCM_DSITVCLK_DIV);
1457         enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1458         writel(val, PRCM_DSITVCLK_DIV);
1459         return 0;
1460 }
1461
1462 /**
1463  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1464  * @clock:      The clock for which the request is made.
1465  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1466  *
1467  * This function should only be used by the clock implementation.
1468  * Do not use it from any other place!
1469  */
1470 int db8500_prcmu_request_clock(u8 clock, bool enable)
1471 {
1472         if (clock == PRCMU_SGACLK)
1473                 return request_sga_clock(clock, enable);
1474         else if (clock < PRCMU_NUM_REG_CLOCKS)
1475                 return request_clock(clock, enable);
1476         else if (clock == PRCMU_TIMCLK)
1477                 return request_timclk(enable);
1478         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1479                 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1480         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1481                 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1482         else if (clock == PRCMU_PLLDSI)
1483                 return request_plldsi(enable);
1484         else if (clock == PRCMU_SYSCLK)
1485                 return request_sysclk(enable);
1486         else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1487                 return request_pll(clock, enable);
1488         else
1489                 return -EINVAL;
1490 }
1491
1492 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1493         int branch)
1494 {
1495         u64 rate;
1496         u32 val;
1497         u32 d;
1498         u32 div = 1;
1499
1500         val = readl(reg);
1501
1502         rate = src_rate;
1503         rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1504
1505         d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1506         if (d > 1)
1507                 div *= d;
1508
1509         d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1510         if (d > 1)
1511                 div *= d;
1512
1513         if (val & PRCM_PLL_FREQ_SELDIV2)
1514                 div *= 2;
1515
1516         if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1517                 (val & PRCM_PLL_FREQ_DIV2EN) &&
1518                 ((reg == PRCM_PLLSOC0_FREQ) ||
1519                  (reg == PRCM_PLLARM_FREQ) ||
1520                  (reg == PRCM_PLLDDR_FREQ))))
1521                 div *= 2;
1522
1523         (void)do_div(rate, div);
1524
1525         return (unsigned long)rate;
1526 }
1527
1528 #define ROOT_CLOCK_RATE 38400000
1529
1530 static unsigned long clock_rate(u8 clock)
1531 {
1532         u32 val;
1533         u32 pllsw;
1534         unsigned long rate = ROOT_CLOCK_RATE;
1535
1536         val = readl(prcmu_base + clk_mgt[clock].offset);
1537
1538         if (val & PRCM_CLK_MGT_CLK38) {
1539                 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1540                         rate /= 2;
1541                 return rate;
1542         }
1543
1544         val |= clk_mgt[clock].pllsw;
1545         pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1546
1547         if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1548                 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1549         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1550                 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1551         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1552                 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1553         else
1554                 return 0;
1555
1556         if ((clock == PRCMU_SGACLK) &&
1557                 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1558                 u64 r = (rate * 10);
1559
1560                 (void)do_div(r, 25);
1561                 return (unsigned long)r;
1562         }
1563         val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1564         if (val)
1565                 return rate / val;
1566         else
1567                 return 0;
1568 }
1569
1570 static unsigned long armss_rate(void)
1571 {
1572         u32 r;
1573         unsigned long rate;
1574
1575         r = readl(PRCM_ARM_CHGCLKREQ);
1576
1577         if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1578                 /* External ARMCLKFIX clock */
1579
1580                 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1581
1582                 /* Check PRCM_ARM_CHGCLKREQ divider */
1583                 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1584                         rate /= 2;
1585
1586                 /* Check PRCM_ARMCLKFIX_MGT divider */
1587                 r = readl(PRCM_ARMCLKFIX_MGT);
1588                 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1589                 rate /= r;
1590
1591         } else {/* ARM PLL */
1592                 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1593         }
1594
1595         return rate;
1596 }
1597
1598 static unsigned long dsiclk_rate(u8 n)
1599 {
1600         u32 divsel;
1601         u32 div = 1;
1602
1603         divsel = readl(PRCM_DSI_PLLOUT_SEL);
1604         divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1605
1606         if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1607                 divsel = dsiclk[n].divsel;
1608         else
1609                 dsiclk[n].divsel = divsel;
1610
1611         switch (divsel) {
1612         case PRCM_DSI_PLLOUT_SEL_PHI_4:
1613                 div *= 2;
1614         case PRCM_DSI_PLLOUT_SEL_PHI_2:
1615                 div *= 2;
1616         case PRCM_DSI_PLLOUT_SEL_PHI:
1617                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1618                         PLL_RAW) / div;
1619         default:
1620                 return 0;
1621         }
1622 }
1623
1624 static unsigned long dsiescclk_rate(u8 n)
1625 {
1626         u32 div;
1627
1628         div = readl(PRCM_DSITVCLK_DIV);
1629         div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1630         return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1631 }
1632
1633 unsigned long prcmu_clock_rate(u8 clock)
1634 {
1635         if (clock < PRCMU_NUM_REG_CLOCKS)
1636                 return clock_rate(clock);
1637         else if (clock == PRCMU_TIMCLK)
1638                 return ROOT_CLOCK_RATE / 16;
1639         else if (clock == PRCMU_SYSCLK)
1640                 return ROOT_CLOCK_RATE;
1641         else if (clock == PRCMU_PLLSOC0)
1642                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1643         else if (clock == PRCMU_PLLSOC1)
1644                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1645         else if (clock == PRCMU_ARMSS)
1646                 return armss_rate();
1647         else if (clock == PRCMU_PLLDDR)
1648                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1649         else if (clock == PRCMU_PLLDSI)
1650                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1651                         PLL_RAW);
1652         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1653                 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1654         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1655                 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1656         else
1657                 return 0;
1658 }
1659
1660 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1661 {
1662         if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1663                 return ROOT_CLOCK_RATE;
1664         clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1665         if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1666                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1667         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1668                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1669         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1670                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1671         else
1672                 return 0;
1673 }
1674
1675 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1676 {
1677         u32 div;
1678
1679         div = (src_rate / rate);
1680         if (div == 0)
1681                 return 1;
1682         if (rate < (src_rate / div))
1683                 div++;
1684         return div;
1685 }
1686
1687 static long round_clock_rate(u8 clock, unsigned long rate)
1688 {
1689         u32 val;
