Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / md / bcache / request.c
1 /*
2  * Main bcache entry point - handle a read or a write request and decide what to
3  * do with it; the make_request functions are called by the block layer.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/module.h>
16 #include <linux/hash.h>
17 #include <linux/random.h>
18
19 #include <trace/events/bcache.h>
20
21 #define CUTOFF_CACHE_ADD        95
22 #define CUTOFF_CACHE_READA      90
23
24 struct kmem_cache *bch_search_cache;
25
26 static void bch_data_insert_start(struct closure *);
27
28 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
29 {
30         return BDEV_CACHE_MODE(&dc->sb);
31 }
32
33 static bool verify(struct cached_dev *dc, struct bio *bio)
34 {
35         return dc->verify;
36 }
37
38 static void bio_csum(struct bio *bio, struct bkey *k)
39 {
40         struct bio_vec bv;
41         struct bvec_iter iter;
42         uint64_t csum = 0;
43
44         bio_for_each_segment(bv, bio, iter) {
45                 void *d = kmap(bv.bv_page) + bv.bv_offset;
46                 csum = bch_crc64_update(csum, d, bv.bv_len);
47                 kunmap(bv.bv_page);
48         }
49
50         k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
51 }
52
53 /* Insert data into cache */
54
55 static void bch_data_insert_keys(struct closure *cl)
56 {
57         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
58         atomic_t *journal_ref = NULL;
59         struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
60         int ret;
61
62         /*
63          * If we're looping, might already be waiting on
64          * another journal write - can't wait on more than one journal write at
65          * a time
66          *
67          * XXX: this looks wrong
68          */
69 #if 0
70         while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
71                 closure_sync(&s->cl);
72 #endif
73
74         if (!op->replace)
75                 journal_ref = bch_journal(op->c, &op->insert_keys,
76                                           op->flush_journal ? cl : NULL);
77
78         ret = bch_btree_insert(op->c, &op->insert_keys,
79                                journal_ref, replace_key);
80         if (ret == -ESRCH) {
81                 op->replace_collision = true;
82         } else if (ret) {
83                 op->error               = -ENOMEM;
84                 op->insert_data_done    = true;
85         }
86
87         if (journal_ref)
88                 atomic_dec_bug(journal_ref);
89
90         if (!op->insert_data_done)
91                 continue_at(cl, bch_data_insert_start, op->wq);
92
93         bch_keylist_free(&op->insert_keys);
94         closure_return(cl);
95 }
96
97 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
98                                struct cache_set *c)
99 {
100         size_t oldsize = bch_keylist_nkeys(l);
101         size_t newsize = oldsize + u64s;
102
103         /*
104          * The journalling code doesn't handle the case where the keys to insert
105          * is bigger than an empty write: If we just return -ENOMEM here,
106          * bio_insert() and bio_invalidate() will insert the keys created so far
107          * and finish the rest when the keylist is empty.
108          */
109         if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
110                 return -ENOMEM;
111
112         return __bch_keylist_realloc(l, u64s);
113 }
114
115 static void bch_data_invalidate(struct closure *cl)
116 {
117         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
118         struct bio *bio = op->bio;
119
120         pr_debug("invalidating %i sectors from %llu",
121                  bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
122
123         while (bio_sectors(bio)) {
124                 unsigned sectors = min(bio_sectors(bio),
125                                        1U << (KEY_SIZE_BITS - 1));
126
127                 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
128                         goto out;
129
130                 bio->bi_iter.bi_sector  += sectors;
131                 bio->bi_iter.bi_size    -= sectors << 9;
132
133                 bch_keylist_add(&op->insert_keys,
134                                 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
135         }
136
137         op->insert_data_done = true;
138         bio_put(bio);
139 out:
140         continue_at(cl, bch_data_insert_keys, op->wq);
141 }
142
143 static void bch_data_insert_error(struct closure *cl)
144 {
145         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
146
147         /*
148          * Our data write just errored, which means we've got a bunch of keys to
149          * insert that point to data that wasn't succesfully written.
150          *
151          * We don't have to insert those keys but we still have to invalidate
152          * that region of the cache - so, if we just strip off all the pointers
153          * from the keys we'll accomplish just that.
