Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / md / bcache / util.h
1
2 #ifndef _BCACHE_UTIL_H
3 #define _BCACHE_UTIL_H
4
5 #include <linux/blkdev.h>
6 #include <linux/errno.h>
7 #include <linux/kernel.h>
8 #include <linux/llist.h>
9 #include <linux/ratelimit.h>
10 #include <linux/vmalloc.h>
11 #include <linux/workqueue.h>
12
13 #include "closure.h"
14
15 #define PAGE_SECTORS            (PAGE_SIZE / 512)
16
17 struct closure;
18
19 #ifdef CONFIG_BCACHE_DEBUG
20
21 #define EBUG_ON(cond)                   BUG_ON(cond)
22 #define atomic_dec_bug(v)       BUG_ON(atomic_dec_return(v) < 0)
23 #define atomic_inc_bug(v, i)    BUG_ON(atomic_inc_return(v) <= i)
24
25 #else /* DEBUG */
26
27 #define EBUG_ON(cond)                   do { if (cond); } while (0)
28 #define atomic_dec_bug(v)       atomic_dec(v)
29 #define atomic_inc_bug(v, i)    atomic_inc(v)
30
31 #endif
32
33 #define DECLARE_HEAP(type, name)                                        \
34         struct {                                                        \
35                 size_t size, used;                                      \
36                 type *data;                                             \
37         } name
38
39 #define init_heap(heap, _size, gfp)                                     \
40 ({                                                                      \
41         size_t _bytes;                                                  \
42         (heap)->used = 0;                                               \
43         (heap)->size = (_size);                                         \
44         _bytes = (heap)->size * sizeof(*(heap)->data);                  \
45         (heap)->data = NULL;                                            \
46         if (_bytes < KMALLOC_MAX_SIZE)                                  \
47                 (heap)->data = kmalloc(_bytes, (gfp));                  \
48         if ((!(heap)->data) && ((gfp) & GFP_KERNEL))                    \
49                 (heap)->data = vmalloc(_bytes);                         \
50         (heap)->data;                                                   \
51 })
52
53 #define free_heap(heap)                                                 \
54 do {                                                                    \
55         if (is_vmalloc_addr((heap)->data))                              \
56                 vfree((heap)->data);                                    \
57         else                                                            \
58                 kfree((heap)->data);                                    \
59         (heap)->data = NULL;                                            \
60 } while (0)
61
62 #define heap_swap(h, i, j)      swap((h)->data[i], (h)->data[j])
63
64 #define heap_sift(h, i, cmp)                                            \
65 do {                                                                    \
66         size_t _r, _j = i;                                              \
67                                                                         \
68         for (; _j * 2 + 1 < (h)->used; _j = _r) {                       \
69                 _r = _j * 2 + 1;                                        \
70                 if (_r + 1 < (h)->used &&                               \
71                     cmp((h)->data[_r], (h)->data[_r + 1]))              \
72                         _r++;                                           \
73                                                                         \
74                 if (cmp((h)->data[_r], (h)->data[_j]))                  \
75                         break;                                          \
76                 heap_swap(h, _r, _j);                                   \
77         }                                                               \
78 } while (0)
79
80 #define heap_sift_down(h, i, cmp)                                       \
81 do {                                                                    \
82         while (i) {                                                     \
83                 size_t p = (i - 1) / 2;                                 \
84                 if (cmp((h)->data[i], (h)->data[p]))                    \
85                         break;                                          \
86                 heap_swap(h, i, p);                                     \
87                 i = p;                                                  \
88         }                                                               \
89 } while (0)
90
91 #define heap_add(h, d, cmp)                                             \
92 ({                                                                      \
93         bool _r = !heap_full(h);                                        \
94         if (_r) {                                                       \
95                 size_t _i = (h)->used++;                                \
96                 (h)->data[_i] = d;                                      \
97                                                                         \
98                 heap_sift_down(h, _i, cmp);                             \
99                 heap_sift(h, _i, cmp);                                  \
100         }                                                               \
101         _r;                                                             \
102 })
103
104 #define heap_pop(h, d, cmp)                                             \
105 ({                                                                      \
106         bool _r = (h)->used;                                            \
107         if (_r) {                                                       \
108                 (d) = (h)->data[0];                                     \
109                 (h)->used--;                                            \
110                 heap_swap(h, 0, (h)->used);                             \
111                 heap_sift(h, 0, cmp);                                   \
112         }                                                               \
113         _r;                                                             \
114 })
115
116 #define heap_peek(h)    ((h)->used ? (h)->data[0] : NULL)
117
118 #define heap_full(h)    ((h)->used == (h)->size)
119
120 #define DECLARE_FIFO(type, name)                                        \
121         struct {                                                        \
122                 size_t front, back, size, mask;                         \
123                 type *data;                                             \
124         } name
125
126 #define fifo_for_each(c, fifo, iter)                                    \
127         for (iter = (fifo)->front;                                      \
128              c = (fifo)->data[iter], iter != (fifo)->back;              \
129              iter = (iter + 1) & (fifo)->mask)
130
131 #define __init_fifo(fifo, gfp)                                          \
132 ({                                                                      \
