Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / media / dvb-frontends / dib0090.c
1 /*
2  * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner.
3  *
4  * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of the
9  * License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  *
22  * This code is more or less generated from another driver, please
23  * excuse some codingstyle oddities.
24  *
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/i2c.h>
30 #include <linux/mutex.h>
31
32 #include "dvb_frontend.h"
33
34 #include "dib0090.h"
35 #include "dibx000_common.h"
36
37 static int debug;
38 module_param(debug, int, 0644);
39 MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
40
41 #define dprintk(args...) do { \
42         if (debug) { \
43                 printk(KERN_DEBUG "DiB0090: "); \
44                 printk(args); \
45                 printk("\n"); \
46         } \
47 } while (0)
48
49 #define CONFIG_SYS_DVBT
50 #define CONFIG_SYS_ISDBT
51 #define CONFIG_BAND_CBAND
52 #define CONFIG_BAND_VHF
53 #define CONFIG_BAND_UHF
54 #define CONFIG_DIB0090_USE_PWM_AGC
55
56 #define EN_LNA0      0x8000
57 #define EN_LNA1      0x4000
58 #define EN_LNA2      0x2000
59 #define EN_LNA3      0x1000
60 #define EN_MIX0      0x0800
61 #define EN_MIX1      0x0400
62 #define EN_MIX2      0x0200
63 #define EN_MIX3      0x0100
64 #define EN_IQADC     0x0040
65 #define EN_PLL       0x0020
66 #define EN_TX        0x0010
67 #define EN_BB        0x0008
68 #define EN_LO        0x0004
69 #define EN_BIAS      0x0001
70
71 #define EN_IQANA     0x0002
72 #define EN_DIGCLK    0x0080     /* not in the 0x24 reg, only in 0x1b */
73 #define EN_CRYSTAL   0x0002
74
75 #define EN_UHF           0x22E9
76 #define EN_VHF           0x44E9
77 #define EN_LBD           0x11E9
78 #define EN_SBD           0x44E9
79 #define EN_CAB           0x88E9
80
81 /* Calibration defines */
82 #define      DC_CAL 0x1
83 #define     WBD_CAL 0x2
84 #define    TEMP_CAL 0x4
85 #define CAPTRIM_CAL 0x8
86
87 #define KROSUS_PLL_LOCKED   0x800
88 #define KROSUS              0x2
89
90 /* Use those defines to identify SOC version */
91 #define SOC               0x02
92 #define SOC_7090_P1G_11R1 0x82
93 #define SOC_7090_P1G_21R1 0x8a
94 #define SOC_8090_P1G_11R1 0x86
95 #define SOC_8090_P1G_21R1 0x8e
96
97 /* else use thos ones to check */
98 #define P1A_B      0x0
99 #define P1C        0x1
100 #define P1D_E_F    0x3
101 #define P1G        0x7
102 #define P1G_21R2   0xf
103
104 #define MP001 0x1               /* Single 9090/8096 */
105 #define MP005 0x4               /* Single Sband */
106 #define MP008 0x6               /* Dual diversity VHF-UHF-LBAND */
107 #define MP009 0x7               /* Dual diversity 29098 CBAND-UHF-LBAND-SBAND */
108
109 #define pgm_read_word(w) (*w)
110
111 struct dc_calibration;
112
113 struct dib0090_tuning {
114         u32 max_freq;           /* for every frequency less than or equal to that field: this information is correct */
115         u8 switch_trim;
116         u8 lna_tune;
117         u16 lna_bias;
118         u16 v2i;
119         u16 mix;
120         u16 load;
121         u16 tuner_enable;
122 };
123
124 struct dib0090_pll {
125         u32 max_freq;           /* for every frequency less than or equal to that field: this information is correct */
126         u8 vco_band;
127         u8 hfdiv_code;
128         u8 hfdiv;
129         u8 topresc;
130 };
131
132 struct dib0090_identity {
133         u8 version;
134         u8 product;
135         u8 p1g;
136         u8 in_soc;
137 };
138
139 struct dib0090_state {
140         struct i2c_adapter *i2c;
141         struct dvb_frontend *fe;
142         const struct dib0090_config *config;
143
144         u8 current_band;
145         enum frontend_tune_state tune_state;
146         u32 current_rf;
147
148         u16 wbd_offset;
149         s16 wbd_target;         /* in dB */
150
151         s16 rf_gain_limit;      /* take-over-point: where to split between bb and rf gain */
152         s16 current_gain;       /* keeps the currently programmed gain */
153         u8 agc_step;            /* new binary search */
154
155         u16 gain[2];            /* for channel monitoring */
156
157         const u16 *rf_ramp;
158         const u16 *bb_ramp;
159
160         /* for the software AGC ramps */
161         u16 bb_1_def;
162         u16 rf_lt_def;
163         u16 gain_reg[4];
164
165         /* for the captrim/dc-offset search */
166         s8 step;
167         s16 adc_diff;
168         s16 min_adc_diff;
169
170         s8 captrim;
171         s8 fcaptrim;
172
173         const struct dc_calibration *dc;
174         u16 bb6, bb7;
175
176         const struct dib0090_tuning *current_tune_table_index;
177         const struct dib0090_pll *current_pll_table_index;
178
179         u8 tuner_is_tuned;
180         u8 agc_freeze;
181
182         struct dib0090_identity identity;
183
184         u32 rf_request;
185         u8 current_standard;
186
187         u8 calibrate;
188         u32 rest;
189         u16 bias;
190         s16 temperature;
191
192         u8 wbd_calibration_gain;
193         const struct dib0090_wbd_slope *current_wbd_table;
194         u16 wbdmux;
195
196         /* for the I2C transfer */
197         struct i2c_msg msg[2];
198         u8 i2c_write_buffer[3];
199         u8 i2c_read_buffer[2];
200         struct mutex i2c_buffer_lock;
201 };
202
203 struct dib0090_fw_state {
204         struct i2c_adapter *i2c;
205         struct dvb_frontend *fe;
206         struct dib0090_identity identity;
207         const struct dib0090_config *config;
208
209         /* for the I2C transfer */
210         struct i2c_msg msg;
211         u8 i2c_write_buffer[2];
212         u8 i2c_read_buffer[2];
213         struct mutex i2c_buffer_lock;
214 };
215
216 static u16 dib0090_read_reg(struct dib0090_state *state, u8 reg)
217 {
218         u16 ret;
219
220         if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
221                 dprintk("could not acquire lock");
222                 return 0;
223         }
224
225         state->i2c_write_buffer[0] = reg;
226
227         memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
228         state->msg[0].addr = state->config->i2c_address;
229         state->msg[0].flags = 0;
230         state->msg[0].buf = state->i2c_write_buffer;
231         state->msg[0].len = 1;
232         state->msg[1].addr = state->config->i2c_address;
233         state->msg[1].flags = I2C_M_RD;
234         state->msg[1].buf = state->i2c_read_buffer;
235         state->msg[1].len = 2;
236
237         if (i2c_transfer(state->i2c, state->msg, 2) != 2) {
238                 printk(KERN_WARNING "DiB0090 I2C read failed\n");
239                 ret = 0;
240         } else
241                 ret = (state->i2c_read_buffer[0] << 8)
242                         | state->i2c_read_buffer[1];
243
244         mutex_unlock(&state->i2c_buffer_lock);
245         return ret;
246 }
247
248 static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val)
249 {
250         int ret;
251
252         if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
253                 dprintk("could not acquire lock");
254                 return -EINVAL;
255         }
256
257         state->i2c_write_buffer[0] = reg & 0xff;
258         state->i2c_write_buffer[1] = val >> 8;
259         state->i2c_write_buffer[2] = val & 0xff;
260
261         memset(state->msg, 0, sizeof(struct i2c_msg));
262         state->msg[0].addr = state->config->i2c_address;
263         state->msg[0].flags = 0;
264         state->msg[0].buf = state->i2c_write_buffer;
265         state->msg[0].len = 3;
266
267         if (i2c_transfer(state->i2c, state->msg, 1) != 1) {
268                 printk(KERN_WARNING "DiB0090 I2C write failed\n");
269                 ret = -EREMOTEIO;
270         } else
271                 ret = 0;
272
273         mutex_unlock(&state->i2c_buffer_lock);
274         return ret;
275 }
276
277 static u16 dib0090_fw_read_reg(struct dib0090_fw_state *state, u8 reg)
278 {
279         u16 ret;
280
281         if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
282                 dprintk("could not acquire lock");
283                 return 0;
284         }
285
286         state->i2c_write_buffer[0] = reg;
287
288         memset(&state->msg, 0, sizeof(struct i2c_msg));
289         state->msg.addr = reg;
290         state->msg.flags = I2C_M_RD;
291         state->msg.buf = state->i2c_read_buffer;
292         state->msg.len = 2;
293         if (i2c_transfer(state->i2c, &state->msg, 1) != 1) {
294                 printk(KERN_WARNING "DiB0090 I2C read failed\n");
295                 ret = 0;
296         } else
297                 ret = (state->i2c_read_buffer[0] << 8)
298                         | state->i2c_read_buffer[1];
299
300         mutex_unlock(&state->i2c_buffer_lock);
301         return ret;
302 }
303
304 static int dib0090_fw_write_reg(struct dib0090_fw_state *state, u8 reg, u16 val)
305 {
306         int ret;
307
308         if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
309                 dprintk("could not acquire lock");
310                 return -EINVAL;
311         }
312
313         state->i2c_write_buffer[0] = val >> 8;
314         state->i2c_write_buffer[1] = val & 0xff;
315
316         memset(&state->msg, 0, sizeof(struct i2c_msg));
317         state->msg.addr = reg;
318         state->msg.flags = 0;
319         state->msg.buf = state->i2c_write_buffer;
320         state->msg.len = 2;
321         if (i2c_transfer(state->i2c, &state->msg, 1) != 1) {
322                 printk(KERN_WARNING "DiB0090 I2C write failed\n");
323                 ret = -EREMOTEIO;
324         } else
325                 ret = 0;
326
327         mutex_unlock(&state->i2c_buffer_lock);
328         return ret;
329 }
330
331 #define HARD_RESET(state) do {  if (cfg->reset) {  if (cfg->sleep) cfg->sleep(fe, 0); msleep(10);  cfg->reset(fe, 1); msleep(10);  cfg->reset(fe, 0); msleep(10);  }  } while (0)
332 #define ADC_TARGET -220
333 #define GAIN_ALPHA 5
334 #define WBD_ALPHA 6
335 #define LPF     100
336 static void dib0090_write_regs(struct dib0090_state *state, u8 r, const u16 * b, u8 c)
337 {
338         do {
339                 dib0090_write_reg(state, r++, *b++);
340         } while (--c);
341 }
342
343 static int dib0090_identify(struct dvb_frontend *fe)
344 {
345         struct dib0090_state *state = fe->tuner_priv;
346         u16 v;
347         struct dib0090_identity *identity = &state->identity;
348
349         v = dib0090_read_reg(state, 0x1a);
350
351         identity->p1g = 0;
352         identity->in_soc = 0;
353
354         dprintk("Tuner identification (Version = 0x%04x)", v);
355
356         /* without PLL lock info */
357         v &= ~KROSUS_PLL_LOCKED;
358
359         identity->version = v & 0xff;
360         identity->product = (v >> 8) & 0xf;
361
362         if (identity->product != KROSUS)
363                 goto identification_error;
364
365         if ((identity->version & 0x3) == SOC) {
366                 identity->in_soc = 1;
367                 switch (identity->version) {
368                 case SOC_8090_P1G_11R1:
369                         dprintk("SOC 8090 P1-G11R1 Has been detected");
370                         identity->p1g = 1;
371                         break;
372                 case SOC_8090_P1G_21R1:
373                         dprintk("SOC 8090 P1-G21R1 Has been detected");
374                         identity->p1g = 1;
375                         break;
376                 case SOC_7090_P1G_11R1:
377                         dprintk("SOC 7090 P1-G11R1 Has been detected");
378                         identity->p1g = 1;
379                         break;
380                 case SOC_7090_P1G_21R1:
381                         dprintk("SOC 7090 P1-G21R1 Has been detected");
382                         identity->p1g = 1;
383                         break;
384                 default:
385                         goto identification_error;
386                 }
387         } else {
388                 switch ((identity->version >> 5) & 0x7) {
389                 case MP001:
390                         dprintk("MP001 : 9090/8096");
391                         break;
392                 case MP005:
393                         dprintk("MP005 : Single Sband");
394                         break;
395                 case MP008:
396                         dprintk("MP008 : diversity VHF-UHF-LBAND");
397                         break;
398                 case MP009:
399                         dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND");
400                         break;
401                 default:
402                         goto identification_error;
403                 }
404
405                 switch (identity->version & 0x1f) {
406                 case P1G_21R2:
407                         dprintk("P1G_21R2 detected");
