Upgrade to 4.4.50-rt62
[kvmfornfv.git] / kernel / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/interrupt.h>
26 #include <linux/iommu.h>
27 #include <linux/iopoll.h>
28 #include <linux/module.h>
29 #include <linux/msi.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_platform.h>
33 #include <linux/pci.h>
34 #include <linux/platform_device.h>
35
36 #include "io-pgtable.h"
37
38 /* MMIO registers */
39 #define ARM_SMMU_IDR0                   0x0
40 #define IDR0_ST_LVL_SHIFT               27
41 #define IDR0_ST_LVL_MASK                0x3
42 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
43 #define IDR0_STALL_MODEL                (3 << 24)
44 #define IDR0_TTENDIAN_SHIFT             21
45 #define IDR0_TTENDIAN_MASK              0x3
46 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
47 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
48 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
49 #define IDR0_CD2L                       (1 << 19)
50 #define IDR0_VMID16                     (1 << 18)
51 #define IDR0_PRI                        (1 << 16)
52 #define IDR0_SEV                        (1 << 14)
53 #define IDR0_MSI                        (1 << 13)
54 #define IDR0_ASID16                     (1 << 12)
55 #define IDR0_ATS                        (1 << 10)
56 #define IDR0_HYP                        (1 << 9)
57 #define IDR0_COHACC                     (1 << 4)
58 #define IDR0_TTF_SHIFT                  2
59 #define IDR0_TTF_MASK                   0x3
60 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
61 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
62 #define IDR0_S1P                        (1 << 1)
63 #define IDR0_S2P                        (1 << 0)
64
65 #define ARM_SMMU_IDR1                   0x4
66 #define IDR1_TABLES_PRESET              (1 << 30)
67 #define IDR1_QUEUES_PRESET              (1 << 29)
68 #define IDR1_REL                        (1 << 28)
69 #define IDR1_CMDQ_SHIFT                 21
70 #define IDR1_CMDQ_MASK                  0x1f
71 #define IDR1_EVTQ_SHIFT                 16
72 #define IDR1_EVTQ_MASK                  0x1f
73 #define IDR1_PRIQ_SHIFT                 11
74 #define IDR1_PRIQ_MASK                  0x1f
75 #define IDR1_SSID_SHIFT                 6
76 #define IDR1_SSID_MASK                  0x1f
77 #define IDR1_SID_SHIFT                  0
78 #define IDR1_SID_MASK                   0x3f
79
80 #define ARM_SMMU_IDR5                   0x14
81 #define IDR5_STALL_MAX_SHIFT            16
82 #define IDR5_STALL_MAX_MASK             0xffff
83 #define IDR5_GRAN64K                    (1 << 6)
84 #define IDR5_GRAN16K                    (1 << 5)
85 #define IDR5_GRAN4K                     (1 << 4)
86 #define IDR5_OAS_SHIFT                  0
87 #define IDR5_OAS_MASK                   0x7
88 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
89 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
90 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
91 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
92 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
93 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
94
95 #define ARM_SMMU_CR0                    0x20
96 #define CR0_CMDQEN                      (1 << 3)
97 #define CR0_EVTQEN                      (1 << 2)
98 #define CR0_PRIQEN                      (1 << 1)
99 #define CR0_SMMUEN                      (1 << 0)
100
101 #define ARM_SMMU_CR0ACK                 0x24
102
103 #define ARM_SMMU_CR1                    0x28
104 #define CR1_SH_NSH                      0
105 #define CR1_SH_OSH                      2
106 #define CR1_SH_ISH                      3
107 #define CR1_CACHE_NC                    0
108 #define CR1_CACHE_WB                    1
109 #define CR1_CACHE_WT                    2
110 #define CR1_TABLE_SH_SHIFT              10
111 #define CR1_TABLE_OC_SHIFT              8
112 #define CR1_TABLE_IC_SHIFT              6
113 #define CR1_QUEUE_SH_SHIFT              4
114 #define CR1_QUEUE_OC_SHIFT              2
115 #define CR1_QUEUE_IC_SHIFT              0
116
117 #define ARM_SMMU_CR2                    0x2c
118 #define CR2_PTM                         (1 << 2)
119 #define CR2_RECINVSID                   (1 << 1)
120 #define CR2_E2H                         (1 << 0)
121
122 #define ARM_SMMU_IRQ_CTRL               0x50
123 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
124 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
125 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
126
127 #define ARM_SMMU_IRQ_CTRLACK            0x54
128
129 #define ARM_SMMU_GERROR                 0x60
130 #define GERROR_SFM_ERR                  (1 << 8)
131 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
132 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
133 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
134 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
135 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
136 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
137 #define GERROR_CMDQ_ERR                 (1 << 0)
138 #define GERROR_ERR_MASK                 0xfd
139
140 #define ARM_SMMU_GERRORN                0x64
141
142 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
143 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
144 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
145
146 #define ARM_SMMU_STRTAB_BASE            0x80
147 #define STRTAB_BASE_RA                  (1UL << 62)
148 #define STRTAB_BASE_ADDR_SHIFT          6
149 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
150
151 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
152 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
153 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
154 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
155 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
156 #define STRTAB_BASE_CFG_FMT_SHIFT       16
157 #define STRTAB_BASE_CFG_FMT_MASK        0x3
158 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
159 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
160
161 #define ARM_SMMU_CMDQ_BASE              0x90
162 #define ARM_SMMU_CMDQ_PROD              0x98
163 #define ARM_SMMU_CMDQ_CONS              0x9c
164
165 #define ARM_SMMU_EVTQ_BASE              0xa0
166 #define ARM_SMMU_EVTQ_PROD              0x100a8
167 #define ARM_SMMU_EVTQ_CONS              0x100ac
168 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
169 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
170 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
171
172 #define ARM_SMMU_PRIQ_BASE              0xc0
173 #define ARM_SMMU_PRIQ_PROD              0x100c8
174 #define ARM_SMMU_PRIQ_CONS              0x100cc
175 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
176 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
177 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
178
179 /* Common MSI config fields */
180 #define MSI_CFG0_ADDR_SHIFT             2
181 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
182 #define MSI_CFG2_SH_SHIFT               4
183 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
184 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
185 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
186 #define MSI_CFG2_MEMATTR_SHIFT          0
187 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
188
189 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
190 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
191 #define Q_OVERFLOW_FLAG                 (1 << 31)
192 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
193 #define Q_ENT(q, p)                     ((q)->base +                    \
194                                          Q_IDX(q, p) * (q)->ent_dwords)
195
196 #define Q_BASE_RWA                      (1UL << 62)
197 #define Q_BASE_ADDR_SHIFT               5
198 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
199 #define Q_BASE_LOG2SIZE_SHIFT           0
200 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
201
202 /*
203  * Stream table.
