Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / isdn / hardware / mISDN / hfcsusb.c
1 /* hfcsusb.c
2  * mISDN driver for Colognechip HFC-S USB chip
3  *
4  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
5  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  *
22  * module params
23  *   debug=<n>, default=0, with n=0xHHHHGGGG
24  *      H - l1 driver flags described in hfcsusb.h
25  *      G - common mISDN debug flags described at mISDNhw.h
26  *
27  *   poll=<n>, default 128
28  *     n : burst size of PH_DATA_IND at transparent rx data
29  *
30  * Revision: 0.3.3 (socket), 2008-11-05
31  */
32
33 #include <linux/module.h>
34 #include <linux/delay.h>
35 #include <linux/usb.h>
36 #include <linux/mISDNhw.h>
37 #include <linux/slab.h>
38 #include "hfcsusb.h"
39
40 static unsigned int debug;
41 static int poll = DEFAULT_TRANSP_BURST_SZ;
42
43 static LIST_HEAD(HFClist);
44 static DEFINE_RWLOCK(HFClock);
45
46
47 MODULE_AUTHOR("Martin Bachem");
48 MODULE_LICENSE("GPL");
49 module_param(debug, uint, S_IRUGO | S_IWUSR);
50 module_param(poll, int, 0);
51
52 static int hfcsusb_cnt;
53
54 /* some function prototypes */
55 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
56 static void release_hw(struct hfcsusb *hw);
57 static void reset_hfcsusb(struct hfcsusb *hw);
58 static void setPortMode(struct hfcsusb *hw);
59 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
60 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
61 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
62 static void deactivate_bchannel(struct bchannel *bch);
63 static void hfcsusb_ph_info(struct hfcsusb *hw);
64
65 /* start next background transfer for control channel */
66 static void
67 ctrl_start_transfer(struct hfcsusb *hw)
68 {
69         if (debug & DBG_HFC_CALL_TRACE)
70                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
71
72         if (hw->ctrl_cnt) {
73                 hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
74                 hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
75                 hw->ctrl_urb->transfer_buffer = NULL;
76                 hw->ctrl_urb->transfer_buffer_length = 0;
77                 hw->ctrl_write.wIndex =
78                         cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
79                 hw->ctrl_write.wValue =
80                         cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
81
82                 usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
83         }
84 }
85
86 /*
87  * queue a control transfer request to write HFC-S USB
88  * chip register using CTRL resuest queue
89  */
90 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
91 {
92         struct ctrl_buf *buf;
93
94         if (debug & DBG_HFC_CALL_TRACE)
95                 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
96                        hw->name, __func__, reg, val);
97
98         spin_lock(&hw->ctrl_lock);
99         if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
100                 spin_unlock(&hw->ctrl_lock);
101                 return 1;
102         }
103         buf = &hw->ctrl_buff[hw->ctrl_in_idx];
104         buf->hfcs_reg = reg;
105         buf->reg_val = val;
106         if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
107                 hw->ctrl_in_idx = 0;
108         if (++hw->ctrl_cnt == 1)
109                 ctrl_start_transfer(hw);
110         spin_unlock(&hw->ctrl_lock);
111
112         return 0;
113 }
114
115 /* control completion routine handling background control cmds */
116 static void
117 ctrl_complete(struct urb *urb)
118 {
119         struct hfcsusb *hw = (struct hfcsusb *) urb->context;
120
121         if (debug & DBG_HFC_CALL_TRACE)
122                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
123
124         urb->dev = hw->dev;
125         if (hw->ctrl_cnt) {
126                 hw->ctrl_cnt--; /* decrement actual count */
127                 if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
128                         hw->ctrl_out_idx = 0;   /* pointer wrap */
129
130                 ctrl_start_transfer(hw); /* start next transfer */
131         }
132 }
133
134 /* handle LED bits   */
135 static void
136 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
137 {
138         if (set_on) {
139                 if (led_bits < 0)
140                         hw->led_state &= ~abs(led_bits);
141                 else
142                         hw->led_state |= led_bits;
143         } else {
144                 if (led_bits < 0)
145                         hw->led_state |= abs(led_bits);
146                 else
147                         hw->led_state &= ~led_bits;
148         }
149 }
150
151 /* handle LED requests  */
152 static void
153 handle_led(struct hfcsusb *hw, int event)
154 {
155         struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
156                 hfcsusb_idtab[hw->vend_idx].driver_info;
157         __u8 tmpled;
158
159         if (driver_info->led_scheme == LED_OFF)
160                 return;
161         tmpled = hw->led_state;
162
163         switch (event) {
164         case LED_POWER_ON:
165                 set_led_bit(hw, driver_info->led_bits[0], 1);
166                 set_led_bit(hw, driver_info->led_bits[1], 0);
167                 set_led_bit(hw, driver_info->led_bits[2], 0);
168                 set_led_bit(hw, driver_info->led_bits[3], 0);
169                 break;
170         case LED_POWER_OFF:
171                 set_led_bit(hw, driver_info->led_bits[0], 0);
172                 set_led_bit(hw, driver_info->led_bits[1], 0);
173                 set_led_bit(hw, driver_info->led_bits[2], 0);
174                 set_led_bit(hw, driver_info->led_bits[3], 0);
175                 break;
176         case LED_S0_ON:
177                 set_led_bit(hw, driver_info->led_bits[1], 1);
178                 break;
179         case LED_S0_OFF:
180                 set_led_bit(hw, driver_info->led_bits[1], 0);
181                 break;
182         case LED_B1_ON:
183                 set_led_bit(hw, driver_info->led_bits[2], 1);
184                 break;
185         case LED_B1_OFF:
186                 set_led_bit(hw, driver_info->led_bits[2], 0);
187                 break;
188         case LED_B2_ON:
189                 set_led_bit(hw, driver_info->led_bits[3], 1);
190                 break;
191         case LED_B2_OFF:
192                 set_led_bit(hw, driver_info->led_bits[3], 0);
193                 break;
194         }
195
196         if (hw->led_state != tmpled) {
197                 if (debug & DBG_HFC_CALL_TRACE)
198                         printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
199                                hw->name, __func__,
200                                HFCUSB_P_DATA, hw->led_state);
201
202                 write_reg(hw, HFCUSB_P_DATA, hw->led_state);
203         }
204 }
205
206 /*
207  * Layer2 -> Layer 1 Bchannel data
208  */
209 static int
210 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
211 {
212         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
213         struct hfcsusb          *hw = bch->hw;
214         int                     ret = -EINVAL;
215         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
216         u_long                  flags;
217
218         if (debug & DBG_HFC_CALL_TRACE)
219                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
220
221         switch (hh->prim) {
222         case PH_DATA_REQ:
223                 spin_lock_irqsave(&hw->lock, flags);
224                 ret = bchannel_senddata(bch, skb);
225                 spin_unlock_irqrestore(&hw->lock, flags);
226                 if (debug & DBG_HFC_CALL_TRACE)
227                         printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
228                                hw->name, __func__, ret);
229                 if (ret > 0)
230                         ret = 0;
231                 return ret;
232         case PH_ACTIVATE_REQ:
233                 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
234                         hfcsusb_start_endpoint(hw, bch->nr - 1);
235                         ret = hfcsusb_setup_bch(bch, ch->protocol);
236                 } else
237                         ret = 0;
238                 if (!ret)
239                         _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
240                                     0, NULL, GFP_KERNEL);
241                 break;
242         case PH_DEACTIVATE_REQ:
243                 deactivate_bchannel(bch);
244                 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
245                             0, NULL, GFP_KERNEL);
246                 ret = 0;
247                 break;
248         }
249         if (!ret)
250                 dev_kfree_skb(skb);
251         return ret;
252 }
253
254 /*
255  * send full D/B channel status information
256  * as MPH_INFORMATION_IND
257  */
258 static void
259 hfcsusb_ph_info(struct hfcsusb *hw)
260 {
261         struct ph_info *phi;
262         struct dchannel *dch = &hw->dch;
263         int i;
264
265         phi = kzalloc(sizeof(struct ph_info) +
266                       dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
267         phi->dch.ch.protocol = hw->protocol;
268         phi->dch.ch.Flags = dch->Flags;
269         phi->dch.state = dch->state;
270         phi->dch.num_bch = dch->dev.nrbchan;
271         for (i = 0; i < dch->dev.nrbchan; i++) {
272                 phi->bch[i].protocol = hw->bch[i].ch.protocol;
273                 phi->bch[i].Flags = hw->bch[i].Flags;
274         }
275         _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
276                     sizeof(struct ph_info_dch) + dch->dev.nrbchan *
277                     sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
278         kfree(phi);
279 }
280
281 /*
282  * Layer2 -> Layer 1 Dchannel data
283  */
284 static int
285 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
286 {
287         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
288         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
289         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
290         struct hfcsusb          *hw = dch->hw;
291         int                     ret = -EINVAL;
292         u_long                  flags;
293
294         switch (hh->prim) {
295         case PH_DATA_REQ:
296                 if (debug & DBG_HFC_CALL_TRACE)
297                         printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