154          */
155
156         struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
157
158         while (src != op->insert_keys.top) {
159                 struct bkey *n = bkey_next(src);
160
161                 SET_KEY_PTRS(src, 0);
162                 memmove(dst, src, bkey_bytes(src));
163
164                 dst = bkey_next(dst);
165                 src = n;
166         }
167
168         op->insert_keys.top = dst;
169
170         bch_data_insert_keys(cl);
171 }
172
173 static void bch_data_insert_endio(struct bio *bio, int error)
174 {
175         struct closure *cl = bio->bi_private;
176         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
177
178         if (error) {
179                 /* TODO: We could try to recover from this. */
180                 if (op->writeback)
181                         op->error = error;
182                 else if (!op->replace)
183                         set_closure_fn(cl, bch_data_insert_error, op->wq);
184                 else
185                         set_closure_fn(cl, NULL, NULL);
186         }
187
188         bch_bbio_endio(op->c, bio, error, "writing data to cache");
189 }
190
191 static void bch_data_insert_start(struct closure *cl)
192 {
193         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
194         struct bio *bio = op->bio, *n;
195
196         if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
197                 set_gc_sectors(op->c);
198                 wake_up_gc(op->c);
199         }
200
201         if (op->bypass)
202                 return bch_data_invalidate(cl);
203
204         /*
205          * Journal writes are marked REQ_FLUSH; if the original write was a
206          * flush, it'll wait on the journal write.
207          */
208         bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
209
210         do {
211                 unsigned i;
212                 struct bkey *k;
213                 struct bio_set *split = op->c->bio_split;
214
215                 /* 1 for the device pointer and 1 for the chksum */
216                 if (bch_keylist_realloc(&op->insert_keys,
217                                         3 + (op->csum ? 1 : 0),
218                                         op->c))
219                         continue_at(cl, bch_data_insert_keys, op->wq);
220
221                 k = op->insert_keys.top;
222                 bkey_init(k);
223                 SET_KEY_INODE(k, op->inode);
224                 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
225
226                 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
227                                        op->write_point, op->write_prio,
228                                        op->writeback))
229                         goto err;
230
231                 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
232
233                 n->bi_end_io    = bch_data_insert_endio;
234                 n->bi_private   = cl;
235
236                 if (op->writeback) {
237                         SET_KEY_DIRTY(k, true);
238
239                         for (i = 0; i < KEY_PTRS(k); i++)
240                                 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
241                                             GC_MARK_DIRTY);
242                 }
243
244                 SET_KEY_CSUM(k, op->csum);
245                 if (KEY_CSUM(k))
246                         bio_csum(n, k);
247
248                 trace_bcache_cache_insert(k);
249                 bch_keylist_push(&op->insert_keys);
250
251                 n->bi_rw |= REQ_WRITE;
252                 bch_submit_bbio(n, op->c, k, 0);
253         } while (n != bio);
254
255         op->insert_data_done = true;
256         continue_at(cl, bch_data_insert_keys, op->wq);
257 err:
258         /* bch_alloc_sectors() blocks if s->writeback = true */
259         BUG_ON(op->writeback);
260
261         /*
262          * But if it's not a writeback write we'd rather just bail out if
263          * there aren't any buckets ready to write to - it might take awhile and
264          * we might be starving btree writes for gc or something.
265          */
266
267         if (!op->replace) {
268                 /*
269                  * Writethrough write: We can't complete the write until we've
270                  * updated the index. But we don't want to delay the write while
271                  * we wait for buckets to be freed up, so just invalidate the
272                  * rest of the write.
273                  */
274                 op->bypass = true;
275                 return bch_data_invalidate(cl);
276         } else {
277                 /*
278                  * From a cache miss, we can just insert the keys for the data
279                  * we have written or bail out if we didn't do anything.
280                  */
281                 op->insert_data_done = true;
282                 bio_put(bio);
283
284                 if (!bch_keylist_empty(&op->insert_keys))
285                         continue_at(cl, bch_data_insert_keys, op->wq);
286                 else
287                         closure_return(cl);
288         }
289 }
290
291 /**
292  * bch_data_insert - stick some data in the cache
293  *
294  * This is the starting point for any data to end up in a cache device; it could
295  * be from a normal write, or a writeback write, or a write to a flash only
296  * volume - it's also used by the moving garbage collector to compact data in
297  * mostly empty buckets.