204  *
205  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
206  * 2lvl: 128k L1 entries,
207  *       256 lazy entries per table (each table covers a PCI bus)
208  */
209 #define STRTAB_L1_SZ_SHIFT              20
210 #define STRTAB_SPLIT                    8
211
212 #define STRTAB_L1_DESC_DWORDS           1
213 #define STRTAB_L1_DESC_SPAN_SHIFT       0
214 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
215 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
216 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
217
218 #define STRTAB_STE_DWORDS               8
219 #define STRTAB_STE_0_V                  (1UL << 0)
220 #define STRTAB_STE_0_CFG_SHIFT          1
221 #define STRTAB_STE_0_CFG_MASK           0x7UL
222 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
223 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
224 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
225 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
226
227 #define STRTAB_STE_0_S1FMT_SHIFT        4
228 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
229 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
230 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
231 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
232 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
233
234 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
235 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
236 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
237 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
238 #define STRTAB_STE_1_S1C_SH_NSH         0UL
239 #define STRTAB_STE_1_S1C_SH_OSH         2UL
240 #define STRTAB_STE_1_S1C_SH_ISH         3UL
241 #define STRTAB_STE_1_S1CIR_SHIFT        2
242 #define STRTAB_STE_1_S1COR_SHIFT        4
243 #define STRTAB_STE_1_S1CSH_SHIFT        6
244
245 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
246
247 #define STRTAB_STE_1_EATS_ABT           0UL
248 #define STRTAB_STE_1_EATS_TRANS         1UL
249 #define STRTAB_STE_1_EATS_S1CHK         2UL
250 #define STRTAB_STE_1_EATS_SHIFT         28
251
252 #define STRTAB_STE_1_STRW_NSEL1         0UL
253 #define STRTAB_STE_1_STRW_EL2           2UL
254 #define STRTAB_STE_1_STRW_SHIFT         30
255
256 #define STRTAB_STE_2_S2VMID_SHIFT       0
257 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
258 #define STRTAB_STE_2_VTCR_SHIFT         32
259 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
260 #define STRTAB_STE_2_S2AA64             (1UL << 51)
261 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
262 #define STRTAB_STE_2_S2PTW              (1UL << 54)
263 #define STRTAB_STE_2_S2R                (1UL << 58)
264
265 #define STRTAB_STE_3_S2TTB_SHIFT        4
266 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
267
268 /* Context descriptor (stage-1 only) */
269 #define CTXDESC_CD_DWORDS               8
270 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
271 #define ARM64_TCR_T0SZ_SHIFT            0
272 #define ARM64_TCR_T0SZ_MASK             0x1fUL
273 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
274 #define ARM64_TCR_TG0_SHIFT             14
275 #define ARM64_TCR_TG0_MASK              0x3UL
276 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
277 #define ARM64_TCR_IRGN0_SHIFT           8
278 #define ARM64_TCR_IRGN0_MASK            0x3UL
279 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
280 #define ARM64_TCR_ORGN0_SHIFT           10
281 #define ARM64_TCR_ORGN0_MASK            0x3UL
282 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
283 #define ARM64_TCR_SH0_SHIFT             12
284 #define ARM64_TCR_SH0_MASK              0x3UL
285 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
286 #define ARM64_TCR_EPD0_SHIFT            7
287 #define ARM64_TCR_EPD0_MASK             0x1UL
288 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
289 #define ARM64_TCR_EPD1_SHIFT            23
290 #define ARM64_TCR_EPD1_MASK             0x1UL
291
292 #define CTXDESC_CD_0_ENDI               (1UL << 15)
293 #define CTXDESC_CD_0_V                  (1UL << 31)
294
295 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
296 #define ARM64_TCR_IPS_SHIFT             32
297 #define ARM64_TCR_IPS_MASK              0x7UL
298 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
299 #define ARM64_TCR_TBI0_SHIFT            37
300 #define ARM64_TCR_TBI0_MASK             0x1UL
301
302 #define CTXDESC_CD_0_AA64               (1UL << 41)
303 #define CTXDESC_CD_0_R                  (1UL << 45)
304 #define CTXDESC_CD_0_A                  (1UL << 46)
305 #define CTXDESC_CD_0_ASET_SHIFT         47
306 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
307 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
308 #define CTXDESC_CD_0_ASID_SHIFT         48
309 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
310
311 #define CTXDESC_CD_1_TTB0_SHIFT         4
312 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
313
314 #define CTXDESC_CD_3_MAIR_SHIFT         0
315
316 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
317 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
318         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
319          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
320
321 /* Command queue */
322 #define CMDQ_ENT_DWORDS                 2
323 #define CMDQ_MAX_SZ_SHIFT               8
324
325 #define CMDQ_ERR_SHIFT                  24
326 #define CMDQ_ERR_MASK                   0x7f
327 #define CMDQ_ERR_CERROR_NONE_IDX        0
328 #define CMDQ_ERR_CERROR_ILL_IDX         1
329 #define CMDQ_ERR_CERROR_ABT_IDX         2
330
331 #define CMDQ_0_OP_SHIFT                 0
332 #define CMDQ_0_OP_MASK                  0xffUL
333 #define CMDQ_0_SSV                      (1UL << 11)
334
335 #define CMDQ_PREFETCH_0_SID_SHIFT       32
336 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
337 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
338
339 #define CMDQ_CFGI_0_SID_SHIFT           32
340 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
341 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
342 #define CMDQ_CFGI_1_RANGE_SHIFT         0
343 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
344
345 #define CMDQ_TLBI_0_VMID_SHIFT          32
346 #define CMDQ_TLBI_0_ASID_SHIFT          48
347 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
348 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
349 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
350
351 #define CMDQ_PRI_0_SSID_SHIFT           12
352 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
353 #define CMDQ_PRI_0_SID_SHIFT            32
354 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
355 #define CMDQ_PRI_1_GRPID_SHIFT          0
356 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
