Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / md / dm-verity.c
1 /*
2  * Copyright (C) 2012 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
7  *
8  * This file is released under the GPLv2.
9  *
10  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
11  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
12  * hash device. Setting this greatly improves performance when data and hash
13  * are on the same disk on different partitions on devices with poor random
14  * access behavior.
15  */
16
17 #include "dm-bufio.h"
18
19 #include <linux/module.h>
20 #include <linux/device-mapper.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23
24 #define DM_MSG_PREFIX                   "verity"
25
26 #define DM_VERITY_ENV_LENGTH            42
27 #define DM_VERITY_ENV_VAR_NAME          "DM_VERITY_ERR_BLOCK_NR"
28
29 #define DM_VERITY_IO_VEC_INLINE         16
30 #define DM_VERITY_MEMPOOL_SIZE          4
31 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
32
33 #define DM_VERITY_MAX_LEVELS            63
34 #define DM_VERITY_MAX_CORRUPTED_ERRS    100
35
36 #define DM_VERITY_OPT_LOGGING           "ignore_corruption"
37 #define DM_VERITY_OPT_RESTART           "restart_on_corruption"
38
39 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
40
41 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
42
43 enum verity_mode {
44         DM_VERITY_MODE_EIO,
45         DM_VERITY_MODE_LOGGING,
46         DM_VERITY_MODE_RESTART
47 };
48
49 enum verity_block_type {
50         DM_VERITY_BLOCK_TYPE_DATA,
51         DM_VERITY_BLOCK_TYPE_METADATA
52 };
53
54 struct dm_verity {
55         struct dm_dev *data_dev;
56         struct dm_dev *hash_dev;
57         struct dm_target *ti;
58         struct dm_bufio_client *bufio;
59         char *alg_name;
60         struct crypto_shash *tfm;
61         u8 *root_digest;        /* digest of the root block */
62         u8 *salt;               /* salt: its size is salt_size */
63         unsigned salt_size;
64         sector_t data_start;    /* data offset in 512-byte sectors */
65         sector_t hash_start;    /* hash start in blocks */
66         sector_t data_blocks;   /* the number of data blocks */
67         sector_t hash_blocks;   /* the number of hash blocks */
68         unsigned char data_dev_block_bits;      /* log2(data blocksize) */
69         unsigned char hash_dev_block_bits;      /* log2(hash blocksize) */
70         unsigned char hash_per_block_bits;      /* log2(hashes in hash block) */
71         unsigned char levels;   /* the number of tree levels */
72         unsigned char version;
73         unsigned digest_size;   /* digest size for the current hash algorithm */
74         unsigned shash_descsize;/* the size of temporary space for crypto */
75         int hash_failed;        /* set to 1 if hash of any block failed */
76         enum verity_mode mode;  /* mode for handling verification errors */
77         unsigned corrupted_errs;/* Number of errors for corrupted blocks */
78
79         mempool_t *vec_mempool; /* mempool of bio vector */
80
81         struct workqueue_struct *verify_wq;
82
83         /* starting blocks for each tree level. 0 is the lowest level. */
84         sector_t hash_level_block[DM_VERITY_MAX_LEVELS];
85 };
86
87 struct dm_verity_io {
88         struct dm_verity *v;
89
90         /* original values of bio->bi_end_io and bio->bi_private */
91         bio_end_io_t *orig_bi_end_io;
92         void *orig_bi_private;
93
94         sector_t block;
95         unsigned n_blocks;
96
97         struct bvec_iter iter;
98
99         struct work_struct work;
100
101         /*
102          * Three variably-size fields follow this struct:
103          *
104          * u8 hash_desc[v->shash_descsize];
105          * u8 real_digest[v->digest_size];
106          * u8 want_digest[v->digest_size];
107          *
108          * To access them use: io_hash_desc(), io_real_digest() and io_want_digest().