408                         identity->p1g = 1;
409                         break;
410                 case P1G:
411                         dprintk("P1G detected");
412                         identity->p1g = 1;
413                         break;
414                 case P1D_E_F:
415                         dprintk("P1D/E/F detected");
416                         break;
417                 case P1C:
418                         dprintk("P1C detected");
419                         break;
420                 case P1A_B:
421                         dprintk("P1-A/B detected: driver is deactivated - not available");
422                         goto identification_error;
423                         break;
424                 default:
425                         goto identification_error;
426                 }
427         }
428
429         return 0;
430
431 identification_error:
432         return -EIO;
433 }
434
435 static int dib0090_fw_identify(struct dvb_frontend *fe)
436 {
437         struct dib0090_fw_state *state = fe->tuner_priv;
438         struct dib0090_identity *identity = &state->identity;
439
440         u16 v = dib0090_fw_read_reg(state, 0x1a);
441         identity->p1g = 0;
442         identity->in_soc = 0;
443
444         dprintk("FE: Tuner identification (Version = 0x%04x)", v);
445
446         /* without PLL lock info */
447         v &= ~KROSUS_PLL_LOCKED;
448
449         identity->version = v & 0xff;
450         identity->product = (v >> 8) & 0xf;
451
452         if (identity->product != KROSUS)
453                 goto identification_error;
454
455         if ((identity->version & 0x3) == SOC) {
456                 identity->in_soc = 1;
457                 switch (identity->version) {
458                 case SOC_8090_P1G_11R1:
459                         dprintk("SOC 8090 P1-G11R1 Has been detected");
460                         identity->p1g = 1;
461                         break;
462                 case SOC_8090_P1G_21R1:
463                         dprintk("SOC 8090 P1-G21R1 Has been detected");
464                         identity->p1g = 1;
465                         break;
466                 case SOC_7090_P1G_11R1:
467                         dprintk("SOC 7090 P1-G11R1 Has been detected");
468                         identity->p1g = 1;
469                         break;
470                 case SOC_7090_P1G_21R1:
471                         dprintk("SOC 7090 P1-G21R1 Has been detected");
472                         identity->p1g = 1;
473                         break;
474                 default:
475                         goto identification_error;
476                 }
477         } else {
478                 switch ((identity->version >> 5) & 0x7) {
479                 case MP001:
480                         dprintk("MP001 : 9090/8096");
481                         break;
482                 case MP005:
483                         dprintk("MP005 : Single Sband");
484                         break;
485                 case MP008:
486                         dprintk("MP008 : diversity VHF-UHF-LBAND");
487                         break;
488                 case MP009:
489                         dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND");
490                         break;
491                 default:
492                         goto identification_error;
493                 }
494
495                 switch (identity->version & 0x1f) {
496                 case P1G_21R2:
497                         dprintk("P1G_21R2 detected");
498                         identity->p1g = 1;
499                         break;
500                 case P1G:
501                         dprintk("P1G detected");
502                         identity->p1g = 1;
503                         break;
504                 case P1D_E_F:
505                         dprintk("P1D/E/F detected");
506                         break;
507                 case P1C:
508                         dprintk("P1C detected");
509                         break;
510                 case P1A_B:
511                         dprintk("P1-A/B detected: driver is deactivated - not available");
512                         goto identification_error;
513                         break;
514                 default:
515                         goto identification_error;
516                 }
517         }
518
519         return 0;
520
521 identification_error:
522         return -EIO;
523 }
524
525 static void dib0090_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg)
526 {
527         struct dib0090_state *state = fe->tuner_priv;
528         u16 PllCfg, i, v;
529
530         HARD_RESET(state);
531         dib0090_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL);
532         if (cfg->in_soc)
533                 return;
534
535         dib0090_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL);        /* PLL, DIG_CLK and CRYSTAL remain */
536         /* adcClkOutRatio=8->7, release reset */
537         dib0090_write_reg(state, 0x20, ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0);
538         if (cfg->clkoutdrive != 0)
539                 dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
540                                 | (cfg->clkoutdrive << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0));
541         else
542                 dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
543                                 | (7 << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0));
544
545         /* Read Pll current config * */
546         PllCfg = dib0090_read_reg(state, 0x21);
547
548         /** Reconfigure PLL if current setting is different from default setting **/
549         if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && (!cfg->in_soc)
550                         && !cfg->io.pll_bypass) {
551
552                 /* Set Bypass mode */
553                 PllCfg |= (1 << 15);
554                 dib0090_write_reg(state, 0x21, PllCfg);
555
556                 /* Set Reset Pll */
557                 PllCfg &= ~(1 << 13);
558                 dib0090_write_reg(state, 0x21, PllCfg);
559
560         /*** Set new Pll configuration in bypass and reset state ***/
561                 PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv);
562                 dib0090_write_reg(state, 0x21, PllCfg);
563
564                 /* Remove Reset Pll */
565                 PllCfg |= (1 << 13);
566                 dib0090_write_reg(state, 0x21, PllCfg);
567
568         /*** Wait for PLL lock ***/
569                 i = 100;
570                 do {
571                         v = !!(dib0090_read_reg(state, 0x1a) & 0x800);
572                         if (v)
573                                 break;
574                 } while (--i);
575
576                 if (i == 0) {
577                         dprintk("Pll: Unable to lock Pll");
578                         return;
579                 }
580
581                 /* Finally Remove Bypass mode */
582                 PllCfg &= ~(1 << 15);
583                 dib0090_write_reg(state, 0x21, PllCfg);
584         }
585
586         if (cfg->io.pll_bypass) {
587                 PllCfg |= (cfg->io.pll_bypass << 15);
588                 dib0090_write_reg(state, 0x21, PllCfg);
589         }
590 }
591
592 static int dib0090_fw_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg)
593 {
594         struct dib0090_fw_state *state = fe->tuner_priv;
595         u16 PllCfg;
596         u16 v;
597         int i;
598
599         dprintk("fw reset digital");
600         HARD_RESET(state);
601
602         dib0090_fw_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL);
603         dib0090_fw_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL);     /* PLL, DIG_CLK and CRYSTAL remain */
604
605         dib0090_fw_write_reg(state, 0x20,
606                         ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (cfg->data_tx_drv << 4) | cfg->ls_cfg_pad_drv);
607
608         v = (0 << 15) | ((!cfg->analog_output) << 14) | (1 << 9) | (0 << 8) | (cfg->clkouttobamse << 4) | (0 << 2) | (0);
609         if (cfg->clkoutdrive != 0)
610                 v |= cfg->clkoutdrive << 5;
611         else
612                 v |= 7 << 5;
613
614         v |= 2 << 10;
615         dib0090_fw_write_reg(state, 0x23, v);
616
617         /* Read Pll current config * */
618         PllCfg = dib0090_fw_read_reg(state, 0x21);
619
620         /** Reconfigure PLL if current setting is different from default setting **/
621         if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && !cfg->io.pll_bypass) {
622
623                 /* Set Bypass mode */
624                 PllCfg |= (1 << 15);
625                 dib0090_fw_write_reg(state, 0x21, PllCfg);
626
627                 /* Set Reset Pll */
628                 PllCfg &= ~(1 << 13);
629                 dib0090_fw_write_reg(state, 0x21, PllCfg);
630
631         /*** Set new Pll configuration in bypass and reset state ***/
632                 PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv);
633                 dib0090_fw_write_reg(state, 0x21, PllCfg);
634
635                 /* Remove Reset Pll */
636                 PllCfg |= (1 << 13);
637                 dib0090_fw_write_reg(state, 0x21, PllCfg);
638
639         /*** Wait for PLL lock ***/
640                 i = 100;
641                 do {
642                         v = !!(dib0090_fw_read_reg(state, 0x1a) & 0x800);
643                         if (v)
644                                 break;
645                 } while (--i);
646
647                 if (i == 0) {
648                         dprintk("Pll: Unable to lock Pll");
649                         return -EIO;
650                 }
651
652                 /* Finally Remove Bypass mode */
653                 PllCfg &= ~(1 << 15);
654                 dib0090_fw_write_reg(state, 0x21, PllCfg);
655         }
656
657         if (cfg->io.pll_bypass) {
658                 PllCfg |= (cfg->io.pll_bypass << 15);
659                 dib0090_fw_write_reg(state, 0x21, PllCfg);
660         }
661
662         return dib0090_fw_identify(fe);
663 }
664
665 static int dib0090_wakeup(struct dvb_frontend *fe)
666 {
667         struct dib0090_state *state = fe->tuner_priv;
668         if (state->config->sleep)
669                 state->config->sleep(fe, 0);
670
671         /* enable dataTX in case we have been restarted in the wrong moment */
672         dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
673         return 0;
674 }
675
676 static int dib0090_sleep(struct dvb_frontend *fe)
677 {
678         struct dib0090_state *state = fe->tuner_priv;
679         if (state->config->sleep)
680                 state->config->sleep(fe, 1);
681         return 0;
682 }
683
684 void dib0090_dcc_freq(struct dvb_frontend *fe, u8 fast)
685 {
686         struct dib0090_state *state = fe->tuner_priv;
687         if (fast)
688                 dib0090_write_reg(state, 0x04, 0);
689         else
690                 dib0090_write_reg(state, 0x04, 1);
691 }
692
693 EXPORT_SYMBOL(dib0090_dcc_freq);
694
695 static const u16 bb_ramp_pwm_normal_socs[] = {
696         550, /* max BB gain in 10th of dB */
697         (1<<9) | 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
698         440,
699         (4  << 9) | 0, /* BB_RAMP3 = 26dB */
700         (0  << 9) | 208, /* BB_RAMP4 */
701         (4  << 9) | 208, /* BB_RAMP5 = 29dB */
702         (0  << 9) | 440, /* BB_RAMP6 */
703 };
704
705 static const u16 rf_ramp_pwm_cband_7090p[] = {
706         280, /* max RF gain in 10th of dB */
707         18, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
708         504, /* ramp_max = maximum X used on the ramp */
709         (29 << 10) | 364, /* RF_RAMP5, LNA 1 = 8dB */
710         (0  << 10) | 504, /* RF_RAMP6, LNA 1 */
711         (60 << 10) | 228, /* RF_RAMP7, LNA 2 = 7.7dB */
712         (0  << 10) | 364, /* RF_RAMP8, LNA 2 */
713         (34 << 10) | 109, /* GAIN_4_1, LNA 3 = 6.8dB */
714         (0  << 10) | 228, /* GAIN_4_2, LNA 3 */
715         (37 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */
716         (0  << 10) | 109, /* RF_RAMP4, LNA 4 */
717 };
718
719 static const u16 rf_ramp_pwm_cband_7090e_sensitivity[] = {
720         186, /* max RF gain in 10th of dB */
721         40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
722         746, /* ramp_max = maximum X used on the ramp */
723         (10 << 10) | 345, /* RF_RAMP5, LNA 1 = 10dB */
724         (0  << 10) | 746, /* RF_RAMP6, LNA 1 */
725         (0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */
726         (0  << 10) | 0, /* RF_RAMP8, LNA 2 */
727         (28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */
728         (0  << 10) | 345, /* GAIN_4_2, LNA 3 */
729         (20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */
730         (0  << 10) | 200, /* RF_RAMP4, LNA 4 */
731 };
732
733 static const u16 rf_ramp_pwm_cband_7090e_aci[] = {