1690         u32 div;
1691         unsigned long src_rate;
1692         long rounded_rate;
1693
1694         val = readl(prcmu_base + clk_mgt[clock].offset);
1695         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1696                 clk_mgt[clock].branch);
1697         div = clock_divider(src_rate, rate);
1698         if (val & PRCM_CLK_MGT_CLK38) {
1699                 if (clk_mgt[clock].clk38div) {
1700                         if (div > 2)
1701                                 div = 2;
1702                 } else {
1703                         div = 1;
1704                 }
1705         } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1706                 u64 r = (src_rate * 10);
1707
1708                 (void)do_div(r, 25);
1709                 if (r <= rate)
1710                         return (unsigned long)r;
1711         }
1712         rounded_rate = (src_rate / min(div, (u32)31));
1713
1714         return rounded_rate;
1715 }
1716
1717 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1718 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1719         { .frequency = 200000, .driver_data = ARM_EXTCLK,},
1720         { .frequency = 400000, .driver_data = ARM_50_OPP,},
1721         { .frequency = 800000, .driver_data = ARM_100_OPP,},
1722         { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1723         { .frequency = CPUFREQ_TABLE_END,},
1724 };
1725
1726 static long round_armss_rate(unsigned long rate)
1727 {
1728         struct cpufreq_frequency_table *pos;
1729         long freq = 0;
1730
1731         /* cpufreq table frequencies is in KHz. */
1732         rate = rate / 1000;
1733
1734         /* Find the corresponding arm opp from the cpufreq table. */
1735         cpufreq_for_each_entry(pos, db8500_cpufreq_table) {
1736                 freq = pos->frequency;
1737                 if (freq == rate)
1738                         break;
1739         }
1740
1741         /* Return the last valid value, even if a match was not found. */
1742         return freq * 1000;
1743 }
1744
1745 #define MIN_PLL_VCO_RATE 600000000ULL
1746 #define MAX_PLL_VCO_RATE 1680640000ULL
1747
1748 static long round_plldsi_rate(unsigned long rate)
1749 {
1750         long rounded_rate = 0;
1751         unsigned long src_rate;
1752         unsigned long rem;
1753         u32 r;
1754
1755         src_rate = clock_rate(PRCMU_HDMICLK);
1756         rem = rate;
1757
1758         for (r = 7; (rem > 0) && (r > 0); r--) {
1759                 u64 d;
1760
1761                 d = (r * rate);
1762                 (void)do_div(d, src_rate);
1763                 if (d < 6)
1764                         d = 6;
1765                 else if (d > 255)
1766                         d = 255;
1767                 d *= src_rate;
1768                 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1769                         ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1770                         continue;
1771                 (void)do_div(d, r);
1772                 if (rate < d) {
1773                         if (rounded_rate == 0)
1774                                 rounded_rate = (long)d;
1775                         break;
1776                 }
1777                 if ((rate - d) < rem) {
1778                         rem = (rate - d);
1779                         rounded_rate = (long)d;
1780                 }
1781         }
1782         return rounded_rate;
1783 }
1784
1785 static long round_dsiclk_rate(unsigned long rate)
1786 {
1787         u32 div;
1788         unsigned long src_rate;
1789         long rounded_rate;
1790
1791         src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1792                 PLL_RAW);
1793         div = clock_divider(src_rate, rate);
1794         rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1795
1796         return rounded_rate;
1797 }
1798
1799 static long round_dsiescclk_rate(unsigned long rate)
1800 {
1801         u32 div;
1802         unsigned long src_rate;
1803         long rounded_rate;
1804
1805         src_rate = clock_rate(PRCMU_TVCLK);
1806         div = clock_divider(src_rate, rate);
1807         rounded_rate = (src_rate / min(div, (u32)255));
1808
1809         return rounded_rate;
1810 }
1811
1812 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1813 {
1814         if (clock < PRCMU_NUM_REG_CLOCKS)
1815                 return round_clock_rate(clock, rate);
1816         else if (clock == PRCMU_ARMSS)
1817                 return round_armss_rate(rate);
1818         else if (clock == PRCMU_PLLDSI)
1819                 return round_plldsi_rate(rate);
1820         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1821                 return round_dsiclk_rate(rate);
1822         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1823                 return round_dsiescclk_rate(rate);
1824         else
1825                 return (long)prcmu_clock_rate(clock);
1826 }
1827
1828 static void set_clock_rate(u8 clock, unsigned long rate)
1829 {
1830         u32 val;
1831         u32 div;
1832         unsigned long src_rate;
1833         unsigned long flags;
1834
1835         spin_lock_irqsave(&clk_mgt_lock, flags);
1836
1837         /* Grab the HW semaphore. */
1838         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1839                 cpu_relax();
1840
1841         val = readl(prcmu_base + clk_mgt[clock].offset);
1842         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1843                 clk_mgt[clock].branch);
1844         div = clock_divider(src_rate, rate);
1845         if (val & PRCM_CLK_MGT_CLK38) {
1846                 if (clk_mgt[clock].clk38div) {
1847                         if (div > 1)
1848                                 val |= PRCM_CLK_MGT_CLK38DIV;
1849                         else
1850                                 val &= ~PRCM_CLK_MGT_CLK38DIV;
1851                 }
1852         } else if (clock == PRCMU_SGACLK) {
1853                 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1854                         PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1855                 if (div == 3) {
1856                         u64 r = (src_rate * 10);
1857
1858                         (void)do_div(r, 25);
1859                         if (r <= rate) {
1860                                 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1861                                 div = 0;
1862                         }
1863                 }
1864                 val |= min(div, (u32)31);
1865         } else {
1866                 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1867                 val |= min(div, (u32)31);
1868         }
1869         writel(val, prcmu_base + clk_mgt[clock].offset);
1870
1871         /* Release the HW semaphore. */
1872         writel(0, PRCM_SEM);
1873
1874         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1875 }
1876
1877 static int set_armss_rate(unsigned long rate)
1878 {
1879         struct cpufreq_frequency_table *pos;
1880
1881         /* cpufreq table frequencies is in KHz. */
1882         rate = rate / 1000;
1883
1884         /* Find the corresponding arm opp from the cpufreq table. */
1885         cpufreq_for_each_entry(pos, db8500_cpufreq_table)
1886                 if (pos->frequency == rate)
1887                         break;
1888
1889         if (pos->frequency != rate)
1890                 return -EINVAL;
1891
1892         /* Set the new arm opp. */
1893         return db8500_prcmu_set_arm_opp(pos->driver_data);
1894 }
1895
1896 static int set_plldsi_rate(unsigned long rate)
1897 {
1898         unsigned long src_rate;
1899         unsigned long rem;
1900         u32 pll_freq = 0;
1901         u32 r;
1902
1903         src_rate = clock_rate(PRCMU_HDMICLK);
1904         rem = rate;
1905
1906         for (r = 7; (rem > 0) && (r > 0); r--) {
1907                 u64 d;
1908                 u64 hwrate;
1909
1910                 d = (r * rate);
1911                 (void)do_div(d, src_rate);
1912                 if (d < 6)
1913                         d = 6;
1914                 else if (d > 255)
1915                         d = 255;
1916                 hwrate = (d * src_rate);
1917                 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1918                         ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1919                         continue;
1920                 (void)do_div(hwrate, r);
1921                 if (rate < hwrate) {
1922                         if (pll_freq == 0)