298  *
299  * It first writes the data to the cache, creating a list of keys to be inserted
300  * (if the data had to be fragmented there will be multiple keys); after the
301  * data is written it calls bch_journal, and after the keys have been added to
302  * the next journal write they're inserted into the btree.
303  *
304  * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
305  * and op->inode is used for the key inode.
306  *
307  * If s->bypass is true, instead of inserting the data it invalidates the
308  * region of the cache represented by s->cache_bio and op->inode.
309  */
310 void bch_data_insert(struct closure *cl)
311 {
312         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
313
314         trace_bcache_write(op->c, op->inode, op->bio,
315                            op->writeback, op->bypass);
316
317         bch_keylist_init(&op->insert_keys);
318         bio_get(op->bio);
319         bch_data_insert_start(cl);
320 }
321
322 /* Congested? */
323
324 unsigned bch_get_congested(struct cache_set *c)
325 {
326         int i;
327         long rand;
328
329         if (!c->congested_read_threshold_us &&
330             !c->congested_write_threshold_us)
331                 return 0;
332
333         i = (local_clock_us() - c->congested_last_us) / 1024;
334         if (i < 0)
335                 return 0;
336
337         i += atomic_read(&c->congested);
338         if (i >= 0)
339                 return 0;
340
341         i += CONGESTED_MAX;
342
343         if (i > 0)
344                 i = fract_exp_two(i, 6);
345
346         rand = get_random_int();
347         i -= bitmap_weight(&rand, BITS_PER_LONG);
348
349         return i > 0 ? i : 1;
350 }
351
352 static void add_sequential(struct task_struct *t)
353 {
354         ewma_add(t->sequential_io_avg,
355                  t->sequential_io, 8, 0);
356
357         t->sequential_io = 0;
358 }
359
360 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
361 {
362         return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
363 }
364
365 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
366 {
367         struct cache_set *c = dc->disk.c;
368         unsigned mode = cache_mode(dc, bio);
369         unsigned sectors, congested = bch_get_congested(c);
370         struct task_struct *task = current;
371         struct io *i;
372
373         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
374             c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
375             (bio->bi_rw & REQ_DISCARD))
376                 goto skip;
377
378         if (mode == CACHE_MODE_NONE ||
379             (mode == CACHE_MODE_WRITEAROUND &&
380              (bio->bi_rw & REQ_WRITE)))
381                 goto skip;
382
383         if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
384             bio_sectors(bio) & (c->sb.block_size - 1)) {
385                 pr_debug("skipping unaligned io");
386                 goto skip;
387         }
388
389         if (bypass_torture_test(dc)) {
390                 if ((get_random_int() & 3) == 3)
391                         goto skip;
392                 else
393                         goto rescale;
394         }
395
396         if (!congested && !dc->sequential_cutoff)
397                 goto rescale;
398
399         if (!congested &&
400             mode == CACHE_MODE_WRITEBACK &&
401             (bio->bi_rw & REQ_WRITE) &&
402             (bio->bi_rw & REQ_SYNC))
403                 goto rescale;
404
405         spin_lock(&dc->io_lock);
406
407         hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
408                 if (i->last == bio->bi_iter.bi_sector &&
409                     time_before(jiffies, i->jiffies))
410                         goto found;
411
412         i = list_first_entry(&dc->io_lru, struct io, lru);
413
414         add_sequential(task);
415         i->sequential = 0;
416 found:
417         if (i->sequential + bio->bi_iter.bi_size > i->sequential)
418                 i->sequential   += bio->bi_iter.bi_size;
419
420         i->last                  = bio_end_sector(bio);
421         i->jiffies               = jiffies + msecs_to_jiffies(5000);
422         task->sequential_io      = i->sequential;
423
424         hlist_del(&i->hash);
425         hlist_add_head(&i->hash, iohash(dc, i->last));
426         list_move_tail(&i->lru, &dc->io_lru);
427
428         spin_unlock(&dc->io_lock);
429
430         sectors = max(task->sequential_io,
431                       task->sequential_io_avg) >> 9;
432
433         if (dc->sequential_cutoff &&
434             sectors >= dc->sequential_cutoff >> 9) {
435                 trace_bcache_bypass_sequential(bio);
436                 goto skip;
437         }
438
439         if (congested && sectors >= congested) {
440                 trace_bcache_bypass_congested(bio);
441                 goto skip;
442         }
443
444 rescale:
445         bch_rescale_priorities(c, bio_sectors(bio));
446         return false;
447 skip:
448         bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
449         return true;
450 }
451
452 /* Cache lookup */
453
454 struct search {
455         /* Stack frame for bio_complete */
456         struct closure          cl;
457
458         struct bbio             bio;
459         struct bio              *orig_bio;
460         struct bio              *cache_miss;
461         struct bcache_device    *d;
462
463         unsigned                insert_bio_sectors;
464         unsigned                recoverable:1;
465         unsigned                write:1;
466         unsigned                read_dirty_data:1;
467
468         unsigned long           start_time;
469
470         struct btree_op         op;
471         struct data_insert_op   iop;
472 };
473
474 static void bch_cache_read_endio(struct bio *bio, int error)
475 {
476         struct bbio *b = container_of(bio, struct bbio, bio);
477         struct closure *cl = bio->bi_private;
478         struct search *s = container_of(cl, struct search, cl);
479
480         /*
481          * If the bucket was reused while our bio was in flight, we might have
482          * read the wrong data. Set s->error but not error so it doesn't get
483          * counted against the cache device, but we'll still reread the data
484          * from the backing device.