298                                hw->name, __func__);
299
300                 spin_lock_irqsave(&hw->lock, flags);
301                 ret = dchannel_senddata(dch, skb);
302                 spin_unlock_irqrestore(&hw->lock, flags);
303                 if (ret > 0) {
304                         ret = 0;
305                         queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
306                 }
307                 break;
308
309         case PH_ACTIVATE_REQ:
310                 if (debug & DBG_HFC_CALL_TRACE)
311                         printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
312                                hw->name, __func__,
313                                (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
314
315                 if (hw->protocol == ISDN_P_NT_S0) {
316                         ret = 0;
317                         if (test_bit(FLG_ACTIVE, &dch->Flags)) {
318                                 _queue_data(&dch->dev.D,
319                                             PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
320                                             NULL, GFP_ATOMIC);
321                         } else {
322                                 hfcsusb_ph_command(hw,
323                                                    HFC_L1_ACTIVATE_NT);
324                                 test_and_set_bit(FLG_L2_ACTIVATED,
325                                                  &dch->Flags);
326                         }
327                 } else {
328                         hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
329                         ret = l1_event(dch->l1, hh->prim);
330                 }
331                 break;
332
333         case PH_DEACTIVATE_REQ:
334                 if (debug & DBG_HFC_CALL_TRACE)
335                         printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
336                                hw->name, __func__);
337                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
338
339                 if (hw->protocol == ISDN_P_NT_S0) {
340                         hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
341                         spin_lock_irqsave(&hw->lock, flags);
342                         skb_queue_purge(&dch->squeue);
343                         if (dch->tx_skb) {
344                                 dev_kfree_skb(dch->tx_skb);
345                                 dch->tx_skb = NULL;
346                         }
347                         dch->tx_idx = 0;
348                         if (dch->rx_skb) {
349                                 dev_kfree_skb(dch->rx_skb);
350                                 dch->rx_skb = NULL;
351                         }
352                         test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
353                         spin_unlock_irqrestore(&hw->lock, flags);
354 #ifdef FIXME
355                         if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
356                                 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
357 #endif
358                         ret = 0;
359                 } else
360                         ret = l1_event(dch->l1, hh->prim);
361                 break;
362         case MPH_INFORMATION_REQ:
363                 hfcsusb_ph_info(hw);
364                 ret = 0;
365                 break;
366         }
367
368         return ret;
369 }
370
371 /*
372  * Layer 1 callback function
373  */
374 static int
375 hfc_l1callback(struct dchannel *dch, u_int cmd)
376 {
377         struct hfcsusb *hw = dch->hw;
378
379         if (debug & DBG_HFC_CALL_TRACE)
380                 printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
381                        hw->name, __func__, cmd);
382
383         switch (cmd) {
384         case INFO3_P8:
385         case INFO3_P10:
386         case HW_RESET_REQ:
387         case HW_POWERUP_REQ:
388                 break;
389
390         case HW_DEACT_REQ:
391                 skb_queue_purge(&dch->squeue);
392                 if (dch->tx_skb) {
393                         dev_kfree_skb(dch->tx_skb);
394                         dch->tx_skb = NULL;
395                 }
396                 dch->tx_idx = 0;
397                 if (dch->rx_skb) {
398                         dev_kfree_skb(dch->rx_skb);
399                         dch->rx_skb = NULL;
400                 }
401                 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
402                 break;
403         case PH_ACTIVATE_IND:
404                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
405                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
406                             GFP_ATOMIC);
407                 break;
408         case PH_DEACTIVATE_IND:
409                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
410                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
411                             GFP_ATOMIC);
412                 break;
413         default:
414                 if (dch->debug & DEBUG_HW)
415                         printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
416                                hw->name, __func__, cmd);
417                 return -1;
418         }
419         hfcsusb_ph_info(hw);
420         return 0;
421 }
422
423 static int
424 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
425               struct channel_req *rq)
426 {
427         int err = 0;
428
429         if (debug & DEBUG_HW_OPEN)
430                 printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
431                        hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
432                        __builtin_return_address(0));
433         if (rq->protocol == ISDN_P_NONE)
434                 return -EINVAL;
435
436         test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
437         test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
438         hfcsusb_start_endpoint(hw, HFC_CHAN_D);
439
440         /* E-Channel logging */
441         if (rq->adr.channel == 1) {
442                 if (hw->fifos[HFCUSB_PCM_RX].pipe) {
443                         hfcsusb_start_endpoint(hw, HFC_CHAN_E);
444                         set_bit(FLG_ACTIVE, &hw->ech.Flags);
445                         _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
446                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
447                 } else
448                         return -EINVAL;
449         }
450
451         if (!hw->initdone) {
452                 hw->protocol = rq->protocol;
453                 if (rq->protocol == ISDN_P_TE_S0) {
454                         err = create_l1(&hw->dch, hfc_l1callback);
455                         if (err)
456                                 return err;
457                 }
458                 setPortMode(hw);
459                 ch->protocol = rq->protocol;
460                 hw->initdone = 1;
461         } else {
462                 if (rq->protocol != ch->protocol)
463                         return -EPROTONOSUPPORT;
464         }
465
466         if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
467             ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
468                 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
469                             0, NULL, GFP_KERNEL);
470         rq->ch = ch;
471         if (!try_module_get(THIS_MODULE))
472                 printk(KERN_WARNING "%s: %s: cannot get module\n",
473                        hw->name, __func__);
474         return 0;
475 }
476
477 static int
478 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
479 {
480         struct bchannel         *bch;
481
482         if (rq->adr.channel == 0 || rq->adr.channel > 2)
483                 return -EINVAL;
484         if (rq->protocol == ISDN_P_NONE)
485                 return -EINVAL;
486
487         if (debug & DBG_HFC_CALL_TRACE)
488                 printk(KERN_DEBUG "%s: %s B%i\n",
489                        hw->name, __func__, rq->adr.channel);
490
491         bch = &hw->bch[rq->adr.channel - 1];
492         if (test_and_set_bit(FLG_OPEN, &bch->Flags))
493                 return -EBUSY; /* b-channel can be only open once */
494         bch->ch.protocol = rq->protocol;
495         rq->ch = &bch->ch;
496
497         if (!try_module_get(THIS_MODULE))
498                 printk(KERN_WARNING "%s: %s:cannot get module\n",
499                        hw->name, __func__);
500         return 0;
501 }
502
503 static int
504 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
505 {
506         int ret = 0;
507
508         if (debug & DBG_HFC_CALL_TRACE)
509                 printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
510                        hw->name, __func__, (cq->op), (cq->channel));
511
512         switch (cq->op) {
513         case MISDN_CTRL_GETOP:
514                 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
515                         MISDN_CTRL_DISCONNECT;
516                 break;
517         default:
518                 printk(KERN_WARNING "%s: %s: unknown Op %x\n",
519                        hw->name, __func__, cq->op);
520                 ret = -EINVAL;
521                 break;
522         }
523         return ret;
524 }
525
526 /*
527  * device control function
528  */
529 static int
530 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
531 {
532         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
533         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
534         struct hfcsusb          *hw = dch->hw;
535         struct channel_req      *rq;
536         int                     err = 0;
537
538         if (dch->debug & DEBUG_HW)
539                 printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
540                        hw->name, __func__, cmd, arg);
541         switch (cmd) {
542         case OPEN_CHANNEL:
543                 rq = arg;
544                 if ((rq->protocol == ISDN_P_TE_S0) ||
545                     (rq->protocol == ISDN_P_NT_S0))
546                         err = open_dchannel(hw, ch, rq);
547                 else
548                         err = open_bchannel(hw, rq);
549                 if (!err)
550                         hw->open++;
551                 break;
552         case CLOSE_CHANNEL:
553                 hw->open--;
554                 if (debug & DEBUG_HW_OPEN)
555                         printk(KERN_DEBUG
556                                "%s: %s: dev(%d) close from %p (open %d)\n",
