These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / iommu / dmar.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  *
22  * This file implements early detection/parsing of Remapping Devices
23  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24  * tables.
25  *
26  * These routines are used by both DMA-remapping and Interrupt-remapping
27  */
28
29 #define pr_fmt(fmt)     "DMAR: " fmt
30
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/iova.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/timer.h>
36 #include <linux/irq.h>
37 #include <linux/interrupt.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/slab.h>
41 #include <linux/iommu.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/iommu_table.h>
44
45 #include "irq_remapping.h"
46
47 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
48 struct dmar_res_callback {
49         dmar_res_handler_t      cb[ACPI_DMAR_TYPE_RESERVED];
50         void                    *arg[ACPI_DMAR_TYPE_RESERVED];
51         bool                    ignore_unhandled;
52         bool                    print_entry;
53 };
54
55 /*
56  * Assumptions:
57  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
58  *    before IO devices managed by that unit.
59  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
60  *    after IO devices managed by that unit.
61  * 3) Hotplug events are rare.
62  *
63  * Locking rules for DMA and interrupt remapping related global data structures:
64  * 1) Use dmar_global_lock in process context
65  * 2) Use RCU in interrupt context
66  */
67 DECLARE_RWSEM(dmar_global_lock);
68 LIST_HEAD(dmar_drhd_units);
69
70 struct acpi_table_header * __initdata dmar_tbl;
71 static acpi_size dmar_tbl_size;
72 static int dmar_dev_scope_status = 1;
73 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
74
75 static int alloc_iommu(struct dmar_drhd_unit *drhd);
76 static void free_iommu(struct intel_iommu *iommu);
77
78 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
79 {
80         /*
81          * add INCLUDE_ALL at the tail, so scan the list will find it at
82          * the very end.
83          */
84         if (drhd->include_all)
85                 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
86         else
87                 list_add_rcu(&drhd->list, &dmar_drhd_units);
88 }
89
90 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
91 {
92         struct acpi_dmar_device_scope *scope;
93
94         *cnt = 0;
95         while (start < end) {
96                 scope = start;
97                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
98                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
99                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
100                         (*cnt)++;
101                 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
102                         scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
103                         pr_warn("Unsupported device scope\n");
104                 }
105                 start += scope->length;
106         }
107         if (*cnt == 0)
108                 return NULL;
109
110         return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
111 }
112
113 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
114 {
115         int i;
116         struct device *tmp_dev;
117
118         if (*devices && *cnt) {
119                 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
120                         put_device(tmp_dev);
121                 kfree(*devices);
122         }
123
124         *devices = NULL;
125         *cnt = 0;
126 }
127
128 /* Optimize out kzalloc()/kfree() for normal cases */
129 static char dmar_pci_notify_info_buf[64];
130
131 static struct dmar_pci_notify_info *
132 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
133 {
134         int level = 0;
135         size_t size;
136         struct pci_dev *tmp;
137         struct dmar_pci_notify_info *info;
138
139         BUG_ON(dev->is_virtfn);
140
141         /* Only generate path[] for device addition event */
142         if (event == BUS_NOTIFY_ADD_DEVICE)
143                 for (tmp = dev; tmp; tmp = tmp->bus->self)
144                         level++;
145
146         size = sizeof(*info) + level * sizeof(struct acpi_dmar_pci_path);
147         if (size <= sizeof(dmar_pci_notify_info_buf)) {
148                 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
149         } else {
150                 info = kzalloc(size, GFP_KERNEL);
151                 if (!info) {
152                         pr_warn("Out of memory when allocating notify_info "
153                                 "for %s.\n", pci_name(dev));
154                         if (dmar_dev_scope_status == 0)
155                                 dmar_dev_scope_status = -ENOMEM;
156                         return NULL;
157                 }
158         }
159
160         info->event = event;
161         info->dev = dev;
162         info->seg = pci_domain_nr(dev->bus);
163         info->level = level;
164         if (event == BUS_NOTIFY_ADD_DEVICE) {
165                 for (tmp = dev; tmp; tmp = tmp->bus->self) {
166                         level--;
167                         info->path[level].bus = tmp->bus->number;
168                         info->path[level].device = PCI_SLOT(tmp->devfn);
169                         info->path[level].function = PCI_FUNC(tmp->devfn);
170                         if (pci_is_root_bus(tmp->bus))
171                                 info->bus = tmp->bus->number;
172                 }
173         }
174
175         return info;
176 }
177
178 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
179 {
180         if ((void *)info != dmar_pci_notify_info_buf)
181                 kfree(info);
182 }
183
184 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
185                                 struct acpi_dmar_pci_path *path, int count)
186 {
187         int i;
188
189         if (info->bus != bus)
190                 goto fallback;
191         if (info->level != count)
192                 goto fallback;
193
194         for (i = 0; i < count; i++) {
195                 if (path[i].device != info->path[i].device ||
196                     path[i].function != info->path[i].function)
197                         goto fallback;
198         }
199
200         return true;
201
202 fallback:
203
204         if (count != 1)
205                 return false;
206
207         i = info->level - 1;
208         if (bus              == info->path[i].bus &&
209             path[0].device   == info->path[i].device &&
210             path[0].function == info->path[i].function) {
211                 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
212                         bus, path[0].device, path[0].function);
213                 return true;
214         }
215
216         return false;
217 }
218
219 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
220 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
221                           void *start, void*end, u16 segment,
222                           struct dmar_dev_scope *devices,
223                           int devices_cnt)
224 {
225         int i, level;
226         struct device *tmp, *dev = &info->dev->dev;
227         struct acpi_dmar_device_scope *scope;
228         struct acpi_dmar_pci_path *path;
229
230         if (segment != info->seg)
231                 return 0;
232
233         for (; start < end; start += scope->length) {
234                 scope = start;
235                 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
236                     scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
237                         continue;
238
239                 path = (struct acpi_dmar_pci_path *)(scope + 1);
240                 level = (scope->length - sizeof(*scope)) / sizeof(*path);
241                 if (!dmar_match_pci_path(info, scope->bus, path, level))
242                         continue;
243
244                 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT) ^
245                     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL)) {
246                         pr_warn("Device scope type does not match for %s\n",
247                                 pci_name(info->dev));
248                         return -EINVAL;
249                 }
250
251                 for_each_dev_scope(devices, devices_cnt, i, tmp)
252                         if (tmp == NULL) {
253                                 devices[i].bus = info->dev->bus->number;
254                                 devices[i].devfn = info->dev->devfn;
255                                 rcu_assign_pointer(devices[i].dev,
256                                                    get_device(dev));
257                                 return 1;
258                         }
259                 BUG_ON(i >= devices_cnt);
260         }
261
262         return 0;
263 }
264
265 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
266                           struct dmar_dev_scope *devices, int count)
267 {
268         int index;
269         struct device *tmp;
270
271         if (info->seg != segment)
272                 return 0;
273
274         for_each_active_dev_scope(devices, count, index, tmp)
275                 if (tmp == &info->dev->dev) {
