Upgrade to 4.4.50-rt62
[kvmfornfv.git] / kernel / drivers / md / dm-table.c
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23
24 #define DM_MSG_PREFIX "table"
25
26 #define MAX_DEPTH 16
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31 struct dm_table {
32         struct mapped_device *md;
33         unsigned type;
34
35         /* btree table */
36         unsigned int depth;
37         unsigned int counts[MAX_DEPTH]; /* in nodes */
38         sector_t *index[MAX_DEPTH];
39
40         unsigned int num_targets;
41         unsigned int num_allocated;
42         sector_t *highs;
43         struct dm_target *targets;
44
45         struct target_type *immutable_target_type;
46         unsigned integrity_supported:1;
47         unsigned singleton:1;
48
49         /*
50          * Indicates the rw permissions for the new logical
51          * device.  This should be a combination of FMODE_READ
52          * and FMODE_WRITE.
53          */
54         fmode_t mode;
55
56         /* a list of devices used by this table */
57         struct list_head devices;
58
59         /* events get handed up using this callback */
60         void (*event_fn)(void *);
61         void *event_context;
62
63         struct dm_md_mempools *mempools;
64
65         struct list_head target_callbacks;
66 };
67
68 /*
69  * Similar to ceiling(log_size(n))
70  */
71 static unsigned int int_log(unsigned int n, unsigned int base)
72 {
73         int result = 0;
74
75         while (n > 1) {
76                 n = dm_div_up(n, base);
77                 result++;
78         }
79
80         return result;
81 }
82
83 /*
84  * Calculate the index of the child node of the n'th node k'th key.
85  */
86 static inline unsigned int get_child(unsigned int n, unsigned int k)
87 {
88         return (n * CHILDREN_PER_NODE) + k;
89 }
90
91 /*
92  * Return the n'th node of level l from table t.
93  */
94 static inline sector_t *get_node(struct dm_table *t,
95                                  unsigned int l, unsigned int n)
96 {
97         return t->index[l] + (n * KEYS_PER_NODE);
98 }
99
100 /*
101  * Return the highest key that you could lookup from the n'th
102  * node on level l of the btree.
103  */
104 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
105 {
106         for (; l < t->depth - 1; l++)
107                 n = get_child(n, CHILDREN_PER_NODE - 1);
108
109         if (n >= t->counts[l])
110                 return (sector_t) - 1;
111
112         return get_node(t, l, n)[KEYS_PER_NODE - 1];
113 }
114
115 /*
116  * Fills in a level of the btree based on the highs of the level
117  * below it.
118  */
119 static int setup_btree_index(unsigned int l, struct dm_table *t)
120 {
121         unsigned int n, k;
122         sector_t *node;
123
124         for (n = 0U; n < t->counts[l]; n++) {
125                 node = get_node(t, l, n);
126
127                 for (k = 0U; k < KEYS_PER_NODE; k++)
128                         node[k] = high(t, l + 1, get_child(n, k));
129         }
130
131         return 0;
132 }
133
134 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
135 {
136         unsigned long size;
137         void *addr;
138
139         /*
140          * Check that we're not going to overflow.
141          */
142         if (nmemb > (ULONG_MAX / elem_size))
143                 return NULL;
144
145         size = nmemb * elem_size;
146         addr = vzalloc(size);
147
148         return addr;
149 }
150 EXPORT_SYMBOL(dm_vcalloc);
151
152 /*
153  * highs, and targets are managed as dynamic arrays during a
154  * table load.
155  */
156 static int alloc_targets(struct dm_table *t, unsigned int num)
157 {
158         sector_t *n_highs;
159         struct dm_target *n_targets;
160
161         /*
162          * Allocate both the target array and offset array at once.
163          * Append an empty entry to catch sectors beyond the end of
164          * the device.
165          */
166         n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
167                                           sizeof(sector_t));
168         if (!n_highs)
169                 return -ENOMEM;
170
171         n_targets = (struct dm_target *) (n_highs + num);
172
173         memset(n_highs, -1, sizeof(*n_highs) * num);
174         vfree(t->highs);
175
176         t->num_allocated = num;
177         t->highs = n_highs;
178         t->targets = n_targets;
179
180         return 0;
181 }
182
183 int dm_table_create(struct dm_table **result, fmode_t mode,
184                     unsigned num_targets, struct mapped_device *md)
185 {
186         struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
187
188         if (!t)
189                 return -ENOMEM;
190
191         INIT_LIST_HEAD(&t->devices);
192         INIT_LIST_HEAD(&t->target_callbacks);
193
194         if (!num_targets)
195                 num_targets = KEYS_PER_NODE;
196
197         num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
198
199         if (!num_targets) {
200                 kfree(t);
201                 return -ENOMEM;
202         }
203
204         if (alloc_targets(t, num_targets)) {
205                 kfree(t);
206                 return -ENOMEM;
207         }
208
209         t->mode = mode;
210         t->md = md;
211         *result = t;
212         return 0;
213 }
214
215 static void free_devices(struct list_head *devices, struct mapped_device *md)
216 {
217         struct list_head *tmp, *next;
218
219         list_for_each_safe(tmp, next, devices) {
220                 struct dm_dev_internal *dd =
221                     list_entry(tmp, struct dm_dev_internal, list);
222                 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
223                        dm_device_name(md), dd->dm_dev->name);
224                 dm_put_table_device(md, dd->dm_dev);
225                 kfree(dd);
226         }
227 }
228
229 void dm_table_destroy(struct dm_table *t)
230 {
231         unsigned int i;
232
233         if (!t)
234                 return;
235
236         /* free the indexes */
237         if (t->depth >= 2)
238                 vfree(t->index[t->depth - 2]);
239
240         /* free the targets */
241         for (i = 0; i < t->num_targets; i++) {
242                 struct dm_target *tgt = t->targets + i;
243
244                 if (tgt->type->dtr)
245                         tgt->type->dtr(tgt);
246
247                 dm_put_target_type(tgt->type);
248         }
249
250         vfree(t->highs);
251
252         /* free the device list */
253         free_devices(&t->devices, t->md);
254
255         dm_free_md_mempools(t->mempools);
256
257         kfree(t);
258 }
259
260 /*
261  * See if we've already got a device in the list.