557                                hw->name, __func__, hw->dch.dev.id,
558                                __builtin_return_address(0), hw->open);
559                 if (!hw->open) {
560                         hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
561                         if (hw->fifos[HFCUSB_PCM_RX].pipe)
562                                 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
563                         handle_led(hw, LED_POWER_ON);
564                 }
565                 module_put(THIS_MODULE);
566                 break;
567         case CONTROL_CHANNEL:
568                 err = channel_ctrl(hw, arg);
569                 break;
570         default:
571                 if (dch->debug & DEBUG_HW)
572                         printk(KERN_DEBUG "%s: %s: unknown command %x\n",
573                                hw->name, __func__, cmd);
574                 return -EINVAL;
575         }
576         return err;
577 }
578
579 /*
580  * S0 TE state change event handler
581  */
582 static void
583 ph_state_te(struct dchannel *dch)
584 {
585         struct hfcsusb *hw = dch->hw;
586
587         if (debug & DEBUG_HW) {
588                 if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
589                         printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
590                                HFC_TE_LAYER1_STATES[dch->state]);
591                 else
592                         printk(KERN_DEBUG "%s: %s: TE F%d\n",
593                                hw->name, __func__, dch->state);
594         }
595
596         switch (dch->state) {
597         case 0:
598                 l1_event(dch->l1, HW_RESET_IND);
599                 break;
600         case 3:
601                 l1_event(dch->l1, HW_DEACT_IND);
602                 break;
603         case 5:
604         case 8:
605                 l1_event(dch->l1, ANYSIGNAL);
606                 break;
607         case 6:
608                 l1_event(dch->l1, INFO2);
609                 break;
610         case 7:
611                 l1_event(dch->l1, INFO4_P8);
612                 break;
613         }
614         if (dch->state == 7)
615                 handle_led(hw, LED_S0_ON);
616         else
617                 handle_led(hw, LED_S0_OFF);
618 }
619
620 /*
621  * S0 NT state change event handler
622  */
623 static void
624 ph_state_nt(struct dchannel *dch)
625 {
626         struct hfcsusb *hw = dch->hw;
627
628         if (debug & DEBUG_HW) {
629                 if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
630                         printk(KERN_DEBUG "%s: %s: %s\n",
631                                hw->name, __func__,
632                                HFC_NT_LAYER1_STATES[dch->state]);
633
634                 else
635                         printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
636                                hw->name, __func__, dch->state);
637         }
638
639         switch (dch->state) {
640         case (1):
641                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
642                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
643                 hw->nt_timer = 0;
644                 hw->timers &= ~NT_ACTIVATION_TIMER;
645                 handle_led(hw, LED_S0_OFF);
646                 break;
647
648         case (2):
649                 if (hw->nt_timer < 0) {
650                         hw->nt_timer = 0;
651                         hw->timers &= ~NT_ACTIVATION_TIMER;
652                         hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
653                 } else {
654                         hw->timers |= NT_ACTIVATION_TIMER;
655                         hw->nt_timer = NT_T1_COUNT;
656                         /* allow G2 -> G3 transition */
657                         write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
658                 }
659                 break;
660         case (3):
661                 hw->nt_timer = 0;
662                 hw->timers &= ~NT_ACTIVATION_TIMER;
663                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
664                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
665                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
666                 handle_led(hw, LED_S0_ON);
667                 break;
668         case (4):
669                 hw->nt_timer = 0;
670                 hw->timers &= ~NT_ACTIVATION_TIMER;
671                 break;
672         default:
673                 break;
674         }
675         hfcsusb_ph_info(hw);
676 }
677
678 static void
679 ph_state(struct dchannel *dch)
680 {
681         struct hfcsusb *hw = dch->hw;
682
683         if (hw->protocol == ISDN_P_NT_S0)
684                 ph_state_nt(dch);
685         else if (hw->protocol == ISDN_P_TE_S0)
686                 ph_state_te(dch);
687 }
688
689 /*
690  * disable/enable BChannel for desired protocoll
691  */
692 static int
693 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
694 {
695         struct hfcsusb *hw = bch->hw;
696         __u8 conhdlc, sctrl, sctrl_r;
697
698         if (debug & DEBUG_HW)
699                 printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
700                        hw->name, __func__, bch->state, protocol,
701                        bch->nr);
702
703         /* setup val for CON_HDLC */
704         conhdlc = 0;
705         if (protocol > ISDN_P_NONE)
706                 conhdlc = 8;    /* enable FIFO */
707
708         switch (protocol) {
709         case (-1):      /* used for init */
710                 bch->state = -1;
711                 /* fall through */
712         case (ISDN_P_NONE):
713                 if (bch->state == ISDN_P_NONE)
714                         return 0; /* already in idle state */
715                 bch->state = ISDN_P_NONE;
716                 clear_bit(FLG_HDLC, &bch->Flags);
717                 clear_bit(FLG_TRANSPARENT, &bch->Flags);
718                 break;
719         case (ISDN_P_B_RAW):
720                 conhdlc |= 2;
721                 bch->state = protocol;
722                 set_bit(FLG_TRANSPARENT, &bch->Flags);
723                 break;
724         case (ISDN_P_B_HDLC):
725                 bch->state = protocol;
726                 set_bit(FLG_HDLC, &bch->Flags);
727                 break;
728         default:
729                 if (debug & DEBUG_HW)
730                         printk(KERN_DEBUG "%s: %s: prot not known %x\n",
731                                hw->name, __func__, protocol);
732                 return -ENOPROTOOPT;
733         }
734
735         if (protocol >= ISDN_P_NONE) {
736                 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
737                 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
738                 write_reg(hw, HFCUSB_INC_RES_F, 2);
739                 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
740                 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
741                 write_reg(hw, HFCUSB_INC_RES_F, 2);
742
743                 sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
744                 sctrl_r = 0x0;
745                 if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
746                         sctrl |= 1;
747                         sctrl_r |= 1;
748                 }
749                 if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
750                         sctrl |= 2;
751                         sctrl_r |= 2;
752                 }
753                 write_reg(hw, HFCUSB_SCTRL, sctrl);
754                 write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
755
756                 if (protocol > ISDN_P_NONE)
757                         handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
758                 else
759                         handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
760                                    LED_B2_OFF);
761         }
762         hfcsusb_ph_info(hw);
763         return 0;
764 }
765
766 static void
767 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
768 {
769         if (debug & DEBUG_HW)
770                 printk(KERN_DEBUG "%s: %s: %x\n",
771                        hw->name, __func__, command);
772
773         switch (command) {
774         case HFC_L1_ACTIVATE_TE:
775                 /* force sending sending INFO1 */
776                 write_reg(hw, HFCUSB_STATES, 0x14);
777                 /* start l1 activation */
778                 write_reg(hw, HFCUSB_STATES, 0x04);
779                 break;
780
781         case HFC_L1_FORCE_DEACTIVATE_TE:
782                 write_reg(hw, HFCUSB_STATES, 0x10);
783                 write_reg(hw, HFCUSB_STATES, 0x03);
784                 break;
785
786         case HFC_L1_ACTIVATE_NT:
787                 if (hw->dch.state == 3)
788                         _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
789                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
790                 else
791                         write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
792                                   HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
793                 break;
794
795         case HFC_L1_DEACTIVATE_NT:
796                 write_reg(hw, HFCUSB_STATES,
797                           HFCUSB_DO_ACTION);
798                 break;
799         }
800 }
801
802 /*
803  * Layer 1 B-channel hardware access
804  */
805 static int
806 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
807 {
808         return mISDN_ctrl_bchannel(bch, cq);
809 }
810
811 /* collect data from incoming interrupt or isochron USB data */
812 static void
813 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
814                  int finish)
815 {
816         struct hfcsusb  *hw = fifo->hw;
817         struct sk_buff  *rx_skb = NULL;
818         int             maxlen = 0;
819         int             fifon = fifo->fifonum;
820         int             i;
821         int             hdlc = 0;
822
823         if (debug & DBG_HFC_CALL_TRACE)
824                 printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
825                        "dch(%p) bch(%p) ech(%p)\n",
826                        hw->name, __func__, fifon, len,
827                        fifo->dch, fifo->bch, fifo->ech);
828
829         if (!len)
830                 return;
831
832         if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
833                 printk(KERN_DEBUG "%s: %s: undefined channel\n",
834                        hw->name, __func__);