133         size_t _allocated_size, _bytes;                                 \
134         BUG_ON(!(fifo)->size);                                          \
135                                                                         \
136         _allocated_size = roundup_pow_of_two((fifo)->size + 1);         \
137         _bytes = _allocated_size * sizeof(*(fifo)->data);               \
138                                                                         \
139         (fifo)->mask = _allocated_size - 1;                             \
140         (fifo)->front = (fifo)->back = 0;                               \
141         (fifo)->data = NULL;                                            \
142                                                                         \
143         if (_bytes < KMALLOC_MAX_SIZE)                                  \
144                 (fifo)->data = kmalloc(_bytes, (gfp));                  \
145         if ((!(fifo)->data) && ((gfp) & GFP_KERNEL))                    \
146                 (fifo)->data = vmalloc(_bytes);                         \
147         (fifo)->data;                                                   \
148 })
149
150 #define init_fifo_exact(fifo, _size, gfp)                               \
151 ({                                                                      \
152         (fifo)->size = (_size);                                         \
153         __init_fifo(fifo, gfp);                                         \
154 })
155
156 #define init_fifo(fifo, _size, gfp)                                     \
157 ({                                                                      \
158         (fifo)->size = (_size);                                         \
159         if ((fifo)->size > 4)                                           \
160                 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1;    \
161         __init_fifo(fifo, gfp);                                         \
162 })
163
164 #define free_fifo(fifo)                                                 \
165 do {                                                                    \
166         if (is_vmalloc_addr((fifo)->data))                              \
167                 vfree((fifo)->data);                                    \
168         else                                                            \
169                 kfree((fifo)->data);                                    \
170         (fifo)->data = NULL;                                            \
171 } while (0)
172
173 #define fifo_used(fifo)         (((fifo)->back - (fifo)->front) & (fifo)->mask)
174 #define fifo_free(fifo)         ((fifo)->size - fifo_used(fifo))
175
176 #define fifo_empty(fifo)        (!fifo_used(fifo))
177 #define fifo_full(fifo)         (!fifo_free(fifo))
178
179 #define fifo_front(fifo)        ((fifo)->data[(fifo)->front])
180 #define fifo_back(fifo)                                                 \
181         ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
182
183 #define fifo_idx(fifo, p)       (((p) - &fifo_front(fifo)) & (fifo)->mask)
184
185 #define fifo_push_back(fifo, i)                                         \
186 ({                                                                      \
187         bool _r = !fifo_full((fifo));                                   \
188         if (_r) {                                                       \
189                 (fifo)->data[(fifo)->back++] = (i);                     \
190                 (fifo)->back &= (fifo)->mask;                           \
191         }                                                               \
192         _r;                                                             \
193 })
194
195 #define fifo_pop_front(fifo, i)                                         \
196 ({                                                                      \
197         bool _r = !fifo_empty((fifo));                                  \
198         if (_r) {                                                       \
199                 (i) = (fifo)->data[(fifo)->front++];                    \
200                 (fifo)->front &= (fifo)->mask;                          \
201         }                                                               \
202         _r;                                                             \
203 })
204
205 #define fifo_push_front(fifo, i)                                        \
206 ({                                                                      \
207         bool _r = !fifo_full((fifo));                                   \
208         if (_r) {                                                       \
209                 --(fifo)->front;                                        \
210                 (fifo)->front &= (fifo)->mask;                          \
211                 (fifo)->data[(fifo)->front] = (i);                      \
212         }                                                               \
213         _r;                                                             \
214 })
215
216 #define fifo_pop_back(fifo, i)                                          \
217 ({                                                                      \
218         bool _r = !fifo_empty((fifo));                                  \
219         if (_r) {                                                       \
220                 --(fifo)->back;                                         \
221                 (fifo)->back &= (fifo)->mask;                           \
222                 (i) = (fifo)->data[(fifo)->back]                        \
223         }                                                               \
224         _r;                                                             \
225 })
226
227 #define fifo_push(fifo, i)      fifo_push_back(fifo, (i))
228 #define fifo_pop(fifo, i)       fifo_pop_front(fifo, (i))
229
230 #define fifo_swap(l, r)                                                 \
231 do {                                                                    \
232         swap((l)->front, (r)->front);                                   \
233         swap((l)->back, (r)->back);                                     \
234         swap((l)->size, (r)->size);                                     \
235         swap((l)->mask, (r)->mask);                                     \
236         swap((l)->data, (r)->data);                                     \
237 } while (0)
238
239 #define fifo_move(dest, src)                                            \
240 do {                                                                    \
241         typeof(*((dest)->data)) _t;                                     \
242         while (!fifo_full(dest) &&                                      \
243                fifo_pop(src, _t))                                       \
244                 fifo_push(dest, _t);                                    \
245 } while (0)
246
247 /*
248  * Simple array based allocator - preallocates a number of elements and you can
249  * never allocate more than that, also has no locking.