262  */
263 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
264 {
265         struct dm_dev_internal *dd;
266
267         list_for_each_entry (dd, l, list)
268                 if (dd->dm_dev->bdev->bd_dev == dev)
269                         return dd;
270
271         return NULL;
272 }
273
274 /*
275  * If possible, this checks an area of a destination device is invalid.
276  */
277 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
278                                   sector_t start, sector_t len, void *data)
279 {
280         struct request_queue *q;
281         struct queue_limits *limits = data;
282         struct block_device *bdev = dev->bdev;
283         sector_t dev_size =
284                 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
285         unsigned short logical_block_size_sectors =
286                 limits->logical_block_size >> SECTOR_SHIFT;
287         char b[BDEVNAME_SIZE];
288
289         /*
290          * Some devices exist without request functions,
291          * such as loop devices not yet bound to backing files.
292          * Forbid the use of such devices.
293          */
294         q = bdev_get_queue(bdev);
295         if (!q || !q->make_request_fn) {
296                 DMWARN("%s: %s is not yet initialised: "
297                        "start=%llu, len=%llu, dev_size=%llu",
298                        dm_device_name(ti->table->md), bdevname(bdev, b),
299                        (unsigned long long)start,
300                        (unsigned long long)len,
301                        (unsigned long long)dev_size);
302                 return 1;
303         }
304
305         if (!dev_size)
306                 return 0;
307
308         if ((start >= dev_size) || (start + len > dev_size)) {
309                 DMWARN("%s: %s too small for target: "
310                        "start=%llu, len=%llu, dev_size=%llu",
311                        dm_device_name(ti->table->md), bdevname(bdev, b),
312                        (unsigned long long)start,
313                        (unsigned long long)len,
314                        (unsigned long long)dev_size);
315                 return 1;
316         }
317
318         if (logical_block_size_sectors <= 1)
319                 return 0;
320
321         if (start & (logical_block_size_sectors - 1)) {
322                 DMWARN("%s: start=%llu not aligned to h/w "
323                        "logical block size %u of %s",
324                        dm_device_name(ti->table->md),
325                        (unsigned long long)start,
326                        limits->logical_block_size, bdevname(bdev, b));
327                 return 1;
328         }
329
330         if (len & (logical_block_size_sectors - 1)) {
331                 DMWARN("%s: len=%llu not aligned to h/w "
332                        "logical block size %u of %s",
333                        dm_device_name(ti->table->md),
334                        (unsigned long long)len,
335                        limits->logical_block_size, bdevname(bdev, b));
336                 return 1;
337         }
338
339         return 0;
340 }
341
342 /*
343  * This upgrades the mode on an already open dm_dev, being
344  * careful to leave things as they were if we fail to reopen the
345  * device and not to touch the existing bdev field in case
346  * it is accessed concurrently inside dm_table_any_congested().
347  */
348 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
349                         struct mapped_device *md)
350 {
351         int r;
352         struct dm_dev *old_dev, *new_dev;
353
354         old_dev = dd->dm_dev;
355
356         r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
357                                 dd->dm_dev->mode | new_mode, &new_dev);
358         if (r)
359                 return r;
360
361         dd->dm_dev = new_dev;
362         dm_put_table_device(md, old_dev);
363
364         return 0;
365 }
366
367 /*
368  * Convert the path to a device
369  */
370 dev_t dm_get_dev_t(const char *path)
371 {
372         dev_t uninitialized_var(dev);
373         struct block_device *bdev;
374
375         bdev = lookup_bdev(path);
376         if (IS_ERR(bdev))
377                 dev = name_to_dev_t(path);
378         else {
379                 dev = bdev->bd_dev;
380                 bdput(bdev);
381         }
382
383         return dev;
384 }
385 EXPORT_SYMBOL_GPL(dm_get_dev_t);
386
387 /*
388  * Add a device to the list, or just increment the usage count if
389  * it's already present.
390  */
391 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
392                   struct dm_dev **result)
393 {
394         int r;
395         dev_t dev;
396         struct dm_dev_internal *dd;
397         struct dm_table *t = ti->table;
398
399         BUG_ON(!t);
400
401         dev = dm_get_dev_t(path);
402         if (!dev)
403                 return -ENODEV;
404
405         dd = find_device(&t->devices, dev);
406         if (!dd) {
407                 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
408                 if (!dd)
409                         return -ENOMEM;
410
411                 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
412                         kfree(dd);
413                         return r;
414                 }
415
416                 atomic_set(&dd->count, 0);
417                 list_add(&dd->list, &t->devices);
418
419         } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
420                 r = upgrade_mode(dd, mode, t->md);
421                 if (r)
422                         return r;
423         }
424         atomic_inc(&dd->count);
425
426         *result = dd->dm_dev;
427         return 0;
428 }
429 EXPORT_SYMBOL(dm_get_device);
430
431 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
432                                 sector_t start, sector_t len, void *data)
433 {
434         struct queue_limits *limits = data;
435         struct block_device *bdev = dev->bdev;
436         struct request_queue *q = bdev_get_queue(bdev);
437         char b[BDEVNAME_SIZE];
438
439         if (unlikely(!q)) {
440                 DMWARN("%s: Cannot set limits for nonexistent device %s",
441                        dm_device_name(ti->table->md), bdevname(bdev, b));
442                 return 0;
443         }
444
445         if (bdev_stack_limits(limits, bdev, start) < 0)
446                 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
447                        "physical_block_size=%u, logical_block_size=%u, "
448                        "alignment_offset=%u, start=%llu",
449                        dm_device_name(ti->table->md), bdevname(bdev, b),
450                        q->limits.physical_block_size,
451                        q->limits.logical_block_size,
452                        q->limits.alignment_offset,
453                        (unsigned long long) start << SECTOR_SHIFT);
454
455         return 0;
456 }
457
458 /*
459  * Decrement a device's use count and remove it if necessary.