835                 return;
836         }
837
838         spin_lock(&hw->lock);
839         if (fifo->dch) {
840                 rx_skb = fifo->dch->rx_skb;
841                 maxlen = fifo->dch->maxlen;
842                 hdlc = 1;
843         }
844         if (fifo->bch) {
845                 if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
846                         fifo->bch->dropcnt += len;
847                         spin_unlock(&hw->lock);
848                         return;
849                 }
850                 maxlen = bchannel_get_rxbuf(fifo->bch, len);
851                 rx_skb = fifo->bch->rx_skb;
852                 if (maxlen < 0) {
853                         if (rx_skb)
854                                 skb_trim(rx_skb, 0);
855                         pr_warning("%s.B%d: No bufferspace for %d bytes\n",
856                                    hw->name, fifo->bch->nr, len);
857                         spin_unlock(&hw->lock);
858                         return;
859                 }
860                 maxlen = fifo->bch->maxlen;
861                 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
862         }
863         if (fifo->ech) {
864                 rx_skb = fifo->ech->rx_skb;
865                 maxlen = fifo->ech->maxlen;
866                 hdlc = 1;
867         }
868
869         if (fifo->dch || fifo->ech) {
870                 if (!rx_skb) {
871                         rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
872                         if (rx_skb) {
873                                 if (fifo->dch)
874                                         fifo->dch->rx_skb = rx_skb;
875                                 if (fifo->ech)
876                                         fifo->ech->rx_skb = rx_skb;
877                                 skb_trim(rx_skb, 0);
878                         } else {
879                                 printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
880                                        hw->name, __func__);
881                                 spin_unlock(&hw->lock);
882                                 return;
883                         }
884                 }
885                 /* D/E-Channel SKB range check */
886                 if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
887                         printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
888                                "for fifo(%d) HFCUSB_D_RX\n",
889                                hw->name, __func__, fifon);
890                         skb_trim(rx_skb, 0);
891                         spin_unlock(&hw->lock);
892                         return;
893                 }
894         }
895
896         memcpy(skb_put(rx_skb, len), data, len);
897
898         if (hdlc) {
899                 /* we have a complete hdlc packet */
900                 if (finish) {
901                         if ((rx_skb->len > 3) &&
902                             (!(rx_skb->data[rx_skb->len - 1]))) {
903                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
904                                         printk(KERN_DEBUG "%s: %s: fifon(%i)"
905                                                " new RX len(%i): ",
906                                                hw->name, __func__, fifon,
907                                                rx_skb->len);
908                                         i = 0;
909                                         while (i < rx_skb->len)
910                                                 printk("%02x ",
911                                                        rx_skb->data[i++]);
912                                         printk("\n");
913                                 }
914
915                                 /* remove CRC & status */
916                                 skb_trim(rx_skb, rx_skb->len - 3);
917
918                                 if (fifo->dch)
919                                         recv_Dchannel(fifo->dch);
920                                 if (fifo->bch)
921                                         recv_Bchannel(fifo->bch, MISDN_ID_ANY,
922                                                       0);
923                                 if (fifo->ech)
924                                         recv_Echannel(fifo->ech,
925                                                       &hw->dch);
926                         } else {
927                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
928                                         printk(KERN_DEBUG
929                                                "%s: CRC or minlen ERROR fifon(%i) "
930                                                "RX len(%i): ",
931                                                hw->name, fifon, rx_skb->len);
932                                         i = 0;
933                                         while (i < rx_skb->len)
934                                                 printk("%02x ",
935                                                        rx_skb->data[i++]);
936                                         printk("\n");
937                                 }
938                                 skb_trim(rx_skb, 0);
939                         }
940                 }
941         } else {
942                 /* deliver transparent data to layer2 */
943                 recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
944         }
945         spin_unlock(&hw->lock);
946 }
947
948 static void
949 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
950               void *buf, int num_packets, int packet_size, int interval,
951               usb_complete_t complete, void *context)
952 {
953         int k;
954
955         usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
956                           complete, context);
957
958         urb->number_of_packets = num_packets;
959         urb->transfer_flags = URB_ISO_ASAP;
960         urb->actual_length = 0;
961         urb->interval = interval;
962
963         for (k = 0; k < num_packets; k++) {
964                 urb->iso_frame_desc[k].offset = packet_size * k;
965                 urb->iso_frame_desc[k].length = packet_size;
966                 urb->iso_frame_desc[k].actual_length = 0;
967         }
968 }
969
970 /* receive completion routine for all ISO tx fifos   */
971 static void
972 rx_iso_complete(struct urb *urb)
973 {
974         struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
975         struct usb_fifo *fifo = context_iso_urb->owner_fifo;
976         struct hfcsusb *hw = fifo->hw;
977         int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
978                 status, iso_status, i;
979         __u8 *buf;
980         static __u8 eof[8];
981         __u8 s0_state;
982
983         fifon = fifo->fifonum;
984         status = urb->status;
985
986         spin_lock(&hw->lock);
987         if (fifo->stop_gracefull) {
988                 fifo->stop_gracefull = 0;
989                 fifo->active = 0;
990                 spin_unlock(&hw->lock);
991                 return;
992         }
993         spin_unlock(&hw->lock);
994
995         /*
996          * ISO transfer only partially completed,
997          * look at individual frame status for details
998          */
999         if (status == -EXDEV) {
1000                 if (debug & DEBUG_HW)
1001                         printk(KERN_DEBUG "%s: %s: with -EXDEV "
1002                                "urb->status %d, fifonum %d\n",
1003                                hw->name, __func__,  status, fifon);
1004
1005                 /* clear status, so go on with ISO transfers */
1006                 status = 0;
1007         }
1008
1009         s0_state = 0;
1010         if (fifo->active && !status) {
1011                 num_isoc_packets = iso_packets[fifon];
1012                 maxlen = fifo->usb_packet_maxlen;
1013
1014                 for (k = 0; k < num_isoc_packets; ++k) {
1015                         len = urb->iso_frame_desc[k].actual_length;
1016                         offset = urb->iso_frame_desc[k].offset;
1017                         buf = context_iso_urb->buffer + offset;
1018                         iso_status = urb->iso_frame_desc[k].status;
1019
1020                         if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1021                                 printk(KERN_DEBUG "%s: %s: "
1022                                        "ISO packet %i, status: %i\n",
1023                                        hw->name, __func__, k, iso_status);
1024                         }
1025
1026                         /* USB data log for every D ISO in */
1027                         if ((fifon == HFCUSB_D_RX) &&
1028                             (debug & DBG_HFC_USB_VERBOSE)) {
1029                                 printk(KERN_DEBUG
1030                                        "%s: %s: %d (%d/%d) len(%d) ",
1031                                        hw->name, __func__, urb->start_frame,
1032                                        k, num_isoc_packets - 1,
1033                                        len);
1034                                 for (i = 0; i < len; i++)
1035                                         printk("%x ", buf[i]);
1036                                 printk("\n");
1037                         }
1038
1039                         if (!iso_status) {
1040                                 if (fifo->last_urblen != maxlen) {
1041                                         /*
1042                                          * save fifo fill-level threshold bits
1043                                          * to use them later in TX ISO URB
1044                                          * completions
1045                                          */
1046                                         hw->threshold_mask = buf[1];
1047
1048                                         if (fifon == HFCUSB_D_RX)
1049                                                 s0_state = (buf[0] >> 4);
1050
1051                                         eof[fifon] = buf[0] & 1;
1052                                         if (len > 2)
1053                                                 hfcsusb_rx_frame(fifo, buf + 2,
1054                                                                  len - 2, (len < maxlen)
1055                                                                  ? eof[fifon] : 0);
1056                                 } else
1057                                         hfcsusb_rx_frame(fifo, buf, len,
1058                                                          (len < maxlen) ?