357 #define CMDQ_PRI_1_RESP_SHIFT           12
358 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
359 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
360 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
361
362 #define CMDQ_SYNC_0_CS_SHIFT            12
363 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
364 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
365
366 /* Event queue */
367 #define EVTQ_ENT_DWORDS                 4
368 #define EVTQ_MAX_SZ_SHIFT               7
369
370 #define EVTQ_0_ID_SHIFT                 0
371 #define EVTQ_0_ID_MASK                  0xffUL
372
373 /* PRI queue */
374 #define PRIQ_ENT_DWORDS                 2
375 #define PRIQ_MAX_SZ_SHIFT               8
376
377 #define PRIQ_0_SID_SHIFT                0
378 #define PRIQ_0_SID_MASK                 0xffffffffUL
379 #define PRIQ_0_SSID_SHIFT               32
380 #define PRIQ_0_SSID_MASK                0xfffffUL
381 #define PRIQ_0_OF                       (1UL << 57)
382 #define PRIQ_0_PERM_PRIV                (1UL << 58)
383 #define PRIQ_0_PERM_EXEC                (1UL << 59)
384 #define PRIQ_0_PERM_READ                (1UL << 60)
385 #define PRIQ_0_PERM_WRITE               (1UL << 61)
386 #define PRIQ_0_PRG_LAST                 (1UL << 62)
387 #define PRIQ_0_SSID_V                   (1UL << 63)
388
389 #define PRIQ_1_PRG_IDX_SHIFT            0
390 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
391 #define PRIQ_1_ADDR_SHIFT               12
392 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
393
394 /* High-level queue structures */
395 #define ARM_SMMU_POLL_TIMEOUT_US        100
396
397 static bool disable_bypass;
398 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
399 MODULE_PARM_DESC(disable_bypass,
400         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
401
402 enum pri_resp {
403         PRI_RESP_DENY,
404         PRI_RESP_FAIL,
405         PRI_RESP_SUCC,
406 };
407
408 enum arm_smmu_msi_index {
409         EVTQ_MSI_INDEX,
410         GERROR_MSI_INDEX,
411         PRIQ_MSI_INDEX,
412         ARM_SMMU_MAX_MSIS,
413 };
414
415 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
416         [EVTQ_MSI_INDEX] = {
417                 ARM_SMMU_EVTQ_IRQ_CFG0,
418                 ARM_SMMU_EVTQ_IRQ_CFG1,
419                 ARM_SMMU_EVTQ_IRQ_CFG2,
420         },
421         [GERROR_MSI_INDEX] = {
422                 ARM_SMMU_GERROR_IRQ_CFG0,
423                 ARM_SMMU_GERROR_IRQ_CFG1,
424                 ARM_SMMU_GERROR_IRQ_CFG2,
425         },
426         [PRIQ_MSI_INDEX] = {
427                 ARM_SMMU_PRIQ_IRQ_CFG0,
428                 ARM_SMMU_PRIQ_IRQ_CFG1,
429                 ARM_SMMU_PRIQ_IRQ_CFG2,
430         },
431 };
432
433 struct arm_smmu_cmdq_ent {
434         /* Common fields */
435         u8                              opcode;
436         bool                            substream_valid;
437
438         /* Command-specific fields */
439         union {
440                 #define CMDQ_OP_PREFETCH_CFG    0x1
441                 struct {
442                         u32                     sid;
443                         u8                      size;
444                         u64                     addr;
445                 } prefetch;
446
447                 #define CMDQ_OP_CFGI_STE        0x3
448                 #define CMDQ_OP_CFGI_ALL        0x4
449                 struct {
450                         u32                     sid;
451                         union {
452                                 bool            leaf;
453                                 u8              span;
454                         };
455                 } cfgi;
456
457                 #define CMDQ_OP_TLBI_NH_ASID    0x11
458                 #define CMDQ_OP_TLBI_NH_VA      0x12
459                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
460                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
461                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
462                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
463                 struct {
464                         u16                     asid;
465                         u16                     vmid;
466                         bool                    leaf;
467                         u64                     addr;
468                 } tlbi;
469
470                 #define CMDQ_OP_PRI_RESP        0x41
471                 struct {
472                         u32                     sid;
473                         u32                     ssid;
474                         u16                     grpid;
475                         enum pri_resp           resp;
476                 } pri;
477
478                 #define CMDQ_OP_CMD_SYNC        0x46
479         };
480 };
481
482 struct arm_smmu_queue {
483         int                             irq; /* Wired interrupt */
484
485         __le64                          *base;
486         dma_addr_t                      base_dma;
487         u64                             q_base;
488
489         size_t                          ent_dwords;
490         u32                             max_n_shift;
491         u32                             prod;
492         u32                             cons;
493
494         u32 __iomem                     *prod_reg;
495         u32 __iomem                     *cons_reg;
496 };
497
498 struct arm_smmu_cmdq {
499         struct arm_smmu_queue           q;
500         spinlock_t                      lock;
501 };
502
503 struct arm_smmu_evtq {
504         struct arm_smmu_queue           q;
505         u32                             max_stalls;
506 };
507
508 struct arm_smmu_priq {
509         struct arm_smmu_queue           q;
510 };
511
512 /* High-level stream table and context descriptor structures */
513 struct arm_smmu_strtab_l1_desc {
514         u8                              span;
515
516         __le64                          *l2ptr;
517         dma_addr_t                      l2ptr_dma;
518 };
519
520 struct arm_smmu_s1_cfg {
521         __le64                          *cdptr;
522         dma_addr_t                      cdptr_dma;
523
524         struct arm_smmu_ctx_desc {
525                 u16     asid;
526                 u64     ttbr;
527                 u64     tcr;
528                 u64     mair;
529         }                               cd;
530 };
531
532 struct arm_smmu_s2_cfg {
533         u16                             vmid;
534         u64                             vttbr;
535         u64                             vtcr;
536 };
537
538 struct arm_smmu_strtab_ent {
539         bool                            valid;
540
541         bool                            bypass; /* Overrides s1/s2 config */