250  *
251  * Handy because if you know you only need a fixed number of elements you don't
252  * have to worry about memory allocation failure, and sometimes a mempool isn't
253  * what you want.
254  *
255  * We treat the free elements as entries in a singly linked list, and the
256  * freelist as a stack - allocating and freeing push and pop off the freelist.
257  */
258
259 #define DECLARE_ARRAY_ALLOCATOR(type, name, size)                       \
260         struct {                                                        \
261                 type    *freelist;                                      \
262                 type    data[size];                                     \
263         } name
264
265 #define array_alloc(array)                                              \
266 ({                                                                      \
267         typeof((array)->freelist) _ret = (array)->freelist;             \
268                                                                         \
269         if (_ret)                                                       \
270                 (array)->freelist = *((typeof((array)->freelist) *) _ret);\
271                                                                         \
272         _ret;                                                           \
273 })
274
275 #define array_free(array, ptr)                                          \
276 do {                                                                    \
277         typeof((array)->freelist) _ptr = ptr;                           \
278                                                                         \
279         *((typeof((array)->freelist) *) _ptr) = (array)->freelist;      \
280         (array)->freelist = _ptr;                                       \
281 } while (0)
282
283 #define array_allocator_init(array)                                     \
284 do {                                                                    \
285         typeof((array)->freelist) _i;                                   \
286                                                                         \
287         BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));        \
288         (array)->freelist = NULL;                                       \
289                                                                         \
290         for (_i = (array)->data;                                        \
291              _i < (array)->data + ARRAY_SIZE((array)->data);            \
292              _i++)                                                      \
293                 array_free(array, _i);                                  \
294 } while (0)
295
296 #define array_freelist_empty(array)     ((array)->freelist == NULL)
297
298 #define ANYSINT_MAX(t)                                                  \
299         ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
300
301 int bch_strtoint_h(const char *, int *);
302 int bch_strtouint_h(const char *, unsigned int *);
303 int bch_strtoll_h(const char *, long long *);
304 int bch_strtoull_h(const char *, unsigned long long *);
305
306 static inline int bch_strtol_h(const char *cp, long *res)
307 {
308 #if BITS_PER_LONG == 32
309         return bch_strtoint_h(cp, (int *) res);
310 #else
311         return bch_strtoll_h(cp, (long long *) res);
312 #endif
313 }
314
315 static inline int bch_strtoul_h(const char *cp, long *res)
316 {
317 #if BITS_PER_LONG == 32
318         return bch_strtouint_h(cp, (unsigned int *) res);
319 #else
320         return bch_strtoull_h(cp, (unsigned long long *) res);
321 #endif
322 }
323
324 #define strtoi_h(cp, res)                                               \
325         (__builtin_types_compatible_p(typeof(*res), int)                \
326         ? bch_strtoint_h(cp, (void *) res)                              \
327         : __builtin_types_compatible_p(typeof(*res), long)              \
328         ? bch_strtol_h(cp, (void *) res)                                \
329         : __builtin_types_compatible_p(typeof(*res), long long)         \
330         ? bch_strtoll_h(cp, (void *) res)                               \
331         : __builtin_types_compatible_p(typeof(*res), unsigned int)      \
332         ? bch_strtouint_h(cp, (void *) res)                             \
333         : __builtin_types_compatible_p(typeof(*res), unsigned long)     \
334         ? bch_strtoul_h(cp, (void *) res)                               \
335         : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
336         ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
337
338 #define strtoul_safe(cp, var)                                           \
339 ({                                                                      \
340         unsigned long _v;                                               \
341         int _r = kstrtoul(cp, 10, &_v);                                 \
342         if (!_r)                                                        \
343                 var = _v;                                               \
344         _r;                                                             \
345 })
346
347 #define strtoul_safe_clamp(cp, var, min, max)                           \
348 ({                                                                      \
349         unsigned long _v;                                               \
350         int _r = kstrtoul(cp, 10, &_v);                                 \
351         if (!_r)                                                        \
352                 var = clamp_t(typeof(var), _v, min, max);               \
353         _r;                                                             \
354 })
355
356 #define snprint(buf, size, var)                                         \
357         snprintf(buf, size,                                             \
358                 __builtin_types_compatible_p(typeof(var), int)          \
359                      ? "%i\n" :                                         \
360                 __builtin_types_compatible_p(typeof(var), unsigned)     \