1923                                 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1924                                         (r << PRCM_PLL_FREQ_R_SHIFT));
1925                         break;
1926                 }
1927                 if ((rate - hwrate) < rem) {
1928                         rem = (rate - hwrate);
1929                         pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1930                                 (r << PRCM_PLL_FREQ_R_SHIFT));
1931                 }
1932         }
1933         if (pll_freq == 0)
1934                 return -EINVAL;
1935
1936         pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1937         writel(pll_freq, PRCM_PLLDSI_FREQ);
1938
1939         return 0;
1940 }
1941
1942 static void set_dsiclk_rate(u8 n, unsigned long rate)
1943 {
1944         u32 val;
1945         u32 div;
1946
1947         div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1948                         clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1949
1950         dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1951                            (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1952                            /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
1953
1954         val = readl(PRCM_DSI_PLLOUT_SEL);
1955         val &= ~dsiclk[n].divsel_mask;
1956         val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1957         writel(val, PRCM_DSI_PLLOUT_SEL);
1958 }
1959
1960 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1961 {
1962         u32 val;
1963         u32 div;
1964
1965         div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1966         val = readl(PRCM_DSITVCLK_DIV);
1967         val &= ~dsiescclk[n].div_mask;
1968         val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1969         writel(val, PRCM_DSITVCLK_DIV);
1970 }
1971
1972 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1973 {
1974         if (clock < PRCMU_NUM_REG_CLOCKS)
1975                 set_clock_rate(clock, rate);
1976         else if (clock == PRCMU_ARMSS)
1977                 return set_armss_rate(rate);
1978         else if (clock == PRCMU_PLLDSI)
1979                 return set_plldsi_rate(rate);
1980         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1981                 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1982         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1983                 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1984         return 0;
1985 }
1986
1987 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1988 {
1989         if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1990             (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1991                 return -EINVAL;
1992
1993         mutex_lock(&mb4_transfer.lock);
1994
1995         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1996                 cpu_relax();
1997
1998         writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1999         writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2000                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2001         writeb(DDR_PWR_STATE_ON,
2002                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2003         writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2004
2005         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2006         wait_for_completion(&mb4_transfer.work);
2007
2008         mutex_unlock(&mb4_transfer.lock);
2009
2010         return 0;
2011 }
2012
2013 int db8500_prcmu_config_hotdog(u8 threshold)
2014 {
2015         mutex_lock(&mb4_transfer.lock);
2016
2017         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2018                 cpu_relax();
2019
2020         writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2021         writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2022
2023         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2024         wait_for_completion(&mb4_transfer.work);
2025
2026         mutex_unlock(&mb4_transfer.lock);
2027
2028         return 0;
2029 }
2030
2031 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2032 {
2033         mutex_lock(&mb4_transfer.lock);
2034
2035         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2036                 cpu_relax();
2037
2038         writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2039         writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2040         writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2041                 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2042         writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2043
2044         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2045         wait_for_completion(&mb4_transfer.work);
2046
2047         mutex_unlock(&mb4_transfer.lock);
2048
2049         return 0;
2050 }
2051
2052 static int config_hot_period(u16 val)
2053 {
2054         mutex_lock(&mb4_transfer.lock);
2055
2056         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2057                 cpu_relax();
2058
2059         writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2060         writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2061
2062         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2063         wait_for_completion(&mb4_transfer.work);
2064
2065         mutex_unlock(&mb4_transfer.lock);
2066
2067         return 0;
2068 }
2069
2070 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2071 {
2072         if (cycles32k == 0xFFFF)
2073                 return -EINVAL;
2074
2075         return config_hot_period(cycles32k);
2076 }
2077
2078 int db8500_prcmu_stop_temp_sense(void)
2079 {
2080         return config_hot_period(0xFFFF);
2081 }
2082
2083 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2084 {
2085
2086         mutex_lock(&mb4_transfer.lock);
2087
2088         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2089                 cpu_relax();
2090
2091         writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2092         writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2093         writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2094         writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2095
2096         writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2097
2098         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2099         wait_for_completion(&mb4_transfer.work);
2100
2101         mutex_unlock(&mb4_transfer.lock);
2102
2103         return 0;
2104
2105 }
2106
2107 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2108 {
2109         BUG_ON(num == 0 || num > 0xf);
2110         return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2111                             sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2112                             A9WDOG_AUTO_OFF_DIS);
2113 }
2114 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2115
2116 int db8500_prcmu_enable_a9wdog(u8 id)
2117 {
2118         return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2119 }
2120 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2121
2122 int db8500_prcmu_disable_a9wdog(u8 id)
2123 {
2124         return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2125 }
2126 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2127
2128 int db8500_prcmu_kick_a9wdog(u8 id)
2129 {
2130         return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2131 }
2132 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2133
2134 /*
2135  * timeout is 28 bit, in ms.
2136  */
2137 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2138 {
2139         return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2140                             (id & A9WDOG_ID_MASK) |
2141                             /*
2142                              * Put the lowest 28 bits of timeout at
2143                              * offset 4. Four first bits are used for id.
2144                              */
2145                             (u8)((timeout << 4) & 0xf0),
2146                             (u8)((timeout >> 4) & 0xff),
2147                             (u8)((timeout >> 12) & 0xff),
2148                             (u8)((timeout >> 20) & 0xff));
2149 }
2150 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2151
2152 /**
2153  * prcmu_abb_read() - Read register value(s) from the ABB.
2154  * @slave:      The I2C slave address.
2155  * @reg:        The (start) register address.
2156  * @value:      The read out value(s).
