Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / media / dvb-frontends / mb86a20s.c
1 /*
2  *   Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
3  *
4  *   Copyright (C) 2010-2013 Mauro Carvalho Chehab
5  *   Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
6  *
7  *   This program is free software; you can redistribute it and/or
8  *   modify it under the terms of the GNU General Public License as
9  *   published by the Free Software Foundation version 2.
10  *
11  *   This program is distributed in the hope that it will be useful,
12  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  *   General Public License for more details.
15  */
16
17 #include <linux/kernel.h>
18 #include <asm/div64.h>
19
20 #include "dvb_frontend.h"
21 #include "mb86a20s.h"
22
23 #define NUM_LAYERS 3
24
25 enum mb86a20s_bandwidth {
26         MB86A20S_13SEG = 0,
27         MB86A20S_13SEG_PARTIAL = 1,
28         MB86A20S_1SEG = 2,
29         MB86A20S_3SEG = 3,
30 };
31
32 static u8 mb86a20s_subchannel[] = {
33         0xb0, 0xc0, 0xd0, 0xe0,
34         0xf0, 0x00, 0x10, 0x20,
35 };
36
37 struct mb86a20s_state {
38         struct i2c_adapter *i2c;
39         const struct mb86a20s_config *config;
40         u32 last_frequency;
41
42         struct dvb_frontend frontend;
43
44         u32 if_freq;
45         enum mb86a20s_bandwidth bw;
46         bool inversion;
47         u32 subchannel;
48
49         u32 estimated_rate[NUM_LAYERS];
50         unsigned long get_strength_time;
51
52         bool need_init;
53 };
54
55 struct regdata {
56         u8 reg;
57         u8 data;
58 };
59
60 #define BER_SAMPLING_RATE       1       /* Seconds */
61
62 /*
63  * Initialization sequence: Use whatevere default values that PV SBTVD
64  * does on its initialisation, obtained via USB snoop
65  */
66 static struct regdata mb86a20s_init1[] = {
67         { 0x70, 0x0f },
68         { 0x70, 0xff },
69         { 0x08, 0x01 },
70         { 0x50, 0xd1 }, { 0x51, 0x20 },
71 };
72
73 static struct regdata mb86a20s_init2[] = {
74         { 0x28, 0x22 }, { 0x29, 0x00 }, { 0x2a, 0x1f }, { 0x2b, 0xf0 },
75         { 0x3b, 0x21 },
76         { 0x3c, 0x38 },
77         { 0x01, 0x0d },
78         { 0x04, 0x08 }, { 0x05, 0x03 },
79         { 0x04, 0x0e }, { 0x05, 0x00 },
80         { 0x04, 0x0f }, { 0x05, 0x37 },
81         { 0x04, 0x0b }, { 0x05, 0x78 },
82         { 0x04, 0x00 }, { 0x05, 0x00 },
83         { 0x04, 0x01 }, { 0x05, 0x1e },
84         { 0x04, 0x02 }, { 0x05, 0x07 },
85         { 0x04, 0x03 }, { 0x05, 0xd0 },
86         { 0x04, 0x09 }, { 0x05, 0x00 },
87         { 0x04, 0x0a }, { 0x05, 0xff },
88         { 0x04, 0x27 }, { 0x05, 0x00 },
89         { 0x04, 0x28 }, { 0x05, 0x00 },
90         { 0x04, 0x1e }, { 0x05, 0x00 },
91         { 0x04, 0x29 }, { 0x05, 0x64 },
92         { 0x04, 0x32 }, { 0x05, 0x02 },
93         { 0x04, 0x14 }, { 0x05, 0x02 },
94         { 0x04, 0x04 }, { 0x05, 0x00 },
95         { 0x04, 0x05 }, { 0x05, 0x22 },
96         { 0x04, 0x06 }, { 0x05, 0x0e },
97         { 0x04, 0x07 }, { 0x05, 0xd8 },
98         { 0x04, 0x12 }, { 0x05, 0x00 },
99         { 0x04, 0x13 }, { 0x05, 0xff },
100         { 0x04, 0x15 }, { 0x05, 0x4e },
101         { 0x04, 0x16 }, { 0x05, 0x20 },
102
103         /*
104          * On this demod, when the bit count reaches the count below,
105          * it collects the bit error count. The bit counters are initialized
106          * to 65535 here. This warrants that all of them will be quickly
107          * calculated when device gets locked. As TMCC is parsed, the values
108          * will be adjusted later in the driver's code.
109          */
110         { 0x52, 0x01 },                         /* Turn on BER before Viterbi */
111         { 0x50, 0xa7 }, { 0x51, 0x00 },
112         { 0x50, 0xa8 }, { 0x51, 0xff },
113         { 0x50, 0xa9 }, { 0x51, 0xff },
114         { 0x50, 0xaa }, { 0x51, 0x00 },
115         { 0x50, 0xab }, { 0x51, 0xff },
116         { 0x50, 0xac }, { 0x51, 0xff },
117         { 0x50, 0xad }, { 0x51, 0x00 },
118         { 0x50, 0xae }, { 0x51, 0xff },
119         { 0x50, 0xaf }, { 0x51, 0xff },
120
121         /*
122          * On this demod, post BER counts blocks. When the count reaches the
123          * value below, it collects the block error count. The block counters
124          * are initialized to 127 here. This warrants that all of them will be
125          * quickly calculated when device gets locked. As TMCC is parsed, the
126          * values will be adjusted later in the driver's code.
127          */
128         { 0x5e, 0x07 },                         /* Turn on BER after Viterbi */
129         { 0x50, 0xdc }, { 0x51, 0x00 },
130         { 0x50, 0xdd }, { 0x51, 0x7f },
131         { 0x50, 0xde }, { 0x51, 0x00 },
132         { 0x50, 0xdf }, { 0x51, 0x7f },
133         { 0x50, 0xe0 }, { 0x51, 0x00 },
134         { 0x50, 0xe1 }, { 0x51, 0x7f },
135
136         /*
137          * On this demod, when the block count reaches the count below,
138          * it collects the block error count. The block counters are initialized
139          * to 127 here. This warrants that all of them will be quickly
140          * calculated when device gets locked. As TMCC is parsed, the values
141          * will be adjusted later in the driver's code.
142          */
143         { 0x50, 0xb0 }, { 0x51, 0x07 },         /* Enable PER */
144         { 0x50, 0xb2 }, { 0x51, 0x00 },
145         { 0x50, 0xb3 }, { 0x51, 0x7f },
146         { 0x50, 0xb4 }, { 0x51, 0x00 },
147         { 0x50, 0xb5 }, { 0x51, 0x7f },
148         { 0x50, 0xb6 }, { 0x51, 0x00 },
149         { 0x50, 0xb7 }, { 0x51, 0x7f },
150
151         { 0x50, 0x50 }, { 0x51, 0x02 },         /* MER manual mode */
152         { 0x50, 0x51 }, { 0x51, 0x04 },         /* MER symbol 4 */
153         { 0x45, 0x04 },                         /* CN symbol 4 */
154         { 0x48, 0x04 },                         /* CN manual mode */
155
156         { 0x50, 0xd6 }, { 0x51, 0x1f },
157         { 0x50, 0xd2 }, { 0x51, 0x03 },
158         { 0x50, 0xd7 }, { 0x51, 0xbf },
159         { 0x28, 0x74 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0xff },
160         { 0x28, 0x46 }, { 0x29, 0x00 }, { 0x2a, 0x1a }, { 0x2b, 0x0c },
161
162         { 0x04, 0x40 }, { 0x05, 0x00 },
163         { 0x28, 0x00 }, { 0x2b, 0x08 },
164         { 0x28, 0x05 }, { 0x2b, 0x00 },
165         { 0x1c, 0x01 },
166         { 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x1f },
167         { 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x18 },
168         { 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x12 },
169         { 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x30 },
170         { 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x37 },
171         { 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
172         { 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x09 },
173         { 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x06 },
174         { 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x7b },
175         { 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x76 },
176         { 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x7d },
177         { 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x08 },
178         { 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0b },
179         { 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
180         { 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xf2 },
181         { 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xf3 },
182         { 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x05 },
183         { 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
184         { 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
185         { 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xef },
186         { 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xd8 },
187         { 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xf1 },
188         { 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x3d },
189         { 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x94 },
190         { 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0xba },
191         { 0x50, 0x1e }, { 0x51, 0x5d },
192         { 0x50, 0x22 }, { 0x51, 0x00 },
193         { 0x50, 0x23 }, { 0x51, 0xc8 },
194         { 0x50, 0x24 }, { 0x51, 0x00 },
195         { 0x50, 0x25 }, { 0x51, 0xf0 },
196         { 0x50, 0x26 }, { 0x51, 0x00 },
197         { 0x50, 0x27 }, { 0x51, 0xc3 },
198         { 0x50, 0x39 }, { 0x51, 0x02 },
199         { 0xec, 0x0f },
200         { 0xeb, 0x1f },
201         { 0x28, 0x6a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
202         { 0xd0, 0x00 },
203 };
204
205 static struct regdata mb86a20s_reset_reception[] = {
206         { 0x70, 0xf0 },
207         { 0x70, 0xff },
208         { 0x08, 0x01 },
209         { 0x08, 0x00 },
210 };
211
212 static struct regdata mb86a20s_per_ber_reset[] = {
213         { 0x53, 0x00 }, /* pre BER Counter reset */
214         { 0x53, 0x07 },
215
216         { 0x5f, 0x00 }, /* post BER Counter reset */
217         { 0x5f, 0x07 },
218
219         { 0x50, 0xb1 }, /* PER Counter reset */
220         { 0x51, 0x07 },
221         { 0x51, 0x00 },
222 };
223
224 /*
225  * I2C read/write functions and macros
226  */
227
228 static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
229                              u8 i2c_addr, u8 reg, u8 data)
230 {
231         u8 buf[] = { reg, data };
232         struct i2c_msg msg = {
233                 .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
234         };
235         int rc;
236
237         rc = i2c_transfer(state->i2c, &msg, 1);
238         if (rc != 1) {
239                 dev_err(&state->i2c->dev,