460  */
461 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
462 {
463         int found = 0;
464         struct list_head *devices = &ti->table->devices;
465         struct dm_dev_internal *dd;
466
467         list_for_each_entry(dd, devices, list) {
468                 if (dd->dm_dev == d) {
469                         found = 1;
470                         break;
471                 }
472         }
473         if (!found) {
474                 DMWARN("%s: device %s not in table devices list",
475                        dm_device_name(ti->table->md), d->name);
476                 return;
477         }
478         if (atomic_dec_and_test(&dd->count)) {
479                 dm_put_table_device(ti->table->md, d);
480                 list_del(&dd->list);
481                 kfree(dd);
482         }
483 }
484 EXPORT_SYMBOL(dm_put_device);
485
486 /*
487  * Checks to see if the target joins onto the end of the table.
488  */
489 static int adjoin(struct dm_table *table, struct dm_target *ti)
490 {
491         struct dm_target *prev;
492
493         if (!table->num_targets)
494                 return !ti->begin;
495
496         prev = &table->targets[table->num_targets - 1];
497         return (ti->begin == (prev->begin + prev->len));
498 }
499
500 /*
501  * Used to dynamically allocate the arg array.
502  *
503  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
504  * process messages even if some device is suspended. These messages have a
505  * small fixed number of arguments.
506  *
507  * On the other hand, dm-switch needs to process bulk data using messages and
508  * excessive use of GFP_NOIO could cause trouble.
509  */
510 static char **realloc_argv(unsigned *array_size, char **old_argv)
511 {
512         char **argv;
513         unsigned new_size;
514         gfp_t gfp;
515
516         if (*array_size) {
517                 new_size = *array_size * 2;
518                 gfp = GFP_KERNEL;
519         } else {
520                 new_size = 8;
521                 gfp = GFP_NOIO;
522         }
523         argv = kmalloc(new_size * sizeof(*argv), gfp);
524         if (argv) {
525                 memcpy(argv, old_argv, *array_size * sizeof(*argv));
526                 *array_size = new_size;
527         }
528
529         kfree(old_argv);
530         return argv;
531 }
532
533 /*
534  * Destructively splits up the argument list to pass to ctr.
535  */
536 int dm_split_args(int *argc, char ***argvp, char *input)
537 {
538         char *start, *end = input, *out, **argv = NULL;
539         unsigned array_size = 0;
540
541         *argc = 0;
542
543         if (!input) {
544                 *argvp = NULL;
545                 return 0;
546         }
547
548         argv = realloc_argv(&array_size, argv);
549         if (!argv)
550                 return -ENOMEM;
551
552         while (1) {
553                 /* Skip whitespace */
554                 start = skip_spaces(end);
555
556                 if (!*start)
557                         break;  /* success, we hit the end */
558
559                 /* 'out' is used to remove any back-quotes */
560                 end = out = start;
561                 while (*end) {
562                         /* Everything apart from '\0' can be quoted */
563                         if (*end == '\\' && *(end + 1)) {
564                                 *out++ = *(end + 1);
565                                 end += 2;
566                                 continue;
567                         }
568
569                         if (isspace(*end))
570                                 break;  /* end of token */
571
572                         *out++ = *end++;
573                 }
574
575                 /* have we already filled the array ? */
576                 if ((*argc + 1) > array_size) {
577                         argv = realloc_argv(&array_size, argv);
578                         if (!argv)
579                                 return -ENOMEM;
580                 }
581
582                 /* we know this is whitespace */
583                 if (*end)
584                         end++;
585
586                 /* terminate the string and put it in the array */
587                 *out = '\0';
588                 argv[*argc] = start;
589                 (*argc)++;
590         }
591
592         *argvp = argv;
593         return 0;
594 }
595
596 /*
597  * Impose necessary and sufficient conditions on a devices's table such
598  * that any incoming bio which respects its logical_block_size can be
599  * processed successfully.  If it falls across the boundary between
600  * two or more targets, the size of each piece it gets split into must
601  * be compatible with the logical_block_size of the target processing it.
602  */
603 static int validate_hardware_logical_block_alignment(struct dm_table *table,
604                                                  struct queue_limits *limits)
605 {
606         /*
607          * This function uses arithmetic modulo the logical_block_size
608          * (in units of 512-byte sectors).
609          */
610         unsigned short device_logical_block_size_sects =
611                 limits->logical_block_size >> SECTOR_SHIFT;
612
613         /*
614          * Offset of the start of the next table entry, mod logical_block_size.
615          */
616         unsigned short next_target_start = 0;
617
618         /*
619          * Given an aligned bio that extends beyond the end of a
620          * target, how many sectors must the next target handle?
621          */
622         unsigned short remaining = 0;
623
624         struct dm_target *uninitialized_var(ti);
625         struct queue_limits ti_limits;
626         unsigned i = 0;
627
628         /*
629          * Check each entry in the table in turn.
630          */
631         while (i < dm_table_get_num_targets(table)) {
632                 ti = dm_table_get_target(table, i++);
633
634                 blk_set_stacking_limits(&ti_limits);
635
636                 /* combine all target devices' limits */
637                 if (ti->type->iterate_devices)
638                         ti->type->iterate_devices(ti, dm_set_device_limits,
639                                                   &ti_limits);
640
641                 /*
642                  * If the remaining sectors fall entirely within this
643                  * table entry are they compatible with its logical_block_size?
644                  */
645                 if (remaining < ti->len &&
646                     remaining & ((ti_limits.logical_block_size >>
647                                   SECTOR_SHIFT) - 1))
648                         break;  /* Error */
649
650                 next_target_start =
651                     (unsigned short) ((next_target_start + ti->len) &
652                                       (device_logical_block_size_sects - 1));
653                 remaining = next_target_start ?
