Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / md / bcache / extents.c
1 /*
2  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
3  *
4  * Uses a block device as cache for other block devices; optimized for SSDs.
5  * All allocation is done in buckets, which should match the erase block size
6  * of the device.
7  *
8  * Buckets containing cached data are kept on a heap sorted by priority;
9  * bucket priority is increased on cache hit, and periodically all the buckets
10  * on the heap have their priority scaled down. This currently is just used as
11  * an LRU but in the future should allow for more intelligent heuristics.
12  *
13  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14  * counter. Garbage collection is used to remove stale pointers.
15  *
16  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17  * as keys are inserted we only sort the pages that have not yet been written.
18  * When garbage collection is run, we resort the entire node.
19  *
20  * All configuration is done via sysfs; see Documentation/bcache.txt.
21  */
22
23 #include "bcache.h"
24 #include "btree.h"
25 #include "debug.h"
26 #include "extents.h"
27 #include "writeback.h"
28
29 static void sort_key_next(struct btree_iter *iter,
30                           struct btree_iter_set *i)
31 {
32         i->k = bkey_next(i->k);
33
34         if (i->k == i->end)
35                 *i = iter->data[--iter->used];
36 }
37
38 static bool bch_key_sort_cmp(struct btree_iter_set l,
39                              struct btree_iter_set r)
40 {
41         int64_t c = bkey_cmp(l.k, r.k);
42
43         return c ? c > 0 : l.k < r.k;
44 }
45
46 static bool __ptr_invalid(struct cache_set *c, const struct bkey *k)
47 {
48         unsigned i;
49
50         for (i = 0; i < KEY_PTRS(k); i++)
51                 if (ptr_available(c, k, i)) {
52                         struct cache *ca = PTR_CACHE(c, k, i);
53                         size_t bucket = PTR_BUCKET_NR(c, k, i);
54                         size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
55
56                         if (KEY_SIZE(k) + r > c->sb.bucket_size ||
57                             bucket <  ca->sb.first_bucket ||
58                             bucket >= ca->sb.nbuckets)
59                                 return true;
60                 }
61
62         return false;
63 }
64
65 /* Common among btree and extent ptrs */
66
67 static const char *bch_ptr_status(struct cache_set *c, const struct bkey *k)
68 {
69         unsigned i;
70
71         for (i = 0; i < KEY_PTRS(k); i++)
72                 if (ptr_available(c, k, i)) {
73                         struct cache *ca = PTR_CACHE(c, k, i);
74                         size_t bucket = PTR_BUCKET_NR(c, k, i);
75                         size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
76
77                         if (KEY_SIZE(k) + r > c->sb.bucket_size)
78                                 return "bad, length too big";
79                         if (bucket <  ca->sb.first_bucket)
80                                 return "bad, short offset";
81                         if (bucket >= ca->sb.nbuckets)
82                                 return "bad, offset past end of device";
83                         if (ptr_stale(c, k, i))
84                                 return "stale";
85                 }
86
87         if (!bkey_cmp(k, &ZERO_KEY))
88                 return "bad, null key";
89         if (!KEY_PTRS(k))
90                 return "bad, no pointers";
91         if (!KEY_SIZE(k))
92                 return "zeroed key";
93         return "";
94 }
95
96 void bch_extent_to_text(char *buf, size_t size, const struct bkey *k)
97 {
98         unsigned i = 0;
99         char *out = buf, *end = buf + size;
100
101 #define p(...)  (out += scnprintf(out, end - out, __VA_ARGS__))
102
103         p("%llu:%llu len %llu -> [", KEY_INODE(k), KEY_START(k), KEY_SIZE(k));
104
105         for (i = 0; i < KEY_PTRS(k); i++) {
106                 if (i)
107                         p(", ");
108
109                 if (PTR_DEV(k, i) == PTR_CHECK_DEV)
110                         p("check dev");
111                 else
112                         p("%llu:%llu gen %llu", PTR_DEV(k, i),
113                           PTR_OFFSET(k, i), PTR_GEN(k, i));
114         }
115
116         p("]");
117
118         if (KEY_DIRTY(k))
119                 p(" dirty");
120         if (KEY_CSUM(k))