485          */
486
487         if (error)
488                 s->iop.error = error;
489         else if (!KEY_DIRTY(&b->key) &&
490                  ptr_stale(s->iop.c, &b->key, 0)) {
491                 atomic_long_inc(&s->iop.c->cache_read_races);
492                 s->iop.error = -EINTR;
493         }
494
495         bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
496 }
497
498 /*
499  * Read from a single key, handling the initial cache miss if the key starts in
500  * the middle of the bio
501  */
502 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
503 {
504         struct search *s = container_of(op, struct search, op);
505         struct bio *n, *bio = &s->bio.bio;
506         struct bkey *bio_key;
507         unsigned ptr;
508
509         if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
510                 return MAP_CONTINUE;
511
512         if (KEY_INODE(k) != s->iop.inode ||
513             KEY_START(k) > bio->bi_iter.bi_sector) {
514                 unsigned bio_sectors = bio_sectors(bio);
515                 unsigned sectors = KEY_INODE(k) == s->iop.inode
516                         ? min_t(uint64_t, INT_MAX,
517                                 KEY_START(k) - bio->bi_iter.bi_sector)
518                         : INT_MAX;
519
520                 int ret = s->d->cache_miss(b, s, bio, sectors);
521                 if (ret != MAP_CONTINUE)
522                         return ret;
523
524                 /* if this was a complete miss we shouldn't get here */
525                 BUG_ON(bio_sectors <= sectors);
526         }
527
528         if (!KEY_SIZE(k))
529                 return MAP_CONTINUE;
530
531         /* XXX: figure out best pointer - for multiple cache devices */
532         ptr = 0;
533
534         PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
535
536         if (KEY_DIRTY(k))
537                 s->read_dirty_data = true;
538
539         n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
540                                       KEY_OFFSET(k) - bio->bi_iter.bi_sector),
541                            GFP_NOIO, s->d->bio_split);
542
543         bio_key = &container_of(n, struct bbio, bio)->key;
544         bch_bkey_copy_single_ptr(bio_key, k, ptr);
545
546         bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
547         bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
548
549         n->bi_end_io    = bch_cache_read_endio;
550         n->bi_private   = &s->cl;
551
552         /*
553          * The bucket we're reading from might be reused while our bio
554          * is in flight, and we could then end up reading the wrong
555          * data.
556          *
557          * We guard against this by checking (in cache_read_endio()) if
558          * the pointer is stale again; if so, we treat it as an error
559          * and reread from the backing device (but we don't pass that
560          * error up anywhere).
