Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / media / i2c / mt9v011.c
1 /*
2  * mt9v011 -Micron 1/4-Inch VGA Digital Image Sensor
3  *
4  * Copyright (c) 2009 Mauro Carvalho Chehab
5  * This code is placed under the terms of the GNU General Public License v2
6  */
7
8 #include <linux/i2c.h>
9 #include <linux/slab.h>
10 #include <linux/videodev2.h>
11 #include <linux/delay.h>
12 #include <linux/module.h>
13 #include <asm/div64.h>
14 #include <media/v4l2-device.h>
15 #include <media/v4l2-ctrls.h>
16 #include <media/mt9v011.h>
17
18 MODULE_DESCRIPTION("Micron mt9v011 sensor driver");
19 MODULE_AUTHOR("Mauro Carvalho Chehab");
20 MODULE_LICENSE("GPL");
21
22 static int debug;
23 module_param(debug, int, 0);
24 MODULE_PARM_DESC(debug, "Debug level (0-2)");
25
26 #define R00_MT9V011_CHIP_VERSION        0x00
27 #define R01_MT9V011_ROWSTART            0x01
28 #define R02_MT9V011_COLSTART            0x02
29 #define R03_MT9V011_HEIGHT              0x03
30 #define R04_MT9V011_WIDTH               0x04
31 #define R05_MT9V011_HBLANK              0x05
32 #define R06_MT9V011_VBLANK              0x06
33 #define R07_MT9V011_OUT_CTRL            0x07
34 #define R09_MT9V011_SHUTTER_WIDTH       0x09
35 #define R0A_MT9V011_CLK_SPEED           0x0a
36 #define R0B_MT9V011_RESTART             0x0b
37 #define R0C_MT9V011_SHUTTER_DELAY       0x0c
38 #define R0D_MT9V011_RESET               0x0d
39 #define R1E_MT9V011_DIGITAL_ZOOM        0x1e
40 #define R20_MT9V011_READ_MODE           0x20
41 #define R2B_MT9V011_GREEN_1_GAIN        0x2b
42 #define R2C_MT9V011_BLUE_GAIN           0x2c
43 #define R2D_MT9V011_RED_GAIN            0x2d
44 #define R2E_MT9V011_GREEN_2_GAIN        0x2e
45 #define R35_MT9V011_GLOBAL_GAIN         0x35
46 #define RF1_MT9V011_CHIP_ENABLE         0xf1
47
48 #define MT9V011_VERSION                 0x8232
49 #define MT9V011_REV_B_VERSION           0x8243
50
51 struct mt9v011 {
52         struct v4l2_subdev sd;
53         struct v4l2_ctrl_handler ctrls;
54         unsigned width, height;
55         unsigned xtal;
56         unsigned hflip:1;
57         unsigned vflip:1;
58
59         u16 global_gain, exposure;
60         s16 red_bal, blue_bal;
61 };
62
63 static inline struct mt9v011 *to_mt9v011(struct v4l2_subdev *sd)
64 {
65         return container_of(sd, struct mt9v011, sd);
66 }
67
68 static int mt9v011_read(struct v4l2_subdev *sd, unsigned char addr)
69 {
70         struct i2c_client *c = v4l2_get_subdevdata(sd);
71         __be16 buffer;
72         int rc, val;
73
74         rc = i2c_master_send(c, &addr, 1);
75         if (rc != 1)
76                 v4l2_dbg(0, debug, sd,
77                          "i2c i/o error: rc == %d (should be 1)\n", rc);
78
79         msleep(10);
80
81         rc = i2c_master_recv(c, (char *)&buffer, 2);
82         if (rc != 2)
83                 v4l2_dbg(0, debug, sd,
84                          "i2c i/o error: rc == %d (should be 2)\n", rc);
85
86         val = be16_to_cpu(buffer);
87
88         v4l2_dbg(2, debug, sd, "mt9v011: read 0x%02x = 0x%04x\n", addr, val);
89
90         return val;
91 }
92
93 static void mt9v011_write(struct v4l2_subdev *sd, unsigned char addr,
94                                  u16 value)
95 {
96         struct i2c_client *c = v4l2_get_subdevdata(sd);
97         unsigned char buffer[3];
98         int rc;
99
100         buffer[0] = addr;
101         buffer[1] = value >> 8;
102         buffer[2] = value & 0xff;
103
104         v4l2_dbg(2, debug, sd,
105                  "mt9v011: writing 0x%02x 0x%04x\n", buffer[0], value);
106         rc = i2c_master_send(c, buffer, 3);
107         if (rc != 3)
108                 v4l2_dbg(0, debug, sd,
109                          "i2c i/o error: rc == %d (should be 3)\n", rc);
110 }
111
112
113 struct i2c_reg_value {
114         unsigned char reg;
115         u16           value;
116 };
117
118 /*
119  * Values used at the original driver
120  * Some values are marked as Reserved at the datasheet
121  */
122 static const struct i2c_reg_value mt9v011_init_default[] = {