240                         "%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
241                         __func__, rc, reg, data);
242                 return rc;
243         }
244
245         return 0;
246 }
247
248 static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
249                                      u8 i2c_addr, struct regdata *rd, int size)
250 {
251         int i, rc;
252
253         for (i = 0; i < size; i++) {
254                 rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
255                                            rd[i].data);
256                 if (rc < 0)
257                         return rc;
258         }
259         return 0;
260 }
261
262 static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
263                                 u8 i2c_addr, u8 reg)
264 {
265         u8 val;
266         int rc;
267         struct i2c_msg msg[] = {
268                 { .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
269                 { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
270         };
271
272         rc = i2c_transfer(state->i2c, msg, 2);
273
274         if (rc != 2) {
275                 dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
276                         __func__, reg, rc);
277                 return (rc < 0) ? rc : -EIO;
278         }
279
280         return val;
281 }
282
283 #define mb86a20s_readreg(state, reg) \
284         mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
285 #define mb86a20s_writereg(state, reg, val) \
286         mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
287 #define mb86a20s_writeregdata(state, regdata) \
288         mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
289         regdata, ARRAY_SIZE(regdata))
290
291 /*
292  * Ancillary internal routines (likely compiled inlined)
293  *
294  * The functions below assume that gateway lock has already obtained
295  */
296
297 static int mb86a20s_read_status(struct dvb_frontend *fe, fe_status_t *status)
298 {
299         struct mb86a20s_state *state = fe->demodulator_priv;
300         int val;
301
302         *status = 0;
303
304         val = mb86a20s_readreg(state, 0x0a) & 0xf;
305         if (val < 0)
306                 return val;
307
308         if (val >= 2)
309                 *status |= FE_HAS_SIGNAL;
310
311         if (val >= 4)
312                 *status |= FE_HAS_CARRIER;
313
314         if (val >= 5)
315                 *status |= FE_HAS_VITERBI;
316
317         if (val >= 7)
318                 *status |= FE_HAS_SYNC;
319
320         if (val >= 8)                           /* Maybe 9? */
321                 *status |= FE_HAS_LOCK;
322
323         dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
324                  __func__, *status, val);
325
326         return val;
327 }
328
329 static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
330 {
331         struct mb86a20s_state *state = fe->demodulator_priv;
332         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
333         int rc;
334         unsigned rf_max, rf_min, rf;
335
336         if (state->get_strength_time &&
337            (!time_after(jiffies, state->get_strength_time)))
338                 return c->strength.stat[0].uvalue;
339
340         /* Reset its value if an error happen */
341         c->strength.stat[0].uvalue = 0;
342
343         /* Does a binary search to get RF strength */
344         rf_max = 0xfff;
345         rf_min = 0;
346         do {
347                 rf = (rf_max + rf_min) / 2;
348                 rc = mb86a20s_writereg(state, 0x04, 0x1f);
349                 if (rc < 0)
350                         return rc;
351                 rc = mb86a20s_writereg(state, 0x05, rf >> 8);
352                 if (rc < 0)
353                         return rc;
354                 rc = mb86a20s_writereg(state, 0x04, 0x20);
355                 if (rc < 0)
356                         return rc;
357                 rc = mb86a20s_writereg(state, 0x05, rf);
358                 if (rc < 0)
359                         return rc;
360
361                 rc = mb86a20s_readreg(state, 0x02);
362                 if (rc < 0)
363                         return rc;
364                 if (rc & 0x08)
365                         rf_min = (rf_max + rf_min) / 2;
366                 else
367                         rf_max = (rf_max + rf_min) / 2;
368                 if (rf_max - rf_min < 4) {
369                         rf = (rf_max + rf_min) / 2;
370
371                         /* Rescale it from 2^12 (4096) to 2^16 */
372                         rf = rf << (16 - 12);
373                         if (rf)
374                                 rf |= (1 << 12) - 1;
375
376                         dev_dbg(&state->i2c->dev,
377                                 "%s: signal strength = %d (%d < RF=%d < %d)\n",
378                                 __func__, rf, rf_min, rf >> 4, rf_max);
379                         c->strength.stat[0].uvalue = rf;
380                         state->get_strength_time = jiffies +
381                                                    msecs_to_jiffies(1000);
382                         return 0;
383                 }
384         } while (1);
385 }
386
387 static int mb86a20s_get_modulation(struct mb86a20s_state *state,
388                                    unsigned layer)
389 {
390         int rc;
391         static unsigned char reg[] = {
392                 [0] = 0x86,     /* Layer A */
393                 [1] = 0x8a,     /* Layer B */
394                 [2] = 0x8e,     /* Layer C */
395         };
396
397         if (layer >= ARRAY_SIZE(reg))
398                 return -EINVAL;
399         rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
400         if (rc < 0)
401                 return rc;
402         rc = mb86a20s_readreg(state, 0x6e);
403         if (rc < 0)
404                 return rc;
405         switch ((rc >> 4) & 0x07) {
406         case 0:
407                 return DQPSK;
408         case 1:
409                 return QPSK;
410         case 2:
411                 return QAM_16;
412         case 3:
413                 return QAM_64;
414         default:
415                 return QAM_AUTO;
416         }
417 }
418
419 static int mb86a20s_get_fec(struct mb86a20s_state *state,
420                             unsigned layer)
421 {
422         int rc;
423
424         static unsigned char reg[] = {
425                 [0] = 0x87,     /* Layer A */
426                 [1] = 0x8b,     /* Layer B */
427                 [2] = 0x8f,     /* Layer C */
428         };
429
430         if (layer >= ARRAY_SIZE(reg))
431                 return -EINVAL;
432         rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
433         if (rc < 0)
434                 return rc;
435         rc = mb86a20s_readreg(state, 0x6e);
436         if (rc < 0)
437                 return rc;
438         switch ((rc >> 4) & 0x07) {
439         case 0:
440                 return FEC_1_2;
441         case 1:
442                 return FEC_2_3;
443         case 2:
444                 return FEC_3_4;
445         case 3:
446                 return FEC_5_6;
447         case 4:
448                 return FEC_7_8;
449         default:
450                 return FEC_AUTO;
451         }
452 }
453
454 static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
455                                      unsigned layer)
456 {
457         int rc;
458         int interleaving[] = {
459                 0, 1, 2, 4, 8
460         };
461
462         static unsigned char reg[] = {
463                 [0] = 0x88,     /* Layer A */
464                 [1] = 0x8c,     /* Layer B */
465                 [2] = 0x90,     /* Layer C */
466         };
467
468         if (layer >= ARRAY_SIZE(reg))
469                 return -EINVAL;
470         rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
471         if (rc < 0)
472                 return rc;
473         rc = mb86a20s_readreg(state, 0x6e);
474         if (rc < 0)
475                 return rc;
476
477         return interleaving[(rc >> 4) & 0x07];
478 }
479
480 static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
481                                       unsigned layer)
482 {
483         int rc, count;
484         static unsigned char reg[] = {
485                 [0] = 0x89,     /* Layer A */
486                 [1] = 0x8d,     /* Layer B */
487                 [2] = 0x91,     /* Layer C */
488         };
489
490         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
491
492         if (layer >= ARRAY_SIZE(reg))
493                 return -EINVAL;
494
495         rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
496         if (rc < 0)
497                 return rc;
498         rc = mb86a20s_readreg(state, 0x6e);
499         if (rc < 0)
500                 return rc;
501         count = (rc >> 4) & 0x0f;
502
503         dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);
504
505         return count;
506 }
507
508 static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
509 {
510         struct mb86a20s_state *state = fe->demodulator_priv;
511         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
512
513         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
514
515         /* Fixed parameters */
516         c->delivery_system = SYS_ISDBT;
517         c->bandwidth_hz = 6000000;
518
519         /* Initialize values that will be later autodetected */
520         c->isdbt_layer_enabled = 0;
521         c->transmission_mode = TRANSMISSION_MODE_AUTO;
522         c->guard_interval = GUARD_INTERVAL_AUTO;
523         c->isdbt_sb_mode = 0;
524         c->isdbt_sb_segment_count = 0;
525 }
526
527 /*
528  * Estimates the bit rate using the per-segment bit rate given by
529  * ABNT/NBR 15601 spec (table 4).