1059                                                          eof[fifon] : 0);
1060                                 fifo->last_urblen = len;
1061                         }
1062                 }
1063
1064                 /* signal S0 layer1 state change */
1065                 if ((s0_state) && (hw->initdone) &&
1066                     (s0_state != hw->dch.state)) {
1067                         hw->dch.state = s0_state;
1068                         schedule_event(&hw->dch, FLG_PHCHANGE);
1069                 }
1070
1071                 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1072                               context_iso_urb->buffer, num_isoc_packets,
1073                               fifo->usb_packet_maxlen, fifo->intervall,
1074                               (usb_complete_t)rx_iso_complete, urb->context);
1075                 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1076                 if (errcode < 0) {
1077                         if (debug & DEBUG_HW)
1078                                 printk(KERN_DEBUG "%s: %s: error submitting "
1079                                        "ISO URB: %d\n",
1080                                        hw->name, __func__, errcode);
1081                 }
1082         } else {
1083                 if (status && (debug & DBG_HFC_URB_INFO))
1084                         printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1085                                "urb->status %d, fifonum %d\n",
1086                                hw->name, __func__, status, fifon);
1087         }
1088 }
1089
1090 /* receive completion routine for all interrupt rx fifos */
1091 static void
1092 rx_int_complete(struct urb *urb)
1093 {
1094         int len, status, i;
1095         __u8 *buf, maxlen, fifon;
1096         struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1097         struct hfcsusb *hw = fifo->hw;
1098         static __u8 eof[8];
1099
1100         spin_lock(&hw->lock);
1101         if (fifo->stop_gracefull) {
1102                 fifo->stop_gracefull = 0;
1103                 fifo->active = 0;
1104                 spin_unlock(&hw->lock);
1105                 return;
1106         }
1107         spin_unlock(&hw->lock);
1108
1109         fifon = fifo->fifonum;
1110         if ((!fifo->active) || (urb->status)) {
1111                 if (debug & DBG_HFC_URB_ERROR)
1112                         printk(KERN_DEBUG
1113                                "%s: %s: RX-Fifo %i is going down (%i)\n",
1114                                hw->name, __func__, fifon, urb->status);
1115
1116                 fifo->urb->interval = 0; /* cancel automatic rescheduling */
1117                 return;
1118         }
1119         len = urb->actual_length;
1120         buf = fifo->buffer;
1121         maxlen = fifo->usb_packet_maxlen;
1122
1123         /* USB data log for every D INT in */
1124         if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1125                 printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1126                        hw->name, __func__, len);
1127                 for (i = 0; i < len; i++)
1128                         printk("%02x ", buf[i]);
1129                 printk("\n");
1130         }
1131
1132         if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1133                 /* the threshold mask is in the 2nd status byte */
1134                 hw->threshold_mask = buf[1];
1135
1136                 /* signal S0 layer1 state change */
1137                 if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1138                         hw->dch.state = (buf[0] >> 4);
1139                         schedule_event(&hw->dch, FLG_PHCHANGE);
1140                 }
1141
1142                 eof[fifon] = buf[0] & 1;
1143                 /* if we have more than the 2 status bytes -> collect data */
1144                 if (len > 2)
1145                         hfcsusb_rx_frame(fifo, buf + 2,
1146                                          urb->actual_length - 2,
1147                                          (len < maxlen) ? eof[fifon] : 0);
1148         } else {
1149                 hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1150                                  (len < maxlen) ? eof[fifon] : 0);
1151         }
1152         fifo->last_urblen = urb->actual_length;
1153
1154         status = usb_submit_urb(urb, GFP_ATOMIC);
1155         if (status) {
1156                 if (debug & DEBUG_HW)
1157                         printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1158                                hw->name, __func__);
1159         }
1160 }
1161
1162 /* transmit completion routine for all ISO tx fifos */
1163 static void
1164 tx_iso_complete(struct urb *urb)
1165 {
1166         struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1167         struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1168         struct hfcsusb *hw = fifo->hw;
1169         struct sk_buff *tx_skb;
1170         int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1171                 errcode, hdlc, i;
1172         int *tx_idx;
1173         int frame_complete, fifon, status, fillempty = 0;
1174         __u8 threshbit, *p;
1175
1176         spin_lock(&hw->lock);
1177         if (fifo->stop_gracefull) {
1178                 fifo->stop_gracefull = 0;
1179                 fifo->active = 0;
1180                 spin_unlock(&hw->lock);
1181                 return;
1182         }
1183
1184         if (fifo->dch) {
1185                 tx_skb = fifo->dch->tx_skb;
1186                 tx_idx = &fifo->dch->tx_idx;
1187                 hdlc = 1;
1188         } else if (fifo->bch) {
1189                 tx_skb = fifo->bch->tx_skb;
1190                 tx_idx = &fifo->bch->tx_idx;
1191                 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1192                 if (!tx_skb && !hdlc &&
1193                     test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1194                         fillempty = 1;
1195         } else {
1196                 printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1197                        hw->name, __func__);
1198                 spin_unlock(&hw->lock);
1199                 return;
1200         }
1201
1202         fifon = fifo->fifonum;
1203         status = urb->status;
1204
1205         tx_offset = 0;
1206
1207         /*
1208          * ISO transfer only partially completed,
1209          * look at individual frame status for details
1210          */
1211         if (status == -EXDEV) {
1212                 if (debug & DBG_HFC_URB_ERROR)
1213                         printk(KERN_DEBUG "%s: %s: "
1214                                "-EXDEV (%i) fifon (%d)\n",
1215                                hw->name, __func__, status, fifon);
1216
1217                 /* clear status, so go on with ISO transfers */
1218                 status = 0;
1219         }
1220
1221         if (fifo->active && !status) {
1222                 /* is FifoFull-threshold set for our channel? */
1223                 threshbit = (hw->threshold_mask & (1 << fifon));
1224                 num_isoc_packets = iso_packets[fifon];
1225
1226                 /* predict dataflow to avoid fifo overflow */
1227                 if (fifon >= HFCUSB_D_TX)
1228                         sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1229                 else
1230                         sink = (threshbit) ? SINK_MIN : SINK_MAX;
1231                 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1232                               context_iso_urb->buffer, num_isoc_packets,
1233                               fifo->usb_packet_maxlen, fifo->intervall,
1234                               (usb_complete_t)tx_iso_complete, urb->context);
1235                 memset(context_iso_urb->buffer, 0,
1236                        sizeof(context_iso_urb->buffer));
1237                 frame_complete = 0;
1238
1239                 for (k = 0; k < num_isoc_packets; ++k) {
1240                         /* analyze tx success of previous ISO packets */
1241                         if (debug & DBG_HFC_URB_ERROR) {
1242                                 errcode = urb->iso_frame_desc[k].status;
1243                                 if (errcode) {
1244                                         printk(KERN_DEBUG "%s: %s: "
1245                                                "ISO packet %i, status: %i\n",
1246                                                hw->name, __func__, k, errcode);
1247                                 }
1248                         }
1249
1250                         /* Generate next ISO Packets */
1251                         if (tx_skb)
1252                                 remain = tx_skb->len - *tx_idx;
1253                         else if (fillempty)
1254                                 remain = 15; /* > not complete */
1255                         else
1256                                 remain = 0;
1257
1258                         if (remain > 0) {
1259                                 fifo->bit_line -= sink;
1260                                 current_len = (0 - fifo->bit_line) / 8;
1261                                 if (current_len > 14)
1262                                         current_len = 14;
1263                                 if (current_len < 0)
1264                                         current_len = 0;
1265                                 if (remain < current_len)
1266                                         current_len = remain;
1267
1268                                 /* how much bit do we put on the line? */
1269                                 fifo->bit_line += current_len * 8;
1270
1271                                 context_iso_urb->buffer[tx_offset] = 0;
1272                                 if (current_len == remain) {
1273                                         if (hdlc) {
1274                                                 /* signal frame completion */
1275                                                 context_iso_urb->
1276                                                         buffer[tx_offset] = 1;
1277                                                 /* add 2 byte flags and 16bit
1278                                                  * CRC at end of ISDN frame */
1279                                                 fifo->bit_line += 32;
1280                                         }
1281                                         frame_complete = 1;
1282                                 }
1283
1284                                 /* copy tx data to iso-urb buffer */
1285                                 p = context_iso_urb->buffer + tx_offset + 1;
1286                                 if (fillempty) {
1287                                         memset(p, fifo->bch->fill[0],
1288                                                current_len);
1289                                 } else {
1290                                         memcpy(p, (tx_skb->data + *tx_idx),
1291                                                current_len);
1292                                         *tx_idx += current_len;
1293                                 }
1294                                 urb->iso_frame_desc[k].offset = tx_offset;
1295                                 urb->iso_frame_desc[k].length = current_len + 1;
1296
1297                                 /* USB data log for every D ISO out */
1298                                 if ((fifon == HFCUSB_D_RX) && !fillempty &&
1299                                     (debug & DBG_HFC_USB_VERBOSE)) {
1300                                         printk(KERN_DEBUG
1301                                                "%s: %s (%d/%d) offs(%d) len(%d) ",
1302                                                hw->name, __func__,
1303                                                k, num_isoc_packets - 1,
1304                                                urb->iso_frame_desc[k].offset,
1305                                                urb->iso_frame_desc[k].length);
1306
1307                                         for (i = urb->iso_frame_desc[k].offset;
1308                                              i < (urb->iso_frame_desc[k].offset