123                 { R0D_MT9V011_RESET, 0x0001 },
124                 { R0D_MT9V011_RESET, 0x0000 },
125
126                 { R0C_MT9V011_SHUTTER_DELAY, 0x0000 },
127                 { R09_MT9V011_SHUTTER_WIDTH, 0x1fc },
128
129                 { R0A_MT9V011_CLK_SPEED, 0x0000 },
130                 { R1E_MT9V011_DIGITAL_ZOOM,  0x0000 },
131
132                 { R07_MT9V011_OUT_CTRL, 0x0002 },       /* chip enable */
133 };
134
135
136 static u16 calc_mt9v011_gain(s16 lineargain)
137 {
138
139         u16 digitalgain = 0;
140         u16 analogmult = 0;
141         u16 analoginit = 0;
142
143         if (lineargain < 0)
144                 lineargain = 0;
145
146         /* recommended minimum */
147         lineargain += 0x0020;
148
149         if (lineargain > 2047)
150                 lineargain = 2047;
151
152         if (lineargain > 1023) {
153                 digitalgain = 3;
154                 analogmult = 3;
155                 analoginit = lineargain / 16;
156         } else if (lineargain > 511) {
157                 digitalgain = 1;
158                 analogmult = 3;
159                 analoginit = lineargain / 8;
160         } else if (lineargain > 255) {
161                 analogmult = 3;
162                 analoginit = lineargain / 4;
163         } else if (lineargain > 127) {
164                 analogmult = 1;
165                 analoginit = lineargain / 2;
166         } else
167                 analoginit = lineargain;
168
169         return analoginit + (analogmult << 7) + (digitalgain << 9);
170
171 }
172
173 static void set_balance(struct v4l2_subdev *sd)
174 {
175         struct mt9v011 *core = to_mt9v011(sd);
176         u16 green_gain, blue_gain, red_gain;
177         u16 exposure;
178         s16 bal;
179
180         exposure = core->exposure;
181
182         green_gain = calc_mt9v011_gain(core->global_gain);
183
184         bal = core->global_gain;
185         bal += (core->blue_bal * core->global_gain / (1 << 7));
186         blue_gain = calc_mt9v011_gain(bal);
187
188         bal = core->global_gain;
189         bal += (core->red_bal * core->global_gain / (1 << 7));
190         red_gain = calc_mt9v011_gain(bal);
191
192         mt9v011_write(sd, R2B_MT9V011_GREEN_1_GAIN, green_gain);
193         mt9v011_write(sd, R2E_MT9V011_GREEN_2_GAIN, green_gain);
194         mt9v011_write(sd, R2C_MT9V011_BLUE_GAIN, blue_gain);
195         mt9v011_write(sd, R2D_MT9V011_RED_GAIN, red_gain);
196         mt9v011_write(sd, R09_MT9V011_SHUTTER_WIDTH, exposure);
197 }
198
199 static void calc_fps(struct v4l2_subdev *sd, u32 *numerator, u32 *denominator)
200 {
201         struct mt9v011 *core = to_mt9v011(sd);
202         unsigned height, width, hblank, vblank, speed;
203         unsigned row_time, t_time;
204         u64 frames_per_ms;
205         unsigned tmp;
206
207         height = mt9v011_read(sd, R03_MT9V011_HEIGHT);
208         width = mt9v011_read(sd, R04_MT9V011_WIDTH);
209         hblank = mt9v011_read(sd, R05_MT9V011_HBLANK);
210         vblank = mt9v011_read(sd, R06_MT9V011_VBLANK);
211         speed = mt9v011_read(sd, R0A_MT9V011_CLK_SPEED);
212
213         row_time = (width + 113 + hblank) * (speed + 2);
214         t_time = row_time * (height + vblank + 1);
215
216         frames_per_ms = core->xtal * 1000l;
217         do_div(frames_per_ms, t_time);
218         tmp = frames_per_ms;
219
220         v4l2_dbg(1, debug, sd, "Programmed to %u.%03u fps (%d pixel clcks)\n",
221                 tmp / 1000, tmp % 1000, t_time);
222
223         if (numerator && denominator) {
224                 *numerator = 1000;
225                 *denominator = (u32)frames_per_ms;
226         }
227 }
228
229 static u16 calc_speed(struct v4l2_subdev *sd, u32 numerator, u32 denominator)
230 {
231         struct mt9v011 *core = to_mt9v011(sd);
232         unsigned height, width, hblank, vblank;
233         unsigned row_time, line_time;
234         u64 t_time, speed;
235
236         /* Avoid bogus calculus */
237         if (!numerator || !denominator)
238                 return 0;