530  */
531 static u32 isdbt_rate[3][5][4] = {
532         {       /* DQPSK/QPSK */
533                 {  280850,  312060,  330420,  340430 }, /* 1/2 */
534                 {  374470,  416080,  440560,  453910 }, /* 2/3 */
535                 {  421280,  468090,  495630,  510650 }, /* 3/4 */
536                 {  468090,  520100,  550700,  567390 }, /* 5/6 */
537                 {  491500,  546110,  578230,  595760 }, /* 7/8 */
538         }, {    /* QAM16 */
539                 {  561710,  624130,  660840,  680870 }, /* 1/2 */
540                 {  748950,  832170,  881120,  907820 }, /* 2/3 */
541                 {  842570,  936190,  991260, 1021300 }, /* 3/4 */
542                 {  936190, 1040210, 1101400, 1134780 }, /* 5/6 */
543                 {  983000, 1092220, 1156470, 1191520 }, /* 7/8 */
544         }, {    /* QAM64 */
545                 {  842570,  936190,  991260, 1021300 }, /* 1/2 */
546                 { 1123430, 1248260, 1321680, 1361740 }, /* 2/3 */
547                 { 1263860, 1404290, 1486900, 1531950 }, /* 3/4 */
548                 { 1404290, 1560320, 1652110, 1702170 }, /* 5/6 */
549                 { 1474500, 1638340, 1734710, 1787280 }, /* 7/8 */
550         }
551 };
552
553 static void mb86a20s_layer_bitrate(struct dvb_frontend *fe, u32 layer,
554                                    u32 modulation, u32 forward_error_correction,
555                                    u32 guard_interval,
556                                    u32 segment)
557 {
558         struct mb86a20s_state *state = fe->demodulator_priv;
559         u32 rate;
560         int mod, fec, guard;
561
562         /*
563          * If modulation/fec/guard is not detected, the default is
564          * to consider the lowest bit rate, to avoid taking too long time
565          * to get BER.
566          */
567         switch (modulation) {
568         case DQPSK:
569         case QPSK:
570         default:
571                 mod = 0;
572                 break;
573         case QAM_16:
574                 mod = 1;
575                 break;
576         case QAM_64:
577                 mod = 2;
578                 break;
579         }
580
581         switch (forward_error_correction) {
582         default:
583         case FEC_1_2:
584         case FEC_AUTO:
585                 fec = 0;
586                 break;
587         case FEC_2_3:
588                 fec = 1;
589                 break;
590         case FEC_3_4:
591                 fec = 2;
592                 break;
593         case FEC_5_6:
594                 fec = 3;
595                 break;
596         case FEC_7_8:
597                 fec = 4;
598                 break;
599         }
600
601         switch (guard_interval) {
602         default:
603         case GUARD_INTERVAL_1_4:
604                 guard = 0;
605                 break;
606         case GUARD_INTERVAL_1_8:
607                 guard = 1;
608                 break;
609         case GUARD_INTERVAL_1_16:
610                 guard = 2;
611                 break;
612         case GUARD_INTERVAL_1_32:
613                 guard = 3;
614                 break;
615         }
616
617         /* Samples BER at BER_SAMPLING_RATE seconds */
618         rate = isdbt_rate[mod][fec][guard] * segment * BER_SAMPLING_RATE;
619
620         /* Avoids sampling too quickly or to overflow the register */
621         if (rate < 256)
622                 rate = 256;
623         else if (rate > (1 << 24) - 1)
624                 rate = (1 << 24) - 1;
625
626         dev_dbg(&state->i2c->dev,
627                 "%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
628                 __func__, 'A' + layer,
629                 segment * isdbt_rate[mod][fec][guard]/1000,
630                 rate, rate);
631
632         state->estimated_rate[layer] = rate;
633 }
634
635 static int mb86a20s_get_frontend(struct dvb_frontend *fe)
636 {
637         struct mb86a20s_state *state = fe->demodulator_priv;
638         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
639         int layer, rc;
640
641         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
642
643         /* Reset frontend cache to default values */
644         mb86a20s_reset_frontend_cache(fe);
645
646         /* Check for partial reception */
647         rc = mb86a20s_writereg(state, 0x6d, 0x85);
648         if (rc < 0)
649                 return rc;
650         rc = mb86a20s_readreg(state, 0x6e);
651         if (rc < 0)
652                 return rc;
653         c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
654
655         /* Get per-layer data */
656
657         for (layer = 0; layer < NUM_LAYERS; layer++) {
658                 dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
659                         __func__, 'A' + layer);
660
661                 rc = mb86a20s_get_segment_count(state, layer);
662                 if (rc < 0)
663                         goto noperlayer_error;
664                 if (rc >= 0 && rc < 14) {
665                         c->layer[layer].segment_count = rc;
666                 } else {
667                         c->layer[layer].segment_count = 0;
668                         state->estimated_rate[layer] = 0;
669                         continue;
670                 }
671                 c->isdbt_layer_enabled |= 1 << layer;
672                 rc = mb86a20s_get_modulation(state, layer);
673                 if (rc < 0)
674                         goto noperlayer_error;
675                 dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
676                         __func__, rc);
677                 c->layer[layer].modulation = rc;
678                 rc = mb86a20s_get_fec(state, layer);
679                 if (rc < 0)
680                         goto noperlayer_error;
681                 dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
682                         __func__, rc);
683                 c->layer[layer].fec = rc;
684                 rc = mb86a20s_get_interleaving(state, layer);
685                 if (rc < 0)
686                         goto noperlayer_error;
687                 dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
688                         __func__, rc);
689                 c->layer[layer].interleaving = rc;
690                 mb86a20s_layer_bitrate(fe, layer, c->layer[layer].modulation,
691                                        c->layer[layer].fec,
692                                        c->guard_interval,
693                                        c->layer[layer].segment_count);
694         }
695
696         rc = mb86a20s_writereg(state, 0x6d, 0x84);
697         if (rc < 0)
698                 return rc;
699         if ((rc & 0x60) == 0x20) {
700                 c->isdbt_sb_mode = 1;
701                 /* At least, one segment should exist */
702                 if (!c->isdbt_sb_segment_count)
703                         c->isdbt_sb_segment_count = 1;
704         }
705
706         /* Get transmission mode and guard interval */
707         rc = mb86a20s_readreg(state, 0x07);
708         if (rc < 0)
709                 return rc;
710         c->transmission_mode = TRANSMISSION_MODE_AUTO;
711         if ((rc & 0x60) == 0x20) {
712                 /* Only modes 2 and 3 are supported */
713                 switch ((rc >> 2) & 0x03) {
714                 case 1:
715                         c->transmission_mode = TRANSMISSION_MODE_4K;
716                         break;
717                 case 2:
718                         c->transmission_mode = TRANSMISSION_MODE_8K;
719                         break;
720                 }
721         }
722         c->guard_interval = GUARD_INTERVAL_AUTO;
723         if (!(rc & 0x10)) {
724                 /* Guard interval 1/32 is not supported */
725                 switch (rc & 0x3) {
726                 case 0:
727                         c->guard_interval = GUARD_INTERVAL_1_4;
728                         break;
729                 case 1:
730                         c->guard_interval = GUARD_INTERVAL_1_8;
731                         break;
732                 case 2:
733                         c->guard_interval = GUARD_INTERVAL_1_16;
734                         break;
735                 }
736         }
737         return 0;
738
739 noperlayer_error:
740
741         /* per-layer info is incomplete; discard all per-layer */
742         c->isdbt_layer_enabled = 0;
743
744         return rc;
745 }
746
747 static int mb86a20s_reset_counters(struct dvb_frontend *fe)
748 {
749         struct mb86a20s_state *state = fe->demodulator_priv;
750         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
751         int rc, val;
752
753         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
754
755         /* Reset the counters, if the channel changed */
756         if (state->last_frequency != c->frequency) {
757                 memset(&c->cnr, 0, sizeof(c->cnr));
758                 memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
759                 memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
760                 memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
761                 memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
762                 memset(&c->block_error, 0, sizeof(c->block_error));