276                         RCU_INIT_POINTER(devices[index].dev, NULL);
277                         synchronize_rcu();
278                         put_device(tmp);
279                         return 1;
280                 }
281
282         return 0;
283 }
284
285 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
286 {
287         int ret = 0;
288         struct dmar_drhd_unit *dmaru;
289         struct acpi_dmar_hardware_unit *drhd;
290
291         for_each_drhd_unit(dmaru) {
292                 if (dmaru->include_all)
293                         continue;
294
295                 drhd = container_of(dmaru->hdr,
296                                     struct acpi_dmar_hardware_unit, header);
297                 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
298                                 ((void *)drhd) + drhd->header.length,
299                                 dmaru->segment,
300                                 dmaru->devices, dmaru->devices_cnt);
301                 if (ret != 0)
302                         break;
303         }
304         if (ret >= 0)
305                 ret = dmar_iommu_notify_scope_dev(info);
306         if (ret < 0 && dmar_dev_scope_status == 0)
307                 dmar_dev_scope_status = ret;
308
309         return ret;
310 }
311
312 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
313 {
314         struct dmar_drhd_unit *dmaru;
315
316         for_each_drhd_unit(dmaru)
317                 if (dmar_remove_dev_scope(info, dmaru->segment,
318                         dmaru->devices, dmaru->devices_cnt))
319                         break;
320         dmar_iommu_notify_scope_dev(info);
321 }
322
323 static int dmar_pci_bus_notifier(struct notifier_block *nb,
324                                  unsigned long action, void *data)
325 {
326         struct pci_dev *pdev = to_pci_dev(data);
327         struct dmar_pci_notify_info *info;
328
329         /* Only care about add/remove events for physical functions */
330         if (pdev->is_virtfn)
331                 return NOTIFY_DONE;
332         if (action != BUS_NOTIFY_ADD_DEVICE &&
333             action != BUS_NOTIFY_REMOVED_DEVICE)
334                 return NOTIFY_DONE;
335
336         info = dmar_alloc_pci_notify_info(pdev, action);
337         if (!info)
338                 return NOTIFY_DONE;
339
340         down_write(&dmar_global_lock);
341         if (action == BUS_NOTIFY_ADD_DEVICE)
342                 dmar_pci_bus_add_dev(info);
343         else if (action == BUS_NOTIFY_REMOVED_DEVICE)
344                 dmar_pci_bus_del_dev(info);
345         up_write(&dmar_global_lock);
346
347         dmar_free_pci_notify_info(info);
348
349         return NOTIFY_OK;
350 }
351
352 static struct notifier_block dmar_pci_bus_nb = {
353         .notifier_call = dmar_pci_bus_notifier,
354         .priority = INT_MIN,
355 };
356
357 static struct dmar_drhd_unit *
358 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
359 {
360         struct dmar_drhd_unit *dmaru;
361
362         list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list)
363                 if (dmaru->segment == drhd->segment &&
364                     dmaru->reg_base_addr == drhd->address)
365                         return dmaru;
366
367         return NULL;
368 }
369
370 /**
371  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
372  * structure which uniquely represent one DMA remapping hardware unit
373  * present in the platform
374  */
375 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
376 {
377         struct acpi_dmar_hardware_unit *drhd;
378         struct dmar_drhd_unit *dmaru;
379         int ret = 0;
380
381         drhd = (struct acpi_dmar_hardware_unit *)header;
382         dmaru = dmar_find_dmaru(drhd);
383         if (dmaru)
384                 goto out;
385
386         dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
387         if (!dmaru)
388                 return -ENOMEM;
389
390         /*
391          * If header is allocated from slab by ACPI _DSM method, we need to
392          * copy the content because the memory buffer will be freed on return.
393          */
394         dmaru->hdr = (void *)(dmaru + 1);
395         memcpy(dmaru->hdr, header, header->length);
396         dmaru->reg_base_addr = drhd->address;
397         dmaru->segment = drhd->segment;
398         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
399         dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
400                                               ((void *)drhd) + drhd->header.length,
401                                               &dmaru->devices_cnt);
402         if (dmaru->devices_cnt && dmaru->devices == NULL) {
403                 kfree(dmaru);
404                 return -ENOMEM;
405         }
406
407         ret = alloc_iommu(dmaru);
408         if (ret) {
409                 dmar_free_dev_scope(&dmaru->devices,
410                                     &dmaru->devices_cnt);
411                 kfree(dmaru);
412                 return ret;
413         }
414         dmar_register_drhd_unit(dmaru);
415
416 out:
417         if (arg)
418                 (*(int *)arg)++;
419
420         return 0;
421 }
422
423 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
424 {
425         if (dmaru->devices && dmaru->devices_cnt)
426                 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
427         if (dmaru->iommu)
428                 free_iommu(dmaru->iommu);
429         kfree(dmaru);
430 }
431
432 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
433                                       void *arg)
434 {
435         struct acpi_dmar_andd *andd = (void *)header;
436
437         /* Check for NUL termination within the designated length */
438         if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
439                 WARN_TAINT(1, TAINT_FIRMWARE_WORKAROUND,
440                            "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
441                            "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
442                            dmi_get_system_info(DMI_BIOS_VENDOR),
443                            dmi_get_system_info(DMI_BIOS_VERSION),
444                            dmi_get_system_info(DMI_PRODUCT_VERSION));
445                 return -EINVAL;
446         }
447         pr_info("ANDD device: %x name: %s\n", andd->device_number,
448                 andd->device_name);
449
450         return 0;
451 }
452
453 #ifdef CONFIG_ACPI_NUMA
454 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
455 {
456         struct acpi_dmar_rhsa *rhsa;
457         struct dmar_drhd_unit *drhd;
458
459         rhsa = (struct acpi_dmar_rhsa *)header;
460         for_each_drhd_unit(drhd) {
461                 if (drhd->reg_base_addr == rhsa->base_address) {
462                         int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
463
464                         if (!node_online(node))
465                                 node = -1;
466                         drhd->iommu->node = node;
467                         return 0;
468                 }
469         }
470         WARN_TAINT(
471                 1, TAINT_FIRMWARE_WORKAROUND,
472                 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
473                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
474                 drhd->reg_base_addr,
475                 dmi_get_system_info(DMI_BIOS_VENDOR),
476                 dmi_get_system_info(DMI_BIOS_VERSION),
477                 dmi_get_system_info(DMI_PRODUCT_VERSION));
478
479         return 0;
480 }
481 #else
482 #define dmar_parse_one_rhsa             dmar_res_noop
483 #endif
484
485 static void __init
486 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
487 {
488         struct acpi_dmar_hardware_unit *drhd;
489         struct acpi_dmar_reserved_memory *rmrr;
490         struct acpi_dmar_atsr *atsr;
491         struct acpi_dmar_rhsa *rhsa;
492
493         switch (header->type) {
494         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
495                 drhd = container_of(header, struct acpi_dmar_hardware_unit,
496                                     header);
497                 pr_info("DRHD base: %#016Lx flags: %#x\n",
498                         (unsigned long long)drhd->address, drhd->flags);
499                 break;
500         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
501                 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
502                                     header);
503                 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
504                         (unsigned long long)rmrr->base_address,
505                         (unsigned long long)rmrr->end_address);
506                 break;
507         case ACPI_DMAR_TYPE_ROOT_ATS:
508                 atsr = container_of(header, struct acpi_dmar_atsr, header);
509                 pr_info("ATSR flags: %#x\n", atsr->flags);
510                 break;
511         case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
512                 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
513                 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
514                        (unsigned long long)rhsa->base_address,
515                        rhsa->proximity_domain);
516                 break;
517         case ACPI_DMAR_TYPE_NAMESPACE:
518                 /* We don't print this here because we need to sanity-check
519                    it first. So print it in dmar_parse_one_andd() instead. */
520                 break;
521         }
522 }
523
524 /**
525  * dmar_table_detect - checks to see if the platform supports DMAR devices
526  */
527 static int __init dmar_table_detect(void)
528 {
529         acpi_status status = AE_OK;
530
531         /* if we could find DMAR table, then there are DMAR devices */
532         status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
533                                 (struct acpi_table_header **)&dmar_tbl,
534                                 &dmar_tbl_size);
535
536         if (ACPI_SUCCESS(status) && !dmar_tbl) {
537                 pr_warn("Unable to map DMAR\n");
538                 status = AE_NOT_FOUND;
539         }
540
541         return (ACPI_SUCCESS(status) ? 1 : 0);
542 }
543
544 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
545                                        size_t len, struct dmar_res_callback *cb)
546 {
547         int ret = 0;
548         struct acpi_dmar_header *iter, *next;
549         struct acpi_dmar_header *end = ((void *)start) + len;
550
551         for (iter = start; iter < end && ret == 0; iter = next) {
552                 next = (void *)iter + iter->length;
553                 if (iter->length == 0) {
554                         /* Avoid looping forever on bad ACPI tables */
555                         pr_debug(FW_BUG "Invalid 0-length structure\n");
556                         break;
557                 } else if (next > end) {
558                         /* Avoid passing table end */
559                         pr_warn(FW_BUG "Record passes table end\n");
560                         ret = -EINVAL;
561                         break;
562                 }
563
564                 if (cb->print_entry)
565                         dmar_table_print_dmar_entry(iter);
566
567                 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
568                         /* continue for forward compatibility */
569                         pr_debug("Unknown DMAR structure type %d\n",
570                                  iter->type);
571                 } else if (cb->cb[iter->type]) {
572                         ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
573                 } else if (!cb->ignore_unhandled) {
574                         pr_warn("No handler for DMAR structure type %d\n",
575                                 iter->type);
576                         ret = -EINVAL;
577                 }
578         }
579
580         return ret;
581 }
582
583 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
584                                        struct dmar_res_callback *cb)
585 {
586         return dmar_walk_remapping_entries((void *)(dmar + 1),
587                         dmar->header.length - sizeof(*dmar), cb);
588 }
589
590 /**
591  * parse_dmar_table - parses the DMA reporting table
592  */
593 static int __init
594 parse_dmar_table(void)
595 {
596         struct acpi_table_dmar *dmar;
597         int ret = 0;
598         int drhd_count = 0;
599         struct dmar_res_callback cb = {
600                 .print_entry = true,
601                 .ignore_unhandled = true,
602                 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
603                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
604                 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
605                 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
606                 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
607                 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
608         };
609
610         /*
611          * Do it again, earlier dmar_tbl mapping could be mapped with
612          * fixed map.
613          */
614         dmar_table_detect();
615
616         /*
617          * ACPI tables may not be DMA protected by tboot, so use DMAR copy
618          * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
619          */
620         dmar_tbl = tboot_get_dmar_table(dmar_tbl);
621
622         dmar = (struct acpi_table_dmar *)dmar_tbl;
623         if (!dmar)
624                 return -ENODEV;
625
626         if (dmar->width < PAGE_SHIFT - 1) {
627                 pr_warn("Invalid DMAR haw\n");
628                 return -EINVAL;
629         }
630
631         pr_info("Host address width %d\n", dmar->width + 1);
632         ret = dmar_walk_dmar_table(dmar, &cb);
633         if (ret == 0 && drhd_count == 0)
634                 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
635
636         return ret;
637 }
638
639 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
640                                  int cnt, struct pci_dev *dev)
641 {
642         int index;
643         struct device *tmp;
644
645         while (dev) {
646                 for_each_active_dev_scope(devices, cnt, index, tmp)
647                         if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
648                                 return 1;
649
650                 /* Check our parent */
651                 dev = dev->bus->self;
652         }
653
654         return 0;
655 }
656
657 struct dmar_drhd_unit *
658 dmar_find_matched_drhd_unit(struct pci_dev *dev)
659 {
660         struct dmar_drhd_unit *dmaru;
661         struct acpi_dmar_hardware_unit *drhd;
662
663         dev = pci_physfn(dev);
664
665         rcu_read_lock();
666         for_each_drhd_unit(dmaru) {
667                 drhd = container_of(dmaru->hdr,
668                                     struct acpi_dmar_hardware_unit,
669                                     header);
670
671                 if (dmaru->include_all &&
672                     drhd->segment == pci_domain_nr(dev->bus))
673                         goto out;
674
675                 if (dmar_pci_device_match(dmaru->devices,
676                                           dmaru->devices_cnt, dev))
677                         goto out;
678         }
679         dmaru = NULL;
680 out:
681         rcu_read_unlock();
682
683         return dmaru;
684 }
685
686 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
687                                               struct acpi_device *adev)
688 {
689         struct dmar_drhd_unit *dmaru;
690         struct acpi_dmar_hardware_unit *drhd;
691         struct acpi_dmar_device_scope *scope;
692         struct device *tmp;
693         int i;
694         struct acpi_dmar_pci_path *path;
695
696         for_each_drhd_unit(dmaru) {
697                 drhd = container_of(dmaru->hdr,
698                                     struct acpi_dmar_hardware_unit,
699                                     header);
700
701                 for (scope = (void *)(drhd + 1);
702                      (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
703                      scope = ((void *)scope) + scope->length) {
704                         if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
705                                 continue;
706                         if (scope->enumeration_id != device_number)
707                                 continue;
708
709                         path = (void *)(scope + 1);
710                         pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
711                                 dev_name(&adev->dev), dmaru->reg_base_addr,
712                                 scope->bus, path->device, path->function);
713                         for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
714                                 if (tmp == NULL) {
715                                         dmaru->devices[i].bus = scope->bus;
716                                         dmaru->devices[i].devfn = PCI_DEVFN(path->device,
717                                                                             path->function);
718                                         rcu_assign_pointer(dmaru->devices[i].dev,
719                                                            get_device(&adev->dev));
720                                         return;
721                                 }
722                         BUG_ON(i >= dmaru->devices_cnt);
723                 }
724         }
725         pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
726                 device_number, dev_name(&adev->dev));
727 }
728
729 static int __init dmar_acpi_dev_scope_init(void)
730 {
731         struct acpi_dmar_andd *andd;
732
733         if (dmar_tbl == NULL)
734                 return -ENODEV;
735
736         for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
737              ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
738              andd = ((void *)andd) + andd->header.length) {
739                 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
740                         acpi_handle h;
741                         struct acpi_device *adev;
742
743                         if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
744                                                           andd->device_name,
745                                                           &h))) {
746                                 pr_err("Failed to find handle for ACPI object %s\n",
747                                        andd->device_name);