654                     device_logical_block_size_sects - next_target_start : 0;
655         }
656
657         if (remaining) {
658                 DMWARN("%s: table line %u (start sect %llu len %llu) "
659                        "not aligned to h/w logical block size %u",
660                        dm_device_name(table->md), i,
661                        (unsigned long long) ti->begin,
662                        (unsigned long long) ti->len,
663                        limits->logical_block_size);
664                 return -EINVAL;
665         }
666
667         return 0;
668 }
669
670 int dm_table_add_target(struct dm_table *t, const char *type,
671                         sector_t start, sector_t len, char *params)
672 {
673         int r = -EINVAL, argc;
674         char **argv;
675         struct dm_target *tgt;
676
677         if (t->singleton) {
678                 DMERR("%s: target type %s must appear alone in table",
679                       dm_device_name(t->md), t->targets->type->name);
680                 return -EINVAL;
681         }
682
683         BUG_ON(t->num_targets >= t->num_allocated);
684
685         tgt = t->targets + t->num_targets;
686         memset(tgt, 0, sizeof(*tgt));
687
688         if (!len) {
689                 DMERR("%s: zero-length target", dm_device_name(t->md));
690                 return -EINVAL;
691         }
692
693         tgt->type = dm_get_target_type(type);
694         if (!tgt->type) {
695                 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
696                       type);
697                 return -EINVAL;
698         }
699
700         if (dm_target_needs_singleton(tgt->type)) {
701                 if (t->num_targets) {
702                         DMERR("%s: target type %s must appear alone in table",
703                               dm_device_name(t->md), type);
704                         return -EINVAL;
705                 }
706                 t->singleton = 1;
707         }
708
709         if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
710                 DMERR("%s: target type %s may not be included in read-only tables",
711                       dm_device_name(t->md), type);
712                 return -EINVAL;
713         }
714
715         if (t->immutable_target_type) {
716                 if (t->immutable_target_type != tgt->type) {
717                         DMERR("%s: immutable target type %s cannot be mixed with other target types",
718                               dm_device_name(t->md), t->immutable_target_type->name);
719                         return -EINVAL;
720                 }
721         } else if (dm_target_is_immutable(tgt->type)) {
722                 if (t->num_targets) {
723                         DMERR("%s: immutable target type %s cannot be mixed with other target types",
724                               dm_device_name(t->md), tgt->type->name);
725                         return -EINVAL;
726                 }
727                 t->immutable_target_type = tgt->type;
728         }
729
730         tgt->table = t;
731         tgt->begin = start;
732         tgt->len = len;
733         tgt->error = "Unknown error";
734
735         /*
736          * Does this target adjoin the previous one ?
737          */
738         if (!adjoin(t, tgt)) {
739                 tgt->error = "Gap in table";
740                 r = -EINVAL;
741                 goto bad;
742         }
743
744         r = dm_split_args(&argc, &argv, params);
745         if (r) {
746                 tgt->error = "couldn't split parameters (insufficient memory)";
747                 goto bad;
748         }
749
750         r = tgt->type->ctr(tgt, argc, argv);
751         kfree(argv);
752         if (r)
753                 goto bad;
754
755         t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
756
757         if (!tgt->num_discard_bios && tgt->discards_supported)
758                 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
759                        dm_device_name(t->md), type);
760
761         return 0;
762
763  bad:
764         DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
765         dm_put_target_type(tgt->type);
766         return r;
767 }
768
769 /*
770  * Target argument parsing helpers.
771  */
772 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
773                              unsigned *value, char **error, unsigned grouped)
774 {
775         const char *arg_str = dm_shift_arg(arg_set);
776         char dummy;
777
778         if (!arg_str ||
779             (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
780             (*value < arg->min) ||
781             (*value > arg->max) ||
782             (grouped && arg_set->argc < *value)) {
783                 *error = arg->error;
784                 return -EINVAL;
785         }
786
787         return 0;
788 }
789
790 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
791                 unsigned *value, char **error)
792 {
793         return validate_next_arg(arg, arg_set, value, error, 0);
794 }
795 EXPORT_SYMBOL(dm_read_arg);
796
797 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
798                       unsigned *value, char **error)
799 {
800         return validate_next_arg(arg, arg_set, value, error, 1);
801 }
802 EXPORT_SYMBOL(dm_read_arg_group);
803
804 const char *dm_shift_arg(struct dm_arg_set *as)
805 {
806         char *r;
807
808         if (as->argc) {
809                 as->argc--;
810                 r = *as->argv;
811                 as->argv++;
812                 return r;
813         }
814
815         return NULL;
816 }
817 EXPORT_SYMBOL(dm_shift_arg);
818
819 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
820 {
821         BUG_ON(as->argc < num_args);
822         as->argc -= num_args;
823         as->argv += num_args;
824 }
825 EXPORT_SYMBOL(dm_consume_args);
826
827 static bool __table_type_request_based(unsigned table_type)
828 {
829         return (table_type == DM_TYPE_REQUEST_BASED ||
830                 table_type == DM_TYPE_MQ_REQUEST_BASED);
831 }
832
833 static int dm_table_set_type(struct dm_table *t)
834 {
835         unsigned i;
836         unsigned bio_based = 0, request_based = 0, hybrid = 0;
837         bool use_blk_mq = false;
838         struct dm_target *tgt;
839         struct dm_dev_internal *dd;
840         struct list_head *devices;
841         unsigned live_md_type = dm_get_md_type(t->md);
842
843         for (i = 0; i < t->num_targets; i++) {
844                 tgt = t->targets + i;
845                 if (dm_target_hybrid(tgt))
846                         hybrid = 1;
847                 else if (dm_target_request_based(tgt))
848                         request_based = 1;
849                 else
850                         bio_based = 1;
851
852                 if (bio_based && request_based) {
853                         DMWARN("Inconsistent table: different target types"
854                                " can't be mixed up");
855                         return -EINVAL;
856                 }
857         }
858
859         if (hybrid && !bio_based && !request_based) {
860                 /*
861                  * The targets can work either way.
862                  * Determine the type from the live device.
863                  * Default to bio-based if device is new.
864                  */
865                 if (__table_type_request_based(live_md_type))
866                         request_based = 1;
867                 else
868                         bio_based = 1;
869         }
870
871         if (bio_based) {
872                 /* We must use this table as bio-based */
873                 t->type = DM_TYPE_BIO_BASED;
874                 return 0;
875         }
876
877         BUG_ON(!request_based); /* No targets in this table */
878
879         /*
880          * Request-based dm supports only tables that have a single target now.