763                 memset(&c->block_count, 0, sizeof(c->block_count));
764
765                 state->last_frequency = c->frequency;
766         }
767
768         /* Clear status for most stats */
769
770         /* BER/PER counter reset */
771         rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
772         if (rc < 0)
773                 goto err;
774
775         /* CNR counter reset */
776         rc = mb86a20s_readreg(state, 0x45);
777         if (rc < 0)
778                 goto err;
779         val = rc;
780         rc = mb86a20s_writereg(state, 0x45, val | 0x10);
781         if (rc < 0)
782                 goto err;
783         rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
784         if (rc < 0)
785                 goto err;
786
787         /* MER counter reset */
788         rc = mb86a20s_writereg(state, 0x50, 0x50);
789         if (rc < 0)
790                 goto err;
791         rc = mb86a20s_readreg(state, 0x51);
792         if (rc < 0)
793                 goto err;
794         val = rc;
795         rc = mb86a20s_writereg(state, 0x51, val | 0x01);
796         if (rc < 0)
797                 goto err;
798         rc = mb86a20s_writereg(state, 0x51, val & 0x06);
799         if (rc < 0)
800                 goto err;
801
802         goto ok;
803 err:
804         dev_err(&state->i2c->dev,
805                 "%s: Can't reset FE statistics (error %d).\n",
806                 __func__, rc);
807 ok:
808         return rc;
809 }
810
811 static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
812                                 unsigned layer,
813                                 u32 *error, u32 *count)
814 {
815         struct mb86a20s_state *state = fe->demodulator_priv;
816         int rc, val;
817
818         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
819
820         if (layer >= NUM_LAYERS)
821                 return -EINVAL;
822
823         /* Check if the BER measures are already available */
824         rc = mb86a20s_readreg(state, 0x54);
825         if (rc < 0)
826                 return rc;
827
828         /* Check if data is available for that layer */
829         if (!(rc & (1 << layer))) {
830                 dev_dbg(&state->i2c->dev,
831                         "%s: preBER for layer %c is not available yet.\n",
832                         __func__, 'A' + layer);
833                 return -EBUSY;
834         }
835
836         /* Read Bit Error Count */
837         rc = mb86a20s_readreg(state, 0x55 + layer * 3);
838         if (rc < 0)
839                 return rc;
840         *error = rc << 16;
841         rc = mb86a20s_readreg(state, 0x56 + layer * 3);
842         if (rc < 0)
843                 return rc;
844         *error |= rc << 8;
845         rc = mb86a20s_readreg(state, 0x57 + layer * 3);
846         if (rc < 0)
847                 return rc;
848         *error |= rc;
849
850         dev_dbg(&state->i2c->dev,
851                 "%s: bit error before Viterbi for layer %c: %d.\n",
852                 __func__, 'A' + layer, *error);
853
854         /* Read Bit Count */
855         rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
856         if (rc < 0)
857                 return rc;
858         rc = mb86a20s_readreg(state, 0x51);
859         if (rc < 0)
860                 return rc;
861         *count = rc << 16;
862         rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
863         if (rc < 0)
864                 return rc;
865         rc = mb86a20s_readreg(state, 0x51);
866         if (rc < 0)
867                 return rc;
868         *count |= rc << 8;
869         rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
870         if (rc < 0)
871                 return rc;
872         rc = mb86a20s_readreg(state, 0x51);
873         if (rc < 0)
874                 return rc;
875         *count |= rc;
876
877         dev_dbg(&state->i2c->dev,
878                 "%s: bit count before Viterbi for layer %c: %d.\n",
879                 __func__, 'A' + layer, *count);
880
881
882         /*
883          * As we get TMCC data from the frontend, we can better estimate the
884          * BER bit counters, in order to do the BER measure during a longer
885          * time. Use those data, if available, to update the bit count
886          * measure.
887          */
888
889         if (state->estimated_rate[layer]
890             && state->estimated_rate[layer] != *count) {
891                 dev_dbg(&state->i2c->dev,
892                         "%s: updating layer %c preBER counter to %d.\n",
893                         __func__, 'A' + layer, state->estimated_rate[layer]);
894
895                 /* Turn off BER before Viterbi */
896                 rc = mb86a20s_writereg(state, 0x52, 0x00);
897
898                 /* Update counter for this layer */
899                 rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
900                 if (rc < 0)
901                         return rc;
902                 rc = mb86a20s_writereg(state, 0x51,
903                                        state->estimated_rate[layer] >> 16);
904                 if (rc < 0)
905                         return rc;
906                 rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
907                 if (rc < 0)
908                         return rc;
909                 rc = mb86a20s_writereg(state, 0x51,
910                                        state->estimated_rate[layer] >> 8);
911                 if (rc < 0)
912                         return rc;
913                 rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
914                 if (rc < 0)
915                         return rc;
916                 rc = mb86a20s_writereg(state, 0x51,
917                                        state->estimated_rate[layer]);
918                 if (rc < 0)
919                         return rc;
920
921                 /* Turn on BER before Viterbi */
922                 rc = mb86a20s_writereg(state, 0x52, 0x01);
923
924                 /* Reset all preBER counters */
925                 rc = mb86a20s_writereg(state, 0x53, 0x00);
926                 if (rc < 0)
927                         return rc;
928                 rc = mb86a20s_writereg(state, 0x53, 0x07);
929         } else {
930                 /* Reset counter to collect new data */
931                 rc = mb86a20s_readreg(state, 0x53);
932                 if (rc < 0)
933                         return rc;
934                 val = rc;
935                 rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
936                 if (rc < 0)
937                         return rc;
938                 rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
939         }
940
941         return rc;
942 }
943
944 static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
945                                  unsigned layer,
946                                   u32 *error, u32 *count)
947 {
948         struct mb86a20s_state *state = fe->demodulator_priv;
949         u32 counter, collect_rate;
950         int rc, val;
951
952         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
953
954         if (layer >= NUM_LAYERS)
955                 return -EINVAL;
956
957         /* Check if the BER measures are already available */
958         rc = mb86a20s_readreg(state, 0x60);
959         if (rc < 0)
960                 return rc;
961
962         /* Check if data is available for that layer */
963         if (!(rc & (1 << layer))) {
964                 dev_dbg(&state->i2c->dev,
965                         "%s: post BER for layer %c is not available yet.\n",
966                         __func__, 'A' + layer);
967                 return -EBUSY;
968         }
969
970         /* Read Bit Error Count */
971         rc = mb86a20s_readreg(state, 0x64 + layer * 3);
972         if (rc < 0)
973                 return rc;
974         *error = rc << 16;
975         rc = mb86a20s_readreg(state, 0x65 + layer * 3);
976         if (rc < 0)
977                 return rc;
978         *error |= rc << 8;
979         rc = mb86a20s_readreg(state, 0x66 + layer * 3);
980         if (rc < 0)
981                 return rc;
982         *error |= rc;
983
984         dev_dbg(&state->i2c->dev,
985                 "%s: post bit error for layer %c: %d.\n",
986                 __func__, 'A' + layer, *error);
987
988         /* Read Bit Count */
989         rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
990         if (rc < 0)
991                 return rc;
992         rc = mb86a20s_readreg(state, 0x51);
993         if (rc < 0)
994                 return rc;
995         counter = rc << 8;
996         rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
997         if (rc < 0)
998                 return rc;
999         rc = mb86a20s_readreg(state, 0x51);
1000         if (rc < 0)
1001                 return rc;
1002         counter |= rc;
1003         *count = counter * 204 * 8;
1004
1005         dev_dbg(&state->i2c->dev,
1006                 "%s: post bit count for layer %c: %d.\n",
1007                 __func__, 'A' + layer, *count);
1008
1009         /*
1010          * As we get TMCC data from the frontend, we can better estimate the
1011          * BER bit counters, in order to do the BER measure during a longer
1012          * time. Use those data, if available, to update the bit count
1013          * measure.
