These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / media / dvb-frontends / nxt6000.c
1 /*
2         NxtWave Communications - NXT6000 demodulator driver
3
4     Copyright (C) 2002-2003 Florian Schirmer <jolt@tuxbox.org>
5     Copyright (C) 2003 Paul Andreassen <paul@andreassen.com.au>
6
7     This program is free software; you can redistribute it and/or modify
8     it under the terms of the GNU General Public License as published by
9     the Free Software Foundation; either version 2 of the License, or
10     (at your option) any later version.
11
12     This program is distributed in the hope that it will be useful,
13     but WITHOUT ANY WARRANTY; without even the implied warranty of
14     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15     GNU General Public License for more details.
16
17     You should have received a copy of the GNU General Public License
18     along with this program; if not, write to the Free Software
19     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/slab.h>
27
28 #include "dvb_frontend.h"
29 #include "nxt6000_priv.h"
30 #include "nxt6000.h"
31
32
33
34 struct nxt6000_state {
35         struct i2c_adapter* i2c;
36         /* configuration settings */
37         const struct nxt6000_config* config;
38         struct dvb_frontend frontend;
39 };
40
41 static int debug;
42 #define dprintk if (debug) printk
43
44 static int nxt6000_writereg(struct nxt6000_state* state, u8 reg, u8 data)
45 {
46         u8 buf[] = { reg, data };
47         struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
48         int ret;
49
50         if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1)
51                 dprintk("nxt6000: nxt6000_write error (reg: 0x%02X, data: 0x%02X, ret: %d)\n", reg, data, ret);
52
53         return (ret != 1) ? -EIO : 0;
54 }
55
56 static u8 nxt6000_readreg(struct nxt6000_state* state, u8 reg)
57 {
58         int ret;
59         u8 b0[] = { reg };
60         u8 b1[] = { 0 };
61         struct i2c_msg msgs[] = {
62                 {.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
63                 {.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
64         };
65
66         ret = i2c_transfer(state->i2c, msgs, 2);
67
68         if (ret != 2)
69                 dprintk("nxt6000: nxt6000_read error (reg: 0x%02X, ret: %d)\n", reg, ret);
70
71         return b1[0];
72 }
73
74 static void nxt6000_reset(struct nxt6000_state* state)
75 {
76         u8 val;
77
78         val = nxt6000_readreg(state, OFDM_COR_CTL);
79
80         nxt6000_writereg(state, OFDM_COR_CTL, val & ~COREACT);
81         nxt6000_writereg(state, OFDM_COR_CTL, val | COREACT);
82 }
83
84 static int nxt6000_set_bandwidth(struct nxt6000_state *state, u32 bandwidth)
85 {
86         u16 nominal_rate;
87         int result;
88
89         switch (bandwidth) {
90         case 6000000:
91                 nominal_rate = 0x55B7;
92                 break;
93
94         case 7000000:
95                 nominal_rate = 0x6400;
96                 break;
97
98         case 8000000:
99                 nominal_rate = 0x7249;
100                 break;
101
102         default:
103                 return -EINVAL;
104         }
105
106         if ((result = nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, nominal_rate & 0xFF)) < 0)
107                 return result;
108
109         return nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, (nominal_rate >> 8) & 0xFF);
110 }
111
112 static int nxt6000_set_guard_interval(struct nxt6000_state *state,
113                                       enum fe_guard_interval guard_interval)
114 {
115         switch (guard_interval) {
116
117         case GUARD_INTERVAL_1_32:
118                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x00 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
119
120         case GUARD_INTERVAL_1_16:
121                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x01 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
122
123         case GUARD_INTERVAL_AUTO:
124         case GUARD_INTERVAL_1_8:
125                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x02 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
