Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / media / dvb-frontends / tda1004x.c
1   /*
2      Driver for Philips tda1004xh OFDM Demodulator
3
4      (c) 2003, 2004 Andrew de Quincey & Robert Schlabbach
5
6      This program is free software; you can redistribute it and/or modify
7      it under the terms of the GNU General Public License as published by
8      the Free Software Foundation; either version 2 of the License, or
9      (at your option) any later version.
10
11      This program is distributed in the hope that it will be useful,
12      but WITHOUT ANY WARRANTY; without even the implied warranty of
13      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
15      GNU General Public License for more details.
16
17      You should have received a copy of the GNU General Public License
18      along with this program; if not, write to the Free Software
19      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20
21    */
22 /*
23  * This driver needs external firmware. Please use the commands
24  * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10045",
25  * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10046" to
26  * download/extract them, and then copy them to /usr/lib/hotplug/firmware
27  * or /lib/firmware (depending on configuration of firmware hotplug).
28  */
29 #define TDA10045_DEFAULT_FIRMWARE "dvb-fe-tda10045.fw"
30 #define TDA10046_DEFAULT_FIRMWARE "dvb-fe-tda10046.fw"
31
32 #include <linux/init.h>
33 #include <linux/module.h>
34 #include <linux/device.h>
35 #include <linux/jiffies.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
38
39 #include "dvb_frontend.h"
40 #include "tda1004x.h"
41
42 static int debug;
43 #define dprintk(args...) \
44         do { \
45                 if (debug) printk(KERN_DEBUG "tda1004x: " args); \
46         } while (0)
47
48 #define TDA1004X_CHIPID          0x00
49 #define TDA1004X_AUTO            0x01
50 #define TDA1004X_IN_CONF1        0x02
51 #define TDA1004X_IN_CONF2        0x03
52 #define TDA1004X_OUT_CONF1       0x04
53 #define TDA1004X_OUT_CONF2       0x05
54 #define TDA1004X_STATUS_CD       0x06
55 #define TDA1004X_CONFC4          0x07
56 #define TDA1004X_DSSPARE2        0x0C
57 #define TDA10045H_CODE_IN        0x0D
58 #define TDA10045H_FWPAGE         0x0E
59 #define TDA1004X_SCAN_CPT        0x10
60 #define TDA1004X_DSP_CMD         0x11
61 #define TDA1004X_DSP_ARG         0x12
62 #define TDA1004X_DSP_DATA1       0x13
63 #define TDA1004X_DSP_DATA2       0x14
64 #define TDA1004X_CONFADC1        0x15
65 #define TDA1004X_CONFC1          0x16
66 #define TDA10045H_S_AGC          0x1a
67 #define TDA10046H_AGC_TUN_LEVEL  0x1a
68 #define TDA1004X_SNR             0x1c
69 #define TDA1004X_CONF_TS1        0x1e
70 #define TDA1004X_CONF_TS2        0x1f
71 #define TDA1004X_CBER_RESET      0x20
72 #define TDA1004X_CBER_MSB        0x21
73 #define TDA1004X_CBER_LSB        0x22
74 #define TDA1004X_CVBER_LUT       0x23
75 #define TDA1004X_VBER_MSB        0x24
76 #define TDA1004X_VBER_MID        0x25
77 #define TDA1004X_VBER_LSB        0x26
78 #define TDA1004X_UNCOR           0x27
79
80 #define TDA10045H_CONFPLL_P      0x2D
81 #define TDA10045H_CONFPLL_M_MSB  0x2E
82 #define TDA10045H_CONFPLL_M_LSB  0x2F
83 #define TDA10045H_CONFPLL_N      0x30
84
85 #define TDA10046H_CONFPLL1       0x2D
86 #define TDA10046H_CONFPLL2       0x2F
87 #define TDA10046H_CONFPLL3       0x30
88 #define TDA10046H_TIME_WREF1     0x31
89 #define TDA10046H_TIME_WREF2     0x32
90 #define TDA10046H_TIME_WREF3     0x33
91 #define TDA10046H_TIME_WREF4     0x34
92 #define TDA10046H_TIME_WREF5     0x35
93
94 #define TDA10045H_UNSURW_MSB     0x31
95 #define TDA10045H_UNSURW_LSB     0x32
96 #define TDA10045H_WREF_MSB       0x33
97 #define TDA10045H_WREF_MID       0x34
98 #define TDA10045H_WREF_LSB       0x35
99 #define TDA10045H_MUXOUT         0x36
100 #define TDA1004X_CONFADC2        0x37
101
102 #define TDA10045H_IOFFSET        0x38
103
104 #define TDA10046H_CONF_TRISTATE1 0x3B
105 #define TDA10046H_CONF_TRISTATE2 0x3C
106 #define TDA10046H_CONF_POLARITY  0x3D
107 #define TDA10046H_FREQ_OFFSET    0x3E
108 #define TDA10046H_GPIO_OUT_SEL   0x41
109 #define TDA10046H_GPIO_SELECT    0x42
110 #define TDA10046H_AGC_CONF       0x43
111 #define TDA10046H_AGC_THR        0x44
112 #define TDA10046H_AGC_RENORM     0x45
113 #define TDA10046H_AGC_GAINS      0x46
114 #define TDA10046H_AGC_TUN_MIN    0x47
115 #define TDA10046H_AGC_TUN_MAX    0x48
116 #define TDA10046H_AGC_IF_MIN     0x49
117 #define TDA10046H_AGC_IF_MAX     0x4A
118
119 #define TDA10046H_FREQ_PHY2_MSB  0x4D
120 #define TDA10046H_FREQ_PHY2_LSB  0x4E
121
122 #define TDA10046H_CVBER_CTRL     0x4F
123 #define TDA10046H_AGC_IF_LEVEL   0x52
124 #define TDA10046H_CODE_CPT       0x57
125 #define TDA10046H_CODE_IN        0x58
126
127
128 static int tda1004x_write_byteI(struct tda1004x_state *state, int reg, int data)
129 {
130         int ret;
131         u8 buf[] = { reg, data };
132         struct i2c_msg msg = { .flags = 0, .buf = buf, .len = 2 };
133
134         dprintk("%s: reg=0x%x, data=0x%x\n", __func__, reg, data);
135
136         msg.addr = state->config->demod_address;
137         ret = i2c_transfer(state->i2c, &msg, 1);
138
139         if (ret != 1)
140                 dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
141                         __func__, reg, data, ret);
142
143         dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __func__,
144                 reg, data, ret);
145         return (ret != 1) ? -1 : 0;
146 }
147
148 static int tda1004x_read_byte(struct tda1004x_state *state, int reg)
149 {
150         int ret;
151         u8 b0[] = { reg };
152         u8 b1[] = { 0 };
153         struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
154                                 { .flags = I2C_M_RD, .buf = b1, .len = 1 }};
155
156         dprintk("%s: reg=0x%x\n", __func__, reg);
157
158         msg[0].addr = state->config->demod_address;
159         msg[1].addr = state->config->demod_address;
160         ret = i2c_transfer(state->i2c, msg, 2);
161
162         if (ret != 2) {
163                 dprintk("%s: error reg=0x%x, ret=%i\n", __func__, reg,
164                         ret);
165                 return -EINVAL;
166         }
167
168         dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __func__,
169                 reg, b1[0], ret);
170         return b1[0];
171 }
172
173 static int tda1004x_write_mask(struct tda1004x_state *state, int reg, int mask, int data)
174 {
175         int val;
176         dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __func__, reg,
177                 mask, data);
178
179         // read a byte and check
180         val = tda1004x_read_byte(state, reg);
181         if (val < 0)
182                 return val;
183
184         // mask if off