239
240         height = mt9v011_read(sd, R03_MT9V011_HEIGHT);
241         width = mt9v011_read(sd, R04_MT9V011_WIDTH);
242         hblank = mt9v011_read(sd, R05_MT9V011_HBLANK);
243         vblank = mt9v011_read(sd, R06_MT9V011_VBLANK);
244
245         row_time = width + 113 + hblank;
246         line_time = height + vblank + 1;
247
248         t_time = core->xtal * ((u64)numerator);
249         /* round to the closest value */
250         t_time += denominator / 2;
251         do_div(t_time, denominator);
252
253         speed = t_time;
254         do_div(speed, row_time * line_time);
255
256         /* Avoid having a negative value for speed */
257         if (speed < 2)
258                 speed = 0;
259         else
260                 speed -= 2;
261
262         /* Avoid speed overflow */
263         if (speed > 15)
264                 return 15;
265
266         return (u16)speed;
267 }
268
269 static void set_res(struct v4l2_subdev *sd)
270 {
271         struct mt9v011 *core = to_mt9v011(sd);
272         unsigned vstart, hstart;
273
274         /*
275          * The mt9v011 doesn't have scaling. So, in order to select the desired
276          * resolution, we're cropping at the middle of the sensor.
277          * hblank and vblank should be adjusted, in order to warrant that
278          * we'll preserve the line timings for 30 fps, no matter what resolution
279          * is selected.
280          * NOTE: datasheet says that width (and height) should be filled with
281          * width-1. However, this doesn't work, since one pixel per line will
282          * be missing.
283          */
284
285         hstart = 20 + (640 - core->width) / 2;
286         mt9v011_write(sd, R02_MT9V011_COLSTART, hstart);
287         mt9v011_write(sd, R04_MT9V011_WIDTH, core->width);
288         mt9v011_write(sd, R05_MT9V011_HBLANK, 771 - core->width);
289
290         vstart = 8 + (480 - core->height) / 2;
291         mt9v011_write(sd, R01_MT9V011_ROWSTART, vstart);
292         mt9v011_write(sd, R03_MT9V011_HEIGHT, core->height);
293         mt9v011_write(sd, R06_MT9V011_VBLANK, 508 - core->height);
294
295         calc_fps(sd, NULL, NULL);
296 };
297
298 static void set_read_mode(struct v4l2_subdev *sd)
299 {
300         struct mt9v011 *core = to_mt9v011(sd);
301         unsigned mode = 0x1000;
302
303         if (core->hflip)
304                 mode |= 0x4000;
305
306         if (core->vflip)
307                 mode |= 0x8000;
308
309         mt9v011_write(sd, R20_MT9V011_READ_MODE, mode);
310 }
311
312 static int mt9v011_reset(struct v4l2_subdev *sd, u32 val)
313 {
314         int i;
315
316         for (i = 0; i < ARRAY_SIZE(mt9v011_init_default); i++)
317                 mt9v011_write(sd, mt9v011_init_default[i].reg,
318                                mt9v011_init_default[i].value);
319
320         set_balance(sd);
321         set_res(sd);
322         set_read_mode(sd);
323
324         return 0;
325 }
326
327 static int mt9v011_enum_mbus_fmt(struct v4l2_subdev *sd, unsigned index,
328                                         u32 *code)
329 {
330         if (index > 0)
331                 return -EINVAL;
332
333         *code = MEDIA_BUS_FMT_SGRBG8_1X8;
334         return 0;
335 }
336
337 static int mt9v011_try_mbus_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt)
338 {
339         if (fmt->code != MEDIA_BUS_FMT_SGRBG8_1X8)
340                 return -EINVAL;
341
342         v4l_bound_align_image(&fmt->width, 48, 639, 1,
343                               &fmt->height, 32, 480, 1, 0);
344         fmt->field = V4L2_FIELD_NONE;
345         fmt->colorspace = V4L2_COLORSPACE_SRGB;
346
347         return 0;
348 }
349
350 static int mt9v011_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
351 {
352         struct v4l2_captureparm *cp = &parms->parm.capture;
353
354         if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
355                 return -EINVAL;
356
357         memset(cp, 0, sizeof(struct v4l2_captureparm));
358         cp->capability = V4L2_CAP_TIMEPERFRAME;