109          */
110 };
111
112 struct dm_verity_prefetch_work {
113         struct work_struct work;
114         struct dm_verity *v;
115         sector_t block;
116         unsigned n_blocks;
117 };
118
119 static struct shash_desc *io_hash_desc(struct dm_verity *v, struct dm_verity_io *io)
120 {
121         return (struct shash_desc *)(io + 1);
122 }
123
124 static u8 *io_real_digest(struct dm_verity *v, struct dm_verity_io *io)
125 {
126         return (u8 *)(io + 1) + v->shash_descsize;
127 }
128
129 static u8 *io_want_digest(struct dm_verity *v, struct dm_verity_io *io)
130 {
131         return (u8 *)(io + 1) + v->shash_descsize + v->digest_size;
132 }
133
134 /*
135  * Auxiliary structure appended to each dm-bufio buffer. If the value
136  * hash_verified is nonzero, hash of the block has been verified.
137  *
138  * The variable hash_verified is set to 0 when allocating the buffer, then
139  * it can be changed to 1 and it is never reset to 0 again.
140  *
141  * There is no lock around this value, a race condition can at worst cause
142  * that multiple processes verify the hash of the same buffer simultaneously
143  * and write 1 to hash_verified simultaneously.
144  * This condition is harmless, so we don't need locking.
145  */
146 struct buffer_aux {
147         int hash_verified;
148 };
149
150 /*
151  * Initialize struct buffer_aux for a freshly created buffer.
152  */
153 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
154 {
155         struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
156
157         aux->hash_verified = 0;
158 }
159
160 /*
161  * Translate input sector number to the sector number on the target device.
162  */
163 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
164 {
165         return v->data_start + dm_target_offset(v->ti, bi_sector);
166 }
167
168 /*
169  * Return hash position of a specified block at a specified tree level
170  * (0 is the lowest level).
171  * The lowest "hash_per_block_bits"-bits of the result denote hash position
172  * inside a hash block. The remaining bits denote location of the hash block.
173  */
174 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
175                                          int level)
176 {
177         return block >> (level * v->hash_per_block_bits);
178 }
179
180 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
181                                  sector_t *hash_block, unsigned *offset)
182 {
183         sector_t position = verity_position_at_level(v, block, level);
184         unsigned idx;
185
186         *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
187
188         if (!offset)
189                 return;
190
191         idx = position & ((1 << v->hash_per_block_bits) - 1);
192         if (!v->version)
193                 *offset = idx * v->digest_size;
194         else
195                 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
196 }
197
198 /*
199  * Handle verification errors.
200  */
201 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
202                              unsigned long long block)
203 {
204         char verity_env[DM_VERITY_ENV_LENGTH];
205         char *envp[] = { verity_env, NULL };
206         const char *type_str = "";
207         struct mapped_device *md = dm_table_get_md(v->ti->table);
208
209         /* Corruption should be visible in device status in all modes */
210         v->hash_failed = 1;
211
212         if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
213                 goto out;
214
215         v->corrupted_errs++;
216
217         switch (type) {
218         case DM_VERITY_BLOCK_TYPE_DATA:
219                 type_str = "data";
220                 break;
221         case DM_VERITY_BLOCK_TYPE_METADATA:
222                 type_str = "metadata";
223                 break;
224         default:
225                 BUG();
226         }
227
228         DMERR("%s: %s block %llu is corrupted", v->data_dev->name, type_str,
229                 block);
230
231         if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
232                 DMERR("%s: reached maximum errors", v->data_dev->name);
233
234         snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
235                 DM_VERITY_ENV_VAR_NAME, type, block);
236
237         kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
238
239 out:
240         if (v->mode == DM_VERITY_MODE_LOGGING)
241                 return 0;
242
243         if (v->mode == DM_VERITY_MODE_RESTART)
244                 kernel_restart("dm-verity device corrupted");
245
246         return 1;
247 }
248
249 /*
250  * Verify hash of a metadata block pertaining to the specified data block
251  * ("block" argument) at a specified level ("level" argument).