1309                                                   + urb->iso_frame_desc[k].length);
1310                                              i++)
1311                                                 printk("%x ",
1312                                                        context_iso_urb->buffer[i]);
1313
1314                                         printk(" skb->len(%i) tx-idx(%d)\n",
1315                                                tx_skb->len, *tx_idx);
1316                                 }
1317
1318                                 tx_offset += (current_len + 1);
1319                         } else {
1320                                 urb->iso_frame_desc[k].offset = tx_offset++;
1321                                 urb->iso_frame_desc[k].length = 1;
1322                                 /* we lower data margin every msec */
1323                                 fifo->bit_line -= sink;
1324                                 if (fifo->bit_line < BITLINE_INF)
1325                                         fifo->bit_line = BITLINE_INF;
1326                         }
1327
1328                         if (frame_complete) {
1329                                 frame_complete = 0;
1330
1331                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
1332                                         printk(KERN_DEBUG  "%s: %s: "
1333                                                "fifon(%i) new TX len(%i): ",
1334                                                hw->name, __func__,
1335                                                fifon, tx_skb->len);
1336                                         i = 0;
1337                                         while (i < tx_skb->len)
1338                                                 printk("%02x ",
1339                                                        tx_skb->data[i++]);
1340                                         printk("\n");
1341                                 }
1342
1343                                 dev_kfree_skb(tx_skb);
1344                                 tx_skb = NULL;
1345                                 if (fifo->dch && get_next_dframe(fifo->dch))
1346                                         tx_skb = fifo->dch->tx_skb;
1347                                 else if (fifo->bch &&
1348                                          get_next_bframe(fifo->bch))
1349                                         tx_skb = fifo->bch->tx_skb;
1350                         }
1351                 }
1352                 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1353                 if (errcode < 0) {
1354                         if (debug & DEBUG_HW)
1355                                 printk(KERN_DEBUG
1356                                        "%s: %s: error submitting ISO URB: %d \n",
1357                                        hw->name, __func__, errcode);
1358                 }
1359
1360                 /*
1361                  * abuse DChannel tx iso completion to trigger NT mode state
1362                  * changes tx_iso_complete is assumed to be called every
1363                  * fifo->intervall (ms)
1364                  */
1365                 if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1366                     && (hw->timers & NT_ACTIVATION_TIMER)) {
1367                         if ((--hw->nt_timer) < 0)
1368                                 schedule_event(&hw->dch, FLG_PHCHANGE);
1369                 }
1370
1371         } else {
1372                 if (status && (debug & DBG_HFC_URB_ERROR))
1373                         printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1374                                "fifonum=%d\n",
1375                                hw->name, __func__,
1376                                symbolic(urb_errlist, status), status, fifon);
1377         }
1378         spin_unlock(&hw->lock);
1379 }
1380
1381 /*
1382  * allocs urbs and start isoc transfer with two pending urbs to avoid
1383  * gaps in the transfer chain
1384  */
1385 static int
1386 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1387                  usb_complete_t complete, int packet_size)
1388 {
1389         struct hfcsusb *hw = fifo->hw;
1390         int i, k, errcode;
1391
1392         if (debug)
1393                 printk(KERN_DEBUG "%s: %s: fifo %i\n",
1394                        hw->name, __func__, fifo->fifonum);
1395
1396         /* allocate Memory for Iso out Urbs */
1397         for (i = 0; i < 2; i++) {
1398                 if (!(fifo->iso[i].urb)) {
1399                         fifo->iso[i].urb =
1400                                 usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1401                         if (!(fifo->iso[i].urb)) {
1402                                 printk(KERN_DEBUG
1403                                        "%s: %s: alloc urb for fifo %i failed",
1404                                        hw->name, __func__, fifo->fifonum);
1405                         }
1406                         fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1407                         fifo->iso[i].indx = i;
1408
1409                         /* Init the first iso */
1410                         if (ISO_BUFFER_SIZE >=
1411                             (fifo->usb_packet_maxlen *
1412                              num_packets_per_urb)) {
1413                                 fill_isoc_urb(fifo->iso[i].urb,
1414                                               fifo->hw->dev, fifo->pipe,
1415                                               fifo->iso[i].buffer,
1416                                               num_packets_per_urb,
1417                                               fifo->usb_packet_maxlen,
1418                                               fifo->intervall, complete,
1419                                               &fifo->iso[i]);
1420                                 memset(fifo->iso[i].buffer, 0,
1421                                        sizeof(fifo->iso[i].buffer));
1422
1423                                 for (k = 0; k < num_packets_per_urb; k++) {
1424                                         fifo->iso[i].urb->
1425                                                 iso_frame_desc[k].offset =
1426                                                 k * packet_size;
1427                                         fifo->iso[i].urb->
1428                                                 iso_frame_desc[k].length =
1429                                                 packet_size;
1430                                 }
1431                         } else {
1432                                 printk(KERN_DEBUG
1433                                        "%s: %s: ISO Buffer size to small!\n",
1434                                        hw->name, __func__);
1435                         }
1436                 }
1437                 fifo->bit_line = BITLINE_INF;
1438
1439                 errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1440                 fifo->active = (errcode >= 0) ? 1 : 0;
1441                 fifo->stop_gracefull = 0;
1442                 if (errcode < 0) {
1443                         printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1444                                hw->name, __func__,
1445                                symbolic(urb_errlist, errcode), i);
1446                 }
1447         }
1448         return fifo->active;
1449 }
1450
1451 static void
1452 stop_iso_gracefull(struct usb_fifo *fifo)
1453 {
1454         struct hfcsusb *hw = fifo->hw;
1455         int i, timeout;
1456         u_long flags;
1457
1458         for (i = 0; i < 2; i++) {
1459                 spin_lock_irqsave(&hw->lock, flags);
1460                 if (debug)
1461                         printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1462                                hw->name, __func__, fifo->fifonum, i);
1463                 fifo->stop_gracefull = 1;
1464                 spin_unlock_irqrestore(&hw->lock, flags);
1465         }
1466
1467         for (i = 0; i < 2; i++) {
1468                 timeout = 3;
1469                 while (fifo->stop_gracefull && timeout--)
1470                         schedule_timeout_interruptible((HZ / 1000) * 16);
1471                 if (debug && fifo->stop_gracefull)
1472                         printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1473                                hw->name, __func__, fifo->fifonum, i);
1474         }
1475 }
1476
1477 static void
1478 stop_int_gracefull(struct usb_fifo *fifo)
1479 {
1480         struct hfcsusb *hw = fifo->hw;
1481         int timeout;
1482         u_long flags;
1483
1484         spin_lock_irqsave(&hw->lock, flags);
1485         if (debug)
1486                 printk(KERN_DEBUG "%s: %s for fifo %i\n",
1487                        hw->name, __func__, fifo->fifonum);
1488         fifo->stop_gracefull = 1;
1489         spin_unlock_irqrestore(&hw->lock, flags);
1490
1491         timeout = 3;
1492         while (fifo->stop_gracefull && timeout--)
1493                 schedule_timeout_interruptible((HZ / 1000) * 3);
1494         if (debug && fifo->stop_gracefull)
1495                 printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1496                        hw->name, __func__, fifo->fifonum);
1497 }
1498
1499 /* start the interrupt transfer for the given fifo */
1500 static void
1501 start_int_fifo(struct usb_fifo *fifo)
1502 {
1503         struct hfcsusb *hw = fifo->hw;
1504         int errcode;
1505
1506         if (debug)
1507                 printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1508                        hw->name, __func__, fifo->fifonum);
1509
1510         if (!fifo->urb) {
1511                 fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1512                 if (!fifo->urb)
1513                         return;
1514         }
1515         usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1516                          fifo->buffer, fifo->usb_packet_maxlen,
1517                          (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1518         fifo->active = 1;
1519         fifo->stop_gracefull = 0;
1520         errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1521         if (errcode) {
1522                 printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1523                        hw->name, __func__, errcode);
1524                 fifo->active = 0;
1525         }
1526 }
1527
1528 static void
1529 setPortMode(struct hfcsusb *hw)
1530 {
1531         if (debug & DEBUG_HW)
1532                 printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1533                        (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1534
1535         if (hw->protocol == ISDN_P_TE_S0) {
1536                 write_reg(hw, HFCUSB_SCTRL, 0x40);
1537                 write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1538                 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1539                 write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1540                 write_reg(hw, HFCUSB_STATES, 3);
1541         } else {
1542                 write_reg(hw, HFCUSB_SCTRL, 0x44);
1543                 write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1544                 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1545                 write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1546                 write_reg(hw, HFCUSB_STATES, 1);
1547         }
1548 }
1549
1550 static void
1551 reset_hfcsusb(struct hfcsusb *hw)
1552 {
1553         struct usb_fifo *fifo;
1554         int i;
1555
1556         if (debug & DEBUG_HW)
1557                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1558
1559         /* do Chip reset */
1560         write_reg(hw, HFCUSB_CIRM, 8);
1561
1562         /* aux = output, reset off */
1563         write_reg(hw, HFCUSB_CIRM, 0x10);
1564
1565         /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1566         write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1567                   ((hw->packet_size / 8) << 4));
1568
1569         /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1570         write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1571