359         calc_fps(sd,
360                  &cp->timeperframe.numerator,
361                  &cp->timeperframe.denominator);
362
363         return 0;
364 }
365
366 static int mt9v011_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
367 {
368         struct v4l2_captureparm *cp = &parms->parm.capture;
369         struct v4l2_fract *tpf = &cp->timeperframe;
370         u16 speed;
371
372         if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
373                 return -EINVAL;
374         if (cp->extendedmode != 0)
375                 return -EINVAL;
376
377         speed = calc_speed(sd, tpf->numerator, tpf->denominator);
378
379         mt9v011_write(sd, R0A_MT9V011_CLK_SPEED, speed);
380         v4l2_dbg(1, debug, sd, "Setting speed to %d\n", speed);
381
382         /* Recalculate and update fps info */
383         calc_fps(sd, &tpf->numerator, &tpf->denominator);
384
385         return 0;
386 }
387
388 static int mt9v011_s_mbus_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt)
389 {
390         struct mt9v011 *core = to_mt9v011(sd);
391         int rc;
392
393         rc = mt9v011_try_mbus_fmt(sd, fmt);
394         if (rc < 0)
395                 return -EINVAL;
396
397         core->width = fmt->width;
398         core->height = fmt->height;
399
400         set_res(sd);
401
402         return 0;
403 }
404
405 #ifdef CONFIG_VIDEO_ADV_DEBUG
406 static int mt9v011_g_register(struct v4l2_subdev *sd,
407                               struct v4l2_dbg_register *reg)
408 {
409         reg->val = mt9v011_read(sd, reg->reg & 0xff);
410         reg->size = 2;
411
412         return 0;
413 }
414
415 static int mt9v011_s_register(struct v4l2_subdev *sd,
416                               const struct v4l2_dbg_register *reg)
417 {
418         mt9v011_write(sd, reg->reg & 0xff, reg->val & 0xffff);
419
420         return 0;
421 }
422 #endif
423
424 static int mt9v011_s_ctrl(struct v4l2_ctrl *ctrl)
425 {
426         struct mt9v011 *core =
427                 container_of(ctrl->handler, struct mt9v011, ctrls);
428         struct v4l2_subdev *sd = &core->sd;
429
430         switch (ctrl->id) {
431         case V4L2_CID_GAIN:
432                 core->global_gain = ctrl->val;
433                 break;
434         case V4L2_CID_EXPOSURE:
435                 core->exposure = ctrl->val;
436                 break;
437         case V4L2_CID_RED_BALANCE:
438                 core->red_bal = ctrl->val;
439                 break;
440         case V4L2_CID_BLUE_BALANCE:
441                 core->blue_bal = ctrl->val;
442                 break;
443         case V4L2_CID_HFLIP:
444                 core->hflip = ctrl->val;
445                 set_read_mode(sd);
446                 return 0;
447         case V4L2_CID_VFLIP:
448                 core->vflip = ctrl->val;
449                 set_read_mode(sd);
450                 return 0;
451         default:
452                 return -EINVAL;
453         }
454
455         set_balance(sd);
456         return 0;
457 }
458
459 static struct v4l2_ctrl_ops mt9v011_ctrl_ops = {
460         .s_ctrl = mt9v011_s_ctrl,
461 };
462
463 static const struct v4l2_subdev_core_ops mt9v011_core_ops = {
464         .reset = mt9v011_reset,
465 #ifdef CONFIG_VIDEO_ADV_DEBUG
466         .g_register = mt9v011_g_register,
467         .s_register = mt9v011_s_register,
468 #endif
469 };
470
471 static const struct v4l2_subdev_video_ops mt9v011_video_ops = {
472         .enum_mbus_fmt = mt9v011_enum_mbus_fmt,
473         .try_mbus_fmt = mt9v011_try_mbus_fmt,
474         .s_mbus_fmt = mt9v011_s_mbus_fmt,
475         .g_parm = mt9v011_g_parm,
476         .s_parm = mt9v011_s_parm,
477 };
478
479 static const struct v4l2_subdev_ops mt9v011_ops = {
480         .core  = &mt9v011_core_ops,
481         .video = &mt9v011_video_ops,
482 };
483
484
485 /****************************************************************************
486                         I2C Client & Driver
487  ****************************************************************************/
488