252  *
253  * On successful return, io_want_digest(v, io) contains the hash value for
254  * a lower tree level or for the data block (if we're at the lowest leve).
255  *
256  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
257  * If "skip_unverified" is false, unverified buffer is hashed and verified
258  * against current value of io_want_digest(v, io).
259  */
260 static int verity_verify_level(struct dm_verity_io *io, sector_t block,
261                                int level, bool skip_unverified)
262 {
263         struct dm_verity *v = io->v;
264         struct dm_buffer *buf;
265         struct buffer_aux *aux;
266         u8 *data;
267         int r;
268         sector_t hash_block;
269         unsigned offset;
270
271         verity_hash_at_level(v, block, level, &hash_block, &offset);
272
273         data = dm_bufio_read(v->bufio, hash_block, &buf);
274         if (unlikely(IS_ERR(data)))
275                 return PTR_ERR(data);
276
277         aux = dm_bufio_get_aux_data(buf);
278
279         if (!aux->hash_verified) {
280                 struct shash_desc *desc;
281                 u8 *result;
282
283                 if (skip_unverified) {
284                         r = 1;
285                         goto release_ret_r;
286                 }
287
288                 desc = io_hash_desc(v, io);
289                 desc->tfm = v->tfm;
290                 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
291                 r = crypto_shash_init(desc);
292                 if (r < 0) {
293                         DMERR("crypto_shash_init failed: %d", r);
294                         goto release_ret_r;
295                 }
296
297                 if (likely(v->version >= 1)) {
298                         r = crypto_shash_update(desc, v->salt, v->salt_size);
299                         if (r < 0) {
300                                 DMERR("crypto_shash_update failed: %d", r);
301                                 goto release_ret_r;
302                         }
303                 }
304
305                 r = crypto_shash_update(desc, data, 1 << v->hash_dev_block_bits);
306                 if (r < 0) {
307                         DMERR("crypto_shash_update failed: %d", r);
308                         goto release_ret_r;
309                 }
310
311                 if (!v->version) {
312                         r = crypto_shash_update(desc, v->salt, v->salt_size);
313                         if (r < 0) {
314                                 DMERR("crypto_shash_update failed: %d", r);
315                                 goto release_ret_r;
316                         }
317                 }
318
319                 result = io_real_digest(v, io);
320                 r = crypto_shash_final(desc, result);
321                 if (r < 0) {
322                         DMERR("crypto_shash_final failed: %d", r);
323                         goto release_ret_r;
324                 }
325                 if (unlikely(memcmp(result, io_want_digest(v, io), v->digest_size))) {
326                         if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_METADATA,
327                                               hash_block)) {
328                                 r = -EIO;
329                                 goto release_ret_r;
330                         }
331                 } else
332                         aux->hash_verified = 1;
333         }
334
335         data += offset;
336
337         memcpy(io_want_digest(v, io), data, v->digest_size);
338
339         dm_bufio_release(buf);
340         return 0;
341
342 release_ret_r:
343         dm_bufio_release(buf);
344
345         return r;
346 }
347
348 /*
349  * Verify one "dm_verity_io" structure.
350  */
351 static int verity_verify_io(struct dm_verity_io *io)
352 {
353         struct dm_verity *v = io->v;
354         struct bio *bio = dm_bio_from_per_bio_data(io,
355                                                    v->ti->per_bio_data_size);
356         unsigned b;
357         int i;
358
359         for (b = 0; b < io->n_blocks; b++) {
360                 struct shash_desc *desc;
361                 u8 *result;
362                 int r;
363                 unsigned todo;
364
365                 if (likely(v->levels)) {
366                         /*
367                          * First, we try to get the requested hash for
368                          * the current block. If the hash block itself is
369                          * verified, zero is returned. If it isn't, this
370                          * function returns 0 and we fall back to whole
371                          * chain verification.