734         86, /* max RF gain in 10th of dB */
735         40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
736         345, /* ramp_max = maximum X used on the ramp */
737         (0 << 10) | 0, /* RF_RAMP5, LNA 1 = 8dB */ /* 7.47 dB */
738         (0 << 10) | 0, /* RF_RAMP6, LNA 1 */
739         (0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */
740         (0 << 10) | 0, /* RF_RAMP8, LNA 2 */
741         (28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */
742         (0  << 10) | 345, /* GAIN_4_2, LNA 3 */
743         (20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */
744         (0  << 10) | 200, /* RF_RAMP4, LNA 4 */
745 };
746
747 static const u16 rf_ramp_pwm_cband_8090[] = {
748         345, /* max RF gain in 10th of dB */
749         29, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
750         1000, /* ramp_max = maximum X used on the ramp */
751         (35 << 10) | 772, /* RF_RAMP3, LNA 1 = 8dB */
752         (0  << 10) | 1000, /* RF_RAMP4, LNA 1 */
753         (58 << 10) | 496, /* RF_RAMP5, LNA 2 = 9.5dB */
754         (0  << 10) | 772, /* RF_RAMP6, LNA 2 */
755         (27 << 10) | 200, /* RF_RAMP7, LNA 3 = 10.5dB */
756         (0  << 10) | 496, /* RF_RAMP8, LNA 3 */
757         (40 << 10) | 0, /* GAIN_4_1, LNA 4 = 7dB */
758         (0  << 10) | 200, /* GAIN_4_2, LNA 4 */
759 };
760
761 static const u16 rf_ramp_pwm_uhf_7090[] = {
762         407, /* max RF gain in 10th of dB */
763         13, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
764         529, /* ramp_max = maximum X used on the ramp */
765         (23 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
766         (0  << 10) | 176, /* RF_RAMP4, LNA 1 */
767         (63 << 10) | 400, /* RF_RAMP5, LNA 2 = 8dB */
768         (0  << 10) | 529, /* RF_RAMP6, LNA 2 */
769         (48 << 10) | 316, /* RF_RAMP7, LNA 3 = 6.8dB */
770         (0  << 10) | 400, /* RF_RAMP8, LNA 3 */
771         (29 << 10) | 176, /* GAIN_4_1, LNA 4 = 11.5dB */
772         (0  << 10) | 316, /* GAIN_4_2, LNA 4 */
773 };
774
775 static const u16 rf_ramp_pwm_uhf_8090[] = {
776         388, /* max RF gain in 10th of dB */
777         26, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
778         1008, /* ramp_max = maximum X used on the ramp */
779         (11 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
780         (0  << 10) | 369, /* RF_RAMP4, LNA 1 */
781         (41 << 10) | 809, /* RF_RAMP5, LNA 2 = 8dB */
782         (0  << 10) | 1008, /* RF_RAMP6, LNA 2 */
783         (27 << 10) | 659, /* RF_RAMP7, LNA 3 = 6dB */
784         (0  << 10) | 809, /* RF_RAMP8, LNA 3 */
785         (14 << 10) | 369, /* GAIN_4_1, LNA 4 = 11.5dB */
786         (0  << 10) | 659, /* GAIN_4_2, LNA 4 */
787 };
788
789 /* GENERAL PWM ramp definition for all other Krosus */
790 static const u16 bb_ramp_pwm_normal[] = {
791         500, /* max BB gain in 10th of dB */
792         8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
793         400,
794         (2  << 9) | 0, /* BB_RAMP3 = 21dB */
795         (0  << 9) | 168, /* BB_RAMP4 */
796         (2  << 9) | 168, /* BB_RAMP5 = 29dB */
797         (0  << 9) | 400, /* BB_RAMP6 */
798 };
799
800 static const u16 bb_ramp_pwm_boost[] = {
801         550, /* max BB gain in 10th of dB */
802         8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
803         440,
804         (2  << 9) | 0, /* BB_RAMP3 = 26dB */
805         (0  << 9) | 208, /* BB_RAMP4 */
806         (2  << 9) | 208, /* BB_RAMP5 = 29dB */
807         (0  << 9) | 440, /* BB_RAMP6 */
808 };
809
810 static const u16 rf_ramp_pwm_cband[] = {
811         314, /* max RF gain in 10th of dB */
812         33, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
813         1023, /* ramp_max = maximum X used on the ramp */
814         (8  << 10) | 743, /* RF_RAMP3, LNA 1 = 0dB */
815         (0  << 10) | 1023, /* RF_RAMP4, LNA 1 */
816         (15 << 10) | 469, /* RF_RAMP5, LNA 2 = 0dB */
817         (0  << 10) | 742, /* RF_RAMP6, LNA 2 */
818         (9  << 10) | 234, /* RF_RAMP7, LNA 3 = 0dB */
819         (0  << 10) | 468, /* RF_RAMP8, LNA 3 */
820         (9  << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
821         (0  << 10) | 233, /* GAIN_4_2, LNA 4 */
822 };
823
824 static const u16 rf_ramp_pwm_vhf[] = {
825         398, /* max RF gain in 10th of dB */
826         24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
827         954, /* ramp_max = maximum X used on the ramp */
828         (7  << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */
829         (0  << 10) | 290, /* RF_RAMP4, LNA 1 */
830         (16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */
831         (0  << 10) | 954, /* RF_RAMP6, LNA 2 */
832         (17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */
833         (0  << 10) | 699, /* RF_RAMP8, LNA 3 */
834         (7  << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */
835         (0  << 10) | 580, /* GAIN_4_2, LNA 4 */
836 };
837
838 static const u16 rf_ramp_pwm_uhf[] = {
839         398, /* max RF gain in 10th of dB */
840         24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
841         954, /* ramp_max = maximum X used on the ramp */
842         (7  << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */
843         (0  << 10) | 290, /* RF_RAMP4, LNA 1 */
844         (16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */
845         (0  << 10) | 954, /* RF_RAMP6, LNA 2 */
846         (17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */
847         (0  << 10) | 699, /* RF_RAMP8, LNA 3 */
848         (7  << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */
849         (0  << 10) | 580, /* GAIN_4_2, LNA 4 */
850 };
851
852 static const u16 rf_ramp_pwm_sband[] = {
853         253, /* max RF gain in 10th of dB */
854         38, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
855         961,
856         (4  << 10) | 0, /* RF_RAMP3, LNA 1 = 14.1dB */
857         (0  << 10) | 508, /* RF_RAMP4, LNA 1 */
858         (9  << 10) | 508, /* RF_RAMP5, LNA 2 = 11.2dB */
859         (0  << 10) | 961, /* RF_RAMP6, LNA 2 */
860         (0  << 10) | 0, /* RF_RAMP7, LNA 3 = 0dB */
861         (0  << 10) | 0, /* RF_RAMP8, LNA 3 */
862         (0  << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
863         (0  << 10) | 0, /* GAIN_4_2, LNA 4 */
864 };
865
866 struct slope {
867         s16 range;
868         s16 slope;
869 };
870 static u16 slopes_to_scale(const struct slope *slopes, u8 num, s16 val)
871 {
872         u8 i;
873         u16 rest;
874         u16 ret = 0;
875         for (i = 0; i < num; i++) {
876                 if (val > slopes[i].range)
877                         rest = slopes[i].range;
878                 else
879                         rest = val;
880                 ret += (rest * slopes[i].slope) / slopes[i].range;
881                 val -= rest;
882         }
883         return ret;
884 }
885
886 static const struct slope dib0090_wbd_slopes[3] = {
887         {66, 120},              /* -64,-52: offset -   65 */
888         {600, 170},             /* -52,-35: 65     -  665 */
889         {170, 250},             /* -45,-10: 665    - 835 */
890 };
891
892 static s16 dib0090_wbd_to_db(struct dib0090_state *state, u16 wbd)
893 {
894         wbd &= 0x3ff;
895         if (wbd < state->wbd_offset)
896                 wbd = 0;
897         else
898                 wbd -= state->wbd_offset;
899         /* -64dB is the floor */
900         return -640 + (s16) slopes_to_scale(dib0090_wbd_slopes, ARRAY_SIZE(dib0090_wbd_slopes), wbd);
901 }
902
903 static void dib0090_wbd_target(struct dib0090_state *state, u32 rf)
904 {
905         u16 offset = 250;
906
907         /* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */
908
909         if (state->current_band == BAND_VHF)
910                 offset = 650;
911 #ifndef FIRMWARE_FIREFLY
912         if (state->current_band == BAND_VHF)
913                 offset = state->config->wbd_vhf_offset;
914         if (state->current_band == BAND_CBAND)
915                 offset = state->config->wbd_cband_offset;
916 #endif
917
918         state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + offset);
919         dprintk("wbd-target: %d dB", (u32) state->wbd_target);
920 }
921
922 static const int gain_reg_addr[4] = {
923         0x08, 0x0a, 0x0f, 0x01
924 };
925
926 static void dib0090_gain_apply(struct dib0090_state *state, s16 gain_delta, s16 top_delta, u8 force)
927 {
928         u16 rf, bb, ref;
929         u16 i, v, gain_reg[4] = { 0 }, gain;
930         const u16 *g;
931
932         if (top_delta < -511)
933                 top_delta = -511;
934         if (top_delta > 511)
935                 top_delta = 511;
936
937         if (force) {
938                 top_delta *= (1 << WBD_ALPHA);
939                 gain_delta *= (1 << GAIN_ALPHA);
940         }
941
942         if (top_delta >= ((s16) (state->rf_ramp[0] << WBD_ALPHA) - state->rf_gain_limit))       /* overflow */
943                 state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
944         else
945                 state->rf_gain_limit += top_delta;
946
947         if (state->rf_gain_limit < 0)   /*underflow */
948                 state->rf_gain_limit = 0;
949
950         /* use gain as a temporary variable and correct current_gain */
951         gain = ((state->rf_gain_limit >> WBD_ALPHA) + state->bb_ramp[0]) << GAIN_ALPHA;
952         if (gain_delta >= ((s16) gain - state->current_gain))   /* overflow */
953                 state->current_gain = gain;
954         else
955                 state->current_gain += gain_delta;
956         /* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */
957         if (state->current_gain < 0)
958                 state->current_gain = 0;
959
960         /* now split total gain to rf and bb gain */
961         gain = state->current_gain >> GAIN_ALPHA;
962
963         /* requested gain is bigger than rf gain limit - ACI/WBD adjustment */
964         if (gain > (state->rf_gain_limit >> WBD_ALPHA)) {
965                 rf = state->rf_gain_limit >> WBD_ALPHA;
966                 bb = gain - rf;
967                 if (bb > state->bb_ramp[0])
968                         bb = state->bb_ramp[0];
969         } else {                /* high signal level -> all gains put on RF */
970                 rf = gain;
971                 bb = 0;
972         }
973
974         state->gain[0] = rf;
975         state->gain[1] = bb;
976
977         /* software ramp */
978         /* Start with RF gains */
979         g = state->rf_ramp + 1; /* point on RF LNA1 max gain */
980         ref = rf;
981         for (i = 0; i < 7; i++) {       /* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */
982                 if (g[0] == 0 || ref < (g[1] - g[0]))   /* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */
983                         v = 0;  /* force the gain to write for the current amp to be null */
984                 else if (ref >= g[1])   /* Gain to set is higher than the high working point of this amp */
985                         v = g[2];       /* force this amp to be full gain */
986                 else            /* compute the value to set to this amp because we are somewhere in his range */
987                         v = ((ref - (g[1] - g[0])) * g[2]) / g[0];
988
989                 if (i == 0)     /* LNA 1 reg mapping */
990                         gain_reg[0] = v;
991                 else if (i == 1)        /* LNA 2 reg mapping */
992                         gain_reg[0] |= v << 7;
993                 else if (i == 2)        /* LNA 3 reg mapping */
994                         gain_reg[1] = v;
995                 else if (i == 3)        /* LNA 4 reg mapping */
996                         gain_reg[1] |= v << 7;
997                 else if (i == 4)        /* CBAND LNA reg mapping */
998                         gain_reg[2] = v | state->rf_lt_def;
999                 else if (i == 5)        /* BB gain 1 reg mapping */
1000                         gain_reg[3] = v << 3;
1001                 else if (i == 6)        /* BB gain 2 reg mapping */
1002                         gain_reg[3] |= v << 8;
1003
1004                 g += 3;         /* go to next gain bloc */
1005
1006                 /* When RF is finished, start with BB */
1007                 if (i == 4) {
1008                         g = state->bb_ramp + 1; /* point on BB gain 1 max gain */
1009                         ref = bb;
1010                 }
1011         }
1012         gain_reg[3] |= state->bb_1_def;
1013         gain_reg[3] |= ((bb % 10) * 100) / 125;
1014
1015 #ifdef DEBUG_AGC
1016         dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x", rf, bb, rf + bb,
1017                 gain_reg[0], gain_reg[1], gain_reg[2], gain_reg[3]);
1018 #endif
1019
1020         /* Write the amplifier regs */
1021         for (i = 0; i < 4; i++) {
1022                 v = gain_reg[i];
1023                 if (force || state->gain_reg[i] != v) {