748                                 continue;
749                         }
750                         if (acpi_bus_get_device(h, &adev)) {
751                                 pr_err("Failed to get device for ACPI object %s\n",
752                                        andd->device_name);
753                                 continue;
754                         }
755                         dmar_acpi_insert_dev_scope(andd->device_number, adev);
756                 }
757         }
758         return 0;
759 }
760
761 int __init dmar_dev_scope_init(void)
762 {
763         struct pci_dev *dev = NULL;
764         struct dmar_pci_notify_info *info;
765
766         if (dmar_dev_scope_status != 1)
767                 return dmar_dev_scope_status;
768
769         if (list_empty(&dmar_drhd_units)) {
770                 dmar_dev_scope_status = -ENODEV;
771         } else {
772                 dmar_dev_scope_status = 0;
773
774                 dmar_acpi_dev_scope_init();
775
776                 for_each_pci_dev(dev) {
777                         if (dev->is_virtfn)
778                                 continue;
779
780                         info = dmar_alloc_pci_notify_info(dev,
781                                         BUS_NOTIFY_ADD_DEVICE);
782                         if (!info) {
783                                 return dmar_dev_scope_status;
784                         } else {
785                                 dmar_pci_bus_add_dev(info);
786                                 dmar_free_pci_notify_info(info);
787                         }
788                 }
789
790                 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
791         }
792
793         return dmar_dev_scope_status;
794 }
795
796
797 int __init dmar_table_init(void)
798 {
799         static int dmar_table_initialized;
800         int ret;
801
802         if (dmar_table_initialized == 0) {
803                 ret = parse_dmar_table();
804                 if (ret < 0) {
805                         if (ret != -ENODEV)
806                                 pr_info("Parse DMAR table failure.\n");
807                 } else  if (list_empty(&dmar_drhd_units)) {
808                         pr_info("No DMAR devices found\n");
809                         ret = -ENODEV;
810                 }
811
812                 if (ret < 0)
813                         dmar_table_initialized = ret;
814                 else
815                         dmar_table_initialized = 1;
816         }
817
818         return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
819 }
820
821 static void warn_invalid_dmar(u64 addr, const char *message)
822 {
823         WARN_TAINT_ONCE(
824                 1, TAINT_FIRMWARE_WORKAROUND,
825                 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
826                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
827                 addr, message,
828                 dmi_get_system_info(DMI_BIOS_VENDOR),
829                 dmi_get_system_info(DMI_BIOS_VERSION),
830                 dmi_get_system_info(DMI_PRODUCT_VERSION));
831 }
832
833 static int __ref
834 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
835 {
836         struct acpi_dmar_hardware_unit *drhd;
837         void __iomem *addr;
838         u64 cap, ecap;
839
840         drhd = (void *)entry;
841         if (!drhd->address) {
842                 warn_invalid_dmar(0, "");
843                 return -EINVAL;
844         }
845
846         if (arg)
847                 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
848         else
849                 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
850         if (!addr) {
851                 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
852                 return -EINVAL;
853         }
854
855         cap = dmar_readq(addr + DMAR_CAP_REG);
856         ecap = dmar_readq(addr + DMAR_ECAP_REG);
857
858         if (arg)
859                 iounmap(addr);
860         else
861                 early_iounmap(addr, VTD_PAGE_SIZE);
862
863         if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
864                 warn_invalid_dmar(drhd->address, " returns all ones");
865                 return -EINVAL;
866         }
867
868         return 0;
869 }
870
871 int __init detect_intel_iommu(void)
872 {
873         int ret;
874         struct dmar_res_callback validate_drhd_cb = {
875                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
876                 .ignore_unhandled = true,
877         };
878
879         down_write(&dmar_global_lock);
880         ret = dmar_table_detect();
881         if (ret)
882                 ret = !dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
883                                             &validate_drhd_cb);
884         if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
885                 iommu_detected = 1;
886                 /* Make sure ACS will be enabled */
887                 pci_request_acs();
888         }
889
890 #ifdef CONFIG_X86
891         if (ret)
892                 x86_init.iommu.iommu_init = intel_iommu_init;
893 #endif
894
895         early_acpi_os_unmap_memory((void __iomem *)dmar_tbl, dmar_tbl_size);
896         dmar_tbl = NULL;
897         up_write(&dmar_global_lock);
898
899         return ret ? 1 : -ENODEV;
900 }
901
902
903 static void unmap_iommu(struct intel_iommu *iommu)
904 {
905         iounmap(iommu->reg);
906         release_mem_region(iommu->reg_phys, iommu->reg_size);
907 }
908
909 /**
910  * map_iommu: map the iommu's registers
911  * @iommu: the iommu to map
912  * @phys_addr: the physical address of the base resgister
913  *
914  * Memory map the iommu's registers.  Start w/ a single page, and
915  * possibly expand if that turns out to be insufficent.
916  */
917 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
918 {
919         int map_size, err=0;
920
921         iommu->reg_phys = phys_addr;
922         iommu->reg_size = VTD_PAGE_SIZE;
923
924         if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
925                 pr_err("Can't reserve memory\n");
926                 err = -EBUSY;
927                 goto out;
928         }
929
930         iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
931         if (!iommu->reg) {
932                 pr_err("Can't map the region\n");
933                 err = -ENOMEM;
934                 goto release;
935         }
936
937         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
938         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
939
940         if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
941                 err = -EINVAL;
942                 warn_invalid_dmar(phys_addr, " returns all ones");
943                 goto unmap;
944         }
945
946         /* the registers might be more than one page */
947         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
948                          cap_max_fault_reg_offset(iommu->cap));
949         map_size = VTD_PAGE_ALIGN(map_size);
950         if (map_size > iommu->reg_size) {
951                 iounmap(iommu->reg);
952                 release_mem_region(iommu->reg_phys, iommu->reg_size);
953                 iommu->reg_size = map_size;
954                 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
955                                         iommu->name)) {
956                         pr_err("Can't reserve memory\n");
957                         err = -EBUSY;
958                         goto out;
959                 }
960                 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
961                 if (!iommu->reg) {
962                         pr_err("Can't map the region\n");
963                         err = -ENOMEM;
964                         goto release;
965                 }
966         }
967         err = 0;
968         goto out;
969
970 unmap:
971         iounmap(iommu->reg);
972 release:
973         release_mem_region(iommu->reg_phys, iommu->reg_size);
974 out:
975         return err;
976 }
977
978 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
979 {
980         iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
981                                             DMAR_UNITS_SUPPORTED);
982         if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
983                 iommu->seq_id = -1;
984         } else {
985                 set_bit(iommu->seq_id, dmar_seq_ids);
986                 sprintf(iommu->name, "dmar%d", iommu->seq_id);
987         }
988
989         return iommu->seq_id;
990 }
991
992 static void dmar_free_seq_id(struct intel_iommu *iommu)
993 {
994         if (iommu->seq_id >= 0) {
995                 clear_bit(iommu->seq_id, dmar_seq_ids);
996                 iommu->seq_id = -1;
997         }
998 }
999
1000 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1001 {
1002         struct intel_iommu *iommu;
1003         u32 ver, sts;
1004         int agaw = 0;
1005         int msagaw = 0;
1006         int err;
1007
1008         if (!drhd->reg_base_addr) {
1009                 warn_invalid_dmar(0, "");
1010                 return -EINVAL;
1011         }
1012
1013         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1014         if (!iommu)
1015                 return -ENOMEM;
1016
1017         if (dmar_alloc_seq_id(iommu) < 0) {