185         val = val & ~mask;
186         val |= data & 0xff;
187
188         // write it out again
189         return tda1004x_write_byteI(state, reg, val);
190 }
191
192 static int tda1004x_write_buf(struct tda1004x_state *state, int reg, unsigned char *buf, int len)
193 {
194         int i;
195         int result;
196
197         dprintk("%s: reg=0x%x, len=0x%x\n", __func__, reg, len);
198
199         result = 0;
200         for (i = 0; i < len; i++) {
201                 result = tda1004x_write_byteI(state, reg + i, buf[i]);
202                 if (result != 0)
203                         break;
204         }
205
206         return result;
207 }
208
209 static int tda1004x_enable_tuner_i2c(struct tda1004x_state *state)
210 {
211         int result;
212         dprintk("%s\n", __func__);
213
214         result = tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 2);
215         msleep(20);
216         return result;
217 }
218
219 static int tda1004x_disable_tuner_i2c(struct tda1004x_state *state)
220 {
221         dprintk("%s\n", __func__);
222
223         return tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 0);
224 }
225
226 static int tda10045h_set_bandwidth(struct tda1004x_state *state,
227                                    u32 bandwidth)
228 {
229         static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f };
230         static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb };
231         static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 };
232
233         switch (bandwidth) {
234         case 6000000:
235                 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz));
236                 break;
237
238         case 7000000:
239                 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz));
240                 break;
241
242         case 8000000:
243                 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz));
244                 break;
245
246         default:
247                 return -EINVAL;
248         }
249
250         tda1004x_write_byteI(state, TDA10045H_IOFFSET, 0);
251
252         return 0;
253 }
254
255 static int tda10046h_set_bandwidth(struct tda1004x_state *state,
256                                    u32 bandwidth)
257 {
258         static u8 bandwidth_6mhz_53M[] = { 0x7b, 0x2e, 0x11, 0xf0, 0xd2 };
259         static u8 bandwidth_7mhz_53M[] = { 0x6a, 0x02, 0x6a, 0x43, 0x9f };
260         static u8 bandwidth_8mhz_53M[] = { 0x5c, 0x32, 0xc2, 0x96, 0x6d };
261
262         static u8 bandwidth_6mhz_48M[] = { 0x70, 0x02, 0x49, 0x24, 0x92 };
263         static u8 bandwidth_7mhz_48M[] = { 0x60, 0x02, 0xaa, 0xaa, 0xab };
264         static u8 bandwidth_8mhz_48M[] = { 0x54, 0x03, 0x0c, 0x30, 0xc3 };
265         int tda10046_clk53m;
266
267         if ((state->config->if_freq == TDA10046_FREQ_045) ||
268             (state->config->if_freq == TDA10046_FREQ_052))
269                 tda10046_clk53m = 0;
270         else
271                 tda10046_clk53m = 1;
272         switch (bandwidth) {
273         case 6000000:
274                 if (tda10046_clk53m)
275                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_53M,
276                                                   sizeof(bandwidth_6mhz_53M));
277                 else
278                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_48M,
279                                                   sizeof(bandwidth_6mhz_48M));
280                 if (state->config->if_freq == TDA10046_FREQ_045) {
281                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0a);
282                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xab);
283                 }
284                 break;
285
286         case 7000000:
287                 if (tda10046_clk53m)
288                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_53M,
289                                                   sizeof(bandwidth_7mhz_53M));
290                 else
291                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_48M,
292                                                   sizeof(bandwidth_7mhz_48M));
293                 if (state->config->if_freq == TDA10046_FREQ_045) {
294                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
295                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
296                 }
297                 break;
298
299         case 8000000:
300                 if (tda10046_clk53m)
301                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_53M,
302                                                   sizeof(bandwidth_8mhz_53M));
303                 else
304                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_48M,
305                                                   sizeof(bandwidth_8mhz_48M));
306                 if (state->config->if_freq == TDA10046_FREQ_045) {
307                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
308                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x55);
309                 }
310                 break;
311
312         default:
313                 return -EINVAL;
314         }
315
316         return 0;
317 }
318
319 static int tda1004x_do_upload(struct tda1004x_state *state,
320                               const unsigned char *mem, unsigned int len,
321                               u8 dspCodeCounterReg, u8 dspCodeInReg)
322 {
323         u8 buf[65];
324         struct i2c_msg fw_msg = { .flags = 0, .buf = buf, .len = 0 };
325         int tx_size;
326         int pos = 0;
327
328         /* clear code counter */
329         tda1004x_write_byteI(state, dspCodeCounterReg, 0);
330         fw_msg.addr = state->config->demod_address;
331
332         i2c_lock_adapter(state->i2c);
333         buf[0] = dspCodeInReg;
334         while (pos != len) {
335                 // work out how much to send this time
336                 tx_size = len - pos;
337                 if (tx_size > 0x10)
338                         tx_size = 0x10;
339
340                 // send the chunk
341                 memcpy(buf + 1, mem + pos, tx_size);
342                 fw_msg.len = tx_size + 1;
343                 if (__i2c_transfer(state->i2c, &fw_msg, 1) != 1) {
344                         printk(KERN_ERR "tda1004x: Error during firmware upload\n");
345                         i2c_unlock_adapter(state->i2c);
346                         return -EIO;
347                 }
348                 pos += tx_size;
349
350                 dprintk("%s: fw_pos=0x%x\n", __func__, pos);
351         }
352         i2c_unlock_adapter(state->i2c);
353
354         /* give the DSP a chance to settle 03/10/05 Hac */
355         msleep(100);
356
357         return 0;
358 }
359
360 static int tda1004x_check_upload_ok(struct tda1004x_state *state)
361 {