561          */
562
563         __bch_submit_bbio(n, b->c);
564         return n == bio ? MAP_DONE : MAP_CONTINUE;
565 }
566
567 static void cache_lookup(struct closure *cl)
568 {
569         struct search *s = container_of(cl, struct search, iop.cl);
570         struct bio *bio = &s->bio.bio;
571         int ret;
572
573         bch_btree_op_init(&s->op, -1);
574
575         ret = bch_btree_map_keys(&s->op, s->iop.c,
576                                  &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
577                                  cache_lookup_fn, MAP_END_KEY);
578         if (ret == -EAGAIN)
579                 continue_at(cl, cache_lookup, bcache_wq);
580
581         closure_return(cl);
582 }
583
584 /* Common code for the make_request functions */
585
586 static void request_endio(struct bio *bio, int error)
587 {
588         struct closure *cl = bio->bi_private;
589
590         if (error) {
591                 struct search *s = container_of(cl, struct search, cl);
592                 s->iop.error = error;
593                 /* Only cache read errors are recoverable */
594                 s->recoverable = false;
595         }
596
597         bio_put(bio);
598         closure_put(cl);
599 }
600
601 static void bio_complete(struct search *s)
602 {
603         if (s->orig_bio) {
604                 generic_end_io_acct(bio_data_dir(s->orig_bio),
605                                     &s->d->disk->part0, s->start_time);
606
607                 trace_bcache_request_end(s->d, s->orig_bio);
608                 bio_endio(s->orig_bio, s->iop.error);
609                 s->orig_bio = NULL;
610         }
611 }
612
613 static void do_bio_hook(struct search *s, struct bio *orig_bio)
614 {
615         struct bio *bio = &s->bio.bio;
616
617         bio_init(bio);
618         __bio_clone_fast(bio, orig_bio);
619         bio->bi_end_io          = request_endio;
620         bio->bi_private         = &s->cl;
621
622         atomic_set(&bio->bi_cnt, 3);
623 }
624
625 static void search_free(struct closure *cl)
626 {
627         struct search *s = container_of(cl, struct search, cl);
628         bio_complete(s);
629
630         if (s->iop.bio)
631                 bio_put(s->iop.bio);
632
633         closure_debug_destroy(cl);
634         mempool_free(s, s->d->c->search);
635 }
636
637 static inline struct search *search_alloc(struct bio *bio,
638                                           struct bcache_device *d)
639 {
640         struct search *s;
641
642         s = mempool_alloc(d->c->search, GFP_NOIO);
643
644         closure_init(&s->cl, NULL);
645         do_bio_hook(s, bio);
646
647         s->orig_bio             = bio;
648         s->cache_miss           = NULL;
649         s->d                    = d;
650         s->recoverable          = 1;
651         s->write                = (bio->bi_rw & REQ_WRITE) != 0;
652         s->read_dirty_data      = 0;
653         s->start_time           = jiffies;
654
655         s->iop.c                = d->c;
656         s->iop.bio              = NULL;
657         s->iop.inode            = d->id;
658         s->iop.write_point      = hash_long((unsigned long) current, 16);
659         s->iop.write_prio       = 0;
660         s->iop.error            = 0;
661         s->iop.flags            = 0;
662         s->iop.flush_journal    = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
663         s->iop.wq               = bcache_wq;
664
665         return s;
666 }
667
668 /* Cached devices */
669
670 static void cached_dev_bio_complete(struct closure *cl)
671 {
672         struct search *s = container_of(cl, struct search, cl);
673         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
674
675         search_free(cl);
676         cached_dev_put(dc);
677 }
678
679 /* Process reads */
680
681 static void cached_dev_cache_miss_done(struct closure *cl)
682 {
683         struct search *s = container_of(cl, struct search, cl);
684
685         if (s->iop.replace_collision)
686                 bch_mark_cache_miss_collision(s->iop.c, s->d);
687
688         if (s->iop.bio) {
689                 int i;
690                 struct bio_vec *bv;
691
692                 bio_for_each_segment_all(bv, s->iop.bio, i)
693                         __free_page(bv->bv_page);
694         }
695
696         cached_dev_bio_complete(cl);
697 }
698
699 static void cached_dev_read_error(struct closure *cl)
700 {
701         struct search *s = container_of(cl, struct search, cl);
702         struct bio *bio = &s->bio.bio;
703
704         if (s->recoverable) {
705                 /* Retry from the backing device: */
706                 trace_bcache_read_retry(s->orig_bio);
707
708                 s->iop.error = 0;
709                 do_bio_hook(s, s->orig_bio);
710
711                 /* XXX: invalidate cache */
712
713                 closure_bio_submit(bio, cl, s->d);
714         }
715
716         continue_at(cl, cached_dev_cache_miss_done, NULL);
717 }
718
719 static void cached_dev_read_done(struct closure *cl)
720 {
721         struct search *s = container_of(cl, struct search, cl);
722         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
723
724         /*
725          * We had a cache miss; cache_bio now contains data ready to be inserted
726          * into the cache.