1018                 pr_err("Failed to allocate seq_id\n");
1019                 err = -ENOSPC;
1020                 goto error;
1021         }
1022
1023         err = map_iommu(iommu, drhd->reg_base_addr);
1024         if (err) {
1025                 pr_err("Failed to map %s\n", iommu->name);
1026                 goto error_free_seq_id;
1027         }
1028
1029         err = -EINVAL;
1030         agaw = iommu_calculate_agaw(iommu);
1031         if (agaw < 0) {
1032                 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1033                         iommu->seq_id);
1034                 goto err_unmap;
1035         }
1036         msagaw = iommu_calculate_max_sagaw(iommu);
1037         if (msagaw < 0) {
1038                 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1039                         iommu->seq_id);
1040                 goto err_unmap;
1041         }
1042         iommu->agaw = agaw;
1043         iommu->msagaw = msagaw;
1044         iommu->segment = drhd->segment;
1045
1046         iommu->node = -1;
1047
1048         ver = readl(iommu->reg + DMAR_VER_REG);
1049         pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1050                 iommu->name,
1051                 (unsigned long long)drhd->reg_base_addr,
1052                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1053                 (unsigned long long)iommu->cap,
1054                 (unsigned long long)iommu->ecap);
1055
1056         /* Reflect status in gcmd */
1057         sts = readl(iommu->reg + DMAR_GSTS_REG);
1058         if (sts & DMA_GSTS_IRES)
1059                 iommu->gcmd |= DMA_GCMD_IRE;
1060         if (sts & DMA_GSTS_TES)
1061                 iommu->gcmd |= DMA_GCMD_TE;
1062         if (sts & DMA_GSTS_QIES)
1063                 iommu->gcmd |= DMA_GCMD_QIE;
1064
1065         raw_spin_lock_init(&iommu->register_lock);
1066
1067         drhd->iommu = iommu;
1068
1069         if (intel_iommu_enabled)
1070                 iommu->iommu_dev = iommu_device_create(NULL, iommu,
1071                                                        intel_iommu_groups,
1072                                                        "%s", iommu->name);
1073
1074         return 0;
1075
1076 err_unmap:
1077         unmap_iommu(iommu);
1078 error_free_seq_id:
1079         dmar_free_seq_id(iommu);
1080 error:
1081         kfree(iommu);
1082         return err;
1083 }
1084
1085 static void free_iommu(struct intel_iommu *iommu)
1086 {
1087         iommu_device_destroy(iommu->iommu_dev);
1088
1089         if (iommu->irq) {
1090                 if (iommu->pr_irq) {
1091                         free_irq(iommu->pr_irq, iommu);
1092                         dmar_free_hwirq(iommu->pr_irq);
1093                         iommu->pr_irq = 0;
1094                 }
1095                 free_irq(iommu->irq, iommu);
1096                 dmar_free_hwirq(iommu->irq);
1097                 iommu->irq = 0;
1098         }
1099
1100         if (iommu->qi) {
1101                 free_page((unsigned long)iommu->qi->desc);
1102                 kfree(iommu->qi->desc_status);
1103                 kfree(iommu->qi);
1104         }
1105
1106         if (iommu->reg)
1107                 unmap_iommu(iommu);
1108
1109         dmar_free_seq_id(iommu);
1110         kfree(iommu);
1111 }
1112
1113 /*
1114  * Reclaim all the submitted descriptors which have completed its work.
1115  */
1116 static inline void reclaim_free_desc(struct q_inval *qi)
1117 {
1118         while (qi->desc_status[qi->free_tail] == QI_DONE ||
1119                qi->desc_status[qi->free_tail] == QI_ABORT) {
1120                 qi->desc_status[qi->free_tail] = QI_FREE;
1121                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1122                 qi->free_cnt++;
1123         }
1124 }
1125
1126 static int qi_check_fault(struct intel_iommu *iommu, int index)
1127 {
1128         u32 fault;
1129         int head, tail;
1130         struct q_inval *qi = iommu->qi;
1131         int wait_index = (index + 1) % QI_LENGTH;
1132
1133         if (qi->desc_status[wait_index] == QI_ABORT)
1134                 return -EAGAIN;
1135
1136         fault = readl(iommu->reg + DMAR_FSTS_REG);
1137
1138         /*
1139          * If IQE happens, the head points to the descriptor associated
1140          * with the error. No new descriptors are fetched until the IQE
1141          * is cleared.
1142          */
1143         if (fault & DMA_FSTS_IQE) {
1144                 head = readl(iommu->reg + DMAR_IQH_REG);
1145                 if ((head >> DMAR_IQ_SHIFT) == index) {
1146                         pr_err("VT-d detected invalid descriptor: "
1147                                 "low=%llx, high=%llx\n",
1148                                 (unsigned long long)qi->desc[index].low,
1149                                 (unsigned long long)qi->desc[index].high);
1150                         memcpy(&qi->desc[index], &qi->desc[wait_index],
1151                                         sizeof(struct qi_desc));
1152                         __iommu_flush_cache(iommu, &qi->desc[index],
1153                                         sizeof(struct qi_desc));
1154                         writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1155                         return -EINVAL;
1156                 }
1157         }
1158
1159         /*
1160          * If ITE happens, all pending wait_desc commands are aborted.
1161          * No new descriptors are fetched until the ITE is cleared.
1162          */
1163         if (fault & DMA_FSTS_ITE) {
1164                 head = readl(iommu->reg + DMAR_IQH_REG);
1165                 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1166                 head |= 1;
1167                 tail = readl(iommu->reg + DMAR_IQT_REG);
1168                 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1169
1170                 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1171
1172                 do {
1173                         if (qi->desc_status[head] == QI_IN_USE)
1174                                 qi->desc_status[head] = QI_ABORT;
1175                         head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1176                 } while (head != tail);
1177
1178                 if (qi->desc_status[wait_index] == QI_ABORT)
1179                         return -EAGAIN;
1180         }
1181
1182         if (fault & DMA_FSTS_ICE)
1183                 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1184
1185         return 0;
1186 }
1187
1188 /*
1189  * Submit the queued invalidation descriptor to the remapping
1190  * hardware unit and wait for its completion.
1191  */
1192 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1193 {
1194         int rc;
1195         struct q_inval *qi = iommu->qi;
1196         struct qi_desc *hw, wait_desc;
1197         int wait_index, index;
1198         unsigned long flags;
1199
1200         if (!qi)
1201                 return 0;
1202
1203         hw = qi->desc;
1204
1205 restart:
1206         rc = 0;
1207
1208         raw_spin_lock_irqsave(&qi->q_lock, flags);
1209         while (qi->free_cnt < 3) {
1210                 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1211                 cpu_relax();
1212                 raw_spin_lock_irqsave(&qi->q_lock, flags);
1213         }
1214
1215         index = qi->free_head;
1216         wait_index = (index + 1) % QI_LENGTH;
1217
1218         qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
1219
1220         hw[index] = *desc;
1221
1222         wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
1223                         QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1224         wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
1225
1226         hw[wait_index] = wait_desc;
1227
1228         __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
1229         __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
1230
1231         qi->free_head = (qi->free_head + 2) % QI_LENGTH;
1232         qi->free_cnt -= 2;
1233
1234         /*
1235          * update the HW tail register indicating the presence of
1236          * new descriptors.
1237          */
1238         writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
1239
1240         while (qi->desc_status[wait_index] != QI_DONE) {
1241                 /*
1242                  * We will leave the interrupts disabled, to prevent interrupt
1243                  * context to queue another cmd while a cmd is already submitted
1244                  * and waiting for completion on this cpu. This is to avoid
1245                  * a deadlock where the interrupt context can wait indefinitely
1246                  * for free slots in the queue.
1247                  */
1248                 rc = qi_check_fault(iommu, index);
1249                 if (rc)
1250                         break;
1251
1252                 raw_spin_unlock(&qi->q_lock);
1253                 cpu_relax();
1254                 raw_spin_lock(&qi->q_lock);
1255         }
1256
1257         qi->desc_status[index] = QI_DONE;
1258
1259         reclaim_free_desc(qi);
1260         raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1261
1262         if (rc == -EAGAIN)
1263                 goto restart;
1264
1265         return rc;
1266 }
1267
1268 /*
1269  * Flush the global interrupt entry cache.