362         u8 data1, data2;
363         unsigned long timeout;
364
365         if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
366                 timeout = jiffies + 2 * HZ;
367                 while(!(tda1004x_read_byte(state, TDA1004X_STATUS_CD) & 0x20)) {
368                         if (time_after(jiffies, timeout)) {
369                                 printk(KERN_ERR "tda1004x: timeout waiting for DSP ready\n");
370                                 break;
371                         }
372                         msleep(1);
373                 }
374         } else
375                 msleep(100);
376
377         // check upload was OK
378         tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP
379         tda1004x_write_byteI(state, TDA1004X_DSP_CMD, 0x67);
380
381         data1 = tda1004x_read_byte(state, TDA1004X_DSP_DATA1);
382         data2 = tda1004x_read_byte(state, TDA1004X_DSP_DATA2);
383         if (data1 != 0x67 || data2 < 0x20 || data2 > 0x2e) {
384                 printk(KERN_INFO "tda1004x: found firmware revision %x -- invalid\n", data2);
385                 return -EIO;
386         }
387         printk(KERN_INFO "tda1004x: found firmware revision %x -- ok\n", data2);
388         return 0;
389 }
390
391 static int tda10045_fwupload(struct dvb_frontend* fe)
392 {
393         struct tda1004x_state* state = fe->demodulator_priv;
394         int ret;
395         const struct firmware *fw;
396
397         /* don't re-upload unless necessary */
398         if (tda1004x_check_upload_ok(state) == 0)
399                 return 0;
400
401         /* request the firmware, this will block until someone uploads it */
402         printk(KERN_INFO "tda1004x: waiting for firmware upload (%s)...\n", TDA10045_DEFAULT_FIRMWARE);
403         ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
404         if (ret) {
405                 printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
406                 return ret;
407         }
408
409         /* reset chip */
410         tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0);
411         tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
412         tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
413         msleep(10);
414
415         /* set parameters */
416         tda10045h_set_bandwidth(state, 8000000);
417
418         ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10045H_FWPAGE, TDA10045H_CODE_IN);
419         release_firmware(fw);
420         if (ret)
421                 return ret;
422         printk(KERN_INFO "tda1004x: firmware upload complete\n");
423
424         /* wait for DSP to initialise */
425         /* DSPREADY doesn't seem to work on the TDA10045H */
426         msleep(100);
427
428         return tda1004x_check_upload_ok(state);
429 }
430
431 static void tda10046_init_plls(struct dvb_frontend* fe)
432 {
433         struct tda1004x_state* state = fe->demodulator_priv;
434         int tda10046_clk53m;
435
436         if ((state->config->if_freq == TDA10046_FREQ_045) ||
437             (state->config->if_freq == TDA10046_FREQ_052))
438                 tda10046_clk53m = 0;
439         else
440                 tda10046_clk53m = 1;
441
442         tda1004x_write_byteI(state, TDA10046H_CONFPLL1, 0xf0);
443         if(tda10046_clk53m) {
444                 printk(KERN_INFO "tda1004x: setting up plls for 53MHz sampling clock\n");
445                 tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x08); // PLL M = 8
446         } else {
447                 printk(KERN_INFO "tda1004x: setting up plls for 48MHz sampling clock\n");
448                 tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x03); // PLL M = 3
449         }
450         if (state->config->xtal_freq == TDA10046_XTAL_4M ) {
451                 dprintk("%s: setting up PLLs for a 4 MHz Xtal\n", __func__);
452                 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 0); // PLL P = N = 0
453         } else {
454                 dprintk("%s: setting up PLLs for a 16 MHz Xtal\n", __func__);
455                 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 3); // PLL P = 0, N = 3
456         }
457         if(tda10046_clk53m)
458                 tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x67);
459         else
460                 tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x72);
461         /* Note clock frequency is handled implicitly */
462         switch (state->config->if_freq) {
463         case TDA10046_FREQ_045:
464                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
465                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
466                 break;
467         case TDA10046_FREQ_052:
468                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
469                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xc7);
470                 break;
471         case TDA10046_FREQ_3617:
472                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
473                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x59);
474                 break;
475         case TDA10046_FREQ_3613:
476                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
477                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x3f);
478                 break;
479         }
480         tda10046h_set_bandwidth(state, 8000000); /* default bandwidth 8 MHz */
481         /* let the PLLs settle */
482         msleep(120);
483 }
484
485 static int tda10046_fwupload(struct dvb_frontend* fe)
486 {
487         struct tda1004x_state* state = fe->demodulator_priv;
488         int ret, confc4;
489         const struct firmware *fw;
490
491         /* reset + wake up chip */
492         if (state->config->xtal_freq == TDA10046_XTAL_4M) {
493                 confc4 = 0;
494         } else {
495                 dprintk("%s: 16MHz Xtal, reducing I2C speed\n", __func__);
496                 confc4 = 0x80;
497         }
498         tda1004x_write_byteI(state, TDA1004X_CONFC4, confc4);
499
500         tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 1, 0);
501         /* set GPIO 1 and 3 */
502         if (state->config->gpio_config != TDA10046_GPTRI) {
503                 tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE2, 0x33);
504                 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x0f, state->config->gpio_config &0x0f);
505         }
506         /* let the clocks recover from sleep */
507         msleep(10);
508
509         /* The PLLs need to be reprogrammed after sleep */
510         tda10046_init_plls(fe);
511         tda1004x_write_mask(state, TDA1004X_CONFADC2, 0xc0, 0);
512
513         /* don't re-upload unless necessary */
514         if (tda1004x_check_upload_ok(state) == 0)
515                 return 0;