2157  * @size:       The number of registers to read.
2158  *
2159  * Reads register value(s) from the ABB.
2160  * @size has to be 1 for the current firmware version.
2161  */
2162 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2163 {
2164         int r;
2165
2166         if (size != 1)
2167                 return -EINVAL;
2168
2169         mutex_lock(&mb5_transfer.lock);
2170
2171         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2172                 cpu_relax();
2173
2174         writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2175         writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2176         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2177         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2178         writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2179
2180         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2181
2182         if (!wait_for_completion_timeout(&mb5_transfer.work,
2183                                 msecs_to_jiffies(20000))) {
2184                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2185                         __func__);
2186                 r = -EIO;
2187         } else {
2188                 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2189         }
2190
2191         if (!r)
2192                 *value = mb5_transfer.ack.value;
2193
2194         mutex_unlock(&mb5_transfer.lock);
2195
2196         return r;
2197 }
2198
2199 /**
2200  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2201  * @slave:      The I2C slave address.
2202  * @reg:        The (start) register address.
2203  * @value:      The value(s) to write.
2204  * @mask:       The mask(s) to use.
2205  * @size:       The number of registers to write.
2206  *
2207  * Writes masked register value(s) to the ABB.
2208  * For each @value, only the bits set to 1 in the corresponding @mask
2209  * will be written. The other bits are not changed.
2210  * @size has to be 1 for the current firmware version.
2211  */
2212 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2213 {
2214         int r;
2215
2216         if (size != 1)
2217                 return -EINVAL;
2218
2219         mutex_lock(&mb5_transfer.lock);
2220
2221         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2222                 cpu_relax();
2223
2224         writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2225         writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2226         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2227         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2228         writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2229
2230         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2231
2232         if (!wait_for_completion_timeout(&mb5_transfer.work,
2233                                 msecs_to_jiffies(20000))) {
2234                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2235                         __func__);
2236                 r = -EIO;
2237         } else {
2238                 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2239         }
2240
2241         mutex_unlock(&mb5_transfer.lock);
2242
2243         return r;
2244 }
2245
2246 /**
2247  * prcmu_abb_write() - Write register value(s) to the ABB.
2248  * @slave:      The I2C slave address.
2249  * @reg:        The (start) register address.
2250  * @value:      The value(s) to write.
2251  * @size:       The number of registers to write.
2252  *
2253  * Writes register value(s) to the ABB.
2254  * @size has to be 1 for the current firmware version.
2255  */
2256 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2257 {
2258         u8 mask = ~0;
2259
2260         return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2261 }
2262
2263 /**
2264  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2265  */
2266 int prcmu_ac_wake_req(void)
2267 {
2268         u32 val;
2269         int ret = 0;
2270
2271         mutex_lock(&mb0_transfer.ac_wake_lock);
2272
2273         val = readl(PRCM_HOSTACCESS_REQ);
2274         if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2275                 goto unlock_and_return;
2276
2277         atomic_set(&ac_wake_req_state, 1);
2278
2279         /*
2280          * Force Modem Wake-up before hostaccess_req ping-pong.
2281          * It prevents Modem to enter in Sleep while acking the hostaccess
2282          * request. The 31us delay has been calculated by HWI.
2283          */
2284         val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2285         writel(val, PRCM_HOSTACCESS_REQ);
2286
2287         udelay(31);
2288
2289         val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2290         writel(val, PRCM_HOSTACCESS_REQ);
2291
2292         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2293                         msecs_to_jiffies(5000))) {
2294                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2295                         __func__);
2296                 ret = -EFAULT;
2297         }
2298
2299 unlock_and_return:
2300         mutex_unlock(&mb0_transfer.ac_wake_lock);
2301         return ret;
2302 }
2303
2304 /**
2305  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2306  */
2307 void prcmu_ac_sleep_req(void)
2308 {
2309         u32 val;
2310
2311         mutex_lock(&mb0_transfer.ac_wake_lock);
2312
2313         val = readl(PRCM_HOSTACCESS_REQ);
2314         if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2315                 goto unlock_and_return;
2316
2317         writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2318                 PRCM_HOSTACCESS_REQ);
2319
2320         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2321                         msecs_to_jiffies(5000))) {
2322                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2323                         __func__);
2324         }
2325
2326         atomic_set(&ac_wake_req_state, 0);
2327
2328 unlock_and_return:
2329         mutex_unlock(&mb0_transfer.ac_wake_lock);
2330 }
2331
2332 bool db8500_prcmu_is_ac_wake_requested(void)
2333 {
2334         return (atomic_read(&ac_wake_req_state) != 0);
2335 }
2336
2337 /**
2338  * db8500_prcmu_system_reset - System reset
2339  *
2340  * Saves the reset reason code and then sets the APE_SOFTRST register which
2341  * fires interrupt to fw
2342  */
2343 void db8500_prcmu_system_reset(u16 reset_code)
2344 {
2345         writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2346         writel(1, PRCM_APE_SOFTRST);
2347 }
2348
2349 /**
2350  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2351  *
2352  * Retrieves the reset reason code stored by prcmu_system_reset() before
2353  * last restart.