1024                         state->gain_reg[i] = v;
1025                         dib0090_write_reg(state, gain_reg_addr[i], v);
1026                 }
1027         }
1028 }
1029
1030 static void dib0090_set_boost(struct dib0090_state *state, int onoff)
1031 {
1032         state->bb_1_def &= 0xdfff;
1033         state->bb_1_def |= onoff << 13;
1034 }
1035
1036 static void dib0090_set_rframp(struct dib0090_state *state, const u16 * cfg)
1037 {
1038         state->rf_ramp = cfg;
1039 }
1040
1041 static void dib0090_set_rframp_pwm(struct dib0090_state *state, const u16 * cfg)
1042 {
1043         state->rf_ramp = cfg;
1044
1045         dib0090_write_reg(state, 0x2a, 0xffff);
1046
1047         dprintk("total RF gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x2a));
1048
1049         dib0090_write_regs(state, 0x2c, cfg + 3, 6);
1050         dib0090_write_regs(state, 0x3e, cfg + 9, 2);
1051 }
1052
1053 static void dib0090_set_bbramp(struct dib0090_state *state, const u16 * cfg)
1054 {
1055         state->bb_ramp = cfg;
1056         dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */
1057 }
1058
1059 static void dib0090_set_bbramp_pwm(struct dib0090_state *state, const u16 * cfg)
1060 {
1061         state->bb_ramp = cfg;
1062
1063         dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */
1064
1065         dib0090_write_reg(state, 0x33, 0xffff);
1066         dprintk("total BB gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x33));
1067         dib0090_write_regs(state, 0x35, cfg + 3, 4);
1068 }
1069
1070 void dib0090_pwm_gain_reset(struct dvb_frontend *fe)
1071 {
1072         struct dib0090_state *state = fe->tuner_priv;
1073         u16 *bb_ramp = (u16 *)&bb_ramp_pwm_normal; /* default baseband config */
1074         u16 *rf_ramp = NULL;
1075         u8 en_pwm_rf_mux = 1;
1076
1077         /* reset the AGC */
1078         if (state->config->use_pwm_agc) {
1079                 if (state->current_band == BAND_CBAND) {
1080                         if (state->identity.in_soc) {
1081                                 bb_ramp = (u16 *)&bb_ramp_pwm_normal_socs;
1082                                 if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
1083                                         rf_ramp = (u16 *)&rf_ramp_pwm_cband_8090;
1084                                 else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1) {
1085                                         if (state->config->is_dib7090e) {
1086                                                 if (state->rf_ramp == NULL)
1087                                                         rf_ramp = (u16 *)&rf_ramp_pwm_cband_7090e_sensitivity;
1088                                                 else
1089                                                         rf_ramp = (u16 *)state->rf_ramp;
1090                                         } else
1091                                                 rf_ramp = (u16 *)&rf_ramp_pwm_cband_7090p;
1092                                 }
1093                         } else
1094                                 rf_ramp = (u16 *)&rf_ramp_pwm_cband;
1095                 } else
1096
1097                         if (state->current_band == BAND_VHF) {
1098                                 if (state->identity.in_soc) {
1099                                         bb_ramp = (u16 *)&bb_ramp_pwm_normal_socs;
1100                                         /* rf_ramp = &rf_ramp_pwm_vhf_socs; */ /* TODO */
1101                                 } else
1102                                         rf_ramp = (u16 *)&rf_ramp_pwm_vhf;
1103                         } else if (state->current_band == BAND_UHF) {
1104                                 if (state->identity.in_soc) {
1105                                         bb_ramp = (u16 *)&bb_ramp_pwm_normal_socs;
1106                                         if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
1107                                                 rf_ramp = (u16 *)&rf_ramp_pwm_uhf_8090;
1108                                         else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1)
1109                                                 rf_ramp = (u16 *)&rf_ramp_pwm_uhf_7090;
1110                                 } else
1111                                         rf_ramp = (u16 *)&rf_ramp_pwm_uhf;
1112                         }
1113                 if (rf_ramp)
1114                         dib0090_set_rframp_pwm(state, rf_ramp);
1115                 dib0090_set_bbramp_pwm(state, bb_ramp);
1116
1117                 /* activate the ramp generator using PWM control */
1118                 dprintk("ramp RF gain = %d BAND = %s version = %d", state->rf_ramp[0], (state->current_band == BAND_CBAND) ? "CBAND" : "NOT CBAND", state->identity.version & 0x1f);
1119
1120                 if ((state->rf_ramp[0] == 0) || (state->current_band == BAND_CBAND && (state->identity.version & 0x1f) <= P1D_E_F)) {
1121                         dprintk("DE-Engage mux for direct gain reg control");
1122                         en_pwm_rf_mux = 0;
1123                 } else
1124                         dprintk("Engage mux for PWM control");
1125
1126                 dib0090_write_reg(state, 0x32, (en_pwm_rf_mux << 12) | (en_pwm_rf_mux << 11));
1127
1128                 /* Set fast servo cutoff to start AGC; 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast*/
1129                 if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1)
1130                         dib0090_write_reg(state, 0x04, 3);
1131                 else
1132                         dib0090_write_reg(state, 0x04, 1);
1133                 dib0090_write_reg(state, 0x39, (1 << 10)); /* 0 gain by default */
1134         }
1135 }
1136 EXPORT_SYMBOL(dib0090_pwm_gain_reset);
1137
1138 void dib0090_set_dc_servo(struct dvb_frontend *fe, u8 DC_servo_cutoff)
1139 {
1140         struct dib0090_state *state = fe->tuner_priv;
1141         if (DC_servo_cutoff < 4)
1142                 dib0090_write_reg(state, 0x04, DC_servo_cutoff);
1143 }
1144 EXPORT_SYMBOL(dib0090_set_dc_servo);
1145
1146 static u32 dib0090_get_slow_adc_val(struct dib0090_state *state)
1147 {
1148         u16 adc_val = dib0090_read_reg(state, 0x1d);
1149         if (state->identity.in_soc)
1150                 adc_val >>= 2;
1151         return adc_val;
1152 }
1153
1154 int dib0090_gain_control(struct dvb_frontend *fe)
1155 {
1156         struct dib0090_state *state = fe->tuner_priv;
1157         enum frontend_tune_state *tune_state = &state->tune_state;
1158         int ret = 10;
1159
1160         u16 wbd_val = 0;
1161         u8 apply_gain_immediatly = 1;
1162         s16 wbd_error = 0, adc_error = 0;
1163
1164         if (*tune_state == CT_AGC_START) {
1165                 state->agc_freeze = 0;
1166                 dib0090_write_reg(state, 0x04, 0x0);
1167
1168 #ifdef CONFIG_BAND_SBAND
1169                 if (state->current_band == BAND_SBAND) {
1170                         dib0090_set_rframp(state, rf_ramp_sband);
1171                         dib0090_set_bbramp(state, bb_ramp_boost);
1172                 } else
1173 #endif
1174 #ifdef CONFIG_BAND_VHF
1175                 if (state->current_band == BAND_VHF && !state->identity.p1g) {
1176                         dib0090_set_rframp(state, rf_ramp_pwm_vhf);
1177                         dib0090_set_bbramp(state, bb_ramp_pwm_normal);
1178                 } else
1179 #endif
1180 #ifdef CONFIG_BAND_CBAND
1181                 if (state->current_band == BAND_CBAND && !state->identity.p1g) {
1182                         dib0090_set_rframp(state, rf_ramp_pwm_cband);
1183                         dib0090_set_bbramp(state, bb_ramp_pwm_normal);
1184                 } else
1185 #endif
1186                 if ((state->current_band == BAND_CBAND || state->current_band == BAND_VHF) && state->identity.p1g) {
1187                         dib0090_set_rframp(state, rf_ramp_pwm_cband_7090p);
1188                         dib0090_set_bbramp(state, bb_ramp_pwm_normal_socs);
1189                 } else {
1190                         dib0090_set_rframp(state, rf_ramp_pwm_uhf);
1191                         dib0090_set_bbramp(state, bb_ramp_pwm_normal);
1192                 }
1193
1194                 dib0090_write_reg(state, 0x32, 0);
1195                 dib0090_write_reg(state, 0x39, 0);
1196
1197                 dib0090_wbd_target(state, state->current_rf);
1198
1199                 state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
1200                 state->current_gain = ((state->rf_ramp[0] + state->bb_ramp[0]) / 2) << GAIN_ALPHA;
1201
1202                 *tune_state = CT_AGC_STEP_0;
1203         } else if (!state->agc_freeze) {
1204                 s16 wbd = 0, i, cnt;
1205
1206                 int adc;
1207                 wbd_val = dib0090_get_slow_adc_val(state);
1208
1209                 if (*tune_state == CT_AGC_STEP_0)
1210                         cnt = 5;
1211                 else
1212                         cnt = 1;
1213
1214                 for (i = 0; i < cnt; i++) {
1215                         wbd_val = dib0090_get_slow_adc_val(state);
1216                         wbd += dib0090_wbd_to_db(state, wbd_val);
1217                 }
1218                 wbd /= cnt;
1219                 wbd_error = state->wbd_target - wbd;
1220
1221                 if (*tune_state == CT_AGC_STEP_0) {
1222                         if (wbd_error < 0 && state->rf_gain_limit > 0 && !state->identity.p1g) {
1223 #ifdef CONFIG_BAND_CBAND
1224                                 /* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */
1225                                 u8 ltg2 = (state->rf_lt_def >> 10) & 0x7;
1226                                 if (state->current_band == BAND_CBAND && ltg2) {
1227                                         ltg2 >>= 1;
1228                                         state->rf_lt_def &= ltg2 << 10; /* reduce in 3 steps from 7 to 0 */
1229                                 }
1230 #endif
1231                         } else {
1232                                 state->agc_step = 0;
1233                                 *tune_state = CT_AGC_STEP_1;
1234                         }
1235                 } else {
1236                         /* calc the adc power */
1237                         adc = state->config->get_adc_power(fe);
1238                         adc = (adc * ((s32) 355774) + (((s32) 1) << 20)) >> 21; /* included in [0:-700] */
1239
1240                         adc_error = (s16) (((s32) ADC_TARGET) - adc);
1241 #ifdef CONFIG_STANDARD_DAB
1242                         if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB)
1243                                 adc_error -= 10;
1244 #endif
1245 #ifdef CONFIG_STANDARD_DVBT
1246                         if (state->fe->dtv_property_cache.delivery_system == STANDARD_DVBT &&
1247                                         (state->fe->dtv_property_cache.modulation == QAM_64 || state->fe->dtv_property_cache.modulation == QAM_16))
1248                                 adc_error += 60;
1249 #endif
1250 #ifdef CONFIG_SYS_ISDBT
1251                         if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) && (((state->fe->dtv_property_cache.layer[0].segment_count >
1252                                                                 0)
1253                                                         &&
1254                                                         ((state->fe->dtv_property_cache.layer[0].modulation ==
1255                                                           QAM_64)
1256                                                          || (state->fe->dtv_property_cache.
1257                                                                  layer[0].modulation == QAM_16)))
1258                                                 ||
1259                                                 ((state->fe->dtv_property_cache.layer[1].segment_count >
1260                                                   0)
1261                                                  &&
1262                                                  ((state->fe->dtv_property_cache.layer[1].modulation ==
1263                                                    QAM_64)
1264                                                   || (state->fe->dtv_property_cache.
1265                                                           layer[1].modulation == QAM_16)))
1266                                                 ||
1267                                                 ((state->fe->dtv_property_cache.layer[2].segment_count >
1268                                                   0)
1269                                                  &&
1270                                                  ((state->fe->dtv_property_cache.layer[2].modulation ==
1271                                                    QAM_64)
1272                                                   || (state->fe->dtv_property_cache.