516
517         /*
518            For i2c normal work, we need to slow down the bus speed.
519            However, the slow down breaks the eeprom firmware load.
520            So, use normal speed for eeprom booting and then restore the
521            i2c speed after that. Tested with MSI TV @nyware A/D board,
522            that comes with firmware version 29 inside their eeprom.
523
524            It should also be noticed that no other I2C transfer should
525            be in course while booting from eeprom, otherwise, tda10046
526            goes into an instable state. So, proper locking are needed
527            at the i2c bus master.
528          */
529         printk(KERN_INFO "tda1004x: trying to boot from eeprom\n");
530         tda1004x_write_byteI(state, TDA1004X_CONFC4, 4);
531         msleep(300);
532         tda1004x_write_byteI(state, TDA1004X_CONFC4, confc4);
533
534         /* Checks if eeprom firmware went without troubles */
535         if (tda1004x_check_upload_ok(state) == 0)
536                 return 0;
537
538         /* eeprom firmware didn't work. Load one manually. */
539
540         if (state->config->request_firmware != NULL) {
541                 /* request the firmware, this will block until someone uploads it */
542                 printk(KERN_INFO "tda1004x: waiting for firmware upload...\n");
543                 ret = state->config->request_firmware(fe, &fw, TDA10046_DEFAULT_FIRMWARE);
544                 if (ret) {
545                         /* remain compatible to old bug: try to load with tda10045 image name */
546                         ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
547                         if (ret) {
548                                 printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
549                                 return ret;
550                         } else {
551                                 printk(KERN_INFO "tda1004x: please rename the firmware file to %s\n",
552                                                   TDA10046_DEFAULT_FIRMWARE);
553                         }
554                 }
555         } else {
556                 printk(KERN_ERR "tda1004x: no request function defined, can't upload from file\n");
557                 return -EIO;
558         }
559         tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST
560         ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10046H_CODE_CPT, TDA10046H_CODE_IN);
561         release_firmware(fw);
562         return tda1004x_check_upload_ok(state);
563 }
564
565 static int tda1004x_encode_fec(int fec)
566 {
567         // convert known FEC values
568         switch (fec) {
569         case FEC_1_2:
570                 return 0;
571         case FEC_2_3:
572                 return 1;
573         case FEC_3_4:
574                 return 2;
575         case FEC_5_6:
576                 return 3;
577         case FEC_7_8:
578                 return 4;
579         }
580
581         // unsupported
582         return -EINVAL;
583 }
584
585 static int tda1004x_decode_fec(int tdafec)
586 {
587         // convert known FEC values
588         switch (tdafec) {
589         case 0:
590                 return FEC_1_2;
591         case 1:
592                 return FEC_2_3;
593         case 2:
594                 return FEC_3_4;
595         case 3:
596                 return FEC_5_6;
597         case 4:
598                 return FEC_7_8;
599         }
600
601         // unsupported
602         return -1;
603 }
604
605 static int tda1004x_write(struct dvb_frontend* fe, const u8 buf[], int len)
606 {
607         struct tda1004x_state* state = fe->demodulator_priv;
608
609         if (len != 2)
610                 return -EINVAL;
611
612         return tda1004x_write_byteI(state, buf[0], buf[1]);
613 }
614
615 static int tda10045_init(struct dvb_frontend* fe)
616 {
617         struct tda1004x_state* state = fe->demodulator_priv;
618
619         dprintk("%s\n", __func__);
620
621         if (tda10045_fwupload(fe)) {
622                 printk("tda1004x: firmware upload failed\n");
623                 return -EIO;
624         }
625
626         tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0); // wake up the ADC
627
628         // tda setup
629         tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
630         tda1004x_write_mask(state, TDA1004X_AUTO, 8, 0); // select HP stream
631         tda1004x_write_mask(state, TDA1004X_CONFC1, 0x40, 0); // set polarity of VAGC signal
632         tda1004x_write_mask(state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer
633         tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset
634         tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset
635         tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface
636         tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface
637         tda1004x_write_mask(state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits
638         tda1004x_write_mask(state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity
639         tda1004x_write_byteI(state, TDA1004X_CONFADC1, 0x2e);
640
641         tda1004x_write_mask(state, 0x1f, 0x01, state->config->invert_oclk);
642
643         return 0;
644 }
645
646 static int tda10046_init(struct dvb_frontend* fe)
647 {
648         struct tda1004x_state* state = fe->demodulator_priv;
649         dprintk("%s\n", __func__);
650
651         if (tda10046_fwupload(fe)) {
652                 printk("tda1004x: firmware upload failed\n");
653                         return -EIO;
654         }
655
656         // tda setup
657         tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
658         tda1004x_write_byteI(state, TDA1004X_AUTO, 0x87);    // 100 ppm crystal, select HP stream
659         tda1004x_write_byteI(state, TDA1004X_CONFC1, 0x88);      // enable pulse killer
660
661         switch (state->config->agc_config) {
662         case TDA10046_AGC_DEFAULT:
663                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x00); // AGC setup
664                 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60);  // set AGC polarities
665                 break;
666         case TDA10046_AGC_IFO_AUTO_NEG:
667                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
668                 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60);  // set AGC polarities
669                 break;
670         case TDA10046_AGC_IFO_AUTO_POS:
671                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
672                 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x00);  // set AGC polarities
673                 break;
674         case TDA10046_AGC_TDA827X:
675                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02);   // AGC setup
676                 tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70);    // AGC Threshold
677                 tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize
678                 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60);  // set AGC polarities
679                 break;
680         }
681         if (state->config->ts_mode == 0) {
682                 tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 0xc0, 0x40);
683                 tda1004x_write_mask(state, 0x3a, 0x80, state->config->invert_oclk << 7);
684         } else {
685                 tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 0xc0, 0x80);