1572         /* enable PCM/GCI master mode */
1573         write_reg(hw, HFCUSB_MST_MODE1, 0);     /* set default values */
1574         write_reg(hw, HFCUSB_MST_MODE0, 1);     /* enable master mode */
1575
1576         /* init the fifos */
1577         write_reg(hw, HFCUSB_F_THRES,
1578                   (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1579
1580         fifo = hw->fifos;
1581         for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1582                 write_reg(hw, HFCUSB_FIFO, i);  /* select the desired fifo */
1583                 fifo[i].max_size =
1584                         (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1585                 fifo[i].last_urblen = 0;
1586
1587                 /* set 2 bit for D- & E-channel */
1588                 write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1589
1590                 /* enable all fifos */
1591                 if (i == HFCUSB_D_TX)
1592                         write_reg(hw, HFCUSB_CON_HDLC,
1593                                   (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1594                 else
1595                         write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1596                 write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1597         }
1598
1599         write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1600         handle_led(hw, LED_POWER_ON);
1601 }
1602
1603 /* start USB data pipes dependand on device's endpoint configuration */
1604 static void
1605 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1606 {
1607         /* quick check if endpoint already running */
1608         if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1609                 return;
1610         if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1611                 return;
1612         if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1613                 return;
1614         if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1615                 return;
1616
1617         /* start rx endpoints using USB INT IN method */
1618         if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1619                 start_int_fifo(hw->fifos + channel * 2 + 1);
1620
1621         /* start rx endpoints using USB ISO IN method */
1622         if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1623                 switch (channel) {
1624                 case HFC_CHAN_D:
1625                         start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1626                                          ISOC_PACKETS_D,
1627                                          (usb_complete_t)rx_iso_complete,
1628                                          16);
1629                         break;
1630                 case HFC_CHAN_E:
1631                         start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1632                                          ISOC_PACKETS_D,
1633                                          (usb_complete_t)rx_iso_complete,
1634                                          16);
1635                         break;
1636                 case HFC_CHAN_B1:
1637                         start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1638                                          ISOC_PACKETS_B,
1639                                          (usb_complete_t)rx_iso_complete,
1640                                          16);
1641                         break;
1642                 case HFC_CHAN_B2:
1643                         start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1644                                          ISOC_PACKETS_B,
1645                                          (usb_complete_t)rx_iso_complete,
1646                                          16);
1647                         break;
1648                 }
1649         }
1650
1651         /* start tx endpoints using USB ISO OUT method */
1652         switch (channel) {
1653         case HFC_CHAN_D:
1654                 start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1655                                  ISOC_PACKETS_B,
1656                                  (usb_complete_t)tx_iso_complete, 1);
1657                 break;
1658         case HFC_CHAN_B1:
1659                 start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1660                                  ISOC_PACKETS_D,
1661                                  (usb_complete_t)tx_iso_complete, 1);
1662                 break;
1663         case HFC_CHAN_B2:
1664                 start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1665                                  ISOC_PACKETS_B,
1666                                  (usb_complete_t)tx_iso_complete, 1);
1667                 break;
1668         }
1669 }
1670
1671 /* stop USB data pipes dependand on device's endpoint configuration */
1672 static void
1673 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1674 {
1675         /* quick check if endpoint currently running */
1676         if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1677                 return;
1678         if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1679                 return;
1680         if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1681                 return;
1682         if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1683                 return;
1684
1685         /* rx endpoints using USB INT IN method */
1686         if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1687                 stop_int_gracefull(hw->fifos + channel * 2 + 1);
1688
1689         /* rx endpoints using USB ISO IN method */
1690         if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1691                 stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1692
1693         /* tx endpoints using USB ISO OUT method */
1694         if (channel != HFC_CHAN_E)
1695                 stop_iso_gracefull(hw->fifos + channel * 2);
1696 }
1697
1698
1699 /* Hardware Initialization */
1700 static int
1701 setup_hfcsusb(struct hfcsusb *hw)
1702 {
1703         u_char b;
1704
1705         if (debug & DBG_HFC_CALL_TRACE)
1706                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1707
1708         /* check the chip id */
1709         if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
1710                 printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1711                        hw->name, __func__);
1712                 return 1;
1713         }
1714         if (b != HFCUSB_CHIPID) {
1715                 printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1716                        hw->name, __func__, b);
1717                 return 1;
1718         }
1719
1720         /* first set the needed config, interface and alternate */
1721         (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1722
1723         hw->led_state = 0;
1724
1725         /* init the background machinery for control requests */
1726         hw->ctrl_read.bRequestType = 0xc0;
1727         hw->ctrl_read.bRequest = 1;
1728         hw->ctrl_read.wLength = cpu_to_le16(1);
1729         hw->ctrl_write.bRequestType = 0x40;
1730         hw->ctrl_write.bRequest = 0;
1731         hw->ctrl_write.wLength = 0;
1732         usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1733                              (u_char *)&hw->ctrl_write, NULL, 0,
1734                              (usb_complete_t)ctrl_complete, hw);
1735
1736         reset_hfcsusb(hw);
1737         return 0;
1738 }
1739
1740 static void
1741 release_hw(struct hfcsusb *hw)
1742 {
1743         if (debug & DBG_HFC_CALL_TRACE)
1744                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1745
1746         /*
1747          * stop all endpoints gracefully
1748          * TODO: mISDN_core should generate CLOSE_CHANNEL
1749          *       signals after calling mISDN_unregister_device()
1750          */
1751         hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1752         hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1753         hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1754         if (hw->fifos[HFCUSB_PCM_RX].pipe)
1755                 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1756         if (hw->protocol == ISDN_P_TE_S0)
1757                 l1_event(hw->dch.l1, CLOSE_CHANNEL);
1758
1759         mISDN_unregister_device(&hw->dch.dev);
1760         mISDN_freebchannel(&hw->bch[1]);
1761         mISDN_freebchannel(&hw->bch[0]);
1762         mISDN_freedchannel(&hw->dch);
1763
1764         if (hw->ctrl_urb) {
1765                 usb_kill_urb(hw->ctrl_urb);
1766                 usb_free_urb(hw->ctrl_urb);
1767                 hw->ctrl_urb = NULL;
1768         }
1769
1770         if (hw->intf)
1771                 usb_set_intfdata(hw->intf, NULL);
1772         list_del(&hw->list);
1773         kfree(hw);
1774         hw = NULL;
1775 }
1776
1777 static void
1778 deactivate_bchannel(struct bchannel *bch)
1779 {
1780         struct hfcsusb *hw = bch->hw;
1781         u_long flags;
1782
1783         if (bch->debug & DEBUG_HW)
1784                 printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1785                        hw->name, __func__, bch->nr);
1786
1787         spin_lock_irqsave(&hw->lock, flags);
1788         mISDN_clear_bchannel(bch);
1789         spin_unlock_irqrestore(&hw->lock, flags);
1790         hfcsusb_setup_bch(bch, ISDN_P_NONE);
1791         hfcsusb_stop_endpoint(hw, bch->nr - 1);
1792 }
1793
1794 /*
1795  * Layer 1 B-channel hardware access
1796  */
1797 static int
1798 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1799 {
1800         struct bchannel *bch = container_of(ch, struct bchannel, ch);
1801         int             ret = -EINVAL;
1802
1803         if (bch->debug & DEBUG_HW)
1804                 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1805
1806         switch (cmd) {
1807         case HW_TESTRX_RAW:
1808         case HW_TESTRX_HDLC:
1809         case HW_TESTRX_OFF:
1810                 ret = -EINVAL;
1811                 break;
1812
1813         case CLOSE_CHANNEL:
1814                 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1815                 deactivate_bchannel(bch);
1816                 ch->protocol = ISDN_P_NONE;
1817                 ch->peer = NULL;
1818                 module_put(THIS_MODULE);
1819                 ret = 0;
1820                 break;
1821         case CONTROL_CHANNEL:
1822                 ret = channel_bctrl(bch, arg);
1823                 break;
1824         default:
1825                 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1826                        __func__, cmd);
1827         }
1828         return ret;
1829 }
1830
1831 static int
1832 setup_instance(struct hfcsusb *hw, struct device *parent)
1833 {
1834         u_long  flags;
1835         int     err, i;
1836
1837         if (debug & DBG_HFC_CALL_TRACE)
1838                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1839
1840         spin_lock_init(&hw->ctrl_lock);
1841         spin_lock_init(&hw->lock);
1842
1843         mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1844         hw->dch.debug = debug & 0xFFFF;
1845         hw->dch.hw = hw;
1846         hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1847         hw->dch.dev.D.send = hfcusb_l2l1D;
1848         hw->dch.dev.D.ctrl = hfc_dctrl;
1849
1850         /* enable E-Channel logging */
1851         if (hw->fifos[HFCUSB_PCM_RX].pipe)
1852                 mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1853
1854         hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1855                 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1856         hw->dch.dev.nrbchan = 2;
1857         for (i = 0; i < 2; i++) {
1858                 hw->bch[i].nr = i + 1;
1859                 set_channelmap(i + 1, hw->dch.dev.channelmap);
1860                 hw->bch[i].debug = debug;
1861                 mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1862                 hw->bch[i].hw = hw;
1863                 hw->bch[i].ch.send = hfcusb_l2l1B;
1864                 hw->bch[i].ch.ctrl = hfc_bctrl;
1865                 hw->bch[i].ch.nr = i + 1;