1273                                                           layer[2].modulation == QAM_16)))
1274                                                 )
1275                                 )
1276                                 adc_error += 60;
1277 #endif
1278
1279                         if (*tune_state == CT_AGC_STEP_1) {     /* quickly go to the correct range of the ADC power */
1280                                 if (ABS(adc_error) < 50 || state->agc_step++ > 5) {
1281
1282 #ifdef CONFIG_STANDARD_DAB
1283                                         if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) {
1284                                                 dib0090_write_reg(state, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63));      /* cap value = 63 : narrow BB filter : Fc = 1.8MHz */
1285                                                 dib0090_write_reg(state, 0x04, 0x0);
1286                                         } else
1287 #endif
1288                                         {
1289                                                 dib0090_write_reg(state, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32));
1290                                                 dib0090_write_reg(state, 0x04, 0x01);   /*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */
1291                                         }
1292
1293                                         *tune_state = CT_AGC_STOP;
1294                                 }
1295                         } else {
1296                                 /* everything higher than or equal to CT_AGC_STOP means tracking */
1297                                 ret = 100;      /* 10ms interval */
1298                                 apply_gain_immediatly = 0;
1299                         }
1300                 }
1301 #ifdef DEBUG_AGC
1302                 dprintk
1303                         ("tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm",
1304                          (u32) *tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val,
1305                          (u32) state->rf_gain_limit >> WBD_ALPHA, (s32) 200 + adc - (state->current_gain >> GAIN_ALPHA));
1306 #endif
1307         }
1308
1309         /* apply gain */
1310         if (!state->agc_freeze)
1311                 dib0090_gain_apply(state, adc_error, wbd_error, apply_gain_immediatly);
1312         return ret;
1313 }
1314
1315 EXPORT_SYMBOL(dib0090_gain_control);
1316
1317 void dib0090_get_current_gain(struct dvb_frontend *fe, u16 * rf, u16 * bb, u16 * rf_gain_limit, u16 * rflt)
1318 {
1319         struct dib0090_state *state = fe->tuner_priv;
1320         if (rf)
1321                 *rf = state->gain[0];
1322         if (bb)
1323                 *bb = state->gain[1];
1324         if (rf_gain_limit)
1325                 *rf_gain_limit = state->rf_gain_limit;
1326         if (rflt)
1327                 *rflt = (state->rf_lt_def >> 10) & 0x7;
1328 }
1329
1330 EXPORT_SYMBOL(dib0090_get_current_gain);
1331
1332 u16 dib0090_get_wbd_target(struct dvb_frontend *fe)
1333 {
1334         struct dib0090_state *state = fe->tuner_priv;
1335         u32 f_MHz = state->fe->dtv_property_cache.frequency / 1000000;
1336         s32 current_temp = state->temperature;
1337         s32 wbd_thot, wbd_tcold;
1338         const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
1339
1340         while (f_MHz > wbd->max_freq)
1341                 wbd++;
1342
1343         dprintk("using wbd-table-entry with max freq %d", wbd->max_freq);
1344
1345         if (current_temp < 0)
1346                 current_temp = 0;
1347         if (current_temp > 128)
1348                 current_temp = 128;
1349
1350         state->wbdmux &= ~(7 << 13);
1351         if (wbd->wbd_gain != 0)
1352                 state->wbdmux |= (wbd->wbd_gain << 13);
1353         else
1354                 state->wbdmux |= (4 << 13);
1355
1356         dib0090_write_reg(state, 0x10, state->wbdmux);
1357
1358         wbd_thot = wbd->offset_hot - (((u32) wbd->slope_hot * f_MHz) >> 6);
1359         wbd_tcold = wbd->offset_cold - (((u32) wbd->slope_cold * f_MHz) >> 6);
1360
1361         wbd_tcold += ((wbd_thot - wbd_tcold) * current_temp) >> 7;
1362
1363         state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + wbd_tcold);
1364         dprintk("wbd-target: %d dB", (u32) state->wbd_target);
1365         dprintk("wbd offset applied is %d", wbd_tcold);
1366
1367         return state->wbd_offset + wbd_tcold;
1368 }
1369 EXPORT_SYMBOL(dib0090_get_wbd_target);
1370
1371 u16 dib0090_get_wbd_offset(struct dvb_frontend *fe)
1372 {
1373         struct dib0090_state *state = fe->tuner_priv;
1374         return state->wbd_offset;
1375 }
1376 EXPORT_SYMBOL(dib0090_get_wbd_offset);
1377
1378 int dib0090_set_switch(struct dvb_frontend *fe, u8 sw1, u8 sw2, u8 sw3)
1379 {
1380         struct dib0090_state *state = fe->tuner_priv;
1381
1382         dib0090_write_reg(state, 0x0b, (dib0090_read_reg(state, 0x0b) & 0xfff8)
1383                         | ((sw3 & 1) << 2) | ((sw2 & 1) << 1) | (sw1 & 1));
1384
1385         return 0;
1386 }
1387 EXPORT_SYMBOL(dib0090_set_switch);
1388
1389 int dib0090_set_vga(struct dvb_frontend *fe, u8 onoff)
1390 {
1391         struct dib0090_state *state = fe->tuner_priv;
1392
1393         dib0090_write_reg(state, 0x09, (dib0090_read_reg(state, 0x09) & 0x7fff)
1394                         | ((onoff & 1) << 15));
1395         return 0;
1396 }
1397 EXPORT_SYMBOL(dib0090_set_vga);
1398
1399 int dib0090_update_rframp_7090(struct dvb_frontend *fe, u8 cfg_sensitivity)
1400 {
1401         struct dib0090_state *state = fe->tuner_priv;
1402
1403         if ((!state->identity.p1g) || (!state->identity.in_soc)
1404                         || ((state->identity.version != SOC_7090_P1G_21R1)
1405                                 && (state->identity.version != SOC_7090_P1G_11R1))) {
1406                 dprintk("%s() function can only be used for dib7090P", __func__);
1407                 return -ENODEV;
1408         }
1409
1410         if (cfg_sensitivity)
1411                 state->rf_ramp = (const u16 *)&rf_ramp_pwm_cband_7090e_sensitivity;
1412         else
1413                 state->rf_ramp = (const u16 *)&rf_ramp_pwm_cband_7090e_aci;
1414         dib0090_pwm_gain_reset(fe);
1415
1416         return 0;
1417 }
1418 EXPORT_SYMBOL(dib0090_update_rframp_7090);
1419
1420 static const u16 dib0090_defaults[] = {
1421
1422         25, 0x01,
1423         0x0000,
1424         0x99a0,
1425         0x6008,
1426         0x0000,
1427         0x8bcb,
1428         0x0000,
1429         0x0405,
1430         0x0000,
1431         0x0000,
1432         0x0000,
1433         0xb802,
1434         0x0300,
1435         0x2d12,
1436         0xbac0,
1437         0x7c00,
1438         0xdbb9,
1439         0x0954,
1440         0x0743,
1441         0x8000,
1442         0x0001,
1443         0x0040,
1444         0x0100,
1445         0x0000,
1446         0xe910,
1447         0x149e,
1448
1449         1, 0x1c,
1450         0xff2d,
1451
1452         1, 0x39,
1453         0x0000,
1454
1455         2, 0x1e,
1456         0x07FF,
1457         0x0007,
1458
1459         1, 0x24,
1460         EN_UHF | EN_CRYSTAL,
1461
1462         2, 0x3c,
1463         0x3ff,
1464         0x111,
1465         0
1466 };
1467
1468 static const u16 dib0090_p1g_additionnal_defaults[] = {
1469         1, 0x05,
1470         0xabcd,
1471
1472         1, 0x11,
1473         0x00b4,
1474
1475         1, 0x1c,
1476         0xfffd,
1477
1478         1, 0x40,
1479         0x108,
1480         0
1481 };
1482
1483 static void dib0090_set_default_config(struct dib0090_state *state, const u16 * n)
1484 {
1485         u16 l, r;
1486
1487         l = pgm_read_word(n++);
1488         while (l) {
1489                 r = pgm_read_word(n++);
1490                 do {
1491                         dib0090_write_reg(state, r, pgm_read_word(n++));
1492                         r++;
1493                 } while (--l);
1494                 l = pgm_read_word(n++);
1495         }
1496 }
1497
1498 #define CAP_VALUE_MIN (u8)  9
1499 #define CAP_VALUE_MAX (u8) 40
1500 #define HR_MIN        (u8) 25
1501 #define HR_MAX        (u8) 40
1502 #define POLY_MIN      (u8)  0
1503 #define POLY_MAX      (u8)  8
1504
1505 static void dib0090_set_EFUSE(struct dib0090_state *state)
1506 {
1507         u8 c, h, n;
1508         u16 e2, e4;
1509         u16 cal;
1510
1511         e2 = dib0090_read_reg(state, 0x26);
1512         e4 = dib0090_read_reg(state, 0x28);
1513
1514         if ((state->identity.version == P1D_E_F) ||
1515                         (state->identity.version == P1G) || (e2 == 0xffff)) {
1516
1517                 dib0090_write_reg(state, 0x22, 0x10);
1518                 cal = (dib0090_read_reg(state, 0x22) >> 6) & 0x3ff;
1519
1520                 if ((cal < 670) || (cal == 1023))
1521                         cal = 850;
1522                 n = 165 - ((cal * 10)>>6) ;
1523                 e2 = e4 = (3<<12) | (34<<6) | (n);
1524         }
1525
1526         if (e2 != e4)
1527                 e2 &= e4; /* Remove the redundancy  */
1528
1529         if (e2 != 0xffff) {
1530                 c = e2 & 0x3f;
1531                 n = (e2 >> 12) & 0xf;
1532                 h = (e2 >> 6) & 0x3f;
1533
1534                 if ((c >= CAP_VALUE_MAX) || (c <= CAP_VALUE_MIN))
1535                         c = 32;
1536                 else
1537                         c += 14;
1538                 if ((h >= HR_MAX) || (h <= HR_MIN))
1539                         h = 34;
1540                 if ((n >= POLY_MAX) || (n <= POLY_MIN))
1541                         n = 3;
1542
1543                 dib0090_write_reg(state, 0x13, (h << 10));
1544                 e2 = (n << 11) | ((h >> 2)<<6) | c;
1545                 dib0090_write_reg(state, 0x2, e2); /* Load the BB_2 */
1546         }
1547 }
1548
1549 static int dib0090_reset(struct dvb_frontend *fe)
1550 {
1551         struct dib0090_state *state = fe->tuner_priv;
1552
1553         dib0090_reset_digital(fe, state->config);
1554         if (dib0090_identify(fe) < 0)
1555                 return -EIO;
1556
1557 #ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
1558         if (!(state->identity.version & 0x1))   /* it is P1B - reset is already done */
1559                 return 0;
1560 #endif
1561
1562         if (!state->identity.in_soc) {
1563                 if ((dib0090_read_reg(state, 0x1a) >> 5) & 0x2)
1564                         dib0090_write_reg(state, 0x1b, (EN_IQADC | EN_BB | EN_BIAS | EN_DIGCLK | EN_PLL | EN_CRYSTAL));
1565                 else
1566                         dib0090_write_reg(state, 0x1b, (EN_DIGCLK | EN_PLL | EN_CRYSTAL));
1567         }
1568
1569         dib0090_set_default_config(state, dib0090_defaults);
1570
1571         if (state->identity.in_soc)
1572                 dib0090_write_reg(state, 0x18, 0x2910);  /* charge pump current = 0 */
1573
1574         if (state->identity.p1g)
1575                 dib0090_set_default_config(state, dib0090_p1g_additionnal_defaults);
1576
1577         /* Update the efuse : Only available for KROSUS > P1C  and SOC as well*/
1578         if (((state->identity.version & 0x1f) >= P1D_E_F) || (state->identity.in_soc))
1579                 dib0090_set_EFUSE(state);
1580
1581         /* Congigure in function of the crystal */
1582         if (state->config->force_crystal_mode != 0)
1583                 dib0090_write_reg(state, 0x14,
1584                                 state->config->force_crystal_mode & 3);
1585         else if (state->config->io.clock_khz >= 24000)
1586                 dib0090_write_reg(state, 0x14, 1);
1587         else
1588                 dib0090_write_reg(state, 0x14, 2);
1589         dprintk("Pll lock : %d", (dib0090_read_reg(state, 0x1a) >> 11) & 0x1);
1590
1591         state->calibrate = DC_CAL | WBD_CAL | TEMP_CAL; /* enable iq-offset-calibration and wbd-calibration when tuning next time */
1592
1593         return 0;
1594 }
1595
1596 #define steps(u) (((u) > 15) ? ((u)-16) : (u))
1597 #define INTERN_WAIT 10
1598 static int dib0090_get_offset(struct dib0090_state *state, enum frontend_tune_state *tune_state)
1599 {
1600         int ret = INTERN_WAIT * 10;
1601
1602         switch (*tune_state) {
1603         case CT_TUNER_STEP_2:
1604                 /* Turns to positive */
1605                 dib0090_write_reg(state, 0x1f, 0x7);
1606                 *tune_state = CT_TUNER_STEP_3;
1607                 break;
1608
1609         case CT_TUNER_STEP_3:
1610                 state->adc_diff = dib0090_read_reg(state, 0x1d);
1611
1612                 /* Turns to negative */
1613                 dib0090_write_reg(state, 0x1f, 0x4);
1614                 *tune_state = CT_TUNER_STEP_4;
1615                 break;
1616
1617         case CT_TUNER_STEP_4:
1618                 state->adc_diff -= dib0090_read_reg(state, 0x1d);
1619                 *tune_state = CT_TUNER_STEP_5;
1620                 ret = 0;
1621                 break;
1622
1623         default:
1624                 break;
1625         }
1626
1627         return ret;
1628 }
1629
1630 struct dc_calibration {
1631         u8 addr;
1632         u8 offset;
1633         u8 pga:1;
1634         u16 bb1;
1635         u8 i:1;
1636 };
1637
1638 static const struct dc_calibration dc_table[] = {
1639         /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
1640         {0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1},
1641         {0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0},
1642         /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
1643         {0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1},
1644         {0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0},
1645         {0},
1646 };
1647
1648 static const struct dc_calibration dc_p1g_table[] = {
1649         /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
1650         /* addr ; trim reg offset ; pga ; CTRL_BB1 value ; i or q */
1651         {0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1},
1652         {0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0},
1653         /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
1654         {0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1},
1655         {0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0},
1656         {0},
1657 };
1658
1659 static void dib0090_set_trim(struct dib0090_state *state)
1660 {
1661         u16 *val;
1662
1663         if (state->dc->addr == 0x07)
1664                 val = &state->bb7;
1665         else
1666                 val = &state->bb6;
1667
1668         *val &= ~(0x1f << state->dc->offset);
1669         *val |= state->step << state->dc->offset;
1670
1671         dib0090_write_reg(state, state->dc->addr, *val);
1672 }
1673
1674 static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
1675 {
1676         int ret = 0;
1677         u16 reg;
1678
1679         switch (*tune_state) {
1680         case CT_TUNER_START:
1681                 dprintk("Start DC offset calibration");
1682
1683                 /* force vcm2 = 0.8V */
1684                 state->bb6 = 0;
1685                 state->bb7 = 0x040d;
1686
1687                 /* the LNA AND LO are off */
1688                 reg = dib0090_read_reg(state, 0x24) & 0x0ffb;   /* shutdown lna and lo */
1689                 dib0090_write_reg(state, 0x24, reg);
1690
1691                 state->wbdmux = dib0090_read_reg(state, 0x10);
1692                 dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x7 << 3) | 0x3);