121                 p(" cs%llu %llx", KEY_CSUM(k), k->ptr[1]);
122 #undef p
123 }
124
125 static void bch_bkey_dump(struct btree_keys *keys, const struct bkey *k)
126 {
127         struct btree *b = container_of(keys, struct btree, keys);
128         unsigned j;
129         char buf[80];
130
131         bch_extent_to_text(buf, sizeof(buf), k);
132         printk(" %s", buf);
133
134         for (j = 0; j < KEY_PTRS(k); j++) {
135                 size_t n = PTR_BUCKET_NR(b->c, k, j);
136                 printk(" bucket %zu", n);
137
138                 if (n >= b->c->sb.first_bucket && n < b->c->sb.nbuckets)
139                         printk(" prio %i",
140                                PTR_BUCKET(b->c, k, j)->prio);
141         }
142
143         printk(" %s\n", bch_ptr_status(b->c, k));
144 }
145
146 /* Btree ptrs */
147
148 bool __bch_btree_ptr_invalid(struct cache_set *c, const struct bkey *k)
149 {
150         char buf[80];
151
152         if (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k))
153                 goto bad;
154
155         if (__ptr_invalid(c, k))
156                 goto bad;
157
158         return false;
159 bad:
160         bch_extent_to_text(buf, sizeof(buf), k);
161         cache_bug(c, "spotted btree ptr %s: %s", buf, bch_ptr_status(c, k));
162         return true;
163 }
164
165 static bool bch_btree_ptr_invalid(struct btree_keys *bk, const struct bkey *k)
166 {
167         struct btree *b = container_of(bk, struct btree, keys);
168         return __bch_btree_ptr_invalid(b->c, k);
169 }
170
171 static bool btree_ptr_bad_expensive(struct btree *b, const struct bkey *k)
172 {
173         unsigned i;
174         char buf[80];
175         struct bucket *g;
176
177         if (mutex_trylock(&b->c->bucket_lock)) {
178                 for (i = 0; i < KEY_PTRS(k); i++)
179                         if (ptr_available(b->c, k, i)) {
180                                 g = PTR_BUCKET(b->c, k, i);
181
182                                 if (KEY_DIRTY(k) ||
183                                     g->prio != BTREE_PRIO ||
184                                     (b->c->gc_mark_valid &&
185                                      GC_MARK(g) != GC_MARK_METADATA))
186                                         goto err;
187                         }
188
189                 mutex_unlock(&b->c->bucket_lock);
190         }
191
192         return false;
193 err:
194         mutex_unlock(&b->c->bucket_lock);
195         bch_extent_to_text(buf, sizeof(buf), k);
196         btree_bug(b,
197 "inconsistent btree pointer %s: bucket %zi pin %i prio %i gen %i last_gc %i mark %llu",
198                   buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin),
199                   g->prio, g->gen, g->last_gc, GC_MARK(g));
200         return true;
201 }
202
203 static bool bch_btree_ptr_bad(struct btree_keys *bk, const struct bkey *k)
204 {
205         struct btree *b = container_of(bk, struct btree, keys);
206         unsigned i;
207
208         if (!bkey_cmp(k, &ZERO_KEY) ||
209             !KEY_PTRS(k) ||
210             bch_ptr_invalid(bk, k))
211                 return true;
212
213         for (i = 0; i < KEY_PTRS(k); i++)
214                 if (!ptr_available(b->c, k, i) ||
215                     ptr_stale(b->c, k, i))
216                         return true;
217
218         if (expensive_debug_checks(b->c) &&
219             btree_ptr_bad_expensive(b, k))
220                 return true;
221
222         return false;
223 }
224
225 static bool bch_btree_ptr_insert_fixup(struct btree_keys *bk,
226                                        struct bkey *insert,
227                                        struct btree_iter *iter,
228                                        struct bkey *replace_key)
229 {
230         struct btree *b = container_of(bk, struct btree, keys);
231
232         if (!KEY_OFFSET(insert))
233                 btree_current_write(b)->prio_blocked++;
234
235         return false;
236 }
237
238 const struct btree_keys_ops bch_btree_keys_ops = {
239         .sort_cmp       = bch_key_sort_cmp,
240         .insert_fixup   = bch_btree_ptr_insert_fixup,
241         .key_invalid    = bch_btree_ptr_invalid,
242         .key_bad        = bch_btree_ptr_bad,
243         .key_to_text    = bch_extent_to_text,
244         .key_dump       = bch_bkey_dump,
245 };
246
247 /* Extents */
248
249 /*
250  * Returns true if l > r - unless l == r, in which case returns true if l is
251  * older than r.