372                          */
373                         int r = verity_verify_level(io, io->block + b, 0, true);
374                         if (likely(!r))
375                                 goto test_block_hash;
376                         if (r < 0)
377                                 return r;
378                 }
379
380                 memcpy(io_want_digest(v, io), v->root_digest, v->digest_size);
381
382                 for (i = v->levels - 1; i >= 0; i--) {
383                         int r = verity_verify_level(io, io->block + b, i, false);
384                         if (unlikely(r))
385                                 return r;
386                 }
387
388 test_block_hash:
389                 desc = io_hash_desc(v, io);
390                 desc->tfm = v->tfm;
391                 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
392                 r = crypto_shash_init(desc);
393                 if (r < 0) {
394                         DMERR("crypto_shash_init failed: %d", r);
395                         return r;
396                 }
397
398                 if (likely(v->version >= 1)) {
399                         r = crypto_shash_update(desc, v->salt, v->salt_size);
400                         if (r < 0) {
401                                 DMERR("crypto_shash_update failed: %d", r);
402                                 return r;
403                         }
404                 }
405                 todo = 1 << v->data_dev_block_bits;
406                 do {
407                         u8 *page;
408                         unsigned len;
409                         struct bio_vec bv = bio_iter_iovec(bio, io->iter);
410
411                         page = kmap_atomic(bv.bv_page);
412                         len = bv.bv_len;
413                         if (likely(len >= todo))
414                                 len = todo;
415                         r = crypto_shash_update(desc, page + bv.bv_offset, len);
416                         kunmap_atomic(page);
417
418                         if (r < 0) {
419                                 DMERR("crypto_shash_update failed: %d", r);
420                                 return r;
421                         }
422
423                         bio_advance_iter(bio, &io->iter, len);
424                         todo -= len;
425                 } while (todo);
426
427                 if (!v->version) {
428                         r = crypto_shash_update(desc, v->salt, v->salt_size);
429                         if (r < 0) {
430                                 DMERR("crypto_shash_update failed: %d", r);
431                                 return r;
432                         }
433                 }
434
435                 result = io_real_digest(v, io);
436                 r = crypto_shash_final(desc, result);
437                 if (r < 0) {
438                         DMERR("crypto_shash_final failed: %d", r);
439                         return r;
440                 }
441                 if (unlikely(memcmp(result, io_want_digest(v, io), v->digest_size))) {
442                         if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
443                                               io->block + b))
444                                 return -EIO;
445                 }
446         }
447
448         return 0;
449 }
450
451 /*
452  * End one "io" structure with a given error.
453  */
454 static void verity_finish_io(struct dm_verity_io *io, int error)
455 {
456         struct dm_verity *v = io->v;
457         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_bio_data_size);
458
459         bio->bi_end_io = io->orig_bi_end_io;
460         bio->bi_private = io->orig_bi_private;
461
462         bio_endio_nodec(bio, error);
463 }
464
465 static void verity_work(struct work_struct *w)
466 {
467         struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
468
469         verity_finish_io(io, verity_verify_io(io));
470 }
471
472 static void verity_end_io(struct bio *bio, int error)
473 {
474         struct dm_verity_io *io = bio->bi_private;
475
476         if (error) {
477                 verity_finish_io(io, error);
478                 return;
479         }
480
481         INIT_WORK(&io->work, verity_work);
482         queue_work(io->v->verify_wq, &io->work);
483 }
484
485 /*
486  * Prefetch buffers for the specified io.
487  * The root buffer is not prefetched, it is assumed that it will be cached
488  * all the time.