2354  */
2355 u16 db8500_prcmu_get_reset_code(void)
2356 {
2357         return readw(tcdm_base + PRCM_SW_RST_REASON);
2358 }
2359
2360 /**
2361  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2362  */
2363 void db8500_prcmu_modem_reset(void)
2364 {
2365         mutex_lock(&mb1_transfer.lock);
2366
2367         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2368                 cpu_relax();
2369
2370         writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2371         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2372         wait_for_completion(&mb1_transfer.work);
2373
2374         /*
2375          * No need to check return from PRCMU as modem should go in reset state
2376          * This state is already managed by upper layer
2377          */
2378
2379         mutex_unlock(&mb1_transfer.lock);
2380 }
2381
2382 static void ack_dbb_wakeup(void)
2383 {
2384         unsigned long flags;
2385
2386         spin_lock_irqsave(&mb0_transfer.lock, flags);
2387
2388         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2389                 cpu_relax();
2390
2391         writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2392         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2393
2394         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2395 }
2396
2397 static inline void print_unknown_header_warning(u8 n, u8 header)
2398 {
2399         pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2400                 header, n);
2401 }
2402
2403 static bool read_mailbox_0(void)
2404 {
2405         bool r;
2406         u32 ev;
2407         unsigned int n;
2408         u8 header;
2409
2410         header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2411         switch (header) {
2412         case MB0H_WAKEUP_EXE:
2413         case MB0H_WAKEUP_SLEEP:
2414                 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2415                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2416                 else
2417                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2418
2419                 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2420                         complete(&mb0_transfer.ac_wake_work);
2421                 if (ev & WAKEUP_BIT_SYSCLK_OK)
2422                         complete(&mb3_transfer.sysclk_work);
2423
2424                 ev &= mb0_transfer.req.dbb_irqs;
2425
2426                 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2427                         if (ev & prcmu_irq_bit[n])
2428                                 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2429                 }
2430                 r = true;
2431                 break;
2432         default:
2433                 print_unknown_header_warning(0, header);
2434                 r = false;
2435                 break;
2436         }
2437         writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2438         return r;
2439 }
2440
2441 static bool read_mailbox_1(void)
2442 {
2443         mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2444         mb1_transfer.ack.arm_opp = readb(tcdm_base +
2445                 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2446         mb1_transfer.ack.ape_opp = readb(tcdm_base +
2447                 PRCM_ACK_MB1_CURRENT_APE_OPP);
2448         mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2449                 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2450         writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2451         complete(&mb1_transfer.work);
2452         return false;
2453 }
2454
2455 static bool read_mailbox_2(void)
2456 {
2457         mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2458         writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2459         complete(&mb2_transfer.work);
2460         return false;
2461 }
2462
2463 static bool read_mailbox_3(void)
2464 {
2465         writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2466         return false;
2467 }
2468
2469 static bool read_mailbox_4(void)
2470 {
2471         u8 header;
2472         bool do_complete = true;
2473
2474         header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2475         switch (header) {
2476         case MB4H_MEM_ST:
2477         case MB4H_HOTDOG:
2478         case MB4H_HOTMON:
2479         case MB4H_HOT_PERIOD:
2480         case MB4H_A9WDOG_CONF:
2481         case MB4H_A9WDOG_EN:
2482         case MB4H_A9WDOG_DIS:
2483         case MB4H_A9WDOG_LOAD:
2484         case MB4H_A9WDOG_KICK:
2485                 break;
2486         default:
2487                 print_unknown_header_warning(4, header);
2488                 do_complete = false;
2489                 break;
2490         }
2491
2492         writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2493
2494         if (do_complete)
2495                 complete(&mb4_transfer.work);
2496
2497         return false;
2498 }
2499
2500 static bool read_mailbox_5(void)
2501 {
2502         mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2503         mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2504         writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2505         complete(&mb5_transfer.work);
2506         return false;
2507 }
2508
2509 static bool read_mailbox_6(void)
2510 {
2511         writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2512         return false;
2513 }
2514
2515 static bool read_mailbox_7(void)
2516 {
2517         writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2518         return false;
2519 }
2520
2521 static bool (* const read_mailbox[NUM_MB])(void) = {
2522         read_mailbox_0,
2523         read_mailbox_1,
2524         read_mailbox_2,
2525         read_mailbox_3,
2526         read_mailbox_4,
2527         read_mailbox_5,
2528         read_mailbox_6,
2529         read_mailbox_7
2530 };
2531
2532 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2533 {
2534         u32 bits;
2535         u8 n;
2536         irqreturn_t r;
2537
2538         bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2539         if (unlikely(!bits))
2540                 return IRQ_NONE;
2541
2542         r = IRQ_HANDLED;
2543         for (n = 0; bits; n++) {
2544                 if (bits & MBOX_BIT(n)) {
2545                         bits -= MBOX_BIT(n);
2546                         if (read_mailbox[n]())
2547                                 r = IRQ_WAKE_THREAD;
2548                 }
2549         }
2550         return r;
2551 }
2552
2553 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2554 {
2555         ack_dbb_wakeup();
2556         return IRQ_HANDLED;
2557 }
2558
2559 static void prcmu_mask_work(struct work_struct *work)
2560 {
2561         unsigned long flags;
2562
2563         spin_lock_irqsave(&mb0_transfer.lock, flags);
2564
2565         config_wakeups();
2566
2567         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2568 }
2569
2570 static void prcmu_irq_mask(struct irq_data *d)
2571 {
2572         unsigned long flags;
2573
2574         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2575
2576         mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2577
2578         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2579
2580         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2581                 schedule_work(&mb0_transfer.mask_work);
2582 }
2583
2584 static void prcmu_irq_unmask(struct irq_data *d)
2585 {
2586         unsigned long flags;
2587
2588         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2589
2590         mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2591
2592         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2593
2594         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2595                 schedule_work(&mb0_transfer.mask_work);
2596 }
2597
2598 static void noop(struct irq_data *d)
2599 {
2600 }
2601
2602 static struct irq_chip prcmu_irq_chip = {
2603         .name           = "prcmu",
2604         .irq_disable    = prcmu_irq_mask,
2605         .irq_ack        = noop,
2606         .irq_mask       = prcmu_irq_mask,
2607         .irq_unmask     = prcmu_irq_unmask,
2608 };
2609
2610 static __init char *fw_project_name(u32 project)
2611 {
2612         switch (project) {
2613         case PRCMU_FW_PROJECT_U8500:
2614                 return "U8500";
2615         case PRCMU_FW_PROJECT_U8400:
2616                 return "U8400";
2617         case PRCMU_FW_PROJECT_U9500:
2618                 return "U9500";
2619         case PRCMU_FW_PROJECT_U8500_MBB:
2620                 return "U8500 MBB";
2621         case PRCMU_FW_PROJECT_U8500_C1:
2622                 return "U8500 C1";
2623         case PRCMU_FW_PROJECT_U8500_C2:
2624                 return "U8500 C2";
2625         case PRCMU_FW_PROJECT_U8500_C3:
2626                 return "U8500 C3";
2627         case PRCMU_FW_PROJECT_U8500_C4:
2628                 return "U8500 C4";
2629         case PRCMU_FW_PROJECT_U9500_MBL:
2630                 return "U9500 MBL";
2631         case PRCMU_FW_PROJECT_U8500_MBL:
2632                 return "U8500 MBL";
2633         case PRCMU_FW_PROJECT_U8500_MBL2:
2634                 return "U8500 MBL2";
2635         case PRCMU_FW_PROJECT_U8520:
2636                 return "U8520 MBL";
2637         case PRCMU_FW_PROJECT_U8420:
2638                 return "U8420";
2639         case PRCMU_FW_PROJECT_U9540:
2640                 return "U9540";
2641         case PRCMU_FW_PROJECT_A9420:
2642                 return "A9420";
2643         case PRCMU_FW_PROJECT_L8540:
2644                 return "L8540";
2645         case PRCMU_FW_PROJECT_L8580:
2646                 return "L8580";
2647         default:
2648                 return "Unknown";
2649         }
2650 }
2651
2652 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2653                                 irq_hw_number_t hwirq)
2654 {
2655         irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2656                                 handle_simple_irq);
2657         set_irq_flags(virq, IRQF_VALID);
2658
2659         return 0;
2660 }
2661
2662 static struct irq_domain_ops db8500_irq_ops = {
2663         .map    = db8500_irq_map,
2664         .xlate  = irq_domain_xlate_twocell,
2665 };
2666
2667 static int db8500_irq_init(struct device_node *np)
2668 {
2669         int i;
2670
2671         db8500_irq_domain = irq_domain_add_simple(
2672                 np, NUM_PRCMU_WAKEUPS, 0,
2673                 &db8500_irq_ops, NULL);
2674
2675         if (!db8500_irq_domain) {
2676                 pr_err("Failed to create irqdomain\n");
2677                 return -ENOSYS;
2678         }
2679
2680         /* All wakeups will be used, so create mappings for all */
2681         for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2682                 irq_create_mapping(db8500_irq_domain, i);
2683
2684         return 0;
2685 }
2686
2687 static void dbx500_fw_version_init(struct platform_device *pdev,
2688                             u32 version_offset)
2689 {
2690         struct resource *res;
2691         void __iomem *tcpm_base;
2692         u32 version;
2693
2694         res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2695                                            "prcmu-tcpm");
2696         if (!res) {
2697                 dev_err(&pdev->dev,
2698                         "Error: no prcmu tcpm memory region provided\n");
2699                 return;
2700         }
2701         tcpm_base = ioremap(res->start, resource_size(res));
2702         if (!tcpm_base) {
2703                 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2704                 return;
2705         }
2706
2707         version = readl(tcpm_base + version_offset);
2708         fw_info.version.project = (version & 0xFF);
2709         fw_info.version.api_version = (version >> 8) & 0xFF;
2710         fw_info.version.func_version = (version >> 16) & 0xFF;
2711         fw_info.version.errata = (version >> 24) & 0xFF;
2712         strncpy(fw_info.version.project_name,
2713                 fw_project_name(fw_info.version.project),
2714                 PRCMU_FW_PROJECT_NAME_LEN);
2715         fw_info.valid = true;
2716         pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2717                 fw_info.version.project_name,
2718                 fw_info.version.project,
2719                 fw_info.version.api_version,
2720                 fw_info.version.func_version,
2721                 fw_info.version.errata);
2722         iounmap(tcpm_base);
2723 }
2724
2725 void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2726 {
2727         /*
2728          * This is a temporary remap to bring up the clocks. It is
2729          * subsequently replaces with a real remap. After the merge of
2730          * the mailbox subsystem all of this early code goes away, and the
2731          * clock driver can probe independently. An early initcall will
2732          * still be needed, but it can be diverted into drivers/clk/ux500.
2733          */
2734         prcmu_base = ioremap(phy_base, size);
2735         if (!prcmu_base)
2736                 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2737
2738         spin_lock_init(&mb0_transfer.lock);
2739         spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2740         mutex_init(&mb0_transfer.ac_wake_lock);
2741         init_completion(&mb0_transfer.ac_wake_work);
2742         mutex_init(&mb1_transfer.lock);
2743         init_completion(&mb1_transfer.work);
2744         mb1_transfer.ape_opp = APE_NO_CHANGE;
2745         mutex_init(&mb2_transfer.lock);
2746         init_completion(&mb2_transfer.work);
2747         spin_lock_init(&mb2_transfer.auto_pm_lock);
2748         spin_lock_init(&mb3_transfer.lock);
2749         mutex_init(&mb3_transfer.sysclk_lock);
2750         init_completion(&mb3_transfer.sysclk_work);
2751         mutex_init(&mb4_transfer.lock);
2752         init_completion(&mb4_transfer.work);
2753         mutex_init(&mb5_transfer.lock);
2754         init_completion(&mb5_transfer.work);
2755
2756         INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2757 }
2758
2759 static void __init init_prcm_registers(void)
2760 {
2761         u32 val;
2762
2763         val = readl(PRCM_A9PL_FORCE_CLKEN);
2764         val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2765                 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2766         writel(val, (PRCM_A9PL_FORCE_CLKEN));
2767 }
2768
2769 /*
2770  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2771  */
2772 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2773         REGULATOR_SUPPLY("v-ape", NULL),
2774         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2775         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2776         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2777         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2778         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2779         /* "v-mmc" changed to "vcore" in the mainline kernel */
2780         REGULATOR_SUPPLY("vcore", "sdi0"),
2781         REGULATOR_SUPPLY("vcore", "sdi1"),
2782         REGULATOR_SUPPLY("vcore", "sdi2"),
2783         REGULATOR_SUPPLY("vcore", "sdi3"),
2784         REGULATOR_SUPPLY("vcore", "sdi4"),
2785         REGULATOR_SUPPLY("v-dma", "dma40.0"),
2786         REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2787         /* "v-uart" changed to "vcore" in the mainline kernel */
2788         REGULATOR_SUPPLY("vcore", "uart0"),
2789         REGULATOR_SUPPLY("vcore", "uart1"),
2790         REGULATOR_SUPPLY("vcore", "uart2"),
2791         REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2792         REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2793         REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2794 };
2795
2796 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2797         REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2798         /* AV8100 regulator */
2799         REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2800 };
2801
2802 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2803         REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2804         REGULATOR_SUPPLY("vsupply", "mcde"),
2805 };
2806
2807 /* SVA MMDSP regulator switch */
2808 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2809         REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2810 };
2811
2812 /* SVA pipe regulator switch */
2813 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2814         REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2815 };
2816
2817 /* SIA MMDSP regulator switch */
2818 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2819         REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2820 };
2821
2822 /* SIA pipe regulator switch */
2823 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2824         REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2825 };
2826
2827 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2828         REGULATOR_SUPPLY("v-mali", NULL),
2829 };
2830
2831 /* ESRAM1 and 2 regulator switch */