252  *
253  * Necessary for btree_sort_fixup() - if there are multiple keys that compare
254  * equal in different sets, we have to process them newest to oldest.
255  */
256 static bool bch_extent_sort_cmp(struct btree_iter_set l,
257                                 struct btree_iter_set r)
258 {
259         int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k));
260
261         return c ? c > 0 : l.k < r.k;
262 }
263
264 static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter,
265                                           struct bkey *tmp)
266 {
267         while (iter->used > 1) {
268                 struct btree_iter_set *top = iter->data, *i = top + 1;
269
270                 if (iter->used > 2 &&
271                     bch_extent_sort_cmp(i[0], i[1]))
272                         i++;
273
274                 if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0)
275                         break;
276
277                 if (!KEY_SIZE(i->k)) {
278                         sort_key_next(iter, i);
279                         heap_sift(iter, i - top, bch_extent_sort_cmp);
280                         continue;
281                 }
282
283                 if (top->k > i->k) {
284                         if (bkey_cmp(top->k, i->k) >= 0)
285                                 sort_key_next(iter, i);
286                         else
287                                 bch_cut_front(top->k, i->k);
288
289                         heap_sift(iter, i - top, bch_extent_sort_cmp);
290                 } else {
291                         /* can't happen because of comparison func */
292                         BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k)));
293
294                         if (bkey_cmp(i->k, top->k) < 0) {
295                                 bkey_copy(tmp, top->k);
296
297                                 bch_cut_back(&START_KEY(i->k), tmp);
298                                 bch_cut_front(i->k, top->k);
299                                 heap_sift(iter, 0, bch_extent_sort_cmp);
300
301                                 return tmp;
302                         } else {
303                                 bch_cut_back(&START_KEY(i->k), top->k);
304                         }
305                 }
306         }
307
308         return NULL;
309 }
310
311 static void bch_subtract_dirty(struct bkey *k,
312                            struct cache_set *c,
313                            uint64_t offset,
314                            int sectors)
315 {
316         if (KEY_DIRTY(k))
317                 bcache_dev_sectors_dirty_add(c, KEY_INODE(k),
318                                              offset, -sectors);
319 }
320
321 static bool bch_extent_insert_fixup(struct btree_keys *b,
322                                     struct bkey *insert,
323                                     struct btree_iter *iter,
324                                     struct bkey *replace_key)
325 {
326         struct cache_set *c = container_of(b, struct btree, keys)->c;
327
328         uint64_t old_offset;
329         unsigned old_size, sectors_found = 0;
330
331         BUG_ON(!KEY_OFFSET(insert));
332         BUG_ON(!KEY_SIZE(insert));
333
334         while (1) {
335                 struct bkey *k = bch_btree_iter_next(iter);
336                 if (!k)
337                         break;
338
339                 if (bkey_cmp(&START_KEY(k), insert) >= 0) {
340                         if (KEY_SIZE(k))
341                                 break;
342                         else
343                                 continue;
344                 }
345
346                 if (bkey_cmp(k, &START_KEY(insert)) <= 0)
347                         continue;
348
349                 old_offset = KEY_START(k);
350                 old_size = KEY_SIZE(k);
351
352                 /*
353                  * We might overlap with 0 size extents; we can't skip these
354                  * because if they're in the set we're inserting to we have to
355                  * adjust them so they don't overlap with the key we're
356                  * inserting. But we don't want to check them for replace
357                  * operations.