489  */
490 static void verity_prefetch_io(struct work_struct *work)
491 {
492         struct dm_verity_prefetch_work *pw =
493                 container_of(work, struct dm_verity_prefetch_work, work);
494         struct dm_verity *v = pw->v;
495         int i;
496
497         for (i = v->levels - 2; i >= 0; i--) {
498                 sector_t hash_block_start;
499                 sector_t hash_block_end;
500                 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
501                 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
502                 if (!i) {
503                         unsigned cluster = ACCESS_ONCE(dm_verity_prefetch_cluster);
504
505                         cluster >>= v->data_dev_block_bits;
506                         if (unlikely(!cluster))
507                                 goto no_prefetch_cluster;
508
509                         if (unlikely(cluster & (cluster - 1)))
510                                 cluster = 1 << __fls(cluster);
511
512                         hash_block_start &= ~(sector_t)(cluster - 1);
513                         hash_block_end |= cluster - 1;
514                         if (unlikely(hash_block_end >= v->hash_blocks))
515                                 hash_block_end = v->hash_blocks - 1;
516                 }
517 no_prefetch_cluster:
518                 dm_bufio_prefetch(v->bufio, hash_block_start,
519                                   hash_block_end - hash_block_start + 1);
520         }
521
522         kfree(pw);
523 }
524
525 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
526 {
527         struct dm_verity_prefetch_work *pw;
528
529         pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
530                 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
531
532         if (!pw)
533                 return;
534
535         INIT_WORK(&pw->work, verity_prefetch_io);
536         pw->v = v;
537         pw->block = io->block;
538         pw->n_blocks = io->n_blocks;
539         queue_work(v->verify_wq, &pw->work);
540 }
541
542 /*
543  * Bio map function. It allocates dm_verity_io structure and bio vector and
544  * fills them. Then it issues prefetches and the I/O.
545  */
546 static int verity_map(struct dm_target *ti, struct bio *bio)
547 {
548         struct dm_verity *v = ti->private;
549         struct dm_verity_io *io;
550
551         bio->bi_bdev = v->data_dev->bdev;
552         bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
553
554         if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
555             ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
556                 DMERR_LIMIT("unaligned io");
557                 return -EIO;
558         }
559
560         if (bio_end_sector(bio) >>
561             (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
562                 DMERR_LIMIT("io out of range");
563                 return -EIO;
564         }
565
566         if (bio_data_dir(bio) == WRITE)
567                 return -EIO;
568
569         io = dm_per_bio_data(bio, ti->per_bio_data_size);
570         io->v = v;
571         io->orig_bi_end_io = bio->bi_end_io;
572         io->orig_bi_private = bio->bi_private;
573         io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
574         io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
575
576         bio->bi_end_io = verity_end_io;
577         bio->bi_private = io;
578         io->iter = bio->bi_iter;
579
580         verity_submit_prefetch(v, io);
581
582         generic_make_request(bio);
583
584         return DM_MAPIO_SUBMITTED;
585 }
586
587 /*
588  * Status: V (valid) or C (corruption found)
589  */
590 static void verity_status(struct dm_target *ti, status_type_t type,
591                           unsigned status_flags, char *result, unsigned maxlen)
592 {
593         struct dm_verity *v = ti->private;
594         unsigned sz = 0;
595         unsigned x;
596
597         switch (type) {
598         case STATUSTYPE_INFO:
599                 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
600                 break;
601         case STATUSTYPE_TABLE:
602                 DMEMIT("%u %s %s %u %u %llu %llu %s ",
603                         v->version,
604                         v->data_dev->name,
605                         v->hash_dev->name,
606                         1 << v->data_dev_block_bits,