1693                 dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14));
1694
1695                 state->dc = dc_table;
1696
1697                 if (state->identity.p1g)
1698                         state->dc = dc_p1g_table;
1699                 *tune_state = CT_TUNER_STEP_0;
1700
1701                 /* fall through */
1702
1703         case CT_TUNER_STEP_0:
1704                 dprintk("Sart/continue DC calibration for %s path", (state->dc->i == 1) ? "I" : "Q");
1705                 dib0090_write_reg(state, 0x01, state->dc->bb1);
1706                 dib0090_write_reg(state, 0x07, state->bb7 | (state->dc->i << 7));
1707
1708                 state->step = 0;
1709                 state->min_adc_diff = 1023;
1710                 *tune_state = CT_TUNER_STEP_1;
1711                 ret = 50;
1712                 break;
1713
1714         case CT_TUNER_STEP_1:
1715                 dib0090_set_trim(state);
1716                 *tune_state = CT_TUNER_STEP_2;
1717                 break;
1718
1719         case CT_TUNER_STEP_2:
1720         case CT_TUNER_STEP_3:
1721         case CT_TUNER_STEP_4:
1722                 ret = dib0090_get_offset(state, tune_state);
1723                 break;
1724
1725         case CT_TUNER_STEP_5:   /* found an offset */
1726                 dprintk("adc_diff = %d, current step= %d", (u32) state->adc_diff, state->step);
1727                 if (state->step == 0 && state->adc_diff < 0) {
1728                         state->min_adc_diff = -1023;
1729                         dprintk("Change of sign of the minimum adc diff");
1730                 }
1731
1732                 dprintk("adc_diff = %d, min_adc_diff = %d current_step = %d", state->adc_diff, state->min_adc_diff, state->step);
1733
1734                 /* first turn for this frequency */
1735                 if (state->step == 0) {
1736                         if (state->dc->pga && state->adc_diff < 0)
1737                                 state->step = 0x10;
1738                         if (state->dc->pga == 0 && state->adc_diff > 0)
1739                                 state->step = 0x10;
1740                 }
1741
1742                 /* Look for a change of Sign in the Adc_diff.min_adc_diff is used to STORE the setp N-1 */
1743                 if ((state->adc_diff & 0x8000) == (state->min_adc_diff & 0x8000) && steps(state->step) < 15) {
1744                         /* stop search when the delta the sign is changing and Steps =15 and Step=0 is force for continuance */
1745                         state->step++;
1746                         state->min_adc_diff = state->adc_diff;
1747                         *tune_state = CT_TUNER_STEP_1;
1748                 } else {
1749                         /* the minimum was what we have seen in the step before */
1750                         if (ABS(state->adc_diff) > ABS(state->min_adc_diff)) {
1751                                 dprintk("Since adc_diff N = %d  > adc_diff step N-1 = %d, Come back one step", state->adc_diff, state->min_adc_diff);
1752                                 state->step--;
1753                         }
1754
1755                         dib0090_set_trim(state);
1756                         dprintk("BB Offset Cal, BBreg=%hd,Offset=%hd,Value Set=%hd", state->dc->addr, state->adc_diff, state->step);
1757
1758                         state->dc++;
1759                         if (state->dc->addr == 0)       /* done */
1760                                 *tune_state = CT_TUNER_STEP_6;
1761                         else
1762                                 *tune_state = CT_TUNER_STEP_0;
1763
1764                 }
1765                 break;
1766
1767         case CT_TUNER_STEP_6:
1768                 dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008);
1769                 dib0090_write_reg(state, 0x1f, 0x7);
1770                 *tune_state = CT_TUNER_START;   /* reset done -> real tuning can now begin */
1771                 state->calibrate &= ~DC_CAL;
1772         default:
1773                 break;
1774         }
1775         return ret;
1776 }
1777
1778 static int dib0090_wbd_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
1779 {
1780         u8 wbd_gain;
1781         const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
1782
1783         switch (*tune_state) {
1784         case CT_TUNER_START:
1785                 while (state->current_rf / 1000 > wbd->max_freq)
1786                         wbd++;
1787                 if (wbd->wbd_gain != 0)
1788                         wbd_gain = wbd->wbd_gain;
1789                 else {
1790                         wbd_gain = 4;
1791 #if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND)
1792                         if ((state->current_band == BAND_LBAND) || (state->current_band == BAND_SBAND))
1793                                 wbd_gain = 2;
1794 #endif
1795                 }
1796
1797                 if (wbd_gain == state->wbd_calibration_gain) {  /* the WBD calibration has already been done */
1798                         *tune_state = CT_TUNER_START;
1799                         state->calibrate &= ~WBD_CAL;
1800                         return 0;
1801                 }
1802
1803                 dib0090_write_reg(state, 0x10, 0x1b81 | (1 << 10) | (wbd_gain << 13) | (1 << 3));
1804
1805                 dib0090_write_reg(state, 0x24, ((EN_UHF & 0x0fff) | (1 << 1)));
1806                 *tune_state = CT_TUNER_STEP_0;
1807                 state->wbd_calibration_gain = wbd_gain;
1808                 return 90;      /* wait for the WBDMUX to switch and for the ADC to sample */
1809
1810         case CT_TUNER_STEP_0:
1811                 state->wbd_offset = dib0090_get_slow_adc_val(state);
1812                 dprintk("WBD calibration offset = %d", state->wbd_offset);
1813                 *tune_state = CT_TUNER_START;   /* reset done -> real tuning can now begin */
1814                 state->calibrate &= ~WBD_CAL;
1815                 break;
1816
1817         default:
1818                 break;
1819         }
1820         return 0;
1821 }
1822
1823 static void dib0090_set_bandwidth(struct dib0090_state *state)
1824 {
1825         u16 tmp;
1826
1827         if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 5000)
1828                 tmp = (3 << 14);
1829         else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 6000)
1830                 tmp = (2 << 14);
1831         else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 7000)
1832                 tmp = (1 << 14);
1833         else
1834                 tmp = (0 << 14);
1835
1836         state->bb_1_def &= 0x3fff;
1837         state->bb_1_def |= tmp;
1838
1839         dib0090_write_reg(state, 0x01, state->bb_1_def);        /* be sure that we have the right bb-filter */
1840
1841         dib0090_write_reg(state, 0x03, 0x6008); /* = 0x6008 : vcm3_trim = 1 ; filter2_gm1_trim = 8 ; filter2_cutoff_freq = 0 */
1842         dib0090_write_reg(state, 0x04, 0x1);    /* 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast */
1843         if (state->identity.in_soc) {
1844                 dib0090_write_reg(state, 0x05, 0x9bcf); /* attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 1 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 15 */
1845         } else {
1846                 dib0090_write_reg(state, 0x02, (5 << 11) | (8 << 6) | (22 & 0x3f));     /* 22 = cap_value */
1847                 dib0090_write_reg(state, 0x05, 0xabcd); /* = 0xabcd : attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 2 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 13 */
1848         }
1849 }
1850
1851 static const struct dib0090_pll dib0090_pll_table[] = {
1852 #ifdef CONFIG_BAND_CBAND
1853         {56000, 0, 9, 48, 6},
1854         {70000, 1, 9, 48, 6},
1855         {87000, 0, 8, 32, 4},
1856         {105000, 1, 8, 32, 4},
1857         {115000, 0, 7, 24, 6},
1858         {140000, 1, 7, 24, 6},
1859         {170000, 0, 6, 16, 4},
1860 #endif
1861 #ifdef CONFIG_BAND_VHF
1862         {200000, 1, 6, 16, 4},
1863         {230000, 0, 5, 12, 6},
1864         {280000, 1, 5, 12, 6},
1865         {340000, 0, 4, 8, 4},
1866         {380000, 1, 4, 8, 4},
1867         {450000, 0, 3, 6, 6},
1868 #endif
1869 #ifdef CONFIG_BAND_UHF
1870         {580000, 1, 3, 6, 6},
1871         {700000, 0, 2, 4, 4},
1872         {860000, 1, 2, 4, 4},
1873 #endif
1874 #ifdef CONFIG_BAND_LBAND
1875         {1800000, 1, 0, 2, 4},
1876 #endif
1877 #ifdef CONFIG_BAND_SBAND
1878         {2900000, 0, 14, 1, 4},
1879 #endif
1880 };
1881
1882 static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband[] = {
1883
1884 #ifdef CONFIG_BAND_CBAND
1885         {184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
1886         {227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
1887         {380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
1888 #endif
1889 #ifdef CONFIG_BAND_UHF
1890         {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1891         {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1892         {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1893         {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1894         {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1895         {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1896 #endif
1897 #ifdef CONFIG_BAND_LBAND
1898         {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1899         {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1900         {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1901 #endif
1902 #ifdef CONFIG_BAND_SBAND
1903         {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
1904         {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
1905 #endif
1906 };
1907
1908 static const struct dib0090_tuning dib0090_tuning_table[] = {
1909
1910 #ifdef CONFIG_BAND_CBAND
1911         {170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
1912 #endif
1913 #ifdef CONFIG_BAND_VHF
1914         {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1915         {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1916         {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1917 #endif
1918 #ifdef CONFIG_BAND_UHF
1919         {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1920         {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1921         {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1922         {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1923         {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1924         {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1925 #endif
1926 #ifdef CONFIG_BAND_LBAND
1927         {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1928         {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1929         {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1930 #endif
1931 #ifdef CONFIG_BAND_SBAND
1932         {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
1933         {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
1934 #endif
1935 };
1936
1937 static const struct dib0090_tuning dib0090_p1g_tuning_table[] = {
1938 #ifdef CONFIG_BAND_CBAND
1939         {170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB},
1940 #endif
1941 #ifdef CONFIG_BAND_VHF
1942         {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1943         {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1944         {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1945 #endif
1946 #ifdef CONFIG_BAND_UHF
1947         {510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1948         {540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1949         {600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1950         {630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1951         {680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1952         {720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1953         {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1954 #endif
1955 #ifdef CONFIG_BAND_LBAND
1956         {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1957         {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1958         {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1959 #endif
1960 #ifdef CONFIG_BAND_SBAND
1961         {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
1962         {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
1963 #endif
1964 };
1965
1966 static const struct dib0090_pll dib0090_p1g_pll_table[] = {
1967 #ifdef CONFIG_BAND_CBAND
1968         {57000, 0, 11, 48, 6},
1969         {70000, 1, 11, 48, 6},
1970         {86000, 0, 10, 32, 4},
1971         {105000, 1, 10, 32, 4},
1972         {115000, 0, 9, 24, 6},
1973         {140000, 1, 9, 24, 6},
1974         {170000, 0, 8, 16, 4},
1975 #endif
1976 #ifdef CONFIG_BAND_VHF
1977         {200000, 1, 8, 16, 4},
1978         {230000, 0, 7, 12, 6},
1979         {280000, 1, 7, 12, 6},
1980         {340000, 0, 6, 8, 4},
1981         {380000, 1, 6, 8, 4},
1982         {455000, 0, 5, 6, 6},
1983 #endif
1984 #ifdef CONFIG_BAND_UHF
1985         {580000, 1, 5, 6, 6},
1986         {680000, 0, 4, 4, 4},
1987         {860000, 1, 4, 4, 4},
1988 #endif
1989 #ifdef CONFIG_BAND_LBAND
1990         {1800000, 1, 2, 2, 4},
1991 #endif
1992 #ifdef CONFIG_BAND_SBAND
1993         {2900000, 0, 1, 1, 6},
1994 #endif
1995 };
1996
1997 static const struct dib0090_tuning dib0090_p1g_tuning_table_fm_vhf_on_cband[] = {
1998 #ifdef CONFIG_BAND_CBAND
1999         {184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
2000         {227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
2001         {380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
2002 #endif
2003 #ifdef CONFIG_BAND_UHF
2004         {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2005         {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2006         {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2007         {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2008         {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2009         {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2010 #endif
2011 #ifdef CONFIG_BAND_LBAND
2012         {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
2013         {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
2014         {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
2015 #endif
2016 #ifdef CONFIG_BAND_SBAND
2017         {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
2018         {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
2019 #endif
2020 };
2021
2022 static const struct dib0090_tuning dib0090_tuning_table_cband_7090[] = {
2023 #ifdef CONFIG_BAND_CBAND
2024         {300000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
2025         {380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
2026         {570000, 4, 10, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
2027         {858000, 4, 5, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
2028 #endif
2029 };
2030
2031 static const struct dib0090_tuning dib0090_tuning_table_cband_7090e_sensitivity[] = {
2032 #ifdef CONFIG_BAND_CBAND
2033         { 300000,  0 ,  3,  0x8105, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
2034         { 380000,  0 ,  10, 0x810F, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
2035         { 600000,  0 ,  10, 0x815E, 0x280, 0x2d12, 0xb84e, EN_CAB },
2036         { 660000,  0 ,  5,  0x85E3, 0x280, 0x2d12, 0xb84e, EN_CAB },
2037         { 720000,  0 ,  5,  0x852E, 0x280, 0x2d12, 0xb84e, EN_CAB },