1270  */
1271 void qi_global_iec(struct intel_iommu *iommu)
1272 {
1273         struct qi_desc desc;
1274
1275         desc.low = QI_IEC_TYPE;
1276         desc.high = 0;
1277
1278         /* should never fail */
1279         qi_submit_sync(&desc, iommu);
1280 }
1281
1282 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1283                       u64 type)
1284 {
1285         struct qi_desc desc;
1286
1287         desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1288                         | QI_CC_GRAN(type) | QI_CC_TYPE;
1289         desc.high = 0;
1290
1291         qi_submit_sync(&desc, iommu);
1292 }
1293
1294 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1295                     unsigned int size_order, u64 type)
1296 {
1297         u8 dw = 0, dr = 0;
1298
1299         struct qi_desc desc;
1300         int ih = 0;
1301
1302         if (cap_write_drain(iommu->cap))
1303                 dw = 1;
1304
1305         if (cap_read_drain(iommu->cap))
1306                 dr = 1;
1307
1308         desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1309                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1310         desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1311                 | QI_IOTLB_AM(size_order);
1312
1313         qi_submit_sync(&desc, iommu);
1314 }
1315
1316 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
1317                         u64 addr, unsigned mask)
1318 {
1319         struct qi_desc desc;
1320
1321         if (mask) {
1322                 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
1323                 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1324                 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1325         } else
1326                 desc.high = QI_DEV_IOTLB_ADDR(addr);
1327
1328         if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1329                 qdep = 0;
1330
1331         desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1332                    QI_DIOTLB_TYPE;
1333
1334         qi_submit_sync(&desc, iommu);
1335 }
1336
1337 /*
1338  * Disable Queued Invalidation interface.
1339  */
1340 void dmar_disable_qi(struct intel_iommu *iommu)
1341 {
1342         unsigned long flags;
1343         u32 sts;
1344         cycles_t start_time = get_cycles();
1345
1346         if (!ecap_qis(iommu->ecap))
1347                 return;
1348
1349         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1350
1351         sts =  readl(iommu->reg + DMAR_GSTS_REG);
1352         if (!(sts & DMA_GSTS_QIES))
1353                 goto end;
1354
1355         /*
1356          * Give a chance to HW to complete the pending invalidation requests.
1357          */
1358         while ((readl(iommu->reg + DMAR_IQT_REG) !=
1359                 readl(iommu->reg + DMAR_IQH_REG)) &&
1360                 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1361                 cpu_relax();
1362
1363         iommu->gcmd &= ~DMA_GCMD_QIE;
1364         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1365
1366         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1367                       !(sts & DMA_GSTS_QIES), sts);
1368 end:
1369         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1370 }
1371
1372 /*
1373  * Enable queued invalidation.
1374  */
1375 static void __dmar_enable_qi(struct intel_iommu *iommu)
1376 {
1377         u32 sts;
1378         unsigned long flags;
1379         struct q_inval *qi = iommu->qi;
1380
1381         qi->free_head = qi->free_tail = 0;
1382         qi->free_cnt = QI_LENGTH;
1383
1384         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1385
1386         /* write zero to the tail reg */
1387         writel(0, iommu->reg + DMAR_IQT_REG);
1388
1389         dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1390
1391         iommu->gcmd |= DMA_GCMD_QIE;
1392         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1393
1394         /* Make sure hardware complete it */
1395         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1396
1397         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1398 }
1399
1400 /*
1401  * Enable Queued Invalidation interface. This is a must to support
1402  * interrupt-remapping. Also used by DMA-remapping, which replaces
1403  * register based IOTLB invalidation.
1404  */
1405 int dmar_enable_qi(struct intel_iommu *iommu)
1406 {
1407         struct q_inval *qi;
1408         struct page *desc_page;
1409
1410         if (!ecap_qis(iommu->ecap))
1411                 return -ENOENT;
1412
1413         /*
1414          * queued invalidation is already setup and enabled.
1415          */
1416         if (iommu->qi)
1417                 return 0;
1418
1419         iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1420         if (!iommu->qi)
1421                 return -ENOMEM;
1422
1423         qi = iommu->qi;
1424
1425
1426         desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1427         if (!desc_page) {
1428                 kfree(qi);
1429                 iommu->qi = NULL;
1430                 return -ENOMEM;
1431         }
1432
1433         qi->desc = page_address(desc_page);
1434
1435         qi->desc_status = kzalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1436         if (!qi->desc_status) {
1437                 free_page((unsigned long) qi->desc);
1438                 kfree(qi);
1439                 iommu->qi = NULL;
1440                 return -ENOMEM;
1441         }
1442
1443         raw_spin_lock_init(&qi->q_lock);
1444
1445         __dmar_enable_qi(iommu);
1446
1447         return 0;
1448 }
1449
1450 /* iommu interrupt handling. Most stuff are MSI-like. */
1451
1452 enum faulttype {
1453         DMA_REMAP,
1454         INTR_REMAP,
1455         UNKNOWN,
1456 };
1457
1458 static const char *dma_remap_fault_reasons[] =
1459 {
1460         "Software",
1461         "Present bit in root entry is clear",
1462         "Present bit in context entry is clear",
1463         "Invalid context entry",
1464         "Access beyond MGAW",
1465         "PTE Write access is not set",
1466         "PTE Read access is not set",
1467         "Next page table ptr is invalid",
1468         "Root table address invalid",
1469         "Context table ptr is invalid",
1470         "non-zero reserved fields in RTP",
1471         "non-zero reserved fields in CTP",
1472         "non-zero reserved fields in PTE",
1473         "PCE for translation request specifies blocking",
1474 };
1475
1476 static const char *irq_remap_fault_reasons[] =
1477 {
1478         "Detected reserved fields in the decoded interrupt-remapped request",
1479         "Interrupt index exceeded the interrupt-remapping table size",
1480         "Present field in the IRTE entry is clear",
1481         "Error accessing interrupt-remapping table pointed by IRTA_REG",
1482         "Detected reserved fields in the IRTE entry",
1483         "Blocked a compatibility format interrupt request",
1484         "Blocked an interrupt request due to source-id verification failure",
1485 };
1486
1487 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1488 {
1489         if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1490                                         ARRAY_SIZE(irq_remap_fault_reasons))) {
1491                 *fault_type = INTR_REMAP;
1492                 return irq_remap_fault_reasons[fault_reason - 0x20];
1493         } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1494                 *fault_type = DMA_REMAP;
1495                 return dma_remap_fault_reasons[fault_reason];
1496         } else {
1497                 *fault_type = UNKNOWN;
1498                 return "Unknown";
1499         }
1500 }
1501
1502
1503 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1504 {
1505         if (iommu->irq == irq)
1506                 return DMAR_FECTL_REG;
1507         else if (iommu->pr_irq == irq)
1508                 return DMAR_PECTL_REG;
1509         else
1510                 BUG();
1511 }
1512
1513 void dmar_msi_unmask(struct irq_data *data)
1514 {
1515         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1516         int reg = dmar_msi_reg(iommu, data->irq);