2832 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2833         REGULATOR_SUPPLY("esram12", "cm_control"),
2834 };
2835
2836 /* ESRAM3 and 4 regulator switch */
2837 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2838         REGULATOR_SUPPLY("v-esram34", "mcde"),
2839         REGULATOR_SUPPLY("esram34", "cm_control"),
2840         REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2841 };
2842
2843 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2844         [DB8500_REGULATOR_VAPE] = {
2845                 .constraints = {
2846                         .name = "db8500-vape",
2847                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2848                         .always_on = true,
2849                 },
2850                 .consumer_supplies = db8500_vape_consumers,
2851                 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2852         },
2853         [DB8500_REGULATOR_VARM] = {
2854                 .constraints = {
2855                         .name = "db8500-varm",
2856                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2857                 },
2858         },
2859         [DB8500_REGULATOR_VMODEM] = {
2860                 .constraints = {
2861                         .name = "db8500-vmodem",
2862                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2863                 },
2864         },
2865         [DB8500_REGULATOR_VPLL] = {
2866                 .constraints = {
2867                         .name = "db8500-vpll",
2868                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2869                 },
2870         },
2871         [DB8500_REGULATOR_VSMPS1] = {
2872                 .constraints = {
2873                         .name = "db8500-vsmps1",
2874                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2875                 },
2876         },
2877         [DB8500_REGULATOR_VSMPS2] = {
2878                 .constraints = {
2879                         .name = "db8500-vsmps2",
2880                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2881                 },
2882                 .consumer_supplies = db8500_vsmps2_consumers,
2883                 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2884         },
2885         [DB8500_REGULATOR_VSMPS3] = {
2886                 .constraints = {
2887                         .name = "db8500-vsmps3",
2888                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2889                 },
2890         },
2891         [DB8500_REGULATOR_VRF1] = {
2892                 .constraints = {
2893                         .name = "db8500-vrf1",
2894                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2895                 },
2896         },
2897         [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2898                 /* dependency to u8500-vape is handled outside regulator framework */
2899                 .constraints = {
2900                         .name = "db8500-sva-mmdsp",
2901                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2902                 },
2903                 .consumer_supplies = db8500_svammdsp_consumers,
2904                 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2905         },
2906         [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2907                 .constraints = {
2908                         /* "ret" means "retention" */
2909                         .name = "db8500-sva-mmdsp-ret",
2910                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2911                 },
2912         },
2913         [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2914                 /* dependency to u8500-vape is handled outside regulator framework */
2915                 .constraints = {
2916                         .name = "db8500-sva-pipe",
2917                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2918                 },
2919                 .consumer_supplies = db8500_svapipe_consumers,
2920                 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2921         },
2922         [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2923                 /* dependency to u8500-vape is handled outside regulator framework */
2924                 .constraints = {
2925                         .name = "db8500-sia-mmdsp",
2926                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2927                 },
2928                 .consumer_supplies = db8500_siammdsp_consumers,
2929                 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2930         },
2931         [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2932                 .constraints = {
2933                         .name = "db8500-sia-mmdsp-ret",
2934                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2935                 },
2936         },
2937         [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2938                 /* dependency to u8500-vape is handled outside regulator framework */
2939                 .constraints = {
2940                         .name = "db8500-sia-pipe",
2941                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2942                 },
2943                 .consumer_supplies = db8500_siapipe_consumers,
2944                 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2945         },
2946         [DB8500_REGULATOR_SWITCH_SGA] = {
2947                 .supply_regulator = "db8500-vape",
2948                 .constraints = {
2949                         .name = "db8500-sga",
2950                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2951                 },
2952                 .consumer_supplies = db8500_sga_consumers,
2953                 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2954
2955         },
2956         [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2957                 .supply_regulator = "db8500-vape",
2958                 .constraints = {
2959                         .name = "db8500-b2r2-mcde",
2960                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2961                 },
2962                 .consumer_supplies = db8500_b2r2_mcde_consumers,
2963                 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2964         },
2965         [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2966                 /*
2967                  * esram12 is set in retention and supplied by Vsafe when Vape is off,
2968                  * no need to hold Vape
2969                  */
2970                 .constraints = {
2971                         .name = "db8500-esram12",
2972                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2973                 },
2974                 .consumer_supplies = db8500_esram12_consumers,
2975                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2976         },
2977         [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2978                 .constraints = {
2979                         .name = "db8500-esram12-ret",
2980                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2981                 },
2982         },
2983         [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2984                 /*
2985                  * esram34 is set in retention and supplied by Vsafe when Vape is off,
2986                  * no need to hold Vape
2987                  */
2988                 .constraints = {
2989                         .name = "db8500-esram34",
2990                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2991                 },
2992                 .consumer_supplies = db8500_esram34_consumers,
2993                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2994         },
2995         [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2996                 .constraints = {
2997                         .name = "db8500-esram34-ret",
2998                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2999                 },
3000         },
3001 };
3002
3003 static struct ux500_wdt_data db8500_wdt_pdata = {
3004         .timeout = 600, /* 10 minutes */
3005         .has_28_bits_resolution = true,
3006 };
3007 /*
3008  * Thermal Sensor
3009  */
3010
3011 static struct resource db8500_thsens_resources[] = {
3012         {
3013                 .name = "IRQ_HOTMON_LOW",
3014                 .start  = IRQ_PRCMU_HOTMON_LOW,
3015                 .end    = IRQ_PRCMU_HOTMON_LOW,
3016                 .flags  = IORESOURCE_IRQ,