881          * To support multiple targets, request splitting support is needed,
882          * and that needs lots of changes in the block-layer.
883          * (e.g. request completion process for partial completion.)
884          */
885         if (t->num_targets > 1) {
886                 DMWARN("Request-based dm doesn't support multiple targets yet");
887                 return -EINVAL;
888         }
889
890         /* Non-request-stackable devices can't be used for request-based dm */
891         devices = dm_table_get_devices(t);
892         list_for_each_entry(dd, devices, list) {
893                 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
894
895                 if (!blk_queue_stackable(q)) {
896                         DMERR("table load rejected: including"
897                               " non-request-stackable devices");
898                         return -EINVAL;
899                 }
900
901                 if (q->mq_ops)
902                         use_blk_mq = true;
903         }
904
905         if (use_blk_mq) {
906                 /* verify _all_ devices in the table are blk-mq devices */
907                 list_for_each_entry(dd, devices, list)
908                         if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
909                                 DMERR("table load rejected: not all devices"
910                                       " are blk-mq request-stackable");
911                                 return -EINVAL;
912                         }
913                 t->type = DM_TYPE_MQ_REQUEST_BASED;
914
915         } else if (list_empty(devices) && __table_type_request_based(live_md_type)) {
916                 /* inherit live MD type */
917                 t->type = live_md_type;
918
919         } else
920                 t->type = DM_TYPE_REQUEST_BASED;
921
922         return 0;
923 }
924
925 unsigned dm_table_get_type(struct dm_table *t)
926 {
927         return t->type;
928 }
929
930 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
931 {
932         return t->immutable_target_type;
933 }
934
935 bool dm_table_request_based(struct dm_table *t)
936 {
937         return __table_type_request_based(dm_table_get_type(t));
938 }
939
940 bool dm_table_mq_request_based(struct dm_table *t)
941 {
942         return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
943 }
944
945 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
946 {
947         unsigned type = dm_table_get_type(t);
948         unsigned per_bio_data_size = 0;
949         struct dm_target *tgt;
950         unsigned i;
951
952         if (unlikely(type == DM_TYPE_NONE)) {
953                 DMWARN("no table type is set, can't allocate mempools");
954                 return -EINVAL;
955         }
956
957         if (type == DM_TYPE_BIO_BASED)
958                 for (i = 0; i < t->num_targets; i++) {
959                         tgt = t->targets + i;
960                         per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
961                 }
962
963         t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_bio_data_size);
964         if (!t->mempools)
965                 return -ENOMEM;
966
967         return 0;
968 }
969
970 void dm_table_free_md_mempools(struct dm_table *t)
971 {
972         dm_free_md_mempools(t->mempools);
973         t->mempools = NULL;
974 }
975
976 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
977 {
978         return t->mempools;
979 }
980
981 static int setup_indexes(struct dm_table *t)
982 {
983         int i;
984         unsigned int total = 0;
985         sector_t *indexes;
986
987         /* allocate the space for *all* the indexes */
988         for (i = t->depth - 2; i >= 0; i--) {
989                 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
990                 total += t->counts[i];
991         }
992
993         indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
994         if (!indexes)
995                 return -ENOMEM;
996
997         /* set up internal nodes, bottom-up */
998         for (i = t->depth - 2; i >= 0; i--) {
999                 t->index[i] = indexes;
1000                 indexes += (KEYS_PER_NODE * t->counts[i]);
1001                 setup_btree_index(i, t);
1002         }
1003
1004         return 0;
1005 }
1006
1007 /*
1008  * Builds the btree to index the map.
1009  */
1010 static int dm_table_build_index(struct dm_table *t)
1011 {
1012         int r = 0;
1013         unsigned int leaf_nodes;
1014
1015         /* how many indexes will the btree have ? */
1016         leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1017         t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1018
1019         /* leaf layer has already been set up */
1020         t->counts[t->depth - 1] = leaf_nodes;
1021         t->index[t->depth - 1] = t->highs;
1022
1023         if (t->depth >= 2)
1024                 r = setup_indexes(t);
1025
1026         return r;
1027 }
1028
1029 static bool integrity_profile_exists(struct gendisk *disk)
1030 {
1031         return !!blk_get_integrity(disk);
1032 }
1033
1034 /*
1035  * Get a disk whose integrity profile reflects the table's profile.
1036  * Returns NULL if integrity support was inconsistent or unavailable.
1037  */
1038 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1039 {
1040         struct list_head *devices = dm_table_get_devices(t);
1041         struct dm_dev_internal *dd = NULL;
1042         struct gendisk *prev_disk = NULL, *template_disk = NULL;
1043
1044         list_for_each_entry(dd, devices, list) {
1045                 template_disk = dd->dm_dev->bdev->bd_disk;
1046                 if (!integrity_profile_exists(template_disk))
1047                         goto no_integrity;
1048                 else if (prev_disk &&
1049                          blk_integrity_compare(prev_disk, template_disk) < 0)
1050                         goto no_integrity;
1051                 prev_disk = template_disk;
1052         }
1053
1054         return template_disk;
1055
1056 no_integrity:
1057         if (prev_disk)
1058                 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1059                        dm_device_name(t->md),
1060                        prev_disk->disk_name,
1061                        template_disk->disk_name);
1062         return NULL;
1063 }
1064
1065 /*
1066  * Register the mapped device for blk_integrity support if the
1067  * underlying devices have an integrity profile.  But all devices may
1068  * not have matching profiles (checking all devices isn't reliable
1069  * during table load because this table may use other DM device(s) which
1070  * must be resumed before they will have an initialized integity
1071  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1072  * profile validation: First pass during table load, final pass during
1073  * resume.
1074  */
1075 static int dm_table_register_integrity(struct dm_table *t)
1076 {
1077         struct mapped_device *md = t->md;
1078         struct gendisk *template_disk = NULL;
1079
1080         template_disk = dm_table_get_integrity_disk(t);
1081         if (!template_disk)
1082                 return 0;
1083
1084         if (!integrity_profile_exists(dm_disk(md))) {
1085                 t->integrity_supported = 1;
1086                 /*
1087                  * Register integrity profile during table load; we can do
1088                  * this because the final profile must match during resume.