1866                 list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1867         }
1868
1869         hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1870         hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1871         hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1872         hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1873         hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1874         hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1875         hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1876         hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1877
1878         err = setup_hfcsusb(hw);
1879         if (err)
1880                 goto out;
1881
1882         snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1883                  hfcsusb_cnt + 1);
1884         printk(KERN_INFO "%s: registered as '%s'\n",
1885                DRIVER_NAME, hw->name);
1886
1887         err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1888         if (err)
1889                 goto out;
1890
1891         hfcsusb_cnt++;
1892         write_lock_irqsave(&HFClock, flags);
1893         list_add_tail(&hw->list, &HFClist);
1894         write_unlock_irqrestore(&HFClock, flags);
1895         return 0;
1896
1897 out:
1898         mISDN_freebchannel(&hw->bch[1]);
1899         mISDN_freebchannel(&hw->bch[0]);
1900         mISDN_freedchannel(&hw->dch);
1901         kfree(hw);
1902         return err;
1903 }
1904
1905 static int
1906 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1907 {
1908         struct hfcsusb                  *hw;
1909         struct usb_device               *dev = interface_to_usbdev(intf);
1910         struct usb_host_interface       *iface = intf->cur_altsetting;
1911         struct usb_host_interface       *iface_used = NULL;
1912         struct usb_host_endpoint        *ep;
1913         struct hfcsusb_vdata            *driver_info;
1914         int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1915                 probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1916                 ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1917                 alt_used = 0;
1918
1919         vend_idx = 0xffff;
1920         for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1921                 if ((le16_to_cpu(dev->descriptor.idVendor)
1922                      == hfcsusb_idtab[i].idVendor) &&
1923                     (le16_to_cpu(dev->descriptor.idProduct)
1924                      == hfcsusb_idtab[i].idProduct)) {
1925                         vend_idx = i;
1926                         continue;
1927                 }
1928         }
1929
1930         printk(KERN_DEBUG
1931                "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1932                __func__, ifnum, iface->desc.bAlternateSetting,
1933                intf->minor, vend_idx);
1934
1935         if (vend_idx == 0xffff) {
1936                 printk(KERN_WARNING
1937                        "%s: no valid vendor found in USB descriptor\n",
1938                        __func__);
1939                 return -EIO;
1940         }
1941         /* if vendor and product ID is OK, start probing alternate settings */
1942         alt_idx = 0;
1943         small_match = -1;
1944
1945         /* default settings */
1946         iso_packet_size = 16;
1947         packet_size = 64;
1948
1949         while (alt_idx < intf->num_altsetting) {
1950                 iface = intf->altsetting + alt_idx;
1951                 probe_alt_setting = iface->desc.bAlternateSetting;
1952                 cfg_used = 0;
1953
1954                 while (validconf[cfg_used][0]) {
1955                         cfg_found = 1;
1956                         vcf = validconf[cfg_used];
1957                         ep = iface->endpoint;
1958                         memcpy(cmptbl, vcf, 16 * sizeof(int));
1959
1960                         /* check for all endpoints in this alternate setting */
1961                         for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1962                                 ep_addr = ep->desc.bEndpointAddress;
1963
1964                                 /* get endpoint base */
1965                                 idx = ((ep_addr & 0x7f) - 1) * 2;
1966                                 if (ep_addr & 0x80)
1967                                         idx++;
1968                                 attr = ep->desc.bmAttributes;
1969
1970                                 if (cmptbl[idx] != EP_NOP) {
1971                                         if (cmptbl[idx] == EP_NUL)
1972                                                 cfg_found = 0;
1973                                         if (attr == USB_ENDPOINT_XFER_INT
1974                                             && cmptbl[idx] == EP_INT)
1975                                                 cmptbl[idx] = EP_NUL;
1976                                         if (attr == USB_ENDPOINT_XFER_BULK
1977                                             && cmptbl[idx] == EP_BLK)
1978                                                 cmptbl[idx] = EP_NUL;
1979                                         if (attr == USB_ENDPOINT_XFER_ISOC
1980                                             && cmptbl[idx] == EP_ISO)
1981                                                 cmptbl[idx] = EP_NUL;
1982
1983                                         if (attr == USB_ENDPOINT_XFER_INT &&
1984                                             ep->desc.bInterval < vcf[17]) {
1985                                                 cfg_found = 0;
1986                                         }
1987                                 }
1988                                 ep++;
1989                         }
1990
1991                         for (i = 0; i < 16; i++)
1992                                 if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
1993                                         cfg_found = 0;
1994
1995                         if (cfg_found) {
1996                                 if (small_match < cfg_used) {
1997                                         small_match = cfg_used;
1998                                         alt_used = probe_alt_setting;
1999                                         iface_used = iface;
2000                                 }
2001                         }
2002                         cfg_used++;
2003                 }
2004                 alt_idx++;
2005         }       /* (alt_idx < intf->num_altsetting) */
2006
2007         /* not found a valid USB Ta Endpoint config */
2008         if (small_match == -1)
2009                 return -EIO;
2010
2011         iface = iface_used;
2012         hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2013         if (!hw)
2014                 return -ENOMEM; /* got no mem */
2015         snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2016
2017         ep = iface->endpoint;
2018         vcf = validconf[small_match];
2019
2020         for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2021                 struct usb_fifo *f;
2022
2023                 ep_addr = ep->desc.bEndpointAddress;
2024                 /* get endpoint base */
2025                 idx = ((ep_addr & 0x7f) - 1) * 2;
2026                 if (ep_addr & 0x80)
2027                         idx++;
2028                 f = &hw->fifos[idx & 7];
2029
2030                 /* init Endpoints */
2031                 if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2032                         ep++;
2033                         continue;
2034                 }
2035                 switch (ep->desc.bmAttributes) {
2036                 case USB_ENDPOINT_XFER_INT:
2037                         f->pipe = usb_rcvintpipe(dev,
2038                                                  ep->desc.bEndpointAddress);
2039                         f->usb_transfer_mode = USB_INT;
2040                         packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2041                         break;
2042                 case USB_ENDPOINT_XFER_BULK:
2043                         if (ep_addr & 0x80)
2044                                 f->pipe = usb_rcvbulkpipe(dev,
2045                                                           ep->desc.bEndpointAddress);
2046                         else
2047                                 f->pipe = usb_sndbulkpipe(dev,
2048                                                           ep->desc.bEndpointAddress);
2049                         f->usb_transfer_mode = USB_BULK;
2050                         packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2051                         break;
2052                 case USB_ENDPOINT_XFER_ISOC:
2053                         if (ep_addr & 0x80)
2054                                 f->pipe = usb_rcvisocpipe(dev,
2055                                                           ep->desc.bEndpointAddress);
2056                         else
2057                                 f->pipe = usb_sndisocpipe(dev,
2058                                                           ep->desc.bEndpointAddress);
2059                         f->usb_transfer_mode = USB_ISOC;
2060                         iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2061                         break;
2062                 default:
2063                         f->pipe = 0;
2064                 }
2065
2066                 if (f->pipe) {
2067                         f->fifonum = idx & 7;
2068                         f->hw = hw;
2069                         f->usb_packet_maxlen =
2070                                 le16_to_cpu(ep->desc.wMaxPacketSize);
2071                         f->intervall = ep->desc.bInterval;
2072                 }
2073                 ep++;
2074         }
2075         hw->dev = dev; /* save device */
2076         hw->if_used = ifnum; /* save used interface */
2077         hw->alt_used = alt_used; /* and alternate config */
2078         hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2079         hw->cfg_used = vcf[16]; /* store used config */
2080         hw->vend_idx = vend_idx; /* store found vendor */
2081         hw->packet_size = packet_size;
2082         hw->iso_packet_size = iso_packet_size;
2083
2084         /* create the control pipes needed for register access */
2085         hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2086         hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2087
2088         driver_info = (struct hfcsusb_vdata *)
2089                       hfcsusb_idtab[vend_idx].driver_info;
2090
2091         hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2092         if (!hw->ctrl_urb) {
2093                 pr_warn("%s: No memory for control urb\n",
2094                         driver_info->vend_name);
2095                 kfree(hw);
2096                 return -ENOMEM;
2097         }
2098
2099         pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2100                 hw->name, __func__, driver_info->vend_name,
2101                 conf_str[small_match], ifnum, alt_used);
2102
2103         if (setup_instance(hw, dev->dev.parent))
2104                 return -EIO;
2105
2106         hw->intf = intf;
2107         usb_set_intfdata(hw->intf, hw);
2108         return 0;
2109 }
2110
2111 /* function called when an active device is removed */
2112 static void
2113 hfcsusb_disconnect(struct usb_interface *intf)
2114 {
2115         struct hfcsusb *hw = usb_get_intfdata(intf);
2116         struct hfcsusb *next;
2117         int cnt = 0;
2118
2119         printk(KERN_INFO "%s: device disconnected\n", hw->name);
2120
2121         handle_led(hw, LED_POWER_OFF);
2122         release_hw(hw);
2123
2124         list_for_each_entry_safe(hw, next, &HFClist, list)
2125                 cnt++;
2126         if (!cnt)
2127                 hfcsusb_cnt = 0;
2128
2129         usb_set_intfdata(intf, NULL);
2130 }
2131
2132 static struct usb_driver hfcsusb_drv = {
2133         .name = DRIVER_NAME,
2134         .id_table = hfcsusb_idtab,
2135         .probe = hfcsusb_probe,
2136         .disconnect = hfcsusb_disconnect,
2137         .disable_hub_initiated_lpm = 1,
2138 };
2139
2140 module_usb_driver(hfcsusb_drv);