1014          */
1015
1016         if (!state->estimated_rate[layer])
1017                 goto reset_measurement;
1018
1019         collect_rate = state->estimated_rate[layer] / 204 / 8;
1020         if (collect_rate < 32)
1021                 collect_rate = 32;
1022         if (collect_rate > 65535)
1023                 collect_rate = 65535;
1024         if (collect_rate != counter) {
1025                 dev_dbg(&state->i2c->dev,
1026                         "%s: updating postBER counter on layer %c to %d.\n",
1027                         __func__, 'A' + layer, collect_rate);
1028
1029                 /* Turn off BER after Viterbi */
1030                 rc = mb86a20s_writereg(state, 0x5e, 0x00);
1031
1032                 /* Update counter for this layer */
1033                 rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
1034                 if (rc < 0)
1035                         return rc;
1036                 rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1037                 if (rc < 0)
1038                         return rc;
1039                 rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
1040                 if (rc < 0)
1041                         return rc;
1042                 rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1043                 if (rc < 0)
1044                         return rc;
1045
1046                 /* Turn on BER after Viterbi */
1047                 rc = mb86a20s_writereg(state, 0x5e, 0x07);
1048
1049                 /* Reset all preBER counters */
1050                 rc = mb86a20s_writereg(state, 0x5f, 0x00);
1051                 if (rc < 0)
1052                         return rc;
1053                 rc = mb86a20s_writereg(state, 0x5f, 0x07);
1054
1055                 return rc;
1056         }
1057
1058 reset_measurement:
1059         /* Reset counter to collect new data */
1060         rc = mb86a20s_readreg(state, 0x5f);
1061         if (rc < 0)
1062                 return rc;
1063         val = rc;
1064         rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
1065         if (rc < 0)
1066                 return rc;
1067         rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
1068
1069         return rc;
1070 }
1071
1072 static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
1073                             unsigned layer,
1074                             u32 *error, u32 *count)
1075 {
1076         struct mb86a20s_state *state = fe->demodulator_priv;
1077         int rc, val;
1078         u32 collect_rate;
1079         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1080
1081         if (layer >= NUM_LAYERS)
1082                 return -EINVAL;
1083
1084         /* Check if the PER measures are already available */
1085         rc = mb86a20s_writereg(state, 0x50, 0xb8);
1086         if (rc < 0)
1087                 return rc;
1088         rc = mb86a20s_readreg(state, 0x51);
1089         if (rc < 0)
1090                 return rc;
1091
1092         /* Check if data is available for that layer */
1093
1094         if (!(rc & (1 << layer))) {
1095                 dev_dbg(&state->i2c->dev,
1096                         "%s: block counts for layer %c aren't available yet.\n",
1097                         __func__, 'A' + layer);
1098                 return -EBUSY;
1099         }
1100
1101         /* Read Packet error Count */
1102         rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
1103         if (rc < 0)
1104                 return rc;
1105         rc = mb86a20s_readreg(state, 0x51);
1106         if (rc < 0)
1107                 return rc;
1108         *error = rc << 8;
1109         rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
1110         if (rc < 0)
1111                 return rc;
1112         rc = mb86a20s_readreg(state, 0x51);
1113         if (rc < 0)
1114                 return rc;
1115         *error |= rc;
1116         dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
1117                 __func__, 'A' + layer, *error);
1118
1119         /* Read Bit Count */
1120         rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1121         if (rc < 0)
1122                 return rc;
1123         rc = mb86a20s_readreg(state, 0x51);
1124         if (rc < 0)
1125                 return rc;
1126         *count = rc << 8;
1127         rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1128         if (rc < 0)
1129                 return rc;
1130         rc = mb86a20s_readreg(state, 0x51);
1131         if (rc < 0)
1132                 return rc;
1133         *count |= rc;
1134
1135         dev_dbg(&state->i2c->dev,
1136                 "%s: block count for layer %c: %d.\n",
1137                 __func__, 'A' + layer, *count);
1138
1139         /*
1140          * As we get TMCC data from the frontend, we can better estimate the
1141          * BER bit counters, in order to do the BER measure during a longer
1142          * time. Use those data, if available, to update the bit count
1143          * measure.
1144          */
1145
1146         if (!state->estimated_rate[layer])
1147                 goto reset_measurement;
1148
1149         collect_rate = state->estimated_rate[layer] / 204 / 8;
1150         if (collect_rate < 32)
1151                 collect_rate = 32;
1152         if (collect_rate > 65535)
1153                 collect_rate = 65535;
1154
1155         if (collect_rate != *count) {
1156                 dev_dbg(&state->i2c->dev,
1157                         "%s: updating PER counter on layer %c to %d.\n",
1158                         __func__, 'A' + layer, collect_rate);
1159
1160                 /* Stop PER measurement */
1161                 rc = mb86a20s_writereg(state, 0x50, 0xb0);
1162                 if (rc < 0)
1163                         return rc;
1164                 rc = mb86a20s_writereg(state, 0x51, 0x00);
1165                 if (rc < 0)
1166                         return rc;
1167
1168                 /* Update this layer's counter */
1169                 rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1170                 if (rc < 0)
1171                         return rc;
1172                 rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1173                 if (rc < 0)
1174                         return rc;
1175                 rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1176                 if (rc < 0)
1177                         return rc;
1178                 rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1179                 if (rc < 0)
1180                         return rc;
1181
1182                 /* start PER measurement */
1183                 rc = mb86a20s_writereg(state, 0x50, 0xb0);
1184                 if (rc < 0)
1185                         return rc;
1186                 rc = mb86a20s_writereg(state, 0x51, 0x07);
1187                 if (rc < 0)
1188                         return rc;
1189
1190                 /* Reset all counters to collect new data */
1191                 rc = mb86a20s_writereg(state, 0x50, 0xb1);
1192                 if (rc < 0)
1193                         return rc;
1194                 rc = mb86a20s_writereg(state, 0x51, 0x07);
1195                 if (rc < 0)
1196                         return rc;
1197                 rc = mb86a20s_writereg(state, 0x51, 0x00);
1198
1199                 return rc;
1200         }
1201
1202 reset_measurement:
1203         /* Reset counter to collect new data */
1204         rc = mb86a20s_writereg(state, 0x50, 0xb1);
1205         if (rc < 0)
1206                 return rc;
1207         rc = mb86a20s_readreg(state, 0x51);
1208         if (rc < 0)
1209                 return rc;
1210         val = rc;
1211         rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
1212         if (rc < 0)
1213                 return rc;
1214         rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
1215
1216         return rc;
1217 }
1218
1219 struct linear_segments {
1220         unsigned x, y;
1221 };
1222
1223 /*
1224  * All tables below return a dB/1000 measurement
1225  */
1226
1227 static const struct linear_segments cnr_to_db_table[] = {
1228         { 19648,     0},
1229         { 18187,  1000},
1230         { 16534,  2000},
1231         { 14823,  3000},
1232         { 13161,  4000},
1233         { 11622,  5000},
1234         { 10279,  6000},
1235         {  9089,  7000},
1236         {  8042,  8000},
1237         {  7137,  9000},
1238         {  6342, 10000},
1239         {  5641, 11000},
1240         {  5030, 12000},
1241         {  4474, 13000},
1242         {  3988, 14000},
1243         {  3556, 15000},
1244         {  3180, 16000},
1245         {  2841, 17000},
1246         {  2541, 18000},
1247         {  2276, 19000},
1248         {  2038, 20000},
1249         {  1800, 21000},
1250         {  1625, 22000},
1251         {  1462, 23000},
1252         {  1324, 24000},
1253         {  1175, 25000},
1254         {  1063, 26000},
1255         {   980, 27000},
1256         {   907, 28000},
1257         {   840, 29000},
1258         {   788, 30000},
1259 };
1260
1261 static const struct linear_segments cnr_64qam_table[] = {
1262         { 3922688,     0},
1263         { 3920384,  1000},
1264         { 3902720,  2000},
1265         { 3894784,  3000},
1266         { 3882496,  4000},
1267         { 3872768,  5000},
1268         { 3858944,  6000},
1269         { 3851520,  7000},
1270         { 3838976,  8000},
1271         { 3829248,  9000},
1272         { 3818240, 10000},
1273         { 3806976, 11000},
1274         { 3791872, 12000},
1275         { 3767040, 13000},
1276         { 3720960, 14000},
1277         { 3637504, 15000},
1278         { 3498496, 16000},
1279         { 3296000, 17000},
1280         { 3031040, 18000},
1281         { 2715392, 19000},
1282         { 2362624, 20000},
1283         { 1963264, 21000},
1284         { 1649664, 22000},
1285         { 1366784, 23000},
1286         { 1120768, 24000},
1287         {  890880, 25000},
1288         {  723456, 26000},
1289         {  612096, 27000},
1290         {  518912, 28000},
1291         {  448256, 29000},
1292         {  388864, 30000},
1293 };
1294
1295 static const struct linear_segments cnr_16qam_table[] = {
1296         { 5314816,     0},
1297         { 5219072,  1000},
1298         { 5118720,  2000},
1299         { 4998912,  3000},
1300         { 4875520,  4000},
1301         { 4736000,  5000},
1302         { 4604160,  6000},
1303         { 4458752,  7000},
1304         { 4300288,  8000},
1305         { 4092928,  9000},
1306         { 3836160, 10000},
1307         { 3521024, 11000},
1308         { 3155968, 12000},
1309         { 2756864, 13000},
1310         { 2347008, 14000},
1311         { 1955072, 15000},
1312         { 1593600, 16000},
1313         { 1297920, 17000},
1314         { 1043968, 18000},
1315         {  839680, 19000},
1316         {  672256, 20000},
1317         {  523008, 21000},
1318         {  424704, 22000},
1319         {  345088, 23000},
1320         {  280064, 24000},
1321         {  221440, 25000},
1322         {  179712, 26000},
1323         {  151040, 27000},
1324         {  128512, 28000},
1325         {  110080, 29000},
1326         {   95744, 30000},
1327 };
1328
1329 static const struct linear_segments cnr_qpsk_table[] = {
1330         { 2834176,     0},
1331         { 2683648,  1000},
1332         { 2536960,  2000},
1333         { 2391808,  3000},
1334         { 2133248,  4000},
1335         { 1906176,  5000},
1336         { 1666560,  6000},
1337         { 1422080,  7000},
1338         { 1189632,  8000},
1339         {  976384,  9000},
1340         {  790272, 10000},
1341         {  633344, 11000},
1342         {  505600, 12000},
1343         {  402944, 13000},
1344         {  320768, 14000},
1345         {  255488, 15000},
1346         {  204032, 16000},
1347         {  163072, 17000},
1348         {  130304, 18000},
1349         {  105216, 19000},
1350         {   83456, 20000},
1351         {   65024, 21000},
1352         {   52480, 22000},
1353         {   42752, 23000},
1354         {   34560, 24000},
1355         {   27136, 25000},