126
127         case GUARD_INTERVAL_1_4:
128                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x03 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
129
130         default:
131                 return -EINVAL;
132         }
133 }
134
135 static int nxt6000_set_inversion(struct nxt6000_state *state,
136                                  enum fe_spectral_inversion inversion)
137 {
138         switch (inversion) {
139
140         case INVERSION_OFF:
141                 return nxt6000_writereg(state, OFDM_ITB_CTL, 0x00);
142
143         case INVERSION_ON:
144                 return nxt6000_writereg(state, OFDM_ITB_CTL, ITBINV);
145
146         default:
147                 return -EINVAL;
148
149         }
150 }
151
152 static int
153 nxt6000_set_transmission_mode(struct nxt6000_state *state,
154                               enum fe_transmit_mode transmission_mode)
155 {
156         int result;
157
158         switch (transmission_mode) {
159
160         case TRANSMISSION_MODE_2K:
161                 if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x00 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
162                         return result;
163
164                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x00 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
165
166         case TRANSMISSION_MODE_8K:
167         case TRANSMISSION_MODE_AUTO:
168                 if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x02 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
169                         return result;
170
171                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x01 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
172
173         default:
174                 return -EINVAL;
175
176         }
177 }
178
179 static void nxt6000_setup(struct dvb_frontend* fe)
180 {
181         struct nxt6000_state* state = fe->demodulator_priv;
182
183         nxt6000_writereg(state, RS_COR_SYNC_PARAM, SYNC_PARAM);
184         nxt6000_writereg(state, BER_CTRL, /*(1 << 2) | */ (0x01 << 1) | 0x01);
185         nxt6000_writereg(state, VIT_BERTIME_2, 0x00);  // BER Timer = 0x000200 * 256 = 131072 bits
186         nxt6000_writereg(state, VIT_BERTIME_1, 0x02);  //
187         nxt6000_writereg(state, VIT_BERTIME_0, 0x00);  //
188         nxt6000_writereg(state, VIT_COR_INTEN, 0x98); // Enable BER interrupts
189         nxt6000_writereg(state, VIT_COR_CTL, 0x82);   // Enable BER measurement
190         nxt6000_writereg(state, VIT_COR_CTL, VIT_COR_RESYNC | 0x02 );
191         nxt6000_writereg(state, OFDM_COR_CTL, (0x01 << 5) | (nxt6000_readreg(state, OFDM_COR_CTL) & 0x0F));
192         nxt6000_writereg(state, OFDM_COR_MODEGUARD, FORCEMODE8K | 0x02);
193         nxt6000_writereg(state, OFDM_AGC_CTL, AGCLAST | INITIAL_AGC_BW);
194         nxt6000_writereg(state, OFDM_ITB_FREQ_1, 0x06);
195         nxt6000_writereg(state, OFDM_ITB_FREQ_2, 0x31);
196         nxt6000_writereg(state, OFDM_CAS_CTL, (0x01 << 7) | (0x02 << 3) | 0x04);
197         nxt6000_writereg(state, CAS_FREQ, 0xBB);        /* CHECKME */
198         nxt6000_writereg(state, OFDM_SYR_CTL, 1 << 2);
199         nxt6000_writereg(state, OFDM_PPM_CTL_1, PPM256);
200         nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, 0x49);
201         nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, 0x72);
202         nxt6000_writereg(state, ANALOG_CONTROL_0, 1 << 5);
203         nxt6000_writereg(state, EN_DMD_RACQ, (1 << 7) | (3 << 4) | 2);
204         nxt6000_writereg(state, DIAG_CONFIG, TB_SET);
205
206         if (state->config->clock_inversion)
207                 nxt6000_writereg(state, SUB_DIAG_MODE_SEL, CLKINVERSION);
208         else
209                 nxt6000_writereg(state, SUB_DIAG_MODE_SEL, 0);
210
211         nxt6000_writereg(state, TS_FORMAT, 0);
212 }
213
214 static void nxt6000_dump_status(struct nxt6000_state *state)
215 {
216         u8 val;
217
218 /*
219         printk("RS_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, RS_COR_STAT));
220         printk("VIT_SYNC_STATUS: 0x%02X\n", nxt6000_readreg(fe, VIT_SYNC_STATUS));
221         printk("OFDM_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_COR_STAT));