3017         },
3018         {
3019                 .name = "IRQ_HOTMON_HIGH",
3020                 .start  = IRQ_PRCMU_HOTMON_HIGH,
3021                 .end    = IRQ_PRCMU_HOTMON_HIGH,
3022                 .flags  = IORESOURCE_IRQ,
3023         },
3024 };
3025
3026 static struct db8500_thsens_platform_data db8500_thsens_data = {
3027         .trip_points[0] = {
3028                 .temp = 70000,
3029                 .type = THERMAL_TRIP_ACTIVE,
3030                 .cdev_name = {
3031                         [0] = "thermal-cpufreq-0",
3032                 },
3033         },
3034         .trip_points[1] = {
3035                 .temp = 75000,
3036                 .type = THERMAL_TRIP_ACTIVE,
3037                 .cdev_name = {
3038                         [0] = "thermal-cpufreq-0",
3039                 },
3040         },
3041         .trip_points[2] = {
3042                 .temp = 80000,
3043                 .type = THERMAL_TRIP_ACTIVE,
3044                 .cdev_name = {
3045                         [0] = "thermal-cpufreq-0",
3046                 },
3047         },
3048         .trip_points[3] = {
3049                 .temp = 85000,
3050                 .type = THERMAL_TRIP_CRITICAL,
3051         },
3052         .num_trips = 4,
3053 };
3054
3055 static const struct mfd_cell common_prcmu_devs[] = {
3056         {
3057                 .name = "ux500_wdt",
3058                 .platform_data = &db8500_wdt_pdata,
3059                 .pdata_size = sizeof(db8500_wdt_pdata),
3060                 .id = -1,
3061         },
3062 };
3063
3064 static const struct mfd_cell db8500_prcmu_devs[] = {
3065         {
3066                 .name = "db8500-prcmu-regulators",
3067                 .of_compatible = "stericsson,db8500-prcmu-regulator",
3068                 .platform_data = &db8500_regulators,
3069                 .pdata_size = sizeof(db8500_regulators),
3070         },
3071         {
3072                 .name = "cpufreq-ux500",
3073                 .of_compatible = "stericsson,cpufreq-ux500",
3074                 .platform_data = &db8500_cpufreq_table,
3075                 .pdata_size = sizeof(db8500_cpufreq_table),
3076         },
3077         {
3078                 .name = "cpuidle-dbx500",
3079                 .of_compatible = "stericsson,cpuidle-dbx500",
3080         },
3081         {
3082                 .name = "db8500-thermal",
3083                 .num_resources = ARRAY_SIZE(db8500_thsens_resources),
3084                 .resources = db8500_thsens_resources,
3085                 .platform_data = &db8500_thsens_data,
3086                 .pdata_size = sizeof(db8500_thsens_data),
3087         },
3088 };
3089
3090 static void db8500_prcmu_update_cpufreq(void)
3091 {
3092         if (prcmu_has_arm_maxopp()) {
3093                 db8500_cpufreq_table[3].frequency = 1000000;
3094                 db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
3095         }
3096 }
3097
3098 static int db8500_prcmu_register_ab8500(struct device *parent,
3099                                         struct ab8500_platform_data *pdata)
3100 {
3101         struct device_node *np;
3102         struct resource ab8500_resource;
3103         const struct mfd_cell ab8500_cell = {
3104                 .name = "ab8500-core",
3105                 .of_compatible = "stericsson,ab8500",
3106                 .id = AB8500_VERSION_AB8500,
3107                 .platform_data = pdata,
3108                 .pdata_size = sizeof(struct ab8500_platform_data),
3109                 .resources = &ab8500_resource,
3110                 .num_resources = 1,
3111         };
3112
3113         if (!parent->of_node)
3114                 return -ENODEV;
3115
3116         /* Look up the device node, sneak the IRQ out of it */
3117         for_each_child_of_node(parent->of_node, np) {
3118                 if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3119                         break;
3120         }
3121         if (!np) {
3122                 dev_info(parent, "could not find AB8500 node in the device tree\n");
3123                 return -ENODEV;
3124         }
3125         of_irq_to_resource_table(np, &ab8500_resource, 1);
3126
3127         return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3128 }
3129
3130 /**
3131  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3132  *
3133  */
3134 static int db8500_prcmu_probe(struct platform_device *pdev)
3135 {
3136         struct device_node *np = pdev->dev.of_node;
3137         struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
3138         int irq = 0, err = 0;
3139         struct resource *res;
3140
3141         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3142         if (!res) {
3143                 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3144                 return -EINVAL;
3145         }
3146         prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3147         if (!prcmu_base) {
3148                 dev_err(&pdev->dev,
3149                         "failed to ioremap prcmu register memory\n");
3150                 return -ENOMEM;
3151         }
3152         init_prcm_registers();
3153         dbx500_fw_version_init(pdev, pdata->version_offset);
3154         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3155         if (!res) {
3156                 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3157                 return -EINVAL;
3158         }
3159         tcdm_base = devm_ioremap(&pdev->dev, res->start,
3160                         resource_size(res));
3161         if (!tcdm_base) {
3162                 dev_err(&pdev->dev,
3163                         "failed to ioremap prcmu-tcdm register memory\n");
3164                 return -ENOMEM;
3165         }
3166
3167         /* Clean up the mailbox interrupts after pre-kernel code. */
3168         writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3169
3170         irq = platform_get_irq(pdev, 0);
3171         if (irq <= 0) {
3172                 dev_err(&pdev->dev, "no prcmu irq provided\n");
3173                 return irq;
3174         }
3175
3176         err = request_threaded_irq(irq, prcmu_irq_handler,
3177                 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3178         if (err < 0) {
3179                 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3180                 return err;
3181         }
3182
3183         db8500_irq_init(np);
3184
3185         prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3186
3187         db8500_prcmu_update_cpufreq();
3188
3189         err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3190                               ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3191         if (err) {
3192                 pr_err("prcmu: Failed to add subdevices\n");
3193                 return err;
3194         }
3195
3196         /* TODO: Remove restriction when clk definitions are available. */
3197         if (!of_machine_is_compatible("st-ericsson,u8540")) {
3198                 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3199                                       ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3200                                       db8500_irq_domain);
3201                 if (err) {
3202                         mfd_remove_devices(&pdev->dev);
3203                         pr_err("prcmu: Failed to add subdevices\n");
3204                         return err;
3205                 }
3206         }
3207
3208         err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata);
3209         if (err) {
3210                 mfd_remove_devices(&pdev->dev);
3211                 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3212                 return err;
3213         }
3214
3215         pr_info("DB8500 PRCMU initialized\n");
3216         return err;
3217 }
3218 static const struct of_device_id db8500_prcmu_match[] = {
3219         { .compatible = "stericsson,db8500-prcmu"},
3220         { },
3221 };
3222
3223 static struct platform_driver db8500_prcmu_driver = {
3224         .driver = {
3225                 .name = "db8500-prcmu",
3226                 .of_match_table = db8500_prcmu_match,
3227         },
3228         .probe = db8500_prcmu_probe,
3229 };
3230
3231 static int __init db8500_prcmu_init(void)
3232 {
3233         return platform_driver_register(&db8500_prcmu_driver);
3234 }
3235
3236 core_initcall(db8500_prcmu_init);
3237
3238 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3239 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3240 MODULE_LICENSE("GPL v2");