1356         {   22016, 26000},
1357         {   18432, 27000},
1358         {   15616, 28000},
1359         {   13312, 29000},
1360         {   11520, 30000},
1361 };
1362
1363 static u32 interpolate_value(u32 value, const struct linear_segments *segments,
1364                              unsigned len)
1365 {
1366         u64 tmp64;
1367         u32 dx, dy;
1368         int i, ret;
1369
1370         if (value >= segments[0].x)
1371                 return segments[0].y;
1372         if (value < segments[len-1].x)
1373                 return segments[len-1].y;
1374
1375         for (i = 1; i < len - 1; i++) {
1376                 /* If value is identical, no need to interpolate */
1377                 if (value == segments[i].x)
1378                         return segments[i].y;
1379                 if (value > segments[i].x)
1380                         break;
1381         }
1382
1383         /* Linear interpolation between the two (x,y) points */
1384         dy = segments[i].y - segments[i - 1].y;
1385         dx = segments[i - 1].x - segments[i].x;
1386         tmp64 = value - segments[i].x;
1387         tmp64 *= dy;
1388         do_div(tmp64, dx);
1389         ret = segments[i].y - tmp64;
1390
1391         return ret;
1392 }
1393
1394 static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
1395 {
1396         struct mb86a20s_state *state = fe->demodulator_priv;
1397         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1398         u32 cnr_linear, cnr;
1399         int rc, val;
1400
1401         /* Check if CNR is available */
1402         rc = mb86a20s_readreg(state, 0x45);
1403         if (rc < 0)
1404                 return rc;
1405
1406         if (!(rc & 0x40)) {
1407                 dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n",
1408                          __func__);
1409                 return -EBUSY;
1410         }
1411         val = rc;
1412
1413         rc = mb86a20s_readreg(state, 0x46);
1414         if (rc < 0)
1415                 return rc;
1416         cnr_linear = rc << 8;
1417
1418         rc = mb86a20s_readreg(state, 0x46);
1419         if (rc < 0)
1420                 return rc;
1421         cnr_linear |= rc;
1422
1423         cnr = interpolate_value(cnr_linear,
1424                                 cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));
1425
1426         c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1427         c->cnr.stat[0].svalue = cnr;
1428
1429         dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
1430                 __func__, cnr / 1000, cnr % 1000, cnr_linear);
1431
1432         /* CNR counter reset */
1433         rc = mb86a20s_writereg(state, 0x45, val | 0x10);
1434         if (rc < 0)
1435                 return rc;
1436         rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
1437
1438         return rc;
1439 }
1440
1441 static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
1442 {
1443         struct mb86a20s_state *state = fe->demodulator_priv;
1444         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1445         u32 mer, cnr;
1446         int rc, val, layer;
1447         const struct linear_segments *segs;
1448         unsigned segs_len;
1449
1450         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1451
1452         /* Check if the measures are already available */
1453         rc = mb86a20s_writereg(state, 0x50, 0x5b);
1454         if (rc < 0)
1455                 return rc;
1456         rc = mb86a20s_readreg(state, 0x51);
1457         if (rc < 0)
1458                 return rc;
1459
1460         /* Check if data is available */
1461         if (!(rc & 0x01)) {
1462                 dev_dbg(&state->i2c->dev,
1463                         "%s: MER measures aren't available yet.\n", __func__);
1464                 return -EBUSY;
1465         }
1466
1467         /* Read all layers */
1468         for (layer = 0; layer < NUM_LAYERS; layer++) {
1469                 if (!(c->isdbt_layer_enabled & (1 << layer))) {
1470                         c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1471                         continue;
1472                 }
1473
1474                 rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3);
1475                 if (rc < 0)
1476                         return rc;
1477                 rc = mb86a20s_readreg(state, 0x51);
1478                 if (rc < 0)
1479                         return rc;
1480                 mer = rc << 16;
1481                 rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3);
1482                 if (rc < 0)
1483                         return rc;
1484                 rc = mb86a20s_readreg(state, 0x51);
1485                 if (rc < 0)
1486                         return rc;
1487                 mer |= rc << 8;
1488                 rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3);
1489                 if (rc < 0)
1490                         return rc;
1491                 rc = mb86a20s_readreg(state, 0x51);
1492                 if (rc < 0)
1493                         return rc;
1494                 mer |= rc;
1495
1496                 switch (c->layer[layer].modulation) {
1497                 case DQPSK:
1498                 case QPSK:
1499                         segs = cnr_qpsk_table;
1500                         segs_len = ARRAY_SIZE(cnr_qpsk_table);
1501                         break;
1502                 case QAM_16:
1503                         segs = cnr_16qam_table;
1504                         segs_len = ARRAY_SIZE(cnr_16qam_table);
1505                         break;
1506                 default:
1507                 case QAM_64:
1508                         segs = cnr_64qam_table;
1509                         segs_len = ARRAY_SIZE(cnr_64qam_table);
1510                         break;
1511                 }
1512                 cnr = interpolate_value(mer, segs, segs_len);
1513
1514                 c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL;
1515                 c->cnr.stat[1 + layer].svalue = cnr;
1516
1517                 dev_dbg(&state->i2c->dev,
1518                         "%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
1519                         __func__, 'A' + layer, cnr / 1000, cnr % 1000, mer);
1520
1521         }
1522
1523         /* Start a new MER measurement */
1524         /* MER counter reset */
1525         rc = mb86a20s_writereg(state, 0x50, 0x50);
1526         if (rc < 0)
1527                 return rc;
1528         rc = mb86a20s_readreg(state, 0x51);
1529         if (rc < 0)
1530                 return rc;
1531         val = rc;
1532
1533         rc = mb86a20s_writereg(state, 0x51, val | 0x01);
1534         if (rc < 0)
1535                 return rc;
1536         rc = mb86a20s_writereg(state, 0x51, val & 0x06);
1537         if (rc < 0)
1538                 return rc;
1539
1540         return 0;
1541 }
1542
1543 static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
1544 {
1545         struct mb86a20s_state *state = fe->demodulator_priv;
1546         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1547         int layer;
1548
1549         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1550
1551         /* Fill the length of each status counter */
1552
1553         /* Only global stats */
1554         c->strength.len = 1;
1555
1556         /* Per-layer stats - 3 layers + global */
1557         c->cnr.len = NUM_LAYERS + 1;
1558         c->pre_bit_error.len = NUM_LAYERS + 1;
1559         c->pre_bit_count.len = NUM_LAYERS + 1;
1560         c->post_bit_error.len = NUM_LAYERS + 1;
1561         c->post_bit_count.len = NUM_LAYERS + 1;
1562         c->block_error.len = NUM_LAYERS + 1;
1563         c->block_count.len = NUM_LAYERS + 1;
1564
1565         /* Signal is always available */
1566         c->strength.stat[0].scale = FE_SCALE_RELATIVE;
1567         c->strength.stat[0].uvalue = 0;
1568
1569         /* Put all of them at FE_SCALE_NOT_AVAILABLE */
1570         for (layer = 0; layer < NUM_LAYERS + 1; layer++) {
1571                 c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1572                 c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1573                 c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1574                 c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1575                 c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1576                 c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1577                 c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1578         }
1579 }
1580
1581 static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr)
1582 {
1583         struct mb86a20s_state *state = fe->demodulator_priv;
1584         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1585         int rc = 0, layer;
1586         u32 bit_error = 0, bit_count = 0;
1587         u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
1588         u32 t_post_bit_error = 0, t_post_bit_count = 0;
1589         u32 block_error = 0, block_count = 0;
1590         u32 t_block_error = 0, t_block_count = 0;
1591         int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0;
1592         int per_layers = 0;
1593
1594         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1595
1596         mb86a20s_get_main_CNR(fe);
1597
1598         /* Get per-layer stats */
1599         mb86a20s_get_blk_error_layer_CNR(fe);
1600
1601         /*
1602          * At state 7, only CNR is available
1603          * For BER measures, state=9 is required
1604          * FIXME: we may get MER measures with state=8
1605          */
1606         if (status_nr < 9)
1607                 return 0;
1608
1609         for (layer = 0; layer < NUM_LAYERS; layer++) {
1610                 if (c->isdbt_layer_enabled & (1 << layer)) {
1611                         /* Layer is active and has rc segments */
1612                         active_layers++;
1613
1614                         /* Handle BER before vterbi */
1615                         rc = mb86a20s_get_pre_ber(fe, layer,
1616                                                   &bit_error, &bit_count);
1617                         if (rc >= 0) {
1618                                 c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1619                                 c->pre_bit_error.stat[1 + layer].uvalue += bit_error;
1620                                 c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1621                                 c->pre_bit_count.stat[1 + layer].uvalue += bit_count;
1622                         } else if (rc != -EBUSY) {
1623                                 /*
1624                                         * If an I/O error happened,
1625                                         * measures are now unavailable
1626                                         */
1627                                 c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1628                                 c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1629                                 dev_err(&state->i2c->dev,
1630                                         "%s: Can't get BER for layer %c (error %d).\n",
1631                                         __func__, 'A' + layer, rc);
1632                         }
1633                         if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1634                                 pre_ber_layers++;
1635
1636                         /* Handle BER post vterbi */
1637                         rc = mb86a20s_get_post_ber(fe, layer,
1638                                                    &bit_error, &bit_count);
1639                         if (rc >= 0) {
1640                                 c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1641                                 c->post_bit_error.stat[1 + layer].uvalue += bit_error;
1642                                 c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1643                                 c->post_bit_count.stat[1 + layer].uvalue += bit_count;
1644                         } else if (rc != -EBUSY) {