542         struct arm_smmu_s1_cfg          *s1_cfg;
543         struct arm_smmu_s2_cfg          *s2_cfg;
544 };
545
546 struct arm_smmu_strtab_cfg {
547         __le64                          *strtab;
548         dma_addr_t                      strtab_dma;
549         struct arm_smmu_strtab_l1_desc  *l1_desc;
550         unsigned int                    num_l1_ents;
551
552         u64                             strtab_base;
553         u32                             strtab_base_cfg;
554 };
555
556 /* An SMMUv3 instance */
557 struct arm_smmu_device {
558         struct device                   *dev;
559         void __iomem                    *base;
560
561 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
562 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
563 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
564 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
565 #define ARM_SMMU_FEAT_PRI               (1 << 4)
566 #define ARM_SMMU_FEAT_ATS               (1 << 5)
567 #define ARM_SMMU_FEAT_SEV               (1 << 6)
568 #define ARM_SMMU_FEAT_MSI               (1 << 7)
569 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
570 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
571 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
572 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
573 #define ARM_SMMU_FEAT_HYP               (1 << 12)
574         u32                             features;
575
576 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
577         u32                             options;
578
579         struct arm_smmu_cmdq            cmdq;
580         struct arm_smmu_evtq            evtq;
581         struct arm_smmu_priq            priq;
582
583         int                             gerr_irq;
584
585         unsigned long                   ias; /* IPA */
586         unsigned long                   oas; /* PA */
587
588 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
589         unsigned int                    asid_bits;
590         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
591
592 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
593         unsigned int                    vmid_bits;
594         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
595
596         unsigned int                    ssid_bits;
597         unsigned int                    sid_bits;
598
599         struct arm_smmu_strtab_cfg      strtab_cfg;
600 };
601
602 /* SMMU private data for an IOMMU group */
603 struct arm_smmu_group {
604         struct arm_smmu_device          *smmu;
605         struct arm_smmu_domain          *domain;
606         int                             num_sids;
607         u32                             *sids;
608         struct arm_smmu_strtab_ent      ste;
609 };
610
611 /* SMMU private data for an IOMMU domain */
612 enum arm_smmu_domain_stage {
613         ARM_SMMU_DOMAIN_S1 = 0,
614         ARM_SMMU_DOMAIN_S2,
615         ARM_SMMU_DOMAIN_NESTED,
616 };
617
618 struct arm_smmu_domain {
619         struct arm_smmu_device          *smmu;
620         struct mutex                    init_mutex; /* Protects smmu pointer */
621
622         struct io_pgtable_ops           *pgtbl_ops;
623         spinlock_t                      pgtbl_lock;
624
625         enum arm_smmu_domain_stage      stage;
626         union {
627                 struct arm_smmu_s1_cfg  s1_cfg;
628                 struct arm_smmu_s2_cfg  s2_cfg;
629         };
630
631         struct iommu_domain             domain;
632 };
633
634 struct arm_smmu_option_prop {
635         u32 opt;
636         const char *prop;
637 };
638
639 static struct arm_smmu_option_prop arm_smmu_options[] = {
640         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
641         { 0, NULL},
642 };
643
644 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
645 {
646         return container_of(dom, struct arm_smmu_domain, domain);
647 }
648
649 static void parse_driver_options(struct arm_smmu_device *smmu)
650 {
651         int i = 0;
652
653         do {
654                 if (of_property_read_bool(smmu->dev->of_node,
655                                                 arm_smmu_options[i].prop)) {
656                         smmu->options |= arm_smmu_options[i].opt;
657                         dev_notice(smmu->dev, "option %s\n",
658                                 arm_smmu_options[i].prop);
659                 }
660         } while (arm_smmu_options[++i].opt);
661 }
662
663 /* Low-level queue manipulation functions */
664 static bool queue_full(struct arm_smmu_queue *q)
665 {
666         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
667                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
668 }
669
670 static bool queue_empty(struct arm_smmu_queue *q)
671 {
672         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
673                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
674 }
675
676 static void queue_sync_cons(struct arm_smmu_queue *q)
677 {
678         q->cons = readl_relaxed(q->cons_reg);
679 }
680
681 static void queue_inc_cons(struct arm_smmu_queue *q)
682 {
683         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
684
685         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
686         writel(q->cons, q->cons_reg);
687 }
688
689 static int queue_sync_prod(struct arm_smmu_queue *q)
690 {
691         int ret = 0;
692         u32 prod = readl_relaxed(q->prod_reg);
693
694         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
695                 ret = -EOVERFLOW;
696
697         q->prod = prod;
698         return ret;
699 }
700
701 static void queue_inc_prod(struct arm_smmu_queue *q)
702 {
703         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
704
705         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
706         writel(q->prod, q->prod_reg);
707 }
708
709 static bool __queue_cons_before(struct arm_smmu_queue *q, u32 until)
710 {
711         if (Q_WRP(q, q->cons) == Q_WRP(q, until))
712                 return Q_IDX(q, q->cons) < Q_IDX(q, until);
713
714         return Q_IDX(q, q->cons) >= Q_IDX(q, until);
715 }
716
717 static int queue_poll_cons(struct arm_smmu_queue *q, u32 until, bool wfe)
718 {
719         ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
720
721         while (queue_sync_cons(q), __queue_cons_before(q, until)) {
722                 if (ktime_compare(ktime_get(), timeout) > 0)
723                         return -ETIMEDOUT;
724
725                 if (wfe) {
726                         wfe();
727                 } else {
728                         cpu_relax();
729                         udelay(1);
730                 }
731         }
732
733         return 0;
734 }
735