361                      ? "%u\n" :                                         \
362                 __builtin_types_compatible_p(typeof(var), long)         \
363                      ? "%li\n" :                                        \
364                 __builtin_types_compatible_p(typeof(var), unsigned long)\
365                      ? "%lu\n" :                                        \
366                 __builtin_types_compatible_p(typeof(var), int64_t)      \
367                      ? "%lli\n" :                                       \
368                 __builtin_types_compatible_p(typeof(var), uint64_t)     \
369                      ? "%llu\n" :                                       \
370                 __builtin_types_compatible_p(typeof(var), const char *) \
371                      ? "%s\n" : "%i\n", var)
372
373 ssize_t bch_hprint(char *buf, int64_t v);
374
375 bool bch_is_zero(const char *p, size_t n);
376 int bch_parse_uuid(const char *s, char *uuid);
377
378 ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[],
379                             size_t selected);
380
381 ssize_t bch_read_string_list(const char *buf, const char * const list[]);
382
383 struct time_stats {
384         spinlock_t      lock;
385         /*
386          * all fields are in nanoseconds, averages are ewmas stored left shifted
387          * by 8
388          */
389         uint64_t        max_duration;
390         uint64_t        average_duration;
391         uint64_t        average_frequency;
392         uint64_t        last;
393 };
394
395 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
396
397 static inline unsigned local_clock_us(void)
398 {
399         return local_clock() >> 10;
400 }
401
402 #define NSEC_PER_ns                     1L
403 #define NSEC_PER_us                     NSEC_PER_USEC
404 #define NSEC_PER_ms                     NSEC_PER_MSEC
405 #define NSEC_PER_sec                    NSEC_PER_SEC
406
407 #define __print_time_stat(stats, name, stat, units)                     \
408         sysfs_print(name ## _ ## stat ## _ ## units,                    \
409                     div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
410
411 #define sysfs_print_time_stats(stats, name,                             \
412                                frequency_units,                         \
413                                duration_units)                          \
414 do {                                                                    \
415         __print_time_stat(stats, name,                                  \
416                           average_frequency,    frequency_units);       \
417         __print_time_stat(stats, name,                                  \
418                           average_duration,     duration_units);        \
419         sysfs_print(name ## _ ##max_duration ## _ ## duration_units,    \
420                         div_u64((stats)->max_duration, NSEC_PER_ ## duration_units));\
421                                                                         \
422         sysfs_print(name ## _last_ ## frequency_units, (stats)->last    \
423                     ? div_s64(local_clock() - (stats)->last,            \
424                               NSEC_PER_ ## frequency_units)             \
425                     : -1LL);                                            \
426 } while (0)
427
428 #define sysfs_time_stats_attribute(name,                                \
429                                    frequency_units,                     \
430                                    duration_units)                      \
431 read_attribute(name ## _average_frequency_ ## frequency_units);         \
432 read_attribute(name ## _average_duration_ ## duration_units);           \
433 read_attribute(name ## _max_duration_ ## duration_units);               \
434 read_attribute(name ## _last_ ## frequency_units)
435
436 #define sysfs_time_stats_attribute_list(name,                           \
437                                         frequency_units,                \
438                                         duration_units)                 \
439 &sysfs_ ## name ## _average_frequency_ ## frequency_units,              \
440 &sysfs_ ## name ## _average_duration_ ## duration_units,                \
441 &sysfs_ ## name ## _max_duration_ ## duration_units,                    \
442 &sysfs_ ## name ## _last_ ## frequency_units,
443
444 #define ewma_add(ewma, val, weight, factor)                             \
445 ({                                                                      \
446         (ewma) *= (weight) - 1;                                         \
447         (ewma) += (val) << factor;                                      \
448         (ewma) /= (weight);                                             \
449         (ewma) >> factor;                                               \
450 })
451
452 struct bch_ratelimit {
453         /* Next time we want to do some work, in nanoseconds */
454         uint64_t                next;
455
456         /*
457          * Rate at which we want to do work, in units per nanosecond
458          * The units here correspond to the units passed to bch_next_delay()
459          */
460         unsigned                rate;
461 };
462
463 static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
464 {
465         d->next = local_clock();
466 }
467
468 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
469
470 #define __DIV_SAFE(n, d, zero)                                          \
471 ({                                                                      \
472         typeof(n) _n = (n);                                             \
473         typeof(d) _d = (d);                                             \
474         _d ? _n / _d : zero;                                            \
475 })
476
477 #define DIV_SAFE(n, d)  __DIV_SAFE(n, d, 0)
478
479 #define container_of_or_null(ptr, type, member)                         \
480 ({                                                                      \
481         typeof(ptr) _ptr = ptr;                                         \