1645                                 /*
1646                                         * If an I/O error happened,
1647                                         * measures are now unavailable
1648                                         */
1649                                 c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1650                                 c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1651                                 dev_err(&state->i2c->dev,
1652                                         "%s: Can't get BER for layer %c (error %d).\n",
1653                                         __func__, 'A' + layer, rc);
1654                         }
1655                         if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1656                                 post_ber_layers++;
1657
1658                         /* Handle Block errors for PER/UCB reports */
1659                         rc = mb86a20s_get_blk_error(fe, layer,
1660                                                 &block_error,
1661                                                 &block_count);
1662                         if (rc >= 0) {
1663                                 c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1664                                 c->block_error.stat[1 + layer].uvalue += block_error;
1665                                 c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1666                                 c->block_count.stat[1 + layer].uvalue += block_count;
1667                         } else if (rc != -EBUSY) {
1668                                 /*
1669                                         * If an I/O error happened,
1670                                         * measures are now unavailable
1671                                         */
1672                                 c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1673                                 c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1674                                 dev_err(&state->i2c->dev,
1675                                         "%s: Can't get PER for layer %c (error %d).\n",
1676                                         __func__, 'A' + layer, rc);
1677
1678                         }
1679                         if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1680                                 per_layers++;
1681
1682                         /* Update total preBER */
1683                         t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue;
1684                         t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue;
1685
1686                         /* Update total postBER */
1687                         t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue;
1688                         t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue;
1689
1690                         /* Update total PER */
1691                         t_block_error += c->block_error.stat[1 + layer].uvalue;
1692                         t_block_count += c->block_count.stat[1 + layer].uvalue;
1693                 }
1694         }
1695
1696         /*
1697          * Start showing global count if at least one error count is
1698          * available.
1699          */
1700         if (pre_ber_layers) {
1701                 /*
1702                  * At least one per-layer BER measure was read. We can now
1703                  * calculate the total BER
1704                  *
1705                  * Total Bit Error/Count is calculated as the sum of the
1706                  * bit errors on all active layers.
1707                  */
1708                 c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1709                 c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
1710                 c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1711                 c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
1712         } else {
1713                 c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1714                 c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1715         }
1716
1717         /*
1718          * Start showing global count if at least one error count is
1719          * available.
1720          */
1721         if (post_ber_layers) {
1722                 /*
1723                  * At least one per-layer BER measure was read. We can now
1724                  * calculate the total BER
1725                  *
1726                  * Total Bit Error/Count is calculated as the sum of the
1727                  * bit errors on all active layers.
1728                  */
1729                 c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1730                 c->post_bit_error.stat[0].uvalue = t_post_bit_error;
1731                 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1732                 c->post_bit_count.stat[0].uvalue = t_post_bit_count;
1733         } else {
1734                 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1735                 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1736         }
1737
1738         if (per_layers) {
1739                 /*
1740                  * At least one per-layer UCB measure was read. We can now
1741                  * calculate the total UCB
1742                  *
1743                  * Total block Error/Count is calculated as the sum of the
1744                  * block errors on all active layers.
1745                  */
1746                 c->block_error.stat[0].scale = FE_SCALE_COUNTER;
1747                 c->block_error.stat[0].uvalue = t_block_error;
1748                 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1749                 c->block_count.stat[0].uvalue = t_block_count;
1750         } else {
1751                 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1752                 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1753         }
1754
1755         return rc;
1756 }
1757
1758 /*
1759  * The functions below are called via DVB callbacks, so they need to
1760  * properly use the I2C gate control
1761  */
1762
1763 static int mb86a20s_initfe(struct dvb_frontend *fe)
1764 {
1765         struct mb86a20s_state *state = fe->demodulator_priv;
1766         u64 pll;
1767         u32 fclk;
1768         int rc;
1769         u8  regD5 = 1, reg71, reg09 = 0x3a;
1770
1771         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1772
1773         if (fe->ops.i2c_gate_ctrl)
1774                 fe->ops.i2c_gate_ctrl(fe, 0);
1775
1776         /* Initialize the frontend */
1777         rc = mb86a20s_writeregdata(state, mb86a20s_init1);
1778         if (rc < 0)
1779                 goto err;
1780
1781         if (!state->inversion)
1782                 reg09 |= 0x04;
1783         rc = mb86a20s_writereg(state, 0x09, reg09);
1784         if (rc < 0)
1785                 goto err;
1786         if (!state->bw)
1787                 reg71 = 1;
1788         else
1789                 reg71 = 0;
1790         rc = mb86a20s_writereg(state, 0x39, reg71);
1791         if (rc < 0)
1792                 goto err;
1793         rc = mb86a20s_writereg(state, 0x71, state->bw);
1794         if (rc < 0)
1795                 goto err;
1796         if (state->subchannel) {
1797                 rc = mb86a20s_writereg(state, 0x44, state->subchannel);
1798                 if (rc < 0)
1799                         goto err;
1800         }
1801
1802         fclk = state->config->fclk;
1803         if (!fclk)
1804                 fclk = 32571428;
1805
1806         /* Adjust IF frequency to match tuner */
1807         if (fe->ops.tuner_ops.get_if_frequency)
1808                 fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq);
1809
1810         if (!state->if_freq)
1811                 state->if_freq = 3300000;
1812
1813         pll = (((u64)1) << 34) * state->if_freq;
1814         do_div(pll, 63 * fclk);
1815         pll = (1 << 25) - pll;
1816         rc = mb86a20s_writereg(state, 0x28, 0x2a);
1817         if (rc < 0)
1818                 goto err;
1819         rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1820         if (rc < 0)
1821                 goto err;
1822         rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1823         if (rc < 0)
1824                 goto err;
1825         rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1826         if (rc < 0)
1827                 goto err;
1828         dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
1829                 __func__, fclk, state->if_freq, (long long)pll);
1830
1831         /* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */
1832         pll = state->if_freq * 1677721600L;
1833         do_div(pll, 1628571429L);
1834         rc = mb86a20s_writereg(state, 0x28, 0x20);
1835         if (rc < 0)
1836                 goto err;
1837         rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1838         if (rc < 0)
1839                 goto err;
1840         rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1841         if (rc < 0)
1842                 goto err;
1843         rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1844         if (rc < 0)
1845                 goto err;
1846         dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n",
1847                 __func__, state->if_freq, (long long)pll);
1848
1849         if (!state->config->is_serial)
1850                 regD5 &= ~1;
1851
1852         rc = mb86a20s_writereg(state, 0x50, 0xd5);
1853         if (rc < 0)
1854                 goto err;
1855         rc = mb86a20s_writereg(state, 0x51, regD5);
1856         if (rc < 0)
1857                 goto err;
1858
1859         rc = mb86a20s_writeregdata(state, mb86a20s_init2);
1860         if (rc < 0)
1861                 goto err;
1862
1863
1864 err:
1865         if (fe->ops.i2c_gate_ctrl)
1866                 fe->ops.i2c_gate_ctrl(fe, 1);
1867
1868         if (rc < 0) {
1869                 state->need_init = true;
1870                 dev_info(&state->i2c->dev,
1871                          "mb86a20s: Init failed. Will try again later\n");
1872         } else {
1873                 state->need_init = false;
1874                 dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
1875         }
1876         return rc;
1877 }
1878
1879 static int mb86a20s_set_frontend(struct dvb_frontend *fe)
1880 {
1881         struct mb86a20s_state *state = fe->demodulator_priv;
1882         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1883         int rc, if_freq;
1884         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1885
1886         if (!c->isdbt_layer_enabled)
1887                 c->isdbt_layer_enabled = 7;
1888
1889         if (c->isdbt_layer_enabled == 1)
1890                 state->bw = MB86A20S_1SEG;
1891         else if (c->isdbt_partial_reception)
1892                 state->bw = MB86A20S_13SEG_PARTIAL;
1893         else
1894                 state->bw = MB86A20S_13SEG;
1895
1896         if (c->inversion == INVERSION_ON)
1897                 state->inversion = true;
1898         else
1899                 state->inversion = false;
1900
1901         if (!c->isdbt_sb_mode) {
1902                 state->subchannel = 0;
1903         } else {
1904                 if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel))
1905                         c->isdbt_sb_subchannel = 0;
1906
1907                 state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel];
1908         }
1909
1910         /*
1911          * Gate should already be opened, but it doesn't hurt to
1912          * double-check
1913          */
1914         if (fe->ops.i2c_gate_ctrl)
1915                 fe->ops.i2c_gate_ctrl(fe, 1);
1916         fe->ops.tuner_ops.set_params(fe);
1917
1918         if (fe->ops.tuner_ops.get_if_frequency)
1919                 fe->ops.tuner_ops.get_if_frequency(fe, &if_freq);
1920
1921         /*
1922          * Make it more reliable: if, for some reason, the initial
1923          * device initialization doesn't happen, initialize it when
1924          * a SBTVD parameters are adjusted.