736 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
737 {
738         int i;
739
740         for (i = 0; i < n_dwords; ++i)
741                 *dst++ = cpu_to_le64(*src++);
742 }
743
744 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
745 {
746         if (queue_full(q))
747                 return -ENOSPC;
748
749         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
750         queue_inc_prod(q);
751         return 0;
752 }
753
754 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
755 {
756         int i;
757
758         for (i = 0; i < n_dwords; ++i)
759                 *dst++ = le64_to_cpu(*src++);
760 }
761
762 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
763 {
764         if (queue_empty(q))
765                 return -EAGAIN;
766
767         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
768         queue_inc_cons(q);
769         return 0;
770 }
771
772 /* High-level queue accessors */
773 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
774 {
775         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
776         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
777
778         switch (ent->opcode) {
779         case CMDQ_OP_TLBI_EL2_ALL:
780         case CMDQ_OP_TLBI_NSNH_ALL:
781                 break;
782         case CMDQ_OP_PREFETCH_CFG:
783                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
784                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
785                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
786                 break;
787         case CMDQ_OP_CFGI_STE:
788                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
789                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
790                 break;
791         case CMDQ_OP_CFGI_ALL:
792                 /* Cover the entire SID range */
793                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
794                 break;
795         case CMDQ_OP_TLBI_NH_VA:
796                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
797                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
798                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
799                 break;
800         case CMDQ_OP_TLBI_S2_IPA:
801                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
802                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
803                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
804                 break;
805         case CMDQ_OP_TLBI_NH_ASID:
806                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
807                 /* Fallthrough */
808         case CMDQ_OP_TLBI_S12_VMALL:
809                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
810                 break;
811         case CMDQ_OP_PRI_RESP:
812                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
813                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
814                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
815                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
816                 switch (ent->pri.resp) {
817                 case PRI_RESP_DENY:
818                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
819                         break;
820                 case PRI_RESP_FAIL:
821                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
822                         break;
823                 case PRI_RESP_SUCC:
824                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
825                         break;
826                 default:
827                         return -EINVAL;
828                 }
829                 break;
830         case CMDQ_OP_CMD_SYNC:
831                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
832                 break;
833         default:
834                 return -ENOENT;
835         }
836
837         return 0;
838 }
839
840 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
841 {
842         static const char *cerror_str[] = {
843                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
844                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
845                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
846         };
847
848         int i;
849         u64 cmd[CMDQ_ENT_DWORDS];
850         struct arm_smmu_queue *q = &smmu->cmdq.q;
851         u32 cons = readl_relaxed(q->cons_reg);
852         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
853         struct arm_smmu_cmdq_ent cmd_sync = {
854                 .opcode = CMDQ_OP_CMD_SYNC,
855         };
856
857         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
858                 cerror_str[idx]);
859
860         switch (idx) {
861         case CMDQ_ERR_CERROR_ILL_IDX:
862                 break;
863         case CMDQ_ERR_CERROR_ABT_IDX:
864                 dev_err(smmu->dev, "retrying command fetch\n");
865         case CMDQ_ERR_CERROR_NONE_IDX:
866                 return;
867         }
868
869         /*
870          * We may have concurrent producers, so we need to be careful
871          * not to touch any of the shadow cmdq state.
872          */
873         queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
874         dev_err(smmu->dev, "skipping command in error state:\n");
875         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
876                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
877
878         /* Convert the erroneous command into a CMD_SYNC */
879         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
880                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
881                 return;
882         }
883
884         queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
885 }
886
887 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
888                                     struct arm_smmu_cmdq_ent *ent)
889 {
890         u32 until;
891         u64 cmd[CMDQ_ENT_DWORDS];
892         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
893         struct arm_smmu_queue *q = &smmu->cmdq.q;
894
895         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
896                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
897                          ent->opcode);
898                 return;
899         }
900
901         spin_lock(&smmu->cmdq.lock);
902         while (until = q->prod + 1, queue_insert_raw(q, cmd) == -ENOSPC) {
903                 /*
904                  * Keep the queue locked, otherwise the producer could wrap
905                  * twice and we could see a future consumer pointer that looks
906                  * like it's behind us.