686                 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x10,
687                                                         state->config->invert_oclk << 4);
688         }
689         tda1004x_write_byteI(state, TDA1004X_CONFADC2, 0x38);
690         tda1004x_write_mask (state, TDA10046H_CONF_TRISTATE1, 0x3e, 0x38); // Turn IF AGC output on
691         tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MIN, 0);    // }
692         tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values
693         tda1004x_write_byteI(state, TDA10046H_AGC_IF_MIN, 0);     // }
694         tda1004x_write_byteI(state, TDA10046H_AGC_IF_MAX, 0xff);  // }
695         tda1004x_write_byteI(state, TDA10046H_AGC_GAINS, 0x12); // IF gain 2, TUN gain 1
696         tda1004x_write_byteI(state, TDA10046H_CVBER_CTRL, 0x1a); // 10^6 VBER measurement bits
697         tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config
698         tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0xc0); // MPEG2 interface config
699         // tda1004x_write_mask(state, 0x50, 0x80, 0x80);         // handle out of guard echoes
700
701         return 0;
702 }
703
704 static int tda1004x_set_fe(struct dvb_frontend *fe)
705 {
706         struct dtv_frontend_properties *fe_params = &fe->dtv_property_cache;
707         struct tda1004x_state* state = fe->demodulator_priv;
708         int tmp;
709         int inversion;
710
711         dprintk("%s\n", __func__);
712
713         if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
714                 // setup auto offset
715                 tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10);
716                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x80, 0);
717                 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0);
718
719                 // disable agc_conf[2]
720                 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 0);
721         }
722
723         // set frequency
724         if (fe->ops.tuner_ops.set_params) {
725                 fe->ops.tuner_ops.set_params(fe);
726                 if (fe->ops.i2c_gate_ctrl)
727                         fe->ops.i2c_gate_ctrl(fe, 0);
728         }
729
730         // Hardcoded to use auto as much as possible on the TDA10045 as it
731         // is very unreliable if AUTO mode is _not_ used.
732         if (state->demod_type == TDA1004X_DEMOD_TDA10045) {
733                 fe_params->code_rate_HP = FEC_AUTO;
734                 fe_params->guard_interval = GUARD_INTERVAL_AUTO;
735                 fe_params->transmission_mode = TRANSMISSION_MODE_AUTO;
736         }
737
738         // Set standard params.. or put them to auto
739         if ((fe_params->code_rate_HP == FEC_AUTO) ||
740                 (fe_params->code_rate_LP == FEC_AUTO) ||
741                 (fe_params->modulation == QAM_AUTO) ||
742                 (fe_params->hierarchy == HIERARCHY_AUTO)) {
743                 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 1);        // enable auto
744                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x03, 0); /* turn off modulation bits */
745                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits
746                 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits
747         } else {
748                 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 0);        // disable auto
749
750                 // set HP FEC
751                 tmp = tda1004x_encode_fec(fe_params->code_rate_HP);
752                 if (tmp < 0)
753                         return tmp;
754                 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 7, tmp);
755
756                 // set LP FEC
757                 tmp = tda1004x_encode_fec(fe_params->code_rate_LP);
758                 if (tmp < 0)
759                         return tmp;
760                 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x38, tmp << 3);
761
762                 /* set modulation */
763                 switch (fe_params->modulation) {
764                 case QPSK:
765                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 0);
766                         break;
767
768                 case QAM_16:
769                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 1);
770                         break;
771
772                 case QAM_64:
773                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 2);
774                         break;
775
776                 default:
777                         return -EINVAL;
778                 }
779
780                 // set hierarchy
781                 switch (fe_params->hierarchy) {
782                 case HIERARCHY_NONE:
783                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0 << 5);
784                         break;
785
786                 case HIERARCHY_1:
787                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 1 << 5);
788                         break;
789
790                 case HIERARCHY_2:
791                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 2 << 5);
792                         break;
793
794                 case HIERARCHY_4:
795                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 3 << 5);
796                         break;
797
798                 default:
799                         return -EINVAL;
800                 }
801         }
802
803         // set bandwidth
804         switch (state->demod_type) {
805         case TDA1004X_DEMOD_TDA10045:
806                 tda10045h_set_bandwidth(state, fe_params->bandwidth_hz);
807                 break;
808
809         case TDA1004X_DEMOD_TDA10046:
810                 tda10046h_set_bandwidth(state, fe_params->bandwidth_hz);
811                 break;
812         }
813
814         // set inversion
815         inversion = fe_params->inversion;
816         if (state->config->invert)
817                 inversion = inversion ? INVERSION_OFF : INVERSION_ON;
818         switch (inversion) {
819         case INVERSION_OFF:
820                 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0);
821                 break;
822
823         case INVERSION_ON:
824                 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0x20);
825                 break;
826
827         default:
828                 return -EINVAL;
829         }
830
831         // set guard interval
832         switch (fe_params->guard_interval) {
833         case GUARD_INTERVAL_1_32:
834                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
835                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
836                 break;
837
838         case GUARD_INTERVAL_1_16:
839                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
840                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 1 << 2);
841                 break;
842
843         case GUARD_INTERVAL_1_8:
844                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
845                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 2 << 2);
846                 break;
847
848         case GUARD_INTERVAL_1_4:
849                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
850                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 3 << 2);
851                 break;
852
853         case GUARD_INTERVAL_AUTO:
854                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 2);
855                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
856                 break;
857
858         default:
859                 return -EINVAL;
860         }
861
862         // set transmission mode
863         switch (fe_params->transmission_mode) {
864         case TRANSMISSION_MODE_2K:
865                 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
866                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0 << 4);
867                 break;
868
869         case TRANSMISSION_MODE_8K:
870                 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
871                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 1 << 4);
872                 break;
873
874         case TRANSMISSION_MODE_AUTO:
875                 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 4);
876                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0);
877                 break;
878
879         default:
880                 return -EINVAL;
881         }
882
883         // start the lock
884         switch (state->demod_type) {
885         case TDA1004X_DEMOD_TDA10045:
886                 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
887                 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
888                 break;
889
890         case TDA1004X_DEMOD_TDA10046:
891                 tda1004x_write_mask(state, TDA1004X_AUTO, 0x40, 0x40);
892                 msleep(1);
893                 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 1);
894                 break;
895         }
896
897         msleep(10);
898
899         return 0;
900 }
901
902 static int tda1004x_get_fe(struct dvb_frontend *fe)
903 {
904         struct dtv_frontend_properties *fe_params = &fe->dtv_property_cache;
905         struct tda1004x_state* state = fe->demodulator_priv;
906
907         dprintk("%s\n", __func__);
908
909         // inversion status
910         fe_params->inversion = INVERSION_OFF;
911         if (tda1004x_read_byte(state, TDA1004X_CONFC1) & 0x20)
912                 fe_params->inversion = INVERSION_ON;
913         if (state->config->invert)
914                 fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON;
915
916         // bandwidth
917         switch (state->demod_type) {
918         case TDA1004X_DEMOD_TDA10045:
919                 switch (tda1004x_read_byte(state, TDA10045H_WREF_LSB)) {
920                 case 0x14:
921                         fe_params->bandwidth_hz = 8000000;
922                         break;
923                 case 0xdb:
924                         fe_params->bandwidth_hz = 7000000;
925                         break;
926                 case 0x4f:
927                         fe_params->bandwidth_hz = 6000000;
928                         break;
929                 }
930                 break;
931         case TDA1004X_DEMOD_TDA10046:
932                 switch (tda1004x_read_byte(state, TDA10046H_TIME_WREF1)) {
933                 case 0x5c:
934                 case 0x54:
935                         fe_params->bandwidth_hz = 8000000;
936                         break;
937                 case 0x6a:
938                 case 0x60:
939                         fe_params->bandwidth_hz = 7000000;
940                         break;
941                 case 0x7b:
942                 case 0x70:
943                         fe_params->bandwidth_hz = 6000000;
944                         break;
945                 }
946                 break;
947         }
948
949         // FEC
950         fe_params->code_rate_HP =
951             tda1004x_decode_fec(tda1004x_read_byte(state, TDA1004X_OUT_CONF2) & 7);
952         fe_params->code_rate_LP =
953             tda1004x_decode_fec((tda1004x_read_byte(state, TDA1004X_OUT_CONF2) >> 3) & 7);
954
955         /* modulation */
956         switch (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 3) {
957         case 0:
958                 fe_params->modulation = QPSK;
959                 break;
960         case 1:
961                 fe_params->modulation = QAM_16;
962                 break;
963         case 2:
964                 fe_params->modulation = QAM_64;
965                 break;
966         }
967
968         // transmission mode
969         fe_params->transmission_mode = TRANSMISSION_MODE_2K;
970         if (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x10)
971                 fe_params->transmission_mode = TRANSMISSION_MODE_8K;
972
973         // guard interval
974         switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) {
975         case 0:
976                 fe_params->guard_interval = GUARD_INTERVAL_1_32;
977                 break;
978         case 1:
979                 fe_params->guard_interval = GUARD_INTERVAL_1_16;
980                 break;
981         case 2:
982                 fe_params->guard_interval = GUARD_INTERVAL_1_8;
983                 break;
984         case 3:
985                 fe_params->guard_interval = GUARD_INTERVAL_1_4;
986                 break;
987         }
988
989         // hierarchy
990         switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x60) >> 5) {
991         case 0:
992                 fe_params->hierarchy = HIERARCHY_NONE;
993                 break;
994         case 1:
995                 fe_params->hierarchy = HIERARCHY_1;
996                 break;
997         case 2:
998                 fe_params->hierarchy = HIERARCHY_2;
999                 break;
1000         case 3:
1001                 fe_params->hierarchy = HIERARCHY_4;
1002                 break;
1003         }
1004
1005         return 0;
1006 }
1007
1008 static int tda1004x_read_status(struct dvb_frontend* fe, fe_status_t * fe_status)
1009 {
1010         struct tda1004x_state* state = fe->demodulator_priv;
1011         int status;
1012         int cber;
1013         int vber;
1014
1015         dprintk("%s\n", __func__);
1016
1017         // read status
1018         status = tda1004x_read_byte(state, TDA1004X_STATUS_CD);
1019         if (status == -1)
1020                 return -EIO;
1021
1022         // decode
1023         *fe_status = 0;
1024         if (status & 4)
1025                 *fe_status |= FE_HAS_SIGNAL;
1026         if (status & 2)
1027                 *fe_status |= FE_HAS_CARRIER;
1028         if (status & 8)
1029                 *fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
1030
1031         // if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi
1032         // is getting anything valid
1033         if (!(*fe_status & FE_HAS_VITERBI)) {
1034                 // read the CBER
1035                 cber = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1036                 if (cber == -1)
1037                         return -EIO;
1038                 status = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1039                 if (status == -1)
1040                         return -EIO;
1041                 cber |= (status << 8);
1042                 // The address 0x20 should be read to cope with a TDA10046 bug
1043                 tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1044
1045                 if (cber != 65535)
1046                         *fe_status |= FE_HAS_VITERBI;
1047         }
1048
1049         // if we DO have some valid VITERBI output, but don't already have SYNC
1050         // bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid.