1089                  */
1090                 blk_integrity_register(dm_disk(md),
1091                                        blk_get_integrity(template_disk));
1092                 return 0;
1093         }
1094
1095         /*
1096          * If DM device already has an initialized integrity
1097          * profile the new profile should not conflict.
1098          */
1099         if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1100                 DMWARN("%s: conflict with existing integrity profile: "
1101                        "%s profile mismatch",
1102                        dm_device_name(t->md),
1103                        template_disk->disk_name);
1104                 return 1;
1105         }
1106
1107         /* Preserve existing integrity profile */
1108         t->integrity_supported = 1;
1109         return 0;
1110 }
1111
1112 /*
1113  * Prepares the table for use by building the indices,
1114  * setting the type, and allocating mempools.
1115  */
1116 int dm_table_complete(struct dm_table *t)
1117 {
1118         int r;
1119
1120         r = dm_table_set_type(t);
1121         if (r) {
1122                 DMERR("unable to set table type");
1123                 return r;
1124         }
1125
1126         r = dm_table_build_index(t);
1127         if (r) {
1128                 DMERR("unable to build btrees");
1129                 return r;
1130         }
1131
1132         r = dm_table_register_integrity(t);
1133         if (r) {
1134                 DMERR("could not register integrity profile.");
1135                 return r;
1136         }
1137
1138         r = dm_table_alloc_md_mempools(t, t->md);
1139         if (r)
1140                 DMERR("unable to allocate mempools");
1141
1142         return r;
1143 }
1144
1145 static DEFINE_MUTEX(_event_lock);
1146 void dm_table_event_callback(struct dm_table *t,
1147                              void (*fn)(void *), void *context)
1148 {
1149         mutex_lock(&_event_lock);
1150         t->event_fn = fn;
1151         t->event_context = context;
1152         mutex_unlock(&_event_lock);
1153 }
1154
1155 void dm_table_event(struct dm_table *t)
1156 {
1157         /*
1158          * You can no longer call dm_table_event() from interrupt
1159          * context, use a bottom half instead.
1160          */
1161         BUG_ON(in_interrupt());
1162
1163         mutex_lock(&_event_lock);
1164         if (t->event_fn)
1165                 t->event_fn(t->event_context);
1166         mutex_unlock(&_event_lock);
1167 }
1168 EXPORT_SYMBOL(dm_table_event);
1169
1170 sector_t dm_table_get_size(struct dm_table *t)
1171 {
1172         return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1173 }
1174 EXPORT_SYMBOL(dm_table_get_size);
1175
1176 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1177 {
1178         if (index >= t->num_targets)
1179                 return NULL;
1180
1181         return t->targets + index;
1182 }
1183
1184 /*
1185  * Search the btree for the correct target.
1186  *
1187  * Caller should check returned pointer with dm_target_is_valid()
1188  * to trap I/O beyond end of device.
1189  */
1190 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1191 {
1192         unsigned int l, n = 0, k = 0;
1193         sector_t *node;
1194
1195         for (l = 0; l < t->depth; l++) {
1196                 n = get_child(n, k);
1197                 node = get_node(t, l, n);
1198
1199                 for (k = 0; k < KEYS_PER_NODE; k++)
1200                         if (node[k] >= sector)
1201                                 break;
1202         }
1203
1204         return &t->targets[(KEYS_PER_NODE * n) + k];
1205 }
1206
1207 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1208                         sector_t start, sector_t len, void *data)
1209 {
1210         unsigned *num_devices = data;
1211
1212         (*num_devices)++;
1213
1214         return 0;
1215 }
1216
1217 /*
1218  * Check whether a table has no data devices attached using each
1219  * target's iterate_devices method.
1220  * Returns false if the result is unknown because a target doesn't
1221  * support iterate_devices.
1222  */
1223 bool dm_table_has_no_data_devices(struct dm_table *table)
1224 {
1225         struct dm_target *uninitialized_var(ti);
1226         unsigned i = 0, num_devices = 0;
1227
1228         while (i < dm_table_get_num_targets(table)) {
1229                 ti = dm_table_get_target(table, i++);
1230
1231                 if (!ti->type->iterate_devices)
1232                         return false;
1233
1234                 ti->type->iterate_devices(ti, count_device, &num_devices);
1235                 if (num_devices)
1236                         return false;
1237         }
1238
1239         return true;
1240 }
1241
1242 /*
1243  * Establish the new table's queue_limits and validate them.
1244  */
1245 int dm_calculate_queue_limits(struct dm_table *table,
1246                               struct queue_limits *limits)
1247 {
1248         struct dm_target *uninitialized_var(ti);
1249         struct queue_limits ti_limits;
1250         unsigned i = 0;
1251
1252         blk_set_stacking_limits(limits);
1253
1254         while (i < dm_table_get_num_targets(table)) {
1255                 blk_set_stacking_limits(&ti_limits);
1256
1257                 ti = dm_table_get_target(table, i++);
1258
1259                 if (!ti->type->iterate_devices)
1260                         goto combine_limits;
1261
1262                 /*
1263                  * Combine queue limits of all the devices this target uses.
1264                  */
1265                 ti->type->iterate_devices(ti, dm_set_device_limits,
1266                                           &ti_limits);
1267
1268                 /* Set I/O hints portion of queue limits */
1269                 if (ti->type->io_hints)
1270                         ti->type->io_hints(ti, &ti_limits);
1271
1272                 /*
1273                  * Check each device area is consistent with the target's
1274                  * overall queue limits.
1275                  */
1276                 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1277                                               &ti_limits))
1278                         return -EINVAL;
1279
1280 combine_limits:
1281                 /*
1282                  * Merge this target's queue limits into the overall limits
1283                  * for the table.