907                  */
908                 if (queue_poll_cons(q, until, wfe))
909                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
910         }
911
912         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, until, wfe))
913                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
914         spin_unlock(&smmu->cmdq.lock);
915 }
916
917 /* Context descriptor manipulation functions */
918 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
919 {
920         u64 val = 0;
921
922         /* Repack the TCR. Just care about TTBR0 for now */
923         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
924         val |= ARM_SMMU_TCR2CD(tcr, TG0);
925         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
926         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
927         val |= ARM_SMMU_TCR2CD(tcr, SH0);
928         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
929         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
930         val |= ARM_SMMU_TCR2CD(tcr, IPS);
931         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
932
933         return val;
934 }
935
936 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
937                                     struct arm_smmu_s1_cfg *cfg)
938 {
939         u64 val;
940
941         /*
942          * We don't need to issue any invalidation here, as we'll invalidate
943          * the STE when installing the new entry anyway.
944          */
945         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
946 #ifdef __BIG_ENDIAN
947               CTXDESC_CD_0_ENDI |
948 #endif
949               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
950               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
951               CTXDESC_CD_0_V;
952         cfg->cdptr[0] = cpu_to_le64(val);
953
954         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
955         cfg->cdptr[1] = cpu_to_le64(val);
956
957         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
958 }
959
960 /* Stream table manipulation functions */
961 static void
962 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
963 {
964         u64 val = 0;
965
966         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
967                 << STRTAB_L1_DESC_SPAN_SHIFT;
968         val |= desc->l2ptr_dma &
969                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
970
971         *dst = cpu_to_le64(val);
972 }
973
974 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
975 {
976         struct arm_smmu_cmdq_ent cmd = {
977                 .opcode = CMDQ_OP_CFGI_STE,
978                 .cfgi   = {
979                         .sid    = sid,
980                         .leaf   = true,
981                 },
982         };
983
984         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
985         cmd.opcode = CMDQ_OP_CMD_SYNC;
986         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
987 }
988
989 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
990                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
991 {
992         /*
993          * This is hideously complicated, but we only really care about
994          * three cases at the moment:
995          *
996          * 1. Invalid (all zero) -> bypass  (init)
997          * 2. Bypass -> translation (attach)
998          * 3. Translation -> bypass (detach)
999          *
1000          * Given that we can't update the STE atomically and the SMMU
1001          * doesn't read the thing in a defined order, that leaves us
1002          * with the following maintenance requirements:
1003          *
1004          * 1. Update Config, return (init time STEs aren't live)
1005          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1006          * 3. Update Config, sync
1007          */
1008         u64 val = le64_to_cpu(dst[0]);
1009         bool ste_live = false;
1010         struct arm_smmu_cmdq_ent prefetch_cmd = {
1011                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1012                 .prefetch       = {
1013                         .sid    = sid,
1014                 },
1015         };
1016
1017         if (val & STRTAB_STE_0_V) {
1018                 u64 cfg;
1019
1020                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1021                 switch (cfg) {
1022                 case STRTAB_STE_0_CFG_BYPASS:
1023                         break;
1024                 case STRTAB_STE_0_CFG_S1_TRANS:
1025                 case STRTAB_STE_0_CFG_S2_TRANS:
1026                         ste_live = true;
1027                         break;
1028                 case STRTAB_STE_0_CFG_ABORT:
1029                         if (disable_bypass)
1030                                 break;
1031                 default:
1032                         BUG(); /* STE corruption */
1033                 }
1034         }
1035
1036         /* Nuke the existing Config, as we're going to rewrite it */
1037         val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1038
1039         if (ste->valid)
1040                 val |= STRTAB_STE_0_V;
1041         else
1042                 val &= ~STRTAB_STE_0_V;
1043
1044         if (ste->bypass) {
1045                 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1046                                       : STRTAB_STE_0_CFG_BYPASS;
1047                 dst[0] = cpu_to_le64(val);
1048                 dst[2] = 0; /* Nuke the VMID */
1049                 if (ste_live)
1050                         arm_smmu_sync_ste_for_sid(smmu, sid);
1051                 return;
1052         }
1053
1054         if (ste->s1_cfg) {
1055                 BUG_ON(ste_live);
1056                 dst[1] = cpu_to_le64(
1057                          STRTAB_STE_1_S1C_CACHE_WBRA
1058                          << STRTAB_STE_1_S1CIR_SHIFT |
1059                          STRTAB_STE_1_S1C_CACHE_WBRA
1060                          << STRTAB_STE_1_S1COR_SHIFT |
1061                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1062                          STRTAB_STE_1_S1STALLD |
1063 #ifdef CONFIG_PCI_ATS
1064                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1065 #endif
1066                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1067
1068                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1069                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1070                         STRTAB_STE_0_CFG_S1_TRANS;
1071
1072         }
1073
1074         if (ste->s2_cfg) {
1075                 BUG_ON(ste_live);
1076                 dst[2] = cpu_to_le64(
1077                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1078                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1079                           << STRTAB_STE_2_VTCR_SHIFT |
1080 #ifdef __BIG_ENDIAN
1081                          STRTAB_STE_2_S2ENDI |
1082 #endif
1083                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1084                          STRTAB_STE_2_S2R);
1085
1086                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1087                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1088
1089                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1090         }
1091
1092         arm_smmu_sync_ste_for_sid(smmu, sid);