607                         1 << v->hash_dev_block_bits,
608                         (unsigned long long)v->data_blocks,
609                         (unsigned long long)v->hash_start,
610                         v->alg_name
611                         );
612                 for (x = 0; x < v->digest_size; x++)
613                         DMEMIT("%02x", v->root_digest[x]);
614                 DMEMIT(" ");
615                 if (!v->salt_size)
616                         DMEMIT("-");
617                 else
618                         for (x = 0; x < v->salt_size; x++)
619                                 DMEMIT("%02x", v->salt[x]);
620                 if (v->mode != DM_VERITY_MODE_EIO) {
621                         DMEMIT(" 1 ");
622                         switch (v->mode) {
623                         case DM_VERITY_MODE_LOGGING:
624                                 DMEMIT(DM_VERITY_OPT_LOGGING);
625                                 break;
626                         case DM_VERITY_MODE_RESTART:
627                                 DMEMIT(DM_VERITY_OPT_RESTART);
628                                 break;
629                         default:
630                                 BUG();
631                         }
632                 }
633                 break;
634         }
635 }
636
637 static int verity_ioctl(struct dm_target *ti, unsigned cmd,
638                         unsigned long arg)
639 {
640         struct dm_verity *v = ti->private;
641         int r = 0;
642
643         if (v->data_start ||
644             ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
645                 r = scsi_verify_blk_ioctl(NULL, cmd);
646
647         return r ? : __blkdev_driver_ioctl(v->data_dev->bdev, v->data_dev->mode,
648                                      cmd, arg);
649 }
650
651 static int verity_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
652                         struct bio_vec *biovec, int max_size)
653 {
654         struct dm_verity *v = ti->private;
655         struct request_queue *q = bdev_get_queue(v->data_dev->bdev);
656
657         if (!q->merge_bvec_fn)
658                 return max_size;
659
660         bvm->bi_bdev = v->data_dev->bdev;
661         bvm->bi_sector = verity_map_sector(v, bvm->bi_sector);
662
663         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
664 }
665
666 static int verity_iterate_devices(struct dm_target *ti,
667                                   iterate_devices_callout_fn fn, void *data)
668 {
669         struct dm_verity *v = ti->private;
670
671         return fn(ti, v->data_dev, v->data_start, ti->len, data);
672 }
673
674 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
675 {
676         struct dm_verity *v = ti->private;
677
678         if (limits->logical_block_size < 1 << v->data_dev_block_bits)
679                 limits->logical_block_size = 1 << v->data_dev_block_bits;
680
681         if (limits->physical_block_size < 1 << v->data_dev_block_bits)
682                 limits->physical_block_size = 1 << v->data_dev_block_bits;
683
684         blk_limits_io_min(limits, limits->logical_block_size);
685 }
686
687 static void verity_dtr(struct dm_target *ti)
688 {
689         struct dm_verity *v = ti->private;
690
691         if (v->verify_wq)
692                 destroy_workqueue(v->verify_wq);
693
694         if (v->vec_mempool)
695                 mempool_destroy(v->vec_mempool);
696
697         if (v->bufio)
698                 dm_bufio_client_destroy(v->bufio);
699
700         kfree(v->salt);
701         kfree(v->root_digest);
702
703         if (v->tfm)
704                 crypto_free_shash(v->tfm);
705
706         kfree(v->alg_name);
707
708         if (v->hash_dev)
709                 dm_put_device(ti, v->hash_dev);
710
711         if (v->data_dev)
712                 dm_put_device(ti, v->data_dev);
713
714         kfree(v);
715 }
716
717 /*
718  * Target parameters:
719  *      <version>       The current format is version 1.
720  *                      Vsn 0 is compatible with original Chromium OS releases.
721  *      <data device>
722  *      <hash device>
723  *      <data block size>
724  *      <hash block size>
725  *      <the number of data blocks>
726  *      <hash start block>
727  *      <algorithm>
728  *      <digest>
729  *      <salt>          Hex string or "-" if no salt.