482         _ptr ? container_of(_ptr, type, member) : NULL;                 \
483 })
484
485 #define RB_INSERT(root, new, member, cmp)                               \
486 ({                                                                      \
487         __label__ dup;                                                  \
488         struct rb_node **n = &(root)->rb_node, *parent = NULL;          \
489         typeof(new) this;                                               \
490         int res, ret = -1;                                              \
491                                                                         \
492         while (*n) {                                                    \
493                 parent = *n;                                            \
494                 this = container_of(*n, typeof(*(new)), member);        \
495                 res = cmp(new, this);                                   \
496                 if (!res)                                               \
497                         goto dup;                                       \
498                 n = res < 0                                             \
499                         ? &(*n)->rb_left                                \
500                         : &(*n)->rb_right;                              \
501         }                                                               \
502                                                                         \
503         rb_link_node(&(new)->member, parent, n);                        \
504         rb_insert_color(&(new)->member, root);                          \
505         ret = 0;                                                        \
506 dup:                                                                    \
507         ret;                                                            \
508 })
509
510 #define RB_SEARCH(root, search, member, cmp)                            \
511 ({                                                                      \
512         struct rb_node *n = (root)->rb_node;                            \
513         typeof(&(search)) this, ret = NULL;                             \
514         int res;                                                        \
515                                                                         \
516         while (n) {                                                     \
517                 this = container_of(n, typeof(search), member);         \
518                 res = cmp(&(search), this);                             \
519                 if (!res) {                                             \
520                         ret = this;                                     \
521                         break;                                          \
522                 }                                                       \
523                 n = res < 0                                             \
524                         ? n->rb_left                                    \
525                         : n->rb_right;                                  \
526         }                                                               \
527         ret;                                                            \
528 })
529
530 #define RB_GREATER(root, search, member, cmp)                           \
531 ({                                                                      \
532         struct rb_node *n = (root)->rb_node;                            \
533         typeof(&(search)) this, ret = NULL;                             \
534         int res;                                                        \
535                                                                         \
536         while (n) {                                                     \
537                 this = container_of(n, typeof(search), member);         \
538                 res = cmp(&(search), this);                             \
539                 if (res < 0) {                                          \
540                         ret = this;                                     \
541                         n = n->rb_left;                                 \
542                 } else                                                  \
543                         n = n->rb_right;                                \
544         }                                                               \
545         ret;                                                            \
546 })
547
548 #define RB_FIRST(root, type, member)                                    \
549         container_of_or_null(rb_first(root), type, member)
550
551 #define RB_LAST(root, type, member)                                     \
552         container_of_or_null(rb_last(root), type, member)
553
554 #define RB_NEXT(ptr, member)                                            \
555         container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
556
557 #define RB_PREV(ptr, member)                                            \
558         container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
559
560 /* Does linear interpolation between powers of two */
561 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
562 {
563         unsigned fract = x & ~(~0 << fract_bits);
564
565         x >>= fract_bits;
566         x   = 1 << x;
567         x  += (x * fract) >> fract_bits;
568
569         return x;
570 }
571
572 void bch_bio_map(struct bio *bio, void *base);
573
574 static inline sector_t bdev_sectors(struct block_device *bdev)
575 {
576         return bdev->bd_inode->i_size >> 9;
577 }
578
579 #define closure_bio_submit(bio, cl, dev)                                \
580 do {                                                                    \
581         closure_get(cl);                                                \
582         bch_generic_make_request(bio, &(dev)->bio_split_hook);          \
583 } while (0)
584
585 uint64_t bch_crc64_update(uint64_t, const void *, size_t);
586 uint64_t bch_crc64(const void *, size_t);
587
588 #endif /* _BCACHE_UTIL_H */