222         printk("OFDM_SYR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_SYR_STAT));
223         printk("OFDM_TPS_RCVD_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_1));
224         printk("OFDM_TPS_RCVD_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_2));
225         printk("OFDM_TPS_RCVD_3: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_3));
226         printk("OFDM_TPS_RCVD_4: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_4));
227         printk("OFDM_TPS_RESERVED_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_1));
228         printk("OFDM_TPS_RESERVED_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_2));
229 */
230         printk("NXT6000 status:");
231
232         val = nxt6000_readreg(state, RS_COR_STAT);
233
234         printk(" DATA DESCR LOCK: %d,", val & 0x01);
235         printk(" DATA SYNC LOCK: %d,", (val >> 1) & 0x01);
236
237         val = nxt6000_readreg(state, VIT_SYNC_STATUS);
238
239         printk(" VITERBI LOCK: %d,", (val >> 7) & 0x01);
240
241         switch ((val >> 4) & 0x07) {
242
243         case 0x00:
244                 printk(" VITERBI CODERATE: 1/2,");
245                 break;
246
247         case 0x01:
248                 printk(" VITERBI CODERATE: 2/3,");
249                 break;
250
251         case 0x02:
252                 printk(" VITERBI CODERATE: 3/4,");
253                 break;
254
255         case 0x03:
256                 printk(" VITERBI CODERATE: 5/6,");
257                 break;
258
259         case 0x04:
260                 printk(" VITERBI CODERATE: 7/8,");
261                 break;
262
263         default:
264                 printk(" VITERBI CODERATE: Reserved,");
265
266         }
267
268         val = nxt6000_readreg(state, OFDM_COR_STAT);
269
270         printk(" CHCTrack: %d,", (val >> 7) & 0x01);
271         printk(" TPSLock: %d,", (val >> 6) & 0x01);
272         printk(" SYRLock: %d,", (val >> 5) & 0x01);
273         printk(" AGCLock: %d,", (val >> 4) & 0x01);
274
275         switch (val & 0x0F) {
276
277         case 0x00:
278                 printk(" CoreState: IDLE,");
279                 break;
280
281         case 0x02:
282                 printk(" CoreState: WAIT_AGC,");
283                 break;
284
285         case 0x03:
286                 printk(" CoreState: WAIT_SYR,");
287                 break;
288
289         case 0x04:
290                 printk(" CoreState: WAIT_PPM,");
291                 break;
292
293         case 0x01:
294                 printk(" CoreState: WAIT_TRL,");
295                 break;
296
297         case 0x05:
298                 printk(" CoreState: WAIT_TPS,");
299                 break;
300
301         case 0x06:
302                 printk(" CoreState: MONITOR_TPS,");
303                 break;
304
305         default:
306                 printk(" CoreState: Reserved,");
307
308         }
309
310         val = nxt6000_readreg(state, OFDM_SYR_STAT);
311
312         printk(" SYRLock: %d,", (val >> 4) & 0x01);
313         printk(" SYRMode: %s,", (val >> 2) & 0x01 ? "8K" : "2K");
314
315         switch ((val >> 4) & 0x03) {
316
317         case 0x00:
318                 printk(" SYRGuard: 1/32,");
319                 break;
320
321         case 0x01:
322                 printk(" SYRGuard: 1/16,");
323                 break;
324
325         case 0x02:
326                 printk(" SYRGuard: 1/8,");
327                 break;
328
329         case 0x03:
330                 printk(" SYRGuard: 1/4,");
331                 break;
332         }
333
334         val = nxt6000_readreg(state, OFDM_TPS_RCVD_3);
335
336         switch ((val >> 4) & 0x07) {
337
338         case 0x00:
339                 printk(" TPSLP: 1/2,");
340                 break;
341
342         case 0x01:
343                 printk(" TPSLP: 2/3,");
344                 break;
345
346         case 0x02:
347                 printk(" TPSLP: 3/4,");
348                 break;
349
350         case 0x03:
351                 printk(" TPSLP: 5/6,");
352                 break;
353
354         case 0x04:
355                 printk(" TPSLP: 7/8,");
356                 break;
357
358         default:
359                 printk(" TPSLP: Reserved,");
360
361         }
362
363         switch (val & 0x07) {
364
365         case 0x00:
366                 printk(" TPSHP: 1/2,");
367                 break;
368
369         case 0x01:
370                 printk(" TPSHP: 2/3,");
371                 break;
372
373         case 0x02:
374                 printk(" TPSHP: 3/4,");
375                 break;
376
377         case 0x03:
378                 printk(" TPSHP: 5/6,");
379                 break;
380
381         case 0x04:
382                 printk(" TPSHP: 7/8,");
383                 break;
384
385         default:
386                 printk(" TPSHP: Reserved,");
387
388         }
389
390         val = nxt6000_readreg(state, OFDM_TPS_RCVD_4);
391
392         printk(" TPSMode: %s,", val & 0x01 ? "8K" : "2K");
393
394         switch ((val >> 4) & 0x03) {
395
396         case 0x00:
397                 printk(" TPSGuard: 1/32,");
398                 break;
399
400         case 0x01:
401                 printk(" TPSGuard: 1/16,");
402                 break;
403
404         case 0x02:
405                 printk(" TPSGuard: 1/8,");
406                 break;
407
408         case 0x03:
409                 printk(" TPSGuard: 1/4,");
410                 break;
411
412         }
413
414         /* Strange magic required to gain access to RF_AGC_STATUS */
415         nxt6000_readreg(state, RF_AGC_VAL_1);
416         val = nxt6000_readreg(state, RF_AGC_STATUS);
417         val = nxt6000_readreg(state, RF_AGC_STATUS);
418
419         printk(" RF AGC LOCK: %d,", (val >> 4) & 0x01);
420         printk("\n");
421 }
422
423 static int nxt6000_read_status(struct dvb_frontend *fe, enum fe_status *status)
424 {
425         u8 core_status;
426         struct nxt6000_state* state = fe->demodulator_priv;
427
428         *status = 0;
429
430         core_status = nxt6000_readreg(state, OFDM_COR_STAT);
431
432         if (core_status & AGCLOCKED)
433                 *status |= FE_HAS_SIGNAL;
434
435         if (nxt6000_readreg(state, OFDM_SYR_STAT) & GI14_SYR_LOCK)
436                 *status |= FE_HAS_CARRIER;
437
438         if (nxt6000_readreg(state, VIT_SYNC_STATUS) & VITINSYNC)
439                 *status |= FE_HAS_VITERBI;
440
441         if (nxt6000_readreg(state, RS_COR_STAT) & RSCORESTATUS)
442                 *status |= FE_HAS_SYNC;
443
444         if ((core_status & TPSLOCKED) && (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)))
445                 *status |= FE_HAS_LOCK;
446
447         if (debug)
448                 nxt6000_dump_status(state);
449
450         return 0;
451 }
452
453 static int nxt6000_init(struct dvb_frontend* fe)
454 {
455         struct nxt6000_state* state = fe->demodulator_priv;
456
457         nxt6000_reset(state);
458         nxt6000_setup(fe);
459
460         return 0;
461 }
462
463 static int nxt6000_set_frontend(struct dvb_frontend *fe)
464 {
465         struct dtv_frontend_properties *p = &fe->dtv_property_cache;
466         struct nxt6000_state* state = fe->demodulator_priv;
467         int result;
468
469         if (fe->ops.tuner_ops.set_params) {
470                 fe->ops.tuner_ops.set_params(fe);
471                 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
472         }
473
474         result = nxt6000_set_bandwidth(state, p->bandwidth_hz);
475         if (result < 0)
476                 return result;
477
478         result = nxt6000_set_guard_interval(state, p->guard_interval);
479         if (result < 0)
480                 return result;
481
482         result = nxt6000_set_transmission_mode(state, p->transmission_mode);
483         if (result < 0)
484                 return result;
485
486         result = nxt6000_set_inversion(state, p->inversion);
487         if (result < 0)
488                 return result;
489
490         msleep(500);
491         return 0;
492 }
493
494 static void nxt6000_release(struct dvb_frontend* fe)
495 {
496         struct nxt6000_state* state = fe->demodulator_priv;
497         kfree(state);
498 }
499
500 static int nxt6000_read_snr(struct dvb_frontend* fe, u16* snr)
501 {
502         struct nxt6000_state* state = fe->demodulator_priv;
503