489 static int mt9v011_probe(struct i2c_client *c,
490                          const struct i2c_device_id *id)
491 {
492         u16 version;
493         struct mt9v011 *core;
494         struct v4l2_subdev *sd;
495
496         /* Check if the adapter supports the needed features */
497         if (!i2c_check_functionality(c->adapter,
498              I2C_FUNC_SMBUS_READ_BYTE | I2C_FUNC_SMBUS_WRITE_BYTE_DATA))
499                 return -EIO;
500
501         core = devm_kzalloc(&c->dev, sizeof(struct mt9v011), GFP_KERNEL);
502         if (!core)
503                 return -ENOMEM;
504
505         sd = &core->sd;
506         v4l2_i2c_subdev_init(sd, c, &mt9v011_ops);
507
508         /* Check if the sensor is really a MT9V011 */
509         version = mt9v011_read(sd, R00_MT9V011_CHIP_VERSION);
510         if ((version != MT9V011_VERSION) &&
511             (version != MT9V011_REV_B_VERSION)) {
512                 v4l2_info(sd, "*** unknown micron chip detected (0x%04x).\n",
513                           version);
514                 return -EINVAL;
515         }
516
517         v4l2_ctrl_handler_init(&core->ctrls, 5);
518         v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
519                           V4L2_CID_GAIN, 0, (1 << 12) - 1 - 0x20, 1, 0x20);
520         v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
521                           V4L2_CID_EXPOSURE, 0, 2047, 1, 0x01fc);
522         v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
523                           V4L2_CID_RED_BALANCE, -(1 << 9), (1 << 9) - 1, 1, 0);
524         v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
525                           V4L2_CID_BLUE_BALANCE, -(1 << 9), (1 << 9) - 1, 1, 0);
526         v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
527                           V4L2_CID_HFLIP, 0, 1, 1, 0);
528         v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
529                           V4L2_CID_VFLIP, 0, 1, 1, 0);
530
531         if (core->ctrls.error) {
532                 int ret = core->ctrls.error;
533
534                 v4l2_err(sd, "control initialization error %d\n", ret);
535                 v4l2_ctrl_handler_free(&core->ctrls);
536                 return ret;
537         }
538         core->sd.ctrl_handler = &core->ctrls;
539
540         core->global_gain = 0x0024;
541         core->exposure = 0x01fc;
542         core->width  = 640;
543         core->height = 480;
544         core->xtal = 27000000;  /* Hz */
545
546         if (c->dev.platform_data) {
547                 struct mt9v011_platform_data *pdata = c->dev.platform_data;
548
549                 core->xtal = pdata->xtal;
550                 v4l2_dbg(1, debug, sd, "xtal set to %d.%03d MHz\n",
551                         core->xtal / 1000000, (core->xtal / 1000) % 1000);
552         }
553
554         v4l_info(c, "chip found @ 0x%02x (%s - chip version 0x%04x)\n",
555                  c->addr << 1, c->adapter->name, version);
556
557         return 0;
558 }
559
560 static int mt9v011_remove(struct i2c_client *c)
561 {
562         struct v4l2_subdev *sd = i2c_get_clientdata(c);
563         struct mt9v011 *core = to_mt9v011(sd);
564
565         v4l2_dbg(1, debug, sd,
566                 "mt9v011.c: removing mt9v011 adapter on address 0x%x\n",
567                 c->addr << 1);
568
569         v4l2_device_unregister_subdev(sd);
570         v4l2_ctrl_handler_free(&core->ctrls);
571
572         return 0;
573 }
574
575 /* ----------------------------------------------------------------------- */
576
577 static const struct i2c_device_id mt9v011_id[] = {
578         { "mt9v011", 0 },
579         { }
580 };
581 MODULE_DEVICE_TABLE(i2c, mt9v011_id);
582
583 static struct i2c_driver mt9v011_driver = {
584         .driver = {
585                 .owner  = THIS_MODULE,
586                 .name   = "mt9v011",
587         },
588         .probe          = mt9v011_probe,
589         .remove         = mt9v011_remove,
590         .id_table       = mt9v011_id,
591 };
592
593 module_i2c_driver(mt9v011_driver);