1051         if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) {
1052                 // read the VBER
1053                 vber = tda1004x_read_byte(state, TDA1004X_VBER_LSB);
1054                 if (vber == -1)
1055                         return -EIO;
1056                 status = tda1004x_read_byte(state, TDA1004X_VBER_MID);
1057                 if (status == -1)
1058                         return -EIO;
1059                 vber |= (status << 8);
1060                 status = tda1004x_read_byte(state, TDA1004X_VBER_MSB);
1061                 if (status == -1)
1062                         return -EIO;
1063                 vber |= (status & 0x0f) << 16;
1064                 // The CVBER_LUT should be read to cope with TDA10046 hardware bug
1065                 tda1004x_read_byte(state, TDA1004X_CVBER_LUT);
1066
1067                 // if RS has passed some valid TS packets, then we must be
1068                 // getting some SYNC bytes
1069                 if (vber < 16632)
1070                         *fe_status |= FE_HAS_SYNC;
1071         }
1072
1073         // success
1074         dprintk("%s: fe_status=0x%x\n", __func__, *fe_status);
1075         return 0;
1076 }
1077
1078 static int tda1004x_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
1079 {
1080         struct tda1004x_state* state = fe->demodulator_priv;
1081         int tmp;
1082         int reg = 0;
1083
1084         dprintk("%s\n", __func__);
1085
1086         // determine the register to use
1087         switch (state->demod_type) {
1088         case TDA1004X_DEMOD_TDA10045:
1089                 reg = TDA10045H_S_AGC;
1090                 break;
1091
1092         case TDA1004X_DEMOD_TDA10046:
1093                 reg = TDA10046H_AGC_IF_LEVEL;
1094                 break;
1095         }
1096
1097         // read it
1098         tmp = tda1004x_read_byte(state, reg);
1099         if (tmp < 0)
1100                 return -EIO;
1101
1102         *signal = (tmp << 8) | tmp;
1103         dprintk("%s: signal=0x%x\n", __func__, *signal);
1104         return 0;
1105 }
1106
1107 static int tda1004x_read_snr(struct dvb_frontend* fe, u16 * snr)
1108 {
1109         struct tda1004x_state* state = fe->demodulator_priv;
1110         int tmp;
1111
1112         dprintk("%s\n", __func__);
1113
1114         // read it
1115         tmp = tda1004x_read_byte(state, TDA1004X_SNR);
1116         if (tmp < 0)
1117                 return -EIO;
1118         tmp = 255 - tmp;
1119
1120         *snr = ((tmp << 8) | tmp);
1121         dprintk("%s: snr=0x%x\n", __func__, *snr);
1122         return 0;
1123 }
1124
1125 static int tda1004x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
1126 {
1127         struct tda1004x_state* state = fe->demodulator_priv;
1128         int tmp;
1129         int tmp2;
1130         int counter;
1131
1132         dprintk("%s\n", __func__);
1133
1134         // read the UCBLOCKS and reset
1135         counter = 0;
1136         tmp = tda1004x_read_byte(state, TDA1004X_UNCOR);
1137         if (tmp < 0)
1138                 return -EIO;
1139         tmp &= 0x7f;
1140         while (counter++ < 5) {
1141                 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1142                 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1143                 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1144
1145                 tmp2 = tda1004x_read_byte(state, TDA1004X_UNCOR);
1146                 if (tmp2 < 0)
1147                         return -EIO;
1148                 tmp2 &= 0x7f;
1149                 if ((tmp2 < tmp) || (tmp2 == 0))
1150                         break;
1151         }
1152
1153         if (tmp != 0x7f)
1154                 *ucblocks = tmp;
1155         else
1156                 *ucblocks = 0xffffffff;
1157
1158         dprintk("%s: ucblocks=0x%x\n", __func__, *ucblocks);
1159         return 0;
1160 }
1161
1162 static int tda1004x_read_ber(struct dvb_frontend* fe, u32* ber)
1163 {
1164         struct tda1004x_state* state = fe->demodulator_priv;
1165         int tmp;
1166
1167         dprintk("%s\n", __func__);
1168
1169         // read it in
1170         tmp = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1171         if (tmp < 0)
1172                 return -EIO;
1173         *ber = tmp << 1;
1174         tmp = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1175         if (tmp < 0)
1176                 return -EIO;
1177         *ber |= (tmp << 9);
1178         // The address 0x20 should be read to cope with a TDA10046 bug
1179         tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1180
1181         dprintk("%s: ber=0x%x\n", __func__, *ber);
1182         return 0;
1183 }
1184
1185 static int tda1004x_sleep(struct dvb_frontend* fe)
1186 {
1187         struct tda1004x_state* state = fe->demodulator_priv;
1188         int gpio_conf;
1189
1190         switch (state->demod_type) {
1191         case TDA1004X_DEMOD_TDA10045:
1192                 tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0x10);
1193                 break;
1194
1195         case TDA1004X_DEMOD_TDA10046:
1196                 /* set outputs to tristate */
1197                 tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0xff);
1198                 /* invert GPIO 1 and 3 if desired*/
1199                 gpio_conf = state->config->gpio_config;
1200                 if (gpio_conf >= TDA10046_GP00_I)
1201                         tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x0f,
1202                                                         (gpio_conf & 0x0f) ^ 0x0a);
1203
1204                 tda1004x_write_mask(state, TDA1004X_CONFADC2, 0xc0, 0xc0);
1205                 tda1004x_write_mask(state, TDA1004X_CONFC4, 1, 1);
1206                 break;
1207         }
1208
1209         return 0;
1210 }
1211
1212 static int tda1004x_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
1213 {
1214         struct tda1004x_state* state = fe->demodulator_priv;
1215
1216         if (enable) {
1217                 return tda1004x_enable_tuner_i2c(state);
1218         } else {
1219                 return tda1004x_disable_tuner_i2c(state);
1220         }
1221 }
1222
1223 static int tda1004x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
1224 {