358                  */
359
360                 if (replace_key && KEY_SIZE(k)) {
361                         /*
362                          * k might have been split since we inserted/found the
363                          * key we're replacing
364                          */
365                         unsigned i;
366                         uint64_t offset = KEY_START(k) -
367                                 KEY_START(replace_key);
368
369                         /* But it must be a subset of the replace key */
370                         if (KEY_START(k) < KEY_START(replace_key) ||
371                             KEY_OFFSET(k) > KEY_OFFSET(replace_key))
372                                 goto check_failed;
373
374                         /* We didn't find a key that we were supposed to */
375                         if (KEY_START(k) > KEY_START(insert) + sectors_found)
376                                 goto check_failed;
377
378                         if (!bch_bkey_equal_header(k, replace_key))
379                                 goto check_failed;
380
381                         /* skip past gen */
382                         offset <<= 8;
383
384                         BUG_ON(!KEY_PTRS(replace_key));
385
386                         for (i = 0; i < KEY_PTRS(replace_key); i++)
387                                 if (k->ptr[i] != replace_key->ptr[i] + offset)
388                                         goto check_failed;
389
390                         sectors_found = KEY_OFFSET(k) - KEY_START(insert);
391                 }
392
393                 if (bkey_cmp(insert, k) < 0 &&
394                     bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
395                         /*
396                          * We overlapped in the middle of an existing key: that
397                          * means we have to split the old key. But we have to do
398                          * slightly different things depending on whether the
399                          * old key has been written out yet.
400                          */
401
402                         struct bkey *top;
403
404                         bch_subtract_dirty(k, c, KEY_START(insert),
405                                        KEY_SIZE(insert));
406
407                         if (bkey_written(b, k)) {
408                                 /*
409                                  * We insert a new key to cover the top of the
410                                  * old key, and the old key is modified in place
411                                  * to represent the bottom split.
412                                  *
413                                  * It's completely arbitrary whether the new key
414                                  * is the top or the bottom, but it has to match
415                                  * up with what btree_sort_fixup() does - it
416                                  * doesn't check for this kind of overlap, it
417                                  * depends on us inserting a new key for the top
418                                  * here.
419                                  */
420                                 top = bch_bset_search(b, bset_tree_last(b),
421                                                       insert);
422                                 bch_bset_insert(b, top, k);
423                         } else {
424                                 BKEY_PADDED(key) temp;
425                                 bkey_copy(&temp.key, k);
426                                 bch_bset_insert(b, k, &temp.key);
427                                 top = bkey_next(k);
428                         }
429
430                         bch_cut_front(insert, top);
431                         bch_cut_back(&START_KEY(insert), k);
432                         bch_bset_fix_invalidated_key(b, k);
433                         goto out;
434                 }
435
436                 if (bkey_cmp(insert, k) < 0) {
437                         bch_cut_front(insert, k);
438                 } else {
439                         if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
440                                 old_offset = KEY_START(insert);
441
442                         if (bkey_written(b, k) &&
443                             bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
444                                 /*
445                                  * Completely overwrote, so we don't have to
446                                  * invalidate the binary search tree
447                                  */
448                                 bch_cut_front(k, k);
449                         } else {
450                                 __bch_cut_back(&START_KEY(insert), k);
451                                 bch_bset_fix_invalidated_key(b, k);
452                         }
453                 }
454
455                 bch_subtract_dirty(k, c, old_offset, old_size - KEY_SIZE(k));
456         }
457
458 check_failed:
459         if (replace_key) {
460                 if (!sectors_found) {
461                         return true;
462                 } else if (sectors_found < KEY_SIZE(insert)) {
463                         SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
464                                        (KEY_SIZE(insert) - sectors_found));
465                         SET_KEY_SIZE(insert, sectors_found);
466                 }
467         }
468 out:
469         if (KEY_DIRTY(insert))