1517         unsigned long flag;
1518
1519         /* unmask it */
1520         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1521         writel(0, iommu->reg + reg);
1522         /* Read a reg to force flush the post write */
1523         readl(iommu->reg + reg);
1524         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1525 }
1526
1527 void dmar_msi_mask(struct irq_data *data)
1528 {
1529         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1530         int reg = dmar_msi_reg(iommu, data->irq);
1531         unsigned long flag;
1532
1533         /* mask it */
1534         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1535         writel(DMA_FECTL_IM, iommu->reg + reg);
1536         /* Read a reg to force flush the post write */
1537         readl(iommu->reg + reg);
1538         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1539 }
1540
1541 void dmar_msi_write(int irq, struct msi_msg *msg)
1542 {
1543         struct intel_iommu *iommu = irq_get_handler_data(irq);
1544         int reg = dmar_msi_reg(iommu, irq);
1545         unsigned long flag;
1546
1547         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1548         writel(msg->data, iommu->reg + reg + 4);
1549         writel(msg->address_lo, iommu->reg + reg + 8);
1550         writel(msg->address_hi, iommu->reg + reg + 12);
1551         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1552 }
1553
1554 void dmar_msi_read(int irq, struct msi_msg *msg)
1555 {
1556         struct intel_iommu *iommu = irq_get_handler_data(irq);
1557         int reg = dmar_msi_reg(iommu, irq);
1558         unsigned long flag;
1559
1560         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1561         msg->data = readl(iommu->reg + reg + 4);
1562         msg->address_lo = readl(iommu->reg + reg + 8);
1563         msg->address_hi = readl(iommu->reg + reg + 12);
1564         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1565 }
1566
1567 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1568                 u8 fault_reason, u16 source_id, unsigned long long addr)
1569 {
1570         const char *reason;
1571         int fault_type;
1572
1573         reason = dmar_get_fault_reason(fault_reason, &fault_type);
1574
1575         if (fault_type == INTR_REMAP)
1576                 pr_err("INTR-REMAP: Request device [[%02x:%02x.%d] "
1577                        "fault index %llx\n"
1578                         "INTR-REMAP:[fault reason %02d] %s\n",
1579                         (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1580                         PCI_FUNC(source_id & 0xFF), addr >> 48,
1581                         fault_reason, reason);
1582         else
1583                 pr_err("DMAR:[%s] Request device [%02x:%02x.%d] "
1584                        "fault addr %llx \n"
1585                        "DMAR:[fault reason %02d] %s\n",
1586                        (type ? "DMA Read" : "DMA Write"),
1587                        (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1588                        PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1589         return 0;
1590 }
1591
1592 #define PRIMARY_FAULT_REG_LEN (16)
1593 irqreturn_t dmar_fault(int irq, void *dev_id)
1594 {
1595         struct intel_iommu *iommu = dev_id;
1596         int reg, fault_index;
1597         u32 fault_status;
1598         unsigned long flag;
1599
1600         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1601         fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1602         if (fault_status)
1603                 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1604
1605         /* TBD: ignore advanced fault log currently */
1606         if (!(fault_status & DMA_FSTS_PPF))
1607                 goto unlock_exit;
1608
1609         fault_index = dma_fsts_fault_record_index(fault_status);
1610         reg = cap_fault_reg_offset(iommu->cap);
1611         while (1) {
1612                 u8 fault_reason;
1613                 u16 source_id;
1614                 u64 guest_addr;
1615                 int type;
1616                 u32 data;
1617
1618                 /* highest 32 bits */
1619                 data = readl(iommu->reg + reg +
1620                                 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1621                 if (!(data & DMA_FRCD_F))
1622                         break;
1623
1624                 fault_reason = dma_frcd_fault_reason(data);
1625                 type = dma_frcd_type(data);
1626
1627                 data = readl(iommu->reg + reg +
1628                                 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1629                 source_id = dma_frcd_source_id(data);
1630
1631                 guest_addr = dmar_readq(iommu->reg + reg +
1632                                 fault_index * PRIMARY_FAULT_REG_LEN);
1633                 guest_addr = dma_frcd_page_addr(guest_addr);
1634                 /* clear the fault */
1635                 writel(DMA_FRCD_F, iommu->reg + reg +
1636                         fault_index * PRIMARY_FAULT_REG_LEN + 12);
1637
1638                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1639
1640                 dmar_fault_do_one(iommu, type, fault_reason,
1641                                 source_id, guest_addr);
1642
1643                 fault_index++;
1644                 if (fault_index >= cap_num_fault_regs(iommu->cap))
1645                         fault_index = 0;
1646                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1647         }
1648
1649         writel(DMA_FSTS_PFO | DMA_FSTS_PPF, iommu->reg + DMAR_FSTS_REG);
1650
1651 unlock_exit:
1652         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1653         return IRQ_HANDLED;
1654 }
1655
1656 int dmar_set_interrupt(struct intel_iommu *iommu)
1657 {
1658         int irq, ret;
1659
1660         /*
1661          * Check if the fault interrupt is already initialized.
1662          */
1663         if (iommu->irq)
1664                 return 0;
1665
1666         irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1667         if (irq > 0) {
1668                 iommu->irq = irq;
1669         } else {
1670                 pr_err("No free IRQ vectors\n");
1671                 return -EINVAL;
1672         }
1673
1674         ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1675         if (ret)
1676                 pr_err("Can't request irq\n");
1677         return ret;
1678 }
1679
1680 int __init enable_drhd_fault_handling(void)
1681 {
1682         struct dmar_drhd_unit *drhd;
1683         struct intel_iommu *iommu;
1684
1685         /*
1686          * Enable fault control interrupt.
1687          */
1688         for_each_iommu(iommu, drhd) {
1689                 u32 fault_status;
1690                 int ret = dmar_set_interrupt(iommu);
1691
1692                 if (ret) {
1693                         pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1694                                (unsigned long long)drhd->reg_base_addr, ret);
1695                         return -1;
1696                 }
1697
1698                 /*
1699                  * Clear any previous faults.
1700                  */
1701                 dmar_fault(iommu->irq, iommu);
1702                 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1703                 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1704         }
1705
1706         return 0;
1707 }
1708
1709 /*
1710  * Re-enable Queued Invalidation interface.
1711  */
1712 int dmar_reenable_qi(struct intel_iommu *iommu)
1713 {
1714         if (!ecap_qis(iommu->ecap))
1715                 return -ENOENT;
1716
1717         if (!iommu->qi)
1718                 return -ENOENT;
1719
1720         /*
1721          * First disable queued invalidation.
1722          */
1723         dmar_disable_qi(iommu);
1724         /*
1725          * Then enable queued invalidation again. Since there is no pending
1726          * invalidation requests now, it's safe to re-enable queued
1727          * invalidation.
1728          */
1729         __dmar_enable_qi(iommu);
1730
1731         return 0;
1732 }
1733
1734 /*
1735  * Check interrupt remapping support in DMAR table description.