730  */
731 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
732 {
733         struct dm_verity *v;
734         struct dm_arg_set as;
735         const char *opt_string;
736         unsigned int num, opt_params;
737         unsigned long long num_ll;
738         int r;
739         int i;
740         sector_t hash_position;
741         char dummy;
742
743         static struct dm_arg _args[] = {
744                 {0, 1, "Invalid number of feature args"},
745         };
746
747         v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
748         if (!v) {
749                 ti->error = "Cannot allocate verity structure";
750                 return -ENOMEM;
751         }
752         ti->private = v;
753         v->ti = ti;
754
755         if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
756                 ti->error = "Device must be readonly";
757                 r = -EINVAL;
758                 goto bad;
759         }
760
761         if (argc < 10) {
762                 ti->error = "Not enough arguments";
763                 r = -EINVAL;
764                 goto bad;
765         }
766
767         if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
768             num > 1) {
769                 ti->error = "Invalid version";
770                 r = -EINVAL;
771                 goto bad;
772         }
773         v->version = num;
774
775         r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
776         if (r) {
777                 ti->error = "Data device lookup failed";
778                 goto bad;
779         }
780
781         r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
782         if (r) {
783                 ti->error = "Data device lookup failed";
784                 goto bad;
785         }
786
787         if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
788             !num || (num & (num - 1)) ||
789             num < bdev_logical_block_size(v->data_dev->bdev) ||
790             num > PAGE_SIZE) {
791                 ti->error = "Invalid data device block size";
792                 r = -EINVAL;
793                 goto bad;
794         }
795         v->data_dev_block_bits = __ffs(num);
796
797         if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
798             !num || (num & (num - 1)) ||
799             num < bdev_logical_block_size(v->hash_dev->bdev) ||
800             num > INT_MAX) {
801                 ti->error = "Invalid hash device block size";
802                 r = -EINVAL;
803                 goto bad;
804         }
805         v->hash_dev_block_bits = __ffs(num);
806
807         if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
808             (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
809             >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
810                 ti->error = "Invalid data blocks";
811                 r = -EINVAL;
812                 goto bad;
813         }
814         v->data_blocks = num_ll;
815
816         if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
817                 ti->error = "Data device is too small";
818                 r = -EINVAL;
819                 goto bad;
820         }
821
822         if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
823             (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
824             >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
825                 ti->error = "Invalid hash start";
826                 r = -EINVAL;
827                 goto bad;
828         }
829         v->hash_start = num_ll;
830
831         v->alg_name = kstrdup(argv[7], GFP_KERNEL);
832         if (!v->alg_name) {
833                 ti->error = "Cannot allocate algorithm name";
834                 r = -ENOMEM;
835                 goto bad;
836         }
837
838         v->tfm = crypto_alloc_shash(v->alg_name, 0, 0);
839         if (IS_ERR(v->tfm)) {
840                 ti->error = "Cannot initialize hash function";
841                 r = PTR_ERR(v->tfm);
842                 v->tfm = NULL;
843                 goto bad;
844         }
845         v->digest_size = crypto_shash_digestsize(v->tfm);
846         if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
847                 ti->error = "Digest size too big";
848                 r = -EINVAL;
849                 goto bad;
850         }
851         v->shash_descsize =
852                 sizeof(struct shash_desc) + crypto_shash_descsize(v->tfm);
853
854         v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
855         if (!v->root_digest) {
856                 ti->error = "Cannot allocate root digest";
857                 r = -ENOMEM;
858                 goto bad;
859         }
860         if (strlen(argv[8]) != v->digest_size * 2 ||
861             hex2bin(v->root_digest, argv[8], v->digest_size)) {
862                 ti->error = "Invalid root digest";
863                 r = -EINVAL;
864                 goto bad;
865         }
866
867         if (strcmp(argv[9], "-")) {
868                 v->salt_size = strlen(argv[9]) / 2;
869                 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
870                 if (!v->salt) {
871                         ti->error = "Cannot allocate salt";
872                         r = -ENOMEM;
873                         goto bad;
874                 }
875                 if (strlen(argv[9]) != v->salt_size * 2 ||
876                     hex2bin(v->salt, argv[9], v->salt_size)) {
877                         ti->error = "Invalid salt";