727          *
728          * First, we copy the data we just read from cache_bio's bounce buffers
729          * to the buffers the original bio pointed to:
730          */
731
732         if (s->iop.bio) {
733                 bio_reset(s->iop.bio);
734                 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
735                 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
736                 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
737                 bch_bio_map(s->iop.bio, NULL);
738
739                 bio_copy_data(s->cache_miss, s->iop.bio);
740
741                 bio_put(s->cache_miss);
742                 s->cache_miss = NULL;
743         }
744
745         if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
746                 bch_data_verify(dc, s->orig_bio);
747
748         bio_complete(s);
749
750         if (s->iop.bio &&
751             !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
752                 BUG_ON(!s->iop.replace);
753                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
754         }
755
756         continue_at(cl, cached_dev_cache_miss_done, NULL);
757 }
758
759 static void cached_dev_read_done_bh(struct closure *cl)
760 {
761         struct search *s = container_of(cl, struct search, cl);
762         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
763
764         bch_mark_cache_accounting(s->iop.c, s->d,
765                                   !s->cache_miss, s->iop.bypass);
766         trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
767
768         if (s->iop.error)
769                 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
770         else if (s->iop.bio || verify(dc, &s->bio.bio))
771                 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
772         else
773                 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
774 }
775
776 static int cached_dev_cache_miss(struct btree *b, struct search *s,
777                                  struct bio *bio, unsigned sectors)
778 {
779         int ret = MAP_CONTINUE;
780         unsigned reada = 0;
781         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
782         struct bio *miss, *cache_bio;
783
784         if (s->cache_miss || s->iop.bypass) {
785                 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
786                 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
787                 goto out_submit;
788         }
789
790         if (!(bio->bi_rw & REQ_RAHEAD) &&
791             !(bio->bi_rw & REQ_META) &&
792             s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
793                 reada = min_t(sector_t, dc->readahead >> 9,
794                               bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
795
796         s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
797
798         s->iop.replace_key = KEY(s->iop.inode,
799                                  bio->bi_iter.bi_sector + s->insert_bio_sectors,
800                                  s->insert_bio_sectors);
801
802         ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
803         if (ret)
804                 return ret;
805
806         s->iop.replace = true;
807
808         miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
809
810         /* btree_search_recurse()'s btree iterator is no good anymore */
811         ret = miss == bio ? MAP_DONE : -EINTR;
812
813         cache_bio = bio_alloc_bioset(GFP_NOWAIT,
814                         DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
815                         dc->disk.bio_split);
816         if (!cache_bio)
817                 goto out_submit;
818
819         cache_bio->bi_iter.bi_sector    = miss->bi_iter.bi_sector;
820         cache_bio->bi_bdev              = miss->bi_bdev;
821         cache_bio->bi_iter.bi_size      = s->insert_bio_sectors << 9;
822
823         cache_bio->bi_end_io    = request_endio;
824         cache_bio->bi_private   = &s->cl;
825
826         bch_bio_map(cache_bio, NULL);
827         if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
828                 goto out_put;
829
830         if (reada)
831                 bch_mark_cache_readahead(s->iop.c, s->d);
832
833         s->cache_miss   = miss;
834         s->iop.bio      = cache_bio;
835         bio_get(cache_bio);
836         closure_bio_submit(cache_bio, &s->cl, s->d);
837
838         return ret;
839 out_put:
840         bio_put(cache_bio);
841 out_submit:
842         miss->bi_end_io         = request_endio;
843         miss->bi_private        = &s->cl;
844         closure_bio_submit(miss, &s->cl, s->d);
845         return ret;
846 }
847
848 static void cached_dev_read(struct cached_dev *dc, struct search *s)
849 {
850         struct closure *cl = &s->cl;
851
852         closure_call(&s->iop.cl, cache_lookup, NULL, cl);
853         continue_at(cl, cached_dev_read_done_bh, NULL);
854 }
855
856 /* Process writes */
857
858 static void cached_dev_write_complete(struct closure *cl)
859 {
860         struct search *s = container_of(cl, struct search, cl);
861         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
862
863         up_read_non_owner(&dc->writeback_lock);
864         cached_dev_bio_complete(cl);
865 }
866
867 static void cached_dev_write(struct cached_dev *dc, struct search *s)
868 {
869         struct closure *cl = &s->cl;
870         struct bio *bio = &s->bio.bio;
871         struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
872         struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
873
874         bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
875
876         down_read_non_owner(&dc->writeback_lock);
877         if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
878                 /*
879                  * We overlap with some dirty data undergoing background
880                  * writeback, force this write to writeback
881                  */
882                 s->iop.bypass = false;
883                 s->iop.writeback = true;
884         }
885
886         /*
887          * Discards aren't _required_ to do anything, so skipping if
888          * check_overlapping returned true is ok
889          *
890          * But check_overlapping drops dirty keys for which io hasn't started,
891          * so we still want to call it.