1284                  */
1285                 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1286                         DMWARN("%s: adding target device "
1287                                "(start sect %llu len %llu) "
1288                                "caused an alignment inconsistency",
1289                                dm_device_name(table->md),
1290                                (unsigned long long) ti->begin,
1291                                (unsigned long long) ti->len);
1292         }
1293
1294         return validate_hardware_logical_block_alignment(table, limits);
1295 }
1296
1297 /*
1298  * Verify that all devices have an integrity profile that matches the
1299  * DM device's registered integrity profile.  If the profiles don't
1300  * match then unregister the DM device's integrity profile.
1301  */
1302 static void dm_table_verify_integrity(struct dm_table *t)
1303 {
1304         struct gendisk *template_disk = NULL;
1305
1306         if (t->integrity_supported) {
1307                 /*
1308                  * Verify that the original integrity profile
1309                  * matches all the devices in this table.
1310                  */
1311                 template_disk = dm_table_get_integrity_disk(t);
1312                 if (template_disk &&
1313                     blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1314                         return;
1315         }
1316
1317         if (integrity_profile_exists(dm_disk(t->md))) {
1318                 DMWARN("%s: unable to establish an integrity profile",
1319                        dm_device_name(t->md));
1320                 blk_integrity_unregister(dm_disk(t->md));
1321         }
1322 }
1323
1324 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1325                                 sector_t start, sector_t len, void *data)
1326 {
1327         unsigned flush = (*(unsigned *)data);
1328         struct request_queue *q = bdev_get_queue(dev->bdev);
1329
1330         return q && (q->flush_flags & flush);
1331 }
1332
1333 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1334 {
1335         struct dm_target *ti;
1336         unsigned i = 0;
1337
1338         /*
1339          * Require at least one underlying device to support flushes.
1340          * t->devices includes internal dm devices such as mirror logs
1341          * so we need to use iterate_devices here, which targets
1342          * supporting flushes must provide.
1343          */
1344         while (i < dm_table_get_num_targets(t)) {
1345                 ti = dm_table_get_target(t, i++);
1346
1347                 if (!ti->num_flush_bios)
1348                         continue;
1349
1350                 if (ti->flush_supported)
1351                         return true;
1352
1353                 if (ti->type->iterate_devices &&
1354                     ti->type->iterate_devices(ti, device_flush_capable, &flush))
1355                         return true;
1356         }
1357
1358         return false;
1359 }
1360
1361 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1362 {
1363         struct dm_target *ti;
1364         unsigned i = 0;
1365
1366         /* Ensure that all targets supports discard_zeroes_data. */
1367         while (i < dm_table_get_num_targets(t)) {
1368                 ti = dm_table_get_target(t, i++);
1369
1370                 if (ti->discard_zeroes_data_unsupported)
1371                         return false;
1372         }
1373
1374         return true;
1375 }
1376
1377 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1378                             sector_t start, sector_t len, void *data)
1379 {
1380         struct request_queue *q = bdev_get_queue(dev->bdev);
1381
1382         return q && blk_queue_nonrot(q);
1383 }
1384
1385 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1386                              sector_t start, sector_t len, void *data)
1387 {
1388         struct request_queue *q = bdev_get_queue(dev->bdev);
1389
1390         return q && !blk_queue_add_random(q);
1391 }
1392
1393 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1394                                    sector_t start, sector_t len, void *data)
1395 {
1396         struct request_queue *q = bdev_get_queue(dev->bdev);
1397
1398         return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1399 }
1400
1401 static bool dm_table_all_devices_attribute(struct dm_table *t,
1402                                            iterate_devices_callout_fn func)
1403 {
1404         struct dm_target *ti;
1405         unsigned i = 0;
1406
1407         while (i < dm_table_get_num_targets(t)) {
1408                 ti = dm_table_get_target(t, i++);
1409
1410                 if (!ti->type->iterate_devices ||
1411                     !ti->type->iterate_devices(ti, func, NULL))
1412                         return false;
1413         }
1414
1415         return true;
1416 }
1417
1418 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1419                                          sector_t start, sector_t len, void *data)
1420 {
1421         struct request_queue *q = bdev_get_queue(dev->bdev);
1422
1423         return q && !q->limits.max_write_same_sectors;
1424 }
1425
1426 static bool dm_table_supports_write_same(struct dm_table *t)
1427 {
1428         struct dm_target *ti;
1429         unsigned i = 0;
1430
1431         while (i < dm_table_get_num_targets(t)) {
1432                 ti = dm_table_get_target(t, i++);
1433
1434                 if (!ti->num_write_same_bios)
1435                         return false;
1436
1437                 if (!ti->type->iterate_devices ||
1438                     ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1439                         return false;
1440         }
1441
1442         return true;
1443 }
1444
1445 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1446                                   sector_t start, sector_t len, void *data)
1447 {
1448         struct request_queue *q = bdev_get_queue(dev->bdev);
1449
1450         return q && blk_queue_discard(q);
1451 }
1452
1453 static bool dm_table_supports_discards(struct dm_table *t)
1454 {
1455         struct dm_target *ti;
1456         unsigned i = 0;
1457
1458         /*
1459          * Unless any target used by the table set discards_supported,
1460          * require at least one underlying device to support discards.
1461          * t->devices includes internal dm devices such as mirror logs
1462          * so we need to use iterate_devices here, which targets
1463          * supporting discard selectively must provide.