878                         r = -EINVAL;
879                         goto bad;
880                 }
881         }
882
883         argv += 10;
884         argc -= 10;
885
886         /* Optional parameters */
887         if (argc) {
888                 as.argc = argc;
889                 as.argv = argv;
890
891                 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
892                 if (r)
893                         goto bad;
894
895                 while (opt_params) {
896                         opt_params--;
897                         opt_string = dm_shift_arg(&as);
898                         if (!opt_string) {
899                                 ti->error = "Not enough feature arguments";
900                                 r = -EINVAL;
901                                 goto bad;
902                         }
903
904                         if (!strcasecmp(opt_string, DM_VERITY_OPT_LOGGING))
905                                 v->mode = DM_VERITY_MODE_LOGGING;
906                         else if (!strcasecmp(opt_string, DM_VERITY_OPT_RESTART))
907                                 v->mode = DM_VERITY_MODE_RESTART;
908                         else {
909                                 ti->error = "Invalid feature arguments";
910                                 r = -EINVAL;
911                                 goto bad;
912                         }
913                 }
914         }
915
916         v->hash_per_block_bits =
917                 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
918
919         v->levels = 0;
920         if (v->data_blocks)
921                 while (v->hash_per_block_bits * v->levels < 64 &&
922                        (unsigned long long)(v->data_blocks - 1) >>
923                        (v->hash_per_block_bits * v->levels))
924                         v->levels++;
925
926         if (v->levels > DM_VERITY_MAX_LEVELS) {
927                 ti->error = "Too many tree levels";
928                 r = -E2BIG;
929                 goto bad;
930         }
931
932         hash_position = v->hash_start;
933         for (i = v->levels - 1; i >= 0; i--) {
934                 sector_t s;
935                 v->hash_level_block[i] = hash_position;
936                 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
937                                         >> ((i + 1) * v->hash_per_block_bits);
938                 if (hash_position + s < hash_position) {
939                         ti->error = "Hash device offset overflow";
940                         r = -E2BIG;
941                         goto bad;
942                 }
943                 hash_position += s;
944         }
945         v->hash_blocks = hash_position;
946
947         v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
948                 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
949                 dm_bufio_alloc_callback, NULL);
950         if (IS_ERR(v->bufio)) {
951                 ti->error = "Cannot initialize dm-bufio";
952                 r = PTR_ERR(v->bufio);
953                 v->bufio = NULL;
954                 goto bad;
955         }
956
957         if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
958                 ti->error = "Hash device is too small";
959                 r = -E2BIG;
960                 goto bad;
961         }
962
963         ti->per_bio_data_size = roundup(sizeof(struct dm_verity_io) + v->shash_descsize + v->digest_size * 2, __alignof__(struct dm_verity_io));
964
965         v->vec_mempool = mempool_create_kmalloc_pool(DM_VERITY_MEMPOOL_SIZE,
966                                         BIO_MAX_PAGES * sizeof(struct bio_vec));
967         if (!v->vec_mempool) {
968                 ti->error = "Cannot allocate vector mempool";
969                 r = -ENOMEM;
970                 goto bad;
971         }
972
973         /* WQ_UNBOUND greatly improves performance when running on ramdisk */
974         v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
975         if (!v->verify_wq) {
976                 ti->error = "Cannot allocate workqueue";
977                 r = -ENOMEM;
978                 goto bad;
979         }
980
981         return 0;
982
983 bad:
984         verity_dtr(ti);
985
986         return r;
987 }
988
989 static struct target_type verity_target = {
990         .name           = "verity",
991         .version        = {1, 2, 0},
992         .module         = THIS_MODULE,
993         .ctr            = verity_ctr,
994         .dtr            = verity_dtr,
995         .map            = verity_map,
996         .status         = verity_status,
997         .ioctl          = verity_ioctl,
998         .merge          = verity_merge,
999         .iterate_devices = verity_iterate_devices,
1000         .io_hints       = verity_io_hints,
1001 };
1002
1003 static int __init dm_verity_init(void)
1004 {
1005         int r;
1006
1007         r = dm_register_target(&verity_target);
1008         if (r < 0)
1009                 DMERR("register failed %d", r);
1010
1011         return r;
1012 }
1013
1014 static void __exit dm_verity_exit(void)
1015 {
1016         dm_unregister_target(&verity_target);
1017 }
1018
1019 module_init(dm_verity_init);
1020 module_exit(dm_verity_exit);
1021
1022 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1023 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1024 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1025 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1026 MODULE_LICENSE("GPL");