504         *snr = nxt6000_readreg( state, OFDM_CHC_SNR) / 8;
505
506         return 0;
507 }
508
509 static int nxt6000_read_ber(struct dvb_frontend* fe, u32* ber)
510 {
511         struct nxt6000_state* state = fe->demodulator_priv;
512
513         nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18 );
514
515         *ber = (nxt6000_readreg( state, VIT_BER_1 ) << 8 ) |
516                 nxt6000_readreg( state, VIT_BER_0 );
517
518         nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18); // Clear BER Done interrupts
519
520         return 0;
521 }
522
523 static int nxt6000_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
524 {
525         struct nxt6000_state* state = fe->demodulator_priv;
526
527         *signal_strength = (short) (511 -
528                 (nxt6000_readreg(state, AGC_GAIN_1) +
529                 ((nxt6000_readreg(state, AGC_GAIN_2) & 0x03) << 8)));
530
531         return 0;
532 }
533
534 static int nxt6000_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
535 {
536         tune->min_delay_ms = 500;
537         return 0;
538 }
539
540 static int nxt6000_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
541 {
542         struct nxt6000_state* state = fe->demodulator_priv;
543
544         if (enable) {
545                 return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01);
546         } else {
547                 return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00);
548         }
549 }
550
551 static struct dvb_frontend_ops nxt6000_ops;
552
553 struct dvb_frontend* nxt6000_attach(const struct nxt6000_config* config,
554                                     struct i2c_adapter* i2c)
555 {
556         struct nxt6000_state* state = NULL;
557
558         /* allocate memory for the internal state */
559         state = kzalloc(sizeof(struct nxt6000_state), GFP_KERNEL);
560         if (state == NULL) goto error;
561
562         /* setup the state */
563         state->config = config;
564         state->i2c = i2c;
565
566         /* check if the demod is there */
567         if (nxt6000_readreg(state, OFDM_MSC_REV) != NXT6000ASICDEVICE) goto error;
568
569         /* create dvb_frontend */
570         memcpy(&state->frontend.ops, &nxt6000_ops, sizeof(struct dvb_frontend_ops));
571         state->frontend.demodulator_priv = state;
572         return &state->frontend;
573
574 error:
575         kfree(state);
576         return NULL;
577 }
578
579 static struct dvb_frontend_ops nxt6000_ops = {
580         .delsys = { SYS_DVBT },
581         .info = {
582                 .name = "NxtWave NXT6000 DVB-T",
583                 .frequency_min = 0,
584                 .frequency_max = 863250000,
585                 .frequency_stepsize = 62500,
586                 /*.frequency_tolerance = *//* FIXME: 12% of SR */
587                 .symbol_rate_min = 0,   /* FIXME */
588                 .symbol_rate_max = 9360000,     /* FIXME */
589                 .symbol_rate_tolerance = 4000,
590                 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
591                         FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
592                         FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO |
593                         FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
594                         FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
595                         FE_CAN_HIERARCHY_AUTO,
596         },
597
598         .release = nxt6000_release,
599
600         .init = nxt6000_init,
601         .i2c_gate_ctrl = nxt6000_i2c_gate_ctrl,
602
603         .get_tune_settings = nxt6000_fe_get_tune_settings,
604
605         .set_frontend = nxt6000_set_frontend,
606
607         .read_status = nxt6000_read_status,
608         .read_ber = nxt6000_read_ber,
609         .read_signal_strength = nxt6000_read_signal_strength,
610         .read_snr = nxt6000_read_snr,
611 };
612
613 module_param(debug, int, 0644);
614 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
615
616 MODULE_DESCRIPTION("NxtWave NXT6000 DVB-T demodulator driver");
617 MODULE_AUTHOR("Florian Schirmer");
618 MODULE_LICENSE("GPL");
619
620 EXPORT_SYMBOL(nxt6000_attach);