470                 bcache_dev_sectors_dirty_add(c, KEY_INODE(insert),
471                                              KEY_START(insert),
472                                              KEY_SIZE(insert));
473
474         return false;
475 }
476
477 bool __bch_extent_invalid(struct cache_set *c, const struct bkey *k)
478 {
479         char buf[80];
480
481         if (!KEY_SIZE(k))
482                 return true;
483
484         if (KEY_SIZE(k) > KEY_OFFSET(k))
485                 goto bad;
486
487         if (__ptr_invalid(c, k))
488                 goto bad;
489
490         return false;
491 bad:
492         bch_extent_to_text(buf, sizeof(buf), k);
493         cache_bug(c, "spotted extent %s: %s", buf, bch_ptr_status(c, k));
494         return true;
495 }
496
497 static bool bch_extent_invalid(struct btree_keys *bk, const struct bkey *k)
498 {
499         struct btree *b = container_of(bk, struct btree, keys);
500         return __bch_extent_invalid(b->c, k);
501 }
502
503 static bool bch_extent_bad_expensive(struct btree *b, const struct bkey *k,
504                                      unsigned ptr)
505 {
506         struct bucket *g = PTR_BUCKET(b->c, k, ptr);
507         char buf[80];
508
509         if (mutex_trylock(&b->c->bucket_lock)) {
510                 if (b->c->gc_mark_valid &&
511                     (!GC_MARK(g) ||
512                      GC_MARK(g) == GC_MARK_METADATA ||
513                      (GC_MARK(g) != GC_MARK_DIRTY && KEY_DIRTY(k))))
514                         goto err;
515
516                 if (g->prio == BTREE_PRIO)
517                         goto err;
518
519                 mutex_unlock(&b->c->bucket_lock);
520         }
521
522         return false;
523 err:
524         mutex_unlock(&b->c->bucket_lock);
525         bch_extent_to_text(buf, sizeof(buf), k);
526         btree_bug(b,
527 "inconsistent extent pointer %s:\nbucket %zu pin %i prio %i gen %i last_gc %i mark %llu",
528                   buf, PTR_BUCKET_NR(b->c, k, ptr), atomic_read(&g->pin),
529                   g->prio, g->gen, g->last_gc, GC_MARK(g));
530         return true;
531 }
532
533 static bool bch_extent_bad(struct btree_keys *bk, const struct bkey *k)
534 {
535         struct btree *b = container_of(bk, struct btree, keys);
536         struct bucket *g;
537         unsigned i, stale;
538
539         if (!KEY_PTRS(k) ||
540             bch_extent_invalid(bk, k))
541                 return true;
542
543         for (i = 0; i < KEY_PTRS(k); i++)
544                 if (!ptr_available(b->c, k, i))
545                         return true;
546
547         if (!expensive_debug_checks(b->c) && KEY_DIRTY(k))
548                 return false;
549
550         for (i = 0; i < KEY_PTRS(k); i++) {
551                 g = PTR_BUCKET(b->c, k, i);
552                 stale = ptr_stale(b->c, k, i);
553
554                 btree_bug_on(stale > 96, b,
555                              "key too stale: %i, need_gc %u",
556                              stale, b->c->need_gc);
557
558                 btree_bug_on(stale && KEY_DIRTY(k) && KEY_SIZE(k),
559                              b, "stale dirty pointer");
560
561                 if (stale)
562                         return true;
563
564                 if (expensive_debug_checks(b->c) &&
565                     bch_extent_bad_expensive(b, k, i))
566                         return true;
567         }
568
569         return false;
570 }
571
572 static uint64_t merge_chksums(struct bkey *l, struct bkey *r)
573 {
574         return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) &
575                 ~((uint64_t)1 << 63);
576 }
577
578 static bool bch_extent_merge(struct btree_keys *bk, struct bkey *l, struct bkey *r)
579 {
580         struct btree *b = container_of(bk, struct btree, keys);
581         unsigned i;
582
583         if (key_merging_disabled(b->c))
584                 return false;
585
586         for (i = 0; i < KEY_PTRS(l); i++)
587                 if (l->ptr[i] + PTR(0, KEY_SIZE(l), 0) != r->ptr[i] ||
588                     PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i))
589                         return false;
590
591         /* Keys with no pointers aren't restricted to one bucket and could
592          * overflow KEY_SIZE
593          */
594         if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) {
595                 SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l));
596                 SET_KEY_SIZE(l, USHRT_MAX);
597
598                 bch_cut_front(l, r);
599                 return false;
600         }
601
602         if (KEY_CSUM(l)) {
603                 if (KEY_CSUM(r))
604                         l->ptr[KEY_PTRS(l)] = merge_chksums(l, r);
605                 else
606                         SET_KEY_CSUM(l, 0);
607         }
608
609         SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r));
610         SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r));
611
612         return true;
613 }
614
615 const struct btree_keys_ops bch_extent_keys_ops = {
616         .sort_cmp       = bch_extent_sort_cmp,
617         .sort_fixup     = bch_extent_sort_fixup,
618         .insert_fixup   = bch_extent_insert_fixup,
619         .key_invalid    = bch_extent_invalid,
620         .key_bad        = bch_extent_bad,
621         .key_merge      = bch_extent_merge,
622         .key_to_text    = bch_extent_to_text,
623         .key_dump       = bch_bkey_dump,
624         .is_extents     = true,
625 };