2038         { 860000,  0 ,  4,  0x85E5, 0x280, 0x2d12, 0xb84e, EN_CAB },
2039 #endif
2040 };
2041
2042 int dib0090_update_tuning_table_7090(struct dvb_frontend *fe,
2043                 u8 cfg_sensitivity)
2044 {
2045         struct dib0090_state *state = fe->tuner_priv;
2046         const struct dib0090_tuning *tune =
2047                 dib0090_tuning_table_cband_7090e_sensitivity;
2048         const struct dib0090_tuning dib0090_tuning_table_cband_7090e_aci[] = {
2049                 { 300000,  0 ,  3,  0x8165, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
2050                 { 650000,  0 ,  4,  0x815B, 0x280, 0x2d12, 0xb84e, EN_CAB },
2051                 { 860000,  0 ,  5,  0x84EF, 0x280, 0x2d12, 0xb84e, EN_CAB },
2052         };
2053
2054         if ((!state->identity.p1g) || (!state->identity.in_soc)
2055                         || ((state->identity.version != SOC_7090_P1G_21R1)
2056                                 && (state->identity.version != SOC_7090_P1G_11R1))) {
2057                 dprintk("%s() function can only be used for dib7090", __func__);
2058                 return -ENODEV;
2059         }
2060
2061         if (cfg_sensitivity)
2062                 tune = dib0090_tuning_table_cband_7090e_sensitivity;
2063         else
2064                 tune = dib0090_tuning_table_cband_7090e_aci;
2065
2066         while (state->rf_request > tune->max_freq)
2067                 tune++;
2068
2069         dib0090_write_reg(state, 0x09, (dib0090_read_reg(state, 0x09) & 0x8000)
2070                         | (tune->lna_bias & 0x7fff));
2071         dib0090_write_reg(state, 0x0b, (dib0090_read_reg(state, 0x0b) & 0xf83f)
2072                         | ((tune->lna_tune << 6) & 0x07c0));
2073         return 0;
2074 }
2075 EXPORT_SYMBOL(dib0090_update_tuning_table_7090);
2076
2077 static int dib0090_captrim_search(struct dib0090_state *state, enum frontend_tune_state *tune_state)
2078 {
2079         int ret = 0;
2080         u16 lo4 = 0xe900;
2081
2082         s16 adc_target;
2083         u16 adc;
2084         s8 step_sign;
2085         u8 force_soft_search = 0;
2086
2087         if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
2088                 force_soft_search = 1;
2089
2090         if (*tune_state == CT_TUNER_START) {
2091                 dprintk("Start Captrim search : %s", (force_soft_search == 1) ? "FORCE SOFT SEARCH" : "AUTO");
2092                 dib0090_write_reg(state, 0x10, 0x2B1);
2093                 dib0090_write_reg(state, 0x1e, 0x0032);
2094
2095                 if (!state->tuner_is_tuned) {
2096                         /* prepare a complete captrim */
2097                         if (!state->identity.p1g || force_soft_search)
2098                                 state->step = state->captrim = state->fcaptrim = 64;
2099
2100                         state->current_rf = state->rf_request;
2101                 } else {        /* we are already tuned to this frequency - the configuration is correct  */
2102                         if (!state->identity.p1g || force_soft_search) {
2103                                 /* do a minimal captrim even if the frequency has not changed */
2104                                 state->step = 4;
2105                                 state->captrim = state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7f;
2106                         }
2107                 }
2108                 state->adc_diff = 3000;
2109                 *tune_state = CT_TUNER_STEP_0;
2110
2111         } else if (*tune_state == CT_TUNER_STEP_0) {
2112                 if (state->identity.p1g && !force_soft_search) {
2113                         u8 ratio = 31;
2114
2115                         dib0090_write_reg(state, 0x40, (3 << 7) | (ratio << 2) | (1 << 1) | 1);
2116                         dib0090_read_reg(state, 0x40);
2117                         ret = 50;
2118                 } else {
2119                         state->step /= 2;
2120                         dib0090_write_reg(state, 0x18, lo4 | state->captrim);
2121
2122                         if (state->identity.in_soc)
2123                                 ret = 25;
2124                 }
2125                 *tune_state = CT_TUNER_STEP_1;
2126
2127         } else if (*tune_state == CT_TUNER_STEP_1) {
2128                 if (state->identity.p1g && !force_soft_search) {
2129                         dib0090_write_reg(state, 0x40, 0x18c | (0 << 1) | 0);
2130                         dib0090_read_reg(state, 0x40);
2131
2132                         state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7F;
2133                         dprintk("***Final Captrim= 0x%x", state->fcaptrim);
2134                         *tune_state = CT_TUNER_STEP_3;
2135
2136                 } else {
2137                         /* MERGE for all krosus before P1G */
2138                         adc = dib0090_get_slow_adc_val(state);
2139                         dprintk("CAPTRIM=%d; ADC = %d (ADC) & %dmV", (u32) state->captrim, (u32) adc, (u32) (adc) * (u32) 1800 / (u32) 1024);
2140
2141                         if (state->rest == 0 || state->identity.in_soc) {       /* Just for 8090P SOCS where auto captrim HW bug : TO CHECK IN ACI for SOCS !!! if 400 for 8090p SOC => tune issue !!! */
2142                                 adc_target = 200;
2143                         } else
2144                                 adc_target = 400;
2145
2146                         if (adc >= adc_target) {
2147                                 adc -= adc_target;
2148                                 step_sign = -1;
2149                         } else {
2150                                 adc = adc_target - adc;
2151                                 step_sign = 1;
2152                         }
2153
2154                         if (adc < state->adc_diff) {
2155                                 dprintk("CAPTRIM=%d is closer to target (%d/%d)", (u32) state->captrim, (u32) adc, (u32) state->adc_diff);
2156                                 state->adc_diff = adc;
2157                                 state->fcaptrim = state->captrim;
2158                         }
2159
2160                         state->captrim += step_sign * state->step;
2161                         if (state->step >= 1)
2162                                 *tune_state = CT_TUNER_STEP_0;
2163                         else
2164                                 *tune_state = CT_TUNER_STEP_2;
2165
2166                         ret = 25;
2167                 }
2168         } else if (*tune_state == CT_TUNER_STEP_2) {    /* this step is only used by krosus < P1G */
2169                 /*write the final cptrim config */
2170                 dib0090_write_reg(state, 0x18, lo4 | state->fcaptrim);
2171
2172                 *tune_state = CT_TUNER_STEP_3;
2173
2174         } else if (*tune_state == CT_TUNER_STEP_3) {
2175                 state->calibrate &= ~CAPTRIM_CAL;
2176                 *tune_state = CT_TUNER_STEP_0;
2177         }
2178
2179         return ret;
2180 }
2181
2182 static int dib0090_get_temperature(struct dib0090_state *state, enum frontend_tune_state *tune_state)
2183 {
2184         int ret = 15;
2185         s16 val;
2186
2187         switch (*tune_state) {
2188         case CT_TUNER_START:
2189                 state->wbdmux = dib0090_read_reg(state, 0x10);
2190                 dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x8 << 3));
2191
2192                 state->bias = dib0090_read_reg(state, 0x13);
2193                 dib0090_write_reg(state, 0x13, state->bias | (0x3 << 8));
2194
2195                 *tune_state = CT_TUNER_STEP_0;
2196                 /* wait for the WBDMUX to switch and for the ADC to sample */
2197                 break;
2198
2199         case CT_TUNER_STEP_0:
2200                 state->adc_diff = dib0090_get_slow_adc_val(state);
2201                 dib0090_write_reg(state, 0x13, (state->bias & ~(0x3 << 8)) | (0x2 << 8));
2202                 *tune_state = CT_TUNER_STEP_1;
2203                 break;
2204
2205         case CT_TUNER_STEP_1:
2206                 val = dib0090_get_slow_adc_val(state);
2207                 state->temperature = ((s16) ((val - state->adc_diff) * 180) >> 8) + 55;
2208
2209                 dprintk("temperature: %d C", state->temperature - 30);
2210
2211                 *tune_state = CT_TUNER_STEP_2;
2212                 break;
2213
2214         case CT_TUNER_STEP_2:
2215                 dib0090_write_reg(state, 0x13, state->bias);
2216                 dib0090_write_reg(state, 0x10, state->wbdmux);  /* write back original WBDMUX */
2217
2218                 *tune_state = CT_TUNER_START;
2219                 state->calibrate &= ~TEMP_CAL;
2220                 if (state->config->analog_output == 0)
2221                         dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
2222
2223                 break;
2224
2225         default:
2226                 ret = 0;
2227                 break;
2228         }
2229         return ret;
2230 }
2231
2232 #define WBD     0x781           /* 1 1 1 1 0000 0 0 1 */
2233 static int dib0090_tune(struct dvb_frontend *fe)
2234 {
2235         struct dib0090_state *state = fe->tuner_priv;
2236         const struct dib0090_tuning *tune = state->current_tune_table_index;
2237         const struct dib0090_pll *pll = state->current_pll_table_index;
2238         enum frontend_tune_state *tune_state = &state->tune_state;
2239
2240         u16 lo5, lo6, Den, tmp;
2241         u32 FBDiv, Rest, FREF, VCOF_kHz = 0;
2242         int ret = 10;           /* 1ms is the default delay most of the time */
2243         u8 c, i;
2244
2245         /************************* VCO ***************************/
2246         /* Default values for FG                                 */
2247         /* from these are needed :                               */
2248         /* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv             */
2249
2250         /* in any case we first need to do a calibration if needed */
2251         if (*tune_state == CT_TUNER_START) {
2252                 /* deactivate DataTX before some calibrations */
2253                 if (state->calibrate & (DC_CAL | TEMP_CAL | WBD_CAL))
2254                         dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14));
2255                 else
2256                         /* Activate DataTX in case a calibration has been done before */
2257                         if (state->config->analog_output == 0)
2258                                 dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
2259         }
2260
2261         if (state->calibrate & DC_CAL)
2262                 return dib0090_dc_offset_calibration(state, tune_state);
2263         else if (state->calibrate & WBD_CAL) {
2264                 if (state->current_rf == 0)
2265                         state->current_rf = state->fe->dtv_property_cache.frequency / 1000;
2266                 return dib0090_wbd_calibration(state, tune_state);
2267         } else if (state->calibrate & TEMP_CAL)
2268                 return dib0090_get_temperature(state, tune_state);
2269         else if (state->calibrate & CAPTRIM_CAL)
2270                 return dib0090_captrim_search(state, tune_state);
2271
2272         if (*tune_state == CT_TUNER_START) {
2273                 /* if soc and AGC pwm control, disengage mux to be able to R/W access to 0x01 register to set the right filter (cutoff_freq_select) during the tune sequence, otherwise, SOC SERPAR error when accessing to 0x01 */
2274                 if (state->config->use_pwm_agc && state->identity.in_soc) {
2275                         tmp = dib0090_read_reg(state, 0x39);
2276                         if ((tmp >> 10) & 0x1)
2277                                 dib0090_write_reg(state, 0x39, tmp & ~(1 << 10));
2278                 }
2279
2280                 state->current_band = (u8) BAND_OF_FREQUENCY(state->fe->dtv_property_cache.frequency / 1000);
2281                 state->rf_request =
2282                         state->fe->dtv_property_cache.frequency / 1000 + (state->current_band ==
2283                                         BAND_UHF ? state->config->freq_offset_khz_uhf : state->config->
2284                                         freq_offset_khz_vhf);
2285
2286                 /* in ISDB-T 1seg we shift tuning frequency */
2287                 if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1
2288                                         && state->fe->dtv_property_cache.isdbt_partial_reception == 0)) {
2289                         const struct dib0090_low_if_offset_table *LUT_offset = state->config->low_if;
2290                         u8 found_offset = 0;
2291                         u32 margin_khz = 100;
2292
2293                         if (LUT_offset != NULL) {
2294                                 while (LUT_offset->RF_freq != 0xffff) {
2295                                         if (((state->rf_request > (LUT_offset->RF_freq - margin_khz))
2296                                                                 && (state->rf_request < (LUT_offset->RF_freq + margin_khz)))
2297                                                         && LUT_offset->std == state->fe->dtv_property_cache.delivery_system) {
2298                                                 state->rf_request += LUT_offset->offset_khz;
2299                                                 found_offset = 1;
2300                                                 break;
2301                                         }
2302                                         LUT_offset++;
2303                                 }
2304                         }
2305
2306                         if (found_offset == 0)
2307                                 state->rf_request += 400;
2308                 }
2309                 if (state->current_rf != state->rf_request || (state->current_standard != state->fe->dtv_property_cache.delivery_system)) {
2310                         state->tuner_is_tuned = 0;
2311                         state->current_rf = 0;
2312                         state->current_standard = 0;
2313
2314                         tune = dib0090_tuning_table;
2315                         if (state->identity.p1g)
2316                                 tune = dib0090_p1g_tuning_table;
2317
2318                         tmp = (state->identity.version >> 5) & 0x7;
2319
2320                         if (state->identity.in_soc) {
2321                                 if (state->config->force_cband_input) { /* Use the CBAND input for all band */
2322                                         if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF
2323                                                         || state->current_band & BAND_UHF) {
2324                                                 state->current_band = BAND_CBAND;
2325                                                 if (state->config->is_dib7090e)
2326                                                         tune = dib0090_tuning_table_cband_7090e_sensitivity;
2327                                                 else
2328                                                         tune = dib0090_tuning_table_cband_7090;
2329                                         }
2330                                 } else {        /* Use the CBAND input for all band under UHF */
2331                                         if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF) {
2332                                                 state->current_band = BAND_CBAND;