892          */
893         if (bio->bi_rw & REQ_DISCARD)
894                 s->iop.bypass = true;
895
896         if (should_writeback(dc, s->orig_bio,
897                              cache_mode(dc, bio),
898                              s->iop.bypass)) {
899                 s->iop.bypass = false;
900                 s->iop.writeback = true;
901         }
902
903         if (s->iop.bypass) {
904                 s->iop.bio = s->orig_bio;
905                 bio_get(s->iop.bio);
906
907                 if (!(bio->bi_rw & REQ_DISCARD) ||
908                     blk_queue_discard(bdev_get_queue(dc->bdev)))
909                         closure_bio_submit(bio, cl, s->d);
910         } else if (s->iop.writeback) {
911                 bch_writeback_add(dc);
912                 s->iop.bio = bio;
913
914                 if (bio->bi_rw & REQ_FLUSH) {
915                         /* Also need to send a flush to the backing device */
916                         struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
917                                                              dc->disk.bio_split);
918
919                         flush->bi_rw    = WRITE_FLUSH;
920                         flush->bi_bdev  = bio->bi_bdev;
921                         flush->bi_end_io = request_endio;
922                         flush->bi_private = cl;
923
924                         closure_bio_submit(flush, cl, s->d);
925                 }
926         } else {
927                 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
928
929                 closure_bio_submit(bio, cl, s->d);
930         }
931
932         closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
933         continue_at(cl, cached_dev_write_complete, NULL);
934 }
935
936 static void cached_dev_nodata(struct closure *cl)
937 {
938         struct search *s = container_of(cl, struct search, cl);
939         struct bio *bio = &s->bio.bio;
940
941         if (s->iop.flush_journal)
942                 bch_journal_meta(s->iop.c, cl);
943
944         /* If it's a flush, we send the flush to the backing device too */
945         closure_bio_submit(bio, cl, s->d);
946
947         continue_at(cl, cached_dev_bio_complete, NULL);
948 }
949
950 /* Cached devices - read & write stuff */
951
952 static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
953 {
954         struct search *s;
955         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
956         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
957         int rw = bio_data_dir(bio);
958
959         generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
960
961         bio->bi_bdev = dc->bdev;
962         bio->bi_iter.bi_sector += dc->sb.data_offset;
963
964         if (cached_dev_get(dc)) {
965                 s = search_alloc(bio, d);
966                 trace_bcache_request_start(s->d, bio);
967
968                 if (!bio->bi_iter.bi_size) {
969                         /*
970                          * can't call bch_journal_meta from under
971                          * generic_make_request
972                          */
973                         continue_at_nobarrier(&s->cl,
974                                               cached_dev_nodata,
975                                               bcache_wq);
976                 } else {
977                         s->iop.bypass = check_should_bypass(dc, bio);
978
979                         if (rw)
980                                 cached_dev_write(dc, s);
981                         else
982                                 cached_dev_read(dc, s);
983                 }
984         } else {
985                 if ((bio->bi_rw & REQ_DISCARD) &&
986                     !blk_queue_discard(bdev_get_queue(dc->bdev)))
987                         bio_endio(bio, 0);
988                 else
989                         bch_generic_make_request(bio, &d->bio_split_hook);
990         }
991 }
992
993 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
994                             unsigned int cmd, unsigned long arg)
995 {
996         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
997         return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
998 }
999
1000 static int cached_dev_congested(void *data, int bits)
1001 {
1002         struct bcache_device *d = data;
1003         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1004         struct request_queue *q = bdev_get_queue(dc->bdev);
1005         int ret = 0;
1006
1007         if (bdi_congested(&q->backing_dev_info, bits))
1008                 return 1;
1009
1010         if (cached_dev_get(dc)) {