1093         dst[0] = cpu_to_le64(val);
1094         arm_smmu_sync_ste_for_sid(smmu, sid);
1095
1096         /* It's likely that we'll want to use the new STE soon */
1097         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1098                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1099 }
1100
1101 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1102 {
1103         unsigned int i;
1104         struct arm_smmu_strtab_ent ste = {
1105                 .valid  = true,
1106                 .bypass = true,
1107         };
1108
1109         for (i = 0; i < nent; ++i) {
1110                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1111                 strtab += STRTAB_STE_DWORDS;
1112         }
1113 }
1114
1115 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1116 {
1117         size_t size;
1118         void *strtab;
1119         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1120         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1121
1122         if (desc->l2ptr)
1123                 return 0;
1124
1125         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1126         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1127
1128         desc->span = STRTAB_SPLIT + 1;
1129         desc->l2ptr = dma_zalloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1130                                           GFP_KERNEL);
1131         if (!desc->l2ptr) {
1132                 dev_err(smmu->dev,
1133                         "failed to allocate l2 stream table for SID %u\n",
1134                         sid);
1135                 return -ENOMEM;
1136         }
1137
1138         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1139         arm_smmu_write_strtab_l1_desc(strtab, desc);
1140         return 0;
1141 }
1142
1143 /* IRQ and event handlers */
1144 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1145 {
1146         int i;
1147         struct arm_smmu_device *smmu = dev;
1148         struct arm_smmu_queue *q = &smmu->evtq.q;
1149         u64 evt[EVTQ_ENT_DWORDS];
1150
1151         while (!queue_remove_raw(q, evt)) {
1152                 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1153
1154                 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1155                 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1156                         dev_info(smmu->dev, "\t0x%016llx\n",
1157                                  (unsigned long long)evt[i]);
1158         }
1159
1160         /* Sync our overflow flag, as we believe we're up to speed */
1161         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1162         return IRQ_HANDLED;
1163 }
1164
1165 static irqreturn_t arm_smmu_evtq_handler(int irq, void *dev)
1166 {
1167         irqreturn_t ret = IRQ_WAKE_THREAD;
1168         struct arm_smmu_device *smmu = dev;
1169         struct arm_smmu_queue *q = &smmu->evtq.q;
1170
1171         /*
1172          * Not much we can do on overflow, so scream and pretend we're
1173          * trying harder.
1174          */
1175         if (queue_sync_prod(q) == -EOVERFLOW)
1176                 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1177         else if (queue_empty(q))
1178                 ret = IRQ_NONE;
1179
1180         return ret;
1181 }
1182
1183 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1184 {
1185         struct arm_smmu_device *smmu = dev;
1186         struct arm_smmu_queue *q = &smmu->priq.q;
1187         u64 evt[PRIQ_ENT_DWORDS];
1188
1189         while (!queue_remove_raw(q, evt)) {
1190                 u32 sid, ssid;
1191                 u16 grpid;
1192                 bool ssv, last;
1193
1194                 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1195                 ssv = evt[0] & PRIQ_0_SSID_V;
1196                 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1197                 last = evt[0] & PRIQ_0_PRG_LAST;
1198                 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1199
1200                 dev_info(smmu->dev, "unexpected PRI request received:\n");
1201                 dev_info(smmu->dev,
1202                          "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1203                          sid, ssid, grpid, last ? "L" : "",
1204                          evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1205                          evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1206                          evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1207                          evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1208                          evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1209
1210                 if (last) {
1211                         struct arm_smmu_cmdq_ent cmd = {
1212                                 .opcode                 = CMDQ_OP_PRI_RESP,
1213                                 .substream_valid        = ssv,
1214                                 .pri                    = {
1215                                         .sid    = sid,
1216                                         .ssid   = ssid,
1217                                         .grpid  = grpid,
1218                                         .resp   = PRI_RESP_DENY,
1219                                 },
1220                         };
1221
1222                         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1223                 }
1224         }
1225
1226         /* Sync our overflow flag, as we believe we're up to speed */
1227         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1228         return IRQ_HANDLED;
1229 }
1230
1231 static irqreturn_t arm_smmu_priq_handler(int irq, void *dev)
1232 {
1233         irqreturn_t ret = IRQ_WAKE_THREAD;
1234         struct arm_smmu_device *smmu = dev;
1235         struct arm_smmu_queue *q = &smmu->priq.q;
1236
1237         /* PRIQ overflow indicates a programming error */
1238         if (queue_sync_prod(q) == -EOVERFLOW)
1239                 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1240         else if (queue_empty(q))
1241                 ret = IRQ_NONE;
1242
1243         return ret;
1244 }
1245
1246 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1247 {
1248         /* We don't actually use CMD_SYNC interrupts for anything */
1249         return IRQ_HANDLED;
1250 }
1251
1252 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1253
1254 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1255 {
1256         u32 gerror, gerrorn;
1257         struct arm_smmu_device *smmu = dev;
1258
1259         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1260         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1261
1262         gerror ^= gerrorn;
1263         if (!(gerror & GERROR_ERR_MASK))
1264                 return IRQ_NONE; /* No errors pending */
1265
1266         dev_warn(smmu->dev,
1267                  "unexpected global error reported (0x%08x), this could be serious\n",
1268                  gerror);
1269
1270         if (gerror & GERROR_SFM_ERR) {
1271                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1272                 arm_smmu_device_disable(smmu);
1273         }
1274
1275         if (gerror & GERROR_MSI_GERROR_ABT_ERR)
1276                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1277
1278         if (gerror & GERROR_MSI_PRIQ_ABT_ERR) {