2333                                                 if (state->config->is_dib7090e)
2334                                                         tune = dib0090_tuning_table_cband_7090e_sensitivity;
2335                                                 else
2336                                                         tune = dib0090_tuning_table_cband_7090;
2337                                         }
2338                                 }
2339                         } else
2340                          if (tmp == 0x4 || tmp == 0x7) {
2341                                 /* CBAND tuner version for VHF */
2342                                 if (state->current_band == BAND_FM || state->current_band == BAND_CBAND || state->current_band == BAND_VHF) {
2343                                         state->current_band = BAND_CBAND;       /* Force CBAND */
2344
2345                                         tune = dib0090_tuning_table_fm_vhf_on_cband;
2346                                         if (state->identity.p1g)
2347                                                 tune = dib0090_p1g_tuning_table_fm_vhf_on_cband;
2348                                 }
2349                         }
2350
2351                         pll = dib0090_pll_table;
2352                         if (state->identity.p1g)
2353                                 pll = dib0090_p1g_pll_table;
2354
2355                         /* Look for the interval */
2356                         while (state->rf_request > tune->max_freq)
2357                                 tune++;
2358                         while (state->rf_request > pll->max_freq)
2359                                 pll++;
2360
2361                         state->current_tune_table_index = tune;
2362                         state->current_pll_table_index = pll;
2363
2364                         dib0090_write_reg(state, 0x0b, 0xb800 | (tune->switch_trim));
2365
2366                         VCOF_kHz = (pll->hfdiv * state->rf_request) * 2;
2367
2368                         FREF = state->config->io.clock_khz;
2369                         if (state->config->fref_clock_ratio != 0)
2370                                 FREF /= state->config->fref_clock_ratio;
2371
2372                         FBDiv = (VCOF_kHz / pll->topresc / FREF);
2373                         Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF;
2374
2375                         if (Rest < LPF)
2376                                 Rest = 0;
2377                         else if (Rest < 2 * LPF)
2378                                 Rest = 2 * LPF;
2379                         else if (Rest > (FREF - LPF)) {
2380                                 Rest = 0;
2381                                 FBDiv += 1;
2382                         } else if (Rest > (FREF - 2 * LPF))
2383                                 Rest = FREF - 2 * LPF;
2384                         Rest = (Rest * 6528) / (FREF / 10);
2385                         state->rest = Rest;
2386
2387                         /* external loop filter, otherwise:
2388                          * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4;
2389                          * lo6 = 0x0e34 */
2390
2391                         if (Rest == 0) {
2392                                 if (pll->vco_band)
2393                                         lo5 = 0x049f;
2394                                 else
2395                                         lo5 = 0x041f;
2396                         } else {
2397                                 if (pll->vco_band)
2398                                         lo5 = 0x049e;
2399                                 else if (state->config->analog_output)
2400                                         lo5 = 0x041d;
2401                                 else
2402                                         lo5 = 0x041c;
2403                         }
2404
2405                         if (state->identity.p1g) {      /* Bias is done automatically in P1G */
2406                                 if (state->identity.in_soc) {
2407                                         if (state->identity.version == SOC_8090_P1G_11R1)
2408                                                 lo5 = 0x46f;
2409                                         else
2410                                                 lo5 = 0x42f;
2411                                 } else
2412                                         lo5 = 0x42c;
2413                         }
2414
2415                         lo5 |= (pll->hfdiv_code << 11) | (pll->vco_band << 7);  /* bit 15 is the split to the slave, we do not do it here */
2416
2417                         if (!state->config->io.pll_int_loop_filt) {
2418                                 if (state->identity.in_soc)
2419                                         lo6 = 0xff98;
2420                                 else if (state->identity.p1g || (Rest == 0))
2421                                         lo6 = 0xfff8;
2422                                 else
2423                                         lo6 = 0xff28;
2424                         } else
2425                                 lo6 = (state->config->io.pll_int_loop_filt << 3);
2426
2427                         Den = 1;
2428
2429                         if (Rest > 0) {
2430                                 if (state->config->analog_output)
2431                                         lo6 |= (1 << 2) | 2;
2432                                 else {
2433                                         if (state->identity.in_soc)
2434                                                 lo6 |= (1 << 2) | 2;
2435                                         else
2436                                                 lo6 |= (1 << 2) | 2;
2437                                 }
2438                                 Den = 255;
2439                         }
2440                         dib0090_write_reg(state, 0x15, (u16) FBDiv);
2441                         if (state->config->fref_clock_ratio != 0)
2442                                 dib0090_write_reg(state, 0x16, (Den << 8) | state->config->fref_clock_ratio);
2443                         else
2444                                 dib0090_write_reg(state, 0x16, (Den << 8) | 1);
2445                         dib0090_write_reg(state, 0x17, (u16) Rest);
2446                         dib0090_write_reg(state, 0x19, lo5);
2447                         dib0090_write_reg(state, 0x1c, lo6);
2448
2449                         lo6 = tune->tuner_enable;
2450                         if (state->config->analog_output)
2451                                 lo6 = (lo6 & 0xff9f) | 0x2;
2452
2453                         dib0090_write_reg(state, 0x24, lo6 | EN_LO | state->config->use_pwm_agc * EN_CRYSTAL);
2454
2455                 }
2456
2457                 state->current_rf = state->rf_request;
2458                 state->current_standard = state->fe->dtv_property_cache.delivery_system;
2459
2460                 ret = 20;
2461                 state->calibrate = CAPTRIM_CAL; /* captrim serach now */
2462         }
2463
2464         else if (*tune_state == CT_TUNER_STEP_0) {      /* Warning : because of captrim cal, if you change this step, change it also in _cal.c file because it is the step following captrim cal state machine */
2465                 const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
2466
2467                 while (state->current_rf / 1000 > wbd->max_freq)
2468                         wbd++;
2469
2470                 dib0090_write_reg(state, 0x1e, 0x07ff);
2471                 dprintk("Final Captrim: %d", (u32) state->fcaptrim);
2472                 dprintk("HFDIV code: %d", (u32) pll->hfdiv_code);
2473                 dprintk("VCO = %d", (u32) pll->vco_band);
2474                 dprintk("VCOF in kHz: %d ((%d*%d) << 1))", (u32) ((pll->hfdiv * state->rf_request) * 2), (u32) pll->hfdiv, (u32) state->rf_request);
2475                 dprintk("REFDIV: %d, FREF: %d", (u32) 1, (u32) state->config->io.clock_khz);
2476                 dprintk("FBDIV: %d, Rest: %d", (u32) dib0090_read_reg(state, 0x15), (u32) dib0090_read_reg(state, 0x17));
2477                 dprintk("Num: %d, Den: %d, SD: %d", (u32) dib0090_read_reg(state, 0x17), (u32) (dib0090_read_reg(state, 0x16) >> 8),
2478                         (u32) dib0090_read_reg(state, 0x1c) & 0x3);
2479
2480 #define WBD     0x781           /* 1 1 1 1 0000 0 0 1 */
2481                 c = 4;
2482                 i = 3;
2483
2484                 if (wbd->wbd_gain != 0)
2485                         c = wbd->wbd_gain;
2486
2487                 state->wbdmux = (c << 13) | (i << 11) | (WBD | (state->config->use_pwm_agc << 1));
2488                 dib0090_write_reg(state, 0x10, state->wbdmux);
2489
2490                 if ((tune->tuner_enable == EN_CAB) && state->identity.p1g) {
2491                         dprintk("P1G : The cable band is selected and lna_tune = %d", tune->lna_tune);
2492                         dib0090_write_reg(state, 0x09, tune->lna_bias);
2493                         dib0090_write_reg(state, 0x0b, 0xb800 | (tune->lna_tune << 6) | (tune->switch_trim));
2494                 } else
2495                         dib0090_write_reg(state, 0x09, (tune->lna_tune << 5) | tune->lna_bias);
2496
2497                 dib0090_write_reg(state, 0x0c, tune->v2i);
2498                 dib0090_write_reg(state, 0x0d, tune->mix);
2499                 dib0090_write_reg(state, 0x0e, tune->load);
2500                 *tune_state = CT_TUNER_STEP_1;
2501
2502         } else if (*tune_state == CT_TUNER_STEP_1) {
2503                 /* initialize the lt gain register */
2504                 state->rf_lt_def = 0x7c00;
2505
2506                 dib0090_set_bandwidth(state);
2507                 state->tuner_is_tuned = 1;
2508
2509                 state->calibrate |= WBD_CAL;
2510                 state->calibrate |= TEMP_CAL;
2511                 *tune_state = CT_TUNER_STOP;
2512         } else
2513                 ret = FE_CALLBACK_TIME_NEVER;
2514         return ret;
2515 }
2516
2517 static int dib0090_release(struct dvb_frontend *fe)
2518 {
2519         kfree(fe->tuner_priv);
2520         fe->tuner_priv = NULL;
2521         return 0;
2522 }
2523
2524 enum frontend_tune_state dib0090_get_tune_state(struct dvb_frontend *fe)
2525 {
2526         struct dib0090_state *state = fe->tuner_priv;
2527
2528         return state->tune_state;
2529 }
2530
2531 EXPORT_SYMBOL(dib0090_get_tune_state);
2532
2533 int dib0090_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
2534 {
2535         struct dib0090_state *state = fe->tuner_priv;
2536
2537         state->tune_state = tune_state;
2538         return 0;
2539 }
2540
2541 EXPORT_SYMBOL(dib0090_set_tune_state);
2542
2543 static int dib0090_get_frequency(struct dvb_frontend *fe, u32 * frequency)
2544 {
2545         struct dib0090_state *state = fe->tuner_priv;
2546
2547         *frequency = 1000 * state->current_rf;
2548         return 0;
2549 }
2550
2551 static int dib0090_set_params(struct dvb_frontend *fe)
2552 {
2553         struct dib0090_state *state = fe->tuner_priv;
2554         u32 ret;
2555
2556         state->tune_state = CT_TUNER_START;
2557
2558         do {
2559                 ret = dib0090_tune(fe);
2560                 if (ret == FE_CALLBACK_TIME_NEVER)
2561                         break;
2562
2563                 /*
2564                  * Despite dib0090_tune returns time at a 0.1 ms range,
2565                  * the actual sleep time depends on CONFIG_HZ. The worse case
2566                  * is when CONFIG_HZ=100. In such case, the minimum granularity
2567                  * is 10ms. On some real field tests, the tuner sometimes don't
2568                  * lock when this timer is lower than 10ms. So, enforce a 10ms
2569                  * granularity and use usleep_range() instead of msleep().
2570                  */
2571                 ret = 10 * (ret + 99)/100;
2572                 usleep_range(ret * 1000, (ret + 1) * 1000);
2573         } while (state->tune_state != CT_TUNER_STOP);
2574
2575         return 0;
2576 }
2577
2578 static const struct dvb_tuner_ops dib0090_ops = {
2579         .info = {
2580                  .name = "DiBcom DiB0090",
2581                  .frequency_min = 45000000,
2582                  .frequency_max = 860000000,
2583                  .frequency_step = 1000,
2584                  },
2585         .release = dib0090_release,
2586
2587         .init = dib0090_wakeup,
2588         .sleep = dib0090_sleep,
2589         .set_params = dib0090_set_params,
2590         .get_frequency = dib0090_get_frequency,
2591 };
2592
2593 static const struct dvb_tuner_ops dib0090_fw_ops = {
2594         .info = {
2595                  .name = "DiBcom DiB0090",
2596                  .frequency_min = 45000000,
2597                  .frequency_max = 860000000,
2598                  .frequency_step = 1000,
2599                  },
2600         .release = dib0090_release,
2601
2602         .init = NULL,
2603         .sleep = NULL,
2604         .set_params = NULL,
2605         .get_frequency = NULL,
2606 };
2607
2608 static const struct dib0090_wbd_slope dib0090_wbd_table_default[] = {
2609         {470, 0, 250, 0, 100, 4},
2610         {860, 51, 866, 21, 375, 4},
2611         {1700, 0, 800, 0, 850, 4},
2612         {2900, 0, 250, 0, 100, 6},
2613         {0xFFFF, 0, 0, 0, 0, 0},
2614 };
2615
2616 struct dvb_frontend *dib0090_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config)
2617 {
2618         struct dib0090_state *st = kzalloc(sizeof(struct dib0090_state), GFP_KERNEL);
2619         if (st == NULL)
2620                 return NULL;
2621
2622         st->config = config;
2623         st->i2c = i2c;
2624         st->fe = fe;
2625         mutex_init(&st->i2c_buffer_lock);
2626         fe->tuner_priv = st;
2627
2628         if (config->wbd == NULL)
2629                 st->current_wbd_table = dib0090_wbd_table_default;
2630         else
2631                 st->current_wbd_table = config->wbd;
2632
2633         if (dib0090_reset(fe) != 0)
2634                 goto free_mem;
2635
2636         printk(KERN_INFO "DiB0090: successfully identified\n");
2637         memcpy(&fe->ops.tuner_ops, &dib0090_ops, sizeof(struct dvb_tuner_ops));
2638
2639         return fe;
2640  free_mem:
2641         kfree(st);
2642         fe->tuner_priv = NULL;
2643         return NULL;
2644 }
2645
2646 EXPORT_SYMBOL(dib0090_register);
2647
2648 struct dvb_frontend *dib0090_fw_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config)
2649 {
2650         struct dib0090_fw_state *st = kzalloc(sizeof(struct dib0090_fw_state), GFP_KERNEL);
2651         if (st == NULL)
2652                 return NULL;
2653
2654         st->config = config;
2655         st->i2c = i2c;
2656         st->fe = fe;
2657         mutex_init(&st->i2c_buffer_lock);
2658         fe->tuner_priv = st;
2659
2660         if (dib0090_fw_reset_digital(fe, st->config) != 0)
2661                 goto free_mem;
2662
2663         dprintk("DiB0090 FW: successfully identified");
2664         memcpy(&fe->ops.tuner_ops, &dib0090_fw_ops, sizeof(struct dvb_tuner_ops));
2665
2666         return fe;
2667 free_mem:
2668         kfree(st);
2669         fe->tuner_priv = NULL;
2670         return NULL;
2671 }
2672 EXPORT_SYMBOL(dib0090_fw_register);
2673
2674 MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
2675 MODULE_AUTHOR("Olivier Grenie <olivier.grenie@dibcom.fr>");
2676 MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner");
2677 MODULE_LICENSE("GPL");