1011                 unsigned i;
1012                 struct cache *ca;
1013
1014                 for_each_cache(ca, d->c, i) {
1015                         q = bdev_get_queue(ca->bdev);
1016                         ret |= bdi_congested(&q->backing_dev_info, bits);
1017                 }
1018
1019                 cached_dev_put(dc);
1020         }
1021
1022         return ret;
1023 }
1024
1025 void bch_cached_dev_request_init(struct cached_dev *dc)
1026 {
1027         struct gendisk *g = dc->disk.disk;
1028
1029         g->queue->make_request_fn               = cached_dev_make_request;
1030         g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1031         dc->disk.cache_miss                     = cached_dev_cache_miss;
1032         dc->disk.ioctl                          = cached_dev_ioctl;
1033 }
1034
1035 /* Flash backed devices */
1036
1037 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1038                                 struct bio *bio, unsigned sectors)
1039 {
1040         unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1041
1042         swap(bio->bi_iter.bi_size, bytes);
1043         zero_fill_bio(bio);
1044         swap(bio->bi_iter.bi_size, bytes);
1045
1046         bio_advance(bio, bytes);
1047
1048         if (!bio->bi_iter.bi_size)
1049                 return MAP_DONE;
1050
1051         return MAP_CONTINUE;
1052 }
1053
1054 static void flash_dev_nodata(struct closure *cl)
1055 {
1056         struct search *s = container_of(cl, struct search, cl);
1057
1058         if (s->iop.flush_journal)
1059                 bch_journal_meta(s->iop.c, cl);
1060
1061         continue_at(cl, search_free, NULL);
1062 }
1063
1064 static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1065 {
1066         struct search *s;
1067         struct closure *cl;
1068         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1069         int rw = bio_data_dir(bio);
1070
1071         generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
1072
1073         s = search_alloc(bio, d);
1074         cl = &s->cl;
1075         bio = &s->bio.bio;
1076
1077         trace_bcache_request_start(s->d, bio);
1078
1079         if (!bio->bi_iter.bi_size) {
1080                 /*
1081                  * can't call bch_journal_meta from under
1082                  * generic_make_request
1083                  */
1084                 continue_at_nobarrier(&s->cl,
1085                                       flash_dev_nodata,
1086                                       bcache_wq);
1087         } else if (rw) {
1088                 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1089                                         &KEY(d->id, bio->bi_iter.bi_sector, 0),
1090                                         &KEY(d->id, bio_end_sector(bio), 0));
1091
1092                 s->iop.bypass           = (bio->bi_rw & REQ_DISCARD) != 0;
1093                 s->iop.writeback        = true;
1094                 s->iop.bio              = bio;
1095
1096                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1097         } else {
1098                 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1099         }
1100
1101         continue_at(cl, search_free, NULL);
1102 }
1103
1104 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1105                            unsigned int cmd, unsigned long arg)
1106 {
1107         return -ENOTTY;
1108 }
1109
1110 static int flash_dev_congested(void *data, int bits)
1111 {
1112         struct bcache_device *d = data;
1113         struct request_queue *q;
1114         struct cache *ca;
1115         unsigned i;
1116         int ret = 0;
1117
1118         for_each_cache(ca, d->c, i) {
1119                 q = bdev_get_queue(ca->bdev);
1120                 ret |= bdi_congested(&q->backing_dev_info, bits);
1121         }
1122
1123         return ret;
1124 }
1125
1126 void bch_flash_dev_request_init(struct bcache_device *d)
1127 {
1128         struct gendisk *g = d->disk;
1129
1130         g->queue->make_request_fn               = flash_dev_make_request;
1131         g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1132         d->cache_miss                           = flash_dev_cache_miss;
1133         d->ioctl                                = flash_dev_ioctl;
1134 }
1135
1136 void bch_request_exit(void)
1137 {
1138         if (bch_search_cache)
1139                 kmem_cache_destroy(bch_search_cache);
1140 }
1141
1142 int __init bch_request_init(void)
1143 {
1144         bch_search_cache = KMEM_CACHE(search, 0);
1145         if (!bch_search_cache)
1146                 return -ENOMEM;
1147
1148         return 0;
1149 }