1225         fesettings->min_delay_ms = 800;
1226         /* Drift compensation makes no sense for DVB-T */
1227         fesettings->step_size = 0;
1228         fesettings->max_drift = 0;
1229         return 0;
1230 }
1231
1232 static void tda1004x_release(struct dvb_frontend* fe)
1233 {
1234         struct tda1004x_state *state = fe->demodulator_priv;
1235         kfree(state);
1236 }
1237
1238 static struct dvb_frontend_ops tda10045_ops = {
1239         .delsys = { SYS_DVBT },
1240         .info = {
1241                 .name = "Philips TDA10045H DVB-T",
1242                 .frequency_min = 51000000,
1243                 .frequency_max = 858000000,
1244                 .frequency_stepsize = 166667,
1245                 .caps =
1246                     FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1247                     FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1248                     FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1249                     FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1250         },
1251
1252         .release = tda1004x_release,
1253
1254         .init = tda10045_init,
1255         .sleep = tda1004x_sleep,
1256         .write = tda1004x_write,
1257         .i2c_gate_ctrl = tda1004x_i2c_gate_ctrl,
1258
1259         .set_frontend = tda1004x_set_fe,
1260         .get_frontend = tda1004x_get_fe,
1261         .get_tune_settings = tda1004x_get_tune_settings,
1262
1263         .read_status = tda1004x_read_status,
1264         .read_ber = tda1004x_read_ber,
1265         .read_signal_strength = tda1004x_read_signal_strength,
1266         .read_snr = tda1004x_read_snr,
1267         .read_ucblocks = tda1004x_read_ucblocks,
1268 };
1269
1270 struct dvb_frontend* tda10045_attach(const struct tda1004x_config* config,
1271                                      struct i2c_adapter* i2c)
1272 {
1273         struct tda1004x_state *state;
1274         int id;
1275
1276         /* allocate memory for the internal state */
1277         state = kzalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1278         if (!state) {
1279                 printk(KERN_ERR "Can't allocate memory for tda10045 state\n");
1280                 return NULL;
1281         }
1282
1283         /* setup the state */
1284         state->config = config;
1285         state->i2c = i2c;
1286         state->demod_type = TDA1004X_DEMOD_TDA10045;
1287
1288         /* check if the demod is there */
1289         id = tda1004x_read_byte(state, TDA1004X_CHIPID);
1290         if (id < 0) {
1291                 printk(KERN_ERR "tda10045: chip is not answering. Giving up.\n");
1292                 kfree(state);
1293                 return NULL;
1294         }
1295
1296         if (id != 0x25) {
1297                 printk(KERN_ERR "Invalid tda1004x ID = 0x%02x. Can't proceed\n", id);
1298                 kfree(state);
1299                 return NULL;
1300         }
1301
1302         /* create dvb_frontend */
1303         memcpy(&state->frontend.ops, &tda10045_ops, sizeof(struct dvb_frontend_ops));
1304         state->frontend.demodulator_priv = state;
1305         return &state->frontend;
1306 }
1307
1308 static struct dvb_frontend_ops tda10046_ops = {
1309         .delsys = { SYS_DVBT },
1310         .info = {
1311                 .name = "Philips TDA10046H DVB-T",
1312                 .frequency_min = 51000000,
1313                 .frequency_max = 858000000,
1314                 .frequency_stepsize = 166667,
1315                 .caps =
1316                     FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1317                     FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1318                     FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1319                     FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1320         },
1321
1322         .release = tda1004x_release,
1323
1324         .init = tda10046_init,
1325         .sleep = tda1004x_sleep,
1326         .write = tda1004x_write,
1327         .i2c_gate_ctrl = tda1004x_i2c_gate_ctrl,
1328
1329         .set_frontend = tda1004x_set_fe,
1330         .get_frontend = tda1004x_get_fe,
1331         .get_tune_settings = tda1004x_get_tune_settings,
1332
1333         .read_status = tda1004x_read_status,
1334         .read_ber = tda1004x_read_ber,
1335         .read_signal_strength = tda1004x_read_signal_strength,
1336         .read_snr = tda1004x_read_snr,
1337         .read_ucblocks = tda1004x_read_ucblocks,
1338 };
1339
1340 struct dvb_frontend* tda10046_attach(const struct tda1004x_config* config,
1341                                      struct i2c_adapter* i2c)
1342 {
1343         struct tda1004x_state *state;
1344         int id;
1345
1346         /* allocate memory for the internal state */
1347         state = kzalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1348         if (!state) {
1349                 printk(KERN_ERR "Can't allocate memory for tda10046 state\n");
1350                 return NULL;
1351         }
1352
1353         /* setup the state */
1354         state->config = config;
1355         state->i2c = i2c;
1356         state->demod_type = TDA1004X_DEMOD_TDA10046;
1357
1358         /* check if the demod is there */
1359         id = tda1004x_read_byte(state, TDA1004X_CHIPID);
1360         if (id < 0) {
1361                 printk(KERN_ERR "tda10046: chip is not answering. Giving up.\n");
1362                 kfree(state);
1363                 return NULL;
1364         }
1365         if (id != 0x46) {
1366                 printk(KERN_ERR "Invalid tda1004x ID = 0x%02x. Can't proceed\n", id);
1367                 kfree(state);
1368                 return NULL;
1369         }
1370
1371         /* create dvb_frontend */
1372         memcpy(&state->frontend.ops, &tda10046_ops, sizeof(struct dvb_frontend_ops));
1373         state->frontend.demodulator_priv = state;
1374         return &state->frontend;
1375 }
1376
1377 module_param(debug, int, 0644);
1378 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
1379
1380 MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Demodulator");
1381 MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach");
1382 MODULE_LICENSE("GPL");
1383
1384 EXPORT_SYMBOL(tda10045_attach);
1385 EXPORT_SYMBOL(tda10046_attach);