1464          */
1465         while (i < dm_table_get_num_targets(t)) {
1466                 ti = dm_table_get_target(t, i++);
1467
1468                 if (!ti->num_discard_bios)
1469                         continue;
1470
1471                 if (ti->discards_supported)
1472                         return true;
1473
1474                 if (ti->type->iterate_devices &&
1475                     ti->type->iterate_devices(ti, device_discard_capable, NULL))
1476                         return true;
1477         }
1478
1479         return false;
1480 }
1481
1482 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1483                                struct queue_limits *limits)
1484 {
1485         unsigned flush = 0;
1486
1487         /*
1488          * Copy table's limits to the DM device's request_queue
1489          */
1490         q->limits = *limits;
1491
1492         if (!dm_table_supports_discards(t))
1493                 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1494         else
1495                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1496
1497         if (dm_table_supports_flush(t, REQ_FLUSH)) {
1498                 flush |= REQ_FLUSH;
1499                 if (dm_table_supports_flush(t, REQ_FUA))
1500                         flush |= REQ_FUA;
1501         }
1502         blk_queue_flush(q, flush);
1503
1504         if (!dm_table_discard_zeroes_data(t))
1505                 q->limits.discard_zeroes_data = 0;
1506
1507         /* Ensure that all underlying devices are non-rotational. */
1508         if (dm_table_all_devices_attribute(t, device_is_nonrot))
1509                 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1510         else
1511                 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1512
1513         if (!dm_table_supports_write_same(t))
1514                 q->limits.max_write_same_sectors = 0;
1515
1516         if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1517                 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1518         else
1519                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1520
1521         dm_table_verify_integrity(t);
1522
1523         /*
1524          * Determine whether or not this queue's I/O timings contribute
1525          * to the entropy pool, Only request-based targets use this.
1526          * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1527          * have it set.
1528          */
1529         if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1530                 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1531
1532         /*
1533          * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1534          * visible to other CPUs because, once the flag is set, incoming bios
1535          * are processed by request-based dm, which refers to the queue
1536          * settings.
1537          * Until the flag set, bios are passed to bio-based dm and queued to
1538          * md->deferred where queue settings are not needed yet.
1539          * Those bios are passed to request-based dm at the resume time.
1540          */
1541         smp_mb();
1542         if (dm_table_request_based(t))
1543                 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1544 }
1545
1546 unsigned int dm_table_get_num_targets(struct dm_table *t)
1547 {
1548         return t->num_targets;
1549 }
1550
1551 struct list_head *dm_table_get_devices(struct dm_table *t)
1552 {
1553         return &t->devices;
1554 }
1555
1556 fmode_t dm_table_get_mode(struct dm_table *t)
1557 {
1558         return t->mode;
1559 }
1560 EXPORT_SYMBOL(dm_table_get_mode);
1561
1562 enum suspend_mode {
1563         PRESUSPEND,
1564         PRESUSPEND_UNDO,
1565         POSTSUSPEND,
1566 };
1567
1568 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1569 {
1570         int i = t->num_targets;
1571         struct dm_target *ti = t->targets;
1572
1573         while (i--) {
1574                 switch (mode) {
1575                 case PRESUSPEND:
1576                         if (ti->type->presuspend)
1577                                 ti->type->presuspend(ti);
1578                         break;
1579                 case PRESUSPEND_UNDO:
1580                         if (ti->type->presuspend_undo)
1581                                 ti->type->presuspend_undo(ti);
1582                         break;
1583                 case POSTSUSPEND:
1584                         if (ti->type->postsuspend)
1585                                 ti->type->postsuspend(ti);
1586                         break;
1587                 }
1588                 ti++;
1589         }
1590 }
1591
1592 void dm_table_presuspend_targets(struct dm_table *t)
1593 {
1594         if (!t)
1595                 return;
1596
1597         suspend_targets(t, PRESUSPEND);
1598 }
1599
1600 void dm_table_presuspend_undo_targets(struct dm_table *t)
1601 {
1602         if (!t)
1603                 return;
1604
1605         suspend_targets(t, PRESUSPEND_UNDO);
1606 }
1607
1608 void dm_table_postsuspend_targets(struct dm_table *t)
1609 {
1610         if (!t)
1611                 return;
1612
1613         suspend_targets(t, POSTSUSPEND);
1614 }
1615
1616 int dm_table_resume_targets(struct dm_table *t)
1617 {
1618         int i, r = 0;
1619
1620         for (i = 0; i < t->num_targets; i++) {
1621                 struct dm_target *ti = t->targets + i;
1622
1623                 if (!ti->type->preresume)
1624                         continue;
1625
1626                 r = ti->type->preresume(ti);
1627                 if (r) {
1628                         DMERR("%s: %s: preresume failed, error = %d",
1629                               dm_device_name(t->md), ti->type->name, r);
1630                         return r;
1631                 }
1632         }
1633
1634         for (i = 0; i < t->num_targets; i++) {
1635                 struct dm_target *ti = t->targets + i;
1636
1637                 if (ti->type->resume)
1638                         ti->type->resume(ti);
1639         }
1640
1641         return 0;
1642 }
1643
1644 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1645 {
1646         list_add(&cb->list, &t->target_callbacks);
1647 }
1648 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1649
1650 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1651 {
1652         struct dm_dev_internal *dd;
1653         struct list_head *devices = dm_table_get_devices(t);
1654         struct dm_target_callbacks *cb;
1655         int r = 0;
1656
1657         list_for_each_entry(dd, devices, list) {
1658                 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1659                 char b[BDEVNAME_SIZE];
1660
1661                 if (likely(q))
1662                         r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1663                 else
1664                         DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1665                                      dm_device_name(t->md),
1666                                      bdevname(dd->dm_dev->bdev, b));
1667         }
1668
1669         list_for_each_entry(cb, &t->target_callbacks, list)
1670                 if (cb->congested_fn)
1671                         r |= cb->congested_fn(cb, bdi_bits);
1672
1673         return r;
1674 }
1675
1676 struct mapped_device *dm_table_get_md(struct dm_table *t)
1677 {
1678         return t->md;
1679 }
1680 EXPORT_SYMBOL(dm_table_get_md);
1681
1682 void dm_table_run_md_queue_async(struct dm_table *t)
1683 {
1684         struct mapped_device *md;
1685         struct request_queue *queue;
1686         unsigned long flags;
1687
1688         if (!dm_table_request_based(t))
1689                 return;
1690
1691         md = dm_table_get_md(t);
1692         queue = dm_get_md_queue(md);
1693         if (queue) {
1694                 if (queue->mq_ops)
1695                         blk_mq_run_hw_queues(queue, true);
1696                 else {
1697                         spin_lock_irqsave(queue->queue_lock, flags);
1698                         blk_run_queue_async(queue);
1699                         spin_unlock_irqrestore(queue->queue_lock, flags);
1700                 }
1701         }
1702 }
1703 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1704