1736  */
1737 int __init dmar_ir_support(void)
1738 {
1739         struct acpi_table_dmar *dmar;
1740         dmar = (struct acpi_table_dmar *)dmar_tbl;
1741         if (!dmar)
1742                 return 0;
1743         return dmar->flags & 0x1;
1744 }
1745
1746 /* Check whether DMAR units are in use */
1747 static inline bool dmar_in_use(void)
1748 {
1749         return irq_remapping_enabled || intel_iommu_enabled;
1750 }
1751
1752 static int __init dmar_free_unused_resources(void)
1753 {
1754         struct dmar_drhd_unit *dmaru, *dmaru_n;
1755
1756         if (dmar_in_use())
1757                 return 0;
1758
1759         if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
1760                 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1761
1762         down_write(&dmar_global_lock);
1763         list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
1764                 list_del(&dmaru->list);
1765                 dmar_free_drhd(dmaru);
1766         }
1767         up_write(&dmar_global_lock);
1768
1769         return 0;
1770 }
1771
1772 late_initcall(dmar_free_unused_resources);
1773 IOMMU_INIT_POST(detect_intel_iommu);
1774
1775 /*
1776  * DMAR Hotplug Support
1777  * For more details, please refer to Intel(R) Virtualization Technology
1778  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
1779  * "Remapping Hardware Unit Hot Plug".
1780  */
1781 static u8 dmar_hp_uuid[] = {
1782         /* 0000 */    0xA6, 0xA3, 0xC1, 0xD8, 0x9B, 0xBE, 0x9B, 0x4C,
1783         /* 0008 */    0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF
1784 };
1785
1786 /*
1787  * Currently there's only one revision and BIOS will not check the revision id,
1788  * so use 0 for safety.
1789  */
1790 #define DMAR_DSM_REV_ID                 0
1791 #define DMAR_DSM_FUNC_DRHD              1
1792 #define DMAR_DSM_FUNC_ATSR              2
1793 #define DMAR_DSM_FUNC_RHSA              3
1794
1795 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
1796 {
1797         return acpi_check_dsm(handle, dmar_hp_uuid, DMAR_DSM_REV_ID, 1 << func);
1798 }
1799
1800 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
1801                                   dmar_res_handler_t handler, void *arg)
1802 {
1803         int ret = -ENODEV;
1804         union acpi_object *obj;
1805         struct acpi_dmar_header *start;
1806         struct dmar_res_callback callback;
1807         static int res_type[] = {
1808                 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
1809                 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
1810                 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
1811         };
1812
1813         if (!dmar_detect_dsm(handle, func))
1814                 return 0;
1815
1816         obj = acpi_evaluate_dsm_typed(handle, dmar_hp_uuid, DMAR_DSM_REV_ID,
1817                                       func, NULL, ACPI_TYPE_BUFFER);
1818         if (!obj)
1819                 return -ENODEV;
1820
1821         memset(&callback, 0, sizeof(callback));
1822         callback.cb[res_type[func]] = handler;
1823         callback.arg[res_type[func]] = arg;
1824         start = (struct acpi_dmar_header *)obj->buffer.pointer;
1825         ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
1826
1827         ACPI_FREE(obj);
1828
1829         return ret;
1830 }
1831
1832 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
1833 {
1834         int ret;
1835         struct dmar_drhd_unit *dmaru;
1836
1837         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1838         if (!dmaru)
1839                 return -ENODEV;
1840
1841         ret = dmar_ir_hotplug(dmaru, true);
1842         if (ret == 0)
1843                 ret = dmar_iommu_hotplug(dmaru, true);
1844
1845         return ret;
1846 }
1847
1848 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
1849 {
1850         int i, ret;
1851         struct device *dev;
1852         struct dmar_drhd_unit *dmaru;
1853
1854         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1855         if (!dmaru)
1856                 return 0;
1857
1858         /*
1859          * All PCI devices managed by this unit should have been destroyed.
1860          */
1861         if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt)
1862                 for_each_active_dev_scope(dmaru->devices,
1863                                           dmaru->devices_cnt, i, dev)
1864                         return -EBUSY;
1865
1866         ret = dmar_ir_hotplug(dmaru, false);
1867         if (ret == 0)
1868                 ret = dmar_iommu_hotplug(dmaru, false);
1869
1870         return ret;
1871 }
1872
1873 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
1874 {
1875         struct dmar_drhd_unit *dmaru;
1876
1877         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1878         if (dmaru) {
1879                 list_del_rcu(&dmaru->list);
1880                 synchronize_rcu();
1881                 dmar_free_drhd(dmaru);
1882         }
1883
1884         return 0;
1885 }
1886
1887 static int dmar_hotplug_insert(acpi_handle handle)
1888 {
1889         int ret;
1890         int drhd_count = 0;
1891
1892         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1893                                      &dmar_validate_one_drhd, (void *)1);
1894         if (ret)
1895                 goto out;
1896
1897         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1898                                      &dmar_parse_one_drhd, (void *)&drhd_count);
1899         if (ret == 0 && drhd_count == 0) {
1900                 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
1901                 goto out;
1902         } else if (ret) {
1903                 goto release_drhd;
1904         }
1905
1906         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
1907                                      &dmar_parse_one_rhsa, NULL);
1908         if (ret)
1909                 goto release_drhd;
1910
1911         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1912                                      &dmar_parse_one_atsr, NULL);
1913         if (ret)
1914                 goto release_atsr;
1915
1916         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1917                                      &dmar_hp_add_drhd, NULL);
1918         if (!ret)
1919                 return 0;
1920
1921         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1922                                &dmar_hp_remove_drhd, NULL);
1923 release_atsr:
1924         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1925                                &dmar_release_one_atsr, NULL);
1926 release_drhd:
1927         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1928                                &dmar_hp_release_drhd, NULL);
1929 out:
1930         return ret;
1931 }
1932
1933 static int dmar_hotplug_remove(acpi_handle handle)
1934 {
1935         int ret;
1936
1937         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1938                                      &dmar_check_one_atsr, NULL);
1939         if (ret)
1940                 return ret;
1941
1942         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1943                                      &dmar_hp_remove_drhd, NULL);
1944         if (ret == 0) {
1945                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1946                                                &dmar_release_one_atsr, NULL));
1947                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1948                                                &dmar_hp_release_drhd, NULL));
1949         } else {
1950                 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1951                                        &dmar_hp_add_drhd, NULL);
1952         }
1953
1954         return ret;
1955 }
1956
1957 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
1958                                        void *context, void **retval)
1959 {
1960         acpi_handle *phdl = retval;
1961
1962         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
1963                 *phdl = handle;
1964                 return AE_CTRL_TERMINATE;
1965         }
1966
1967         return AE_OK;
1968 }
1969
1970 static int dmar_device_hotplug(acpi_handle handle, bool insert)
1971 {
1972         int ret;
1973         acpi_handle tmp = NULL;
1974         acpi_status status;
1975
1976         if (!dmar_in_use())
1977                 return 0;
1978
1979         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
1980                 tmp = handle;
1981         } else {
1982                 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1983                                              ACPI_UINT32_MAX,
1984                                              dmar_get_dsm_handle,
1985                                              NULL, NULL, &tmp);
1986                 if (ACPI_FAILURE(status)) {
1987                         pr_warn("Failed to locate _DSM method.\n");
1988                         return -ENXIO;
1989                 }
1990         }
1991         if (tmp == NULL)
1992                 return 0;
1993
1994         down_write(&dmar_global_lock);
1995         if (insert)
1996                 ret = dmar_hotplug_insert(tmp);
1997         else
1998                 ret = dmar_hotplug_remove(tmp);
1999         up_write(&dmar_global_lock);
2000
2001         return ret;
2002 }
2003
2004 int dmar_device_add(acpi_handle handle)
2005 {
2006         return dmar_device_hotplug(handle, true);
2007 }
2008
2009 int dmar_device_remove(acpi_handle handle)
2010 {
2011         return dmar_device_hotplug(handle, false);
2012 }