1925          *
1926          * Unfortunately, due to a hard to track bug at tda829x/tda18271,
1927          * the agc callback logic is not called during DVB attach time,
1928          * causing mb86a20s to not be initialized with Kworld SBTVD.
1929          * So, this hack is needed, in order to make Kworld SBTVD to work.
1930          *
1931          * It is also needed to change the IF after the initial init.
1932          *
1933          * HACK: Always init the frontend when set_frontend is called:
1934          * it was noticed that, on some devices, it fails to lock on a
1935          * different channel. So, it is better to reset everything, even
1936          * wasting some time, than to loose channel lock.
1937          */
1938         mb86a20s_initfe(fe);
1939
1940         if (fe->ops.i2c_gate_ctrl)
1941                 fe->ops.i2c_gate_ctrl(fe, 0);
1942
1943         rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
1944         mb86a20s_reset_counters(fe);
1945         mb86a20s_stats_not_ready(fe);
1946
1947         if (fe->ops.i2c_gate_ctrl)
1948                 fe->ops.i2c_gate_ctrl(fe, 1);
1949
1950         return rc;
1951 }
1952
1953 static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
1954                                           fe_status_t *status)
1955 {
1956         struct mb86a20s_state *state = fe->demodulator_priv;
1957         int rc, status_nr;
1958
1959         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1960
1961         if (fe->ops.i2c_gate_ctrl)
1962                 fe->ops.i2c_gate_ctrl(fe, 0);
1963
1964         /* Get lock */
1965         status_nr = mb86a20s_read_status(fe, status);
1966         if (status_nr < 7) {
1967                 mb86a20s_stats_not_ready(fe);
1968                 mb86a20s_reset_frontend_cache(fe);
1969         }
1970         if (status_nr < 0) {
1971                 dev_err(&state->i2c->dev,
1972                         "%s: Can't read frontend lock status\n", __func__);
1973                 goto error;
1974         }
1975
1976         /* Get signal strength */
1977         rc = mb86a20s_read_signal_strength(fe);
1978         if (rc < 0) {
1979                 dev_err(&state->i2c->dev,
1980                         "%s: Can't reset VBER registers.\n", __func__);
1981                 mb86a20s_stats_not_ready(fe);
1982                 mb86a20s_reset_frontend_cache(fe);
1983
1984                 rc = 0;         /* Status is OK */
1985                 goto error;
1986         }
1987
1988         if (status_nr >= 7) {
1989                 /* Get TMCC info*/
1990                 rc = mb86a20s_get_frontend(fe);
1991                 if (rc < 0) {
1992                         dev_err(&state->i2c->dev,
1993                                 "%s: Can't get FE TMCC data.\n", __func__);
1994                         rc = 0;         /* Status is OK */
1995                         goto error;
1996                 }
1997
1998                 /* Get statistics */
1999                 rc = mb86a20s_get_stats(fe, status_nr);
2000                 if (rc < 0 && rc != -EBUSY) {
2001                         dev_err(&state->i2c->dev,
2002                                 "%s: Can't get FE statistics.\n", __func__);
2003                         rc = 0;
2004                         goto error;
2005                 }
2006                 rc = 0; /* Don't return EBUSY to userspace */
2007         }
2008         goto ok;
2009
2010 error:
2011         mb86a20s_stats_not_ready(fe);
2012
2013 ok:
2014         if (fe->ops.i2c_gate_ctrl)
2015                 fe->ops.i2c_gate_ctrl(fe, 1);
2016
2017         return rc;
2018 }
2019
2020 static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
2021                                                     u16 *strength)
2022 {
2023         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2024
2025
2026         *strength = c->strength.stat[0].uvalue;
2027
2028         return 0;
2029 }
2030
2031 static int mb86a20s_get_frontend_dummy(struct dvb_frontend *fe)
2032 {
2033         /*
2034          * get_frontend is now handled together with other stats
2035          * retrival, when read_status() is called, as some statistics
2036          * will depend on the layers detection.
2037          */
2038         return 0;
2039 };
2040
2041 static int mb86a20s_tune(struct dvb_frontend *fe,
2042                         bool re_tune,
2043                         unsigned int mode_flags,
2044                         unsigned int *delay,
2045                         fe_status_t *status)
2046 {
2047         struct mb86a20s_state *state = fe->demodulator_priv;
2048         int rc = 0;
2049
2050         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2051
2052         if (re_tune)
2053                 rc = mb86a20s_set_frontend(fe);
2054
2055         if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
2056                 mb86a20s_read_status_and_stats(fe, status);
2057
2058         return rc;
2059 }
2060
2061 static void mb86a20s_release(struct dvb_frontend *fe)
2062 {
2063         struct mb86a20s_state *state = fe->demodulator_priv;
2064
2065         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2066
2067         kfree(state);
2068 }
2069
2070 static struct dvb_frontend_ops mb86a20s_ops;
2071
2072 struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
2073                                     struct i2c_adapter *i2c)
2074 {
2075         struct mb86a20s_state *state;
2076         u8      rev;
2077
2078         dev_dbg(&i2c->dev, "%s called.\n", __func__);
2079
2080         /* allocate memory for the internal state */
2081         state = kzalloc(sizeof(struct mb86a20s_state), GFP_KERNEL);
2082         if (state == NULL) {
2083                 dev_err(&i2c->dev,
2084                         "%s: unable to allocate memory for state\n", __func__);
2085                 goto error;
2086         }
2087
2088         /* setup the state */
2089         state->config = config;
2090         state->i2c = i2c;
2091
2092         /* create dvb_frontend */
2093         memcpy(&state->frontend.ops, &mb86a20s_ops,
2094                 sizeof(struct dvb_frontend_ops));
2095         state->frontend.demodulator_priv = state;
2096
2097         /* Check if it is a mb86a20s frontend */
2098         rev = mb86a20s_readreg(state, 0);
2099
2100         if (rev == 0x13) {
2101                 dev_info(&i2c->dev,
2102                          "Detected a Fujitsu mb86a20s frontend\n");
2103         } else {
2104                 dev_dbg(&i2c->dev,
2105                         "Frontend revision %d is unknown - aborting.\n",
2106                        rev);
2107                 goto error;
2108         }
2109
2110         return &state->frontend;
2111
2112 error:
2113         kfree(state);
2114         return NULL;
2115 }
2116 EXPORT_SYMBOL(mb86a20s_attach);
2117
2118 static struct dvb_frontend_ops mb86a20s_ops = {
2119         .delsys = { SYS_ISDBT },
2120         /* Use dib8000 values per default */
2121         .info = {
2122                 .name = "Fujitsu mb86A20s",
2123                 .caps = FE_CAN_RECOVER  |
2124                         FE_CAN_FEC_1_2  | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
2125                         FE_CAN_FEC_5_6  | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
2126                         FE_CAN_QPSK     | FE_CAN_QAM_16  | FE_CAN_QAM_64 |
2127                         FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
2128                         FE_CAN_GUARD_INTERVAL_AUTO    | FE_CAN_HIERARCHY_AUTO,
2129                 /* Actually, those values depend on the used tuner */
2130                 .frequency_min = 45000000,
2131                 .frequency_max = 864000000,
2132                 .frequency_stepsize = 62500,
2133         },
2134
2135         .release = mb86a20s_release,
2136
2137         .init = mb86a20s_initfe,
2138         .set_frontend = mb86a20s_set_frontend,
2139         .get_frontend = mb86a20s_get_frontend_dummy,
2140         .read_status = mb86a20s_read_status_and_stats,
2141         .read_signal_strength = mb86a20s_read_signal_strength_from_cache,
2142         .tune = mb86a20s_tune,
2143 };
2144
2145 MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
2146 MODULE_AUTHOR("Mauro Carvalho Chehab");
2147 MODULE_LICENSE("GPL");