1279                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1280                 arm_smmu_priq_handler(irq, smmu->dev);
1281         }
1282
1283         if (gerror & GERROR_MSI_EVTQ_ABT_ERR) {
1284                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1285                 arm_smmu_evtq_handler(irq, smmu->dev);
1286         }
1287
1288         if (gerror & GERROR_MSI_CMDQ_ABT_ERR) {
1289                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1290                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1291         }
1292
1293         if (gerror & GERROR_PRIQ_ABT_ERR)
1294                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1295
1296         if (gerror & GERROR_EVTQ_ABT_ERR)
1297                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1298
1299         if (gerror & GERROR_CMDQ_ERR)
1300                 arm_smmu_cmdq_skip_err(smmu);
1301
1302         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1303         return IRQ_HANDLED;
1304 }
1305
1306 /* IO_PGTABLE API */
1307 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1308 {
1309         struct arm_smmu_cmdq_ent cmd;
1310
1311         cmd.opcode = CMDQ_OP_CMD_SYNC;
1312         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1313 }
1314
1315 static void arm_smmu_tlb_sync(void *cookie)
1316 {
1317         struct arm_smmu_domain *smmu_domain = cookie;
1318         __arm_smmu_tlb_sync(smmu_domain->smmu);
1319 }
1320
1321 static void arm_smmu_tlb_inv_context(void *cookie)
1322 {
1323         struct arm_smmu_domain *smmu_domain = cookie;
1324         struct arm_smmu_device *smmu = smmu_domain->smmu;
1325         struct arm_smmu_cmdq_ent cmd;
1326
1327         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1328                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1329                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1330                 cmd.tlbi.vmid   = 0;
1331         } else {
1332                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1333                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1334         }
1335
1336         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1337         __arm_smmu_tlb_sync(smmu);
1338 }
1339
1340 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1341                                           bool leaf, void *cookie)
1342 {
1343         struct arm_smmu_domain *smmu_domain = cookie;
1344         struct arm_smmu_device *smmu = smmu_domain->smmu;
1345         struct arm_smmu_cmdq_ent cmd = {
1346                 .tlbi = {
1347                         .leaf   = leaf,
1348                         .addr   = iova,
1349                 },
1350         };
1351
1352         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1353                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1354                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1355         } else {
1356                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1357                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1358         }
1359
1360         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1361 }
1362
1363 static struct iommu_gather_ops arm_smmu_gather_ops = {
1364         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1365         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1366         .tlb_sync       = arm_smmu_tlb_sync,
1367 };
1368
1369 /* IOMMU API */
1370 static bool arm_smmu_capable(enum iommu_cap cap)
1371 {
1372         switch (cap) {
1373         case IOMMU_CAP_CACHE_COHERENCY:
1374                 return true;
1375         case IOMMU_CAP_INTR_REMAP:
1376                 return true; /* MSIs are just memory writes */
1377         case IOMMU_CAP_NOEXEC:
1378                 return true;
1379         default:
1380                 return false;
1381         }
1382 }
1383
1384 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1385 {
1386         struct arm_smmu_domain *smmu_domain;
1387
1388         if (type != IOMMU_DOMAIN_UNMANAGED)
1389                 return NULL;
1390
1391         /*
1392          * Allocate the domain and initialise some of its data structures.
1393          * We can't really do anything meaningful until we've added a
1394          * master.
1395          */
1396         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1397         if (!smmu_domain)
1398                 return NULL;
1399
1400         mutex_init(&smmu_domain->init_mutex);
1401         spin_lock_init(&smmu_domain->pgtbl_lock);
1402         return &smmu_domain->domain;
1403 }
1404
1405 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1406 {
1407         int idx, size = 1 << span;
1408
1409         do {
1410                 idx = find_first_zero_bit(map, size);
1411                 if (idx == size)
1412                         return -ENOSPC;
1413         } while (test_and_set_bit(idx, map));
1414
1415         return idx;
1416 }
1417
1418 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1419 {
1420         clear_bit(idx, map);
1421 }
1422
1423 static void arm_smmu_domain_free(struct iommu_domain *domain)
1424 {
1425         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1426         struct arm_smmu_device *smmu = smmu_domain->smmu;
1427
1428         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1429
1430         /* Free the CD and ASID, if we allocated them */
1431         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1432                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1433
1434                 if (cfg->cdptr) {
1435                         dma_free_coherent(smmu_domain->smmu->dev,
1436                                           CTXDESC_CD_DWORDS << 3,
1437                                           cfg->cdptr,
1438                                           cfg->cdptr_dma);
1439
1440                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1441                 }
1442         } else {
1443                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1444                 if (cfg->vmid)
1445                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1446         }
1447
1448         kfree(smmu_domain);
1449 }
1450
1451 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1452                                        struct io_pgtable_cfg *pgtbl_cfg)
1453 {
1454         int ret;
1455         int asid;
1456         struct arm_smmu_device *smmu = smmu_domain->smmu;
1457         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1458
1459         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1460         if (IS_ERR_VALUE(asid))
1461                 return asid;
1462
1463         cfg->cdptr = dma_zalloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1464                                          &cfg->cdptr_dma, GFP_KERNEL);
1465         if (!cfg->cdptr) {
1466                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1467                 ret = -ENOMEM;
1468                 goto out_free_asid;
1469         }
1470
1471         cfg->cd.asid    = (u16)asid;
1472         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1473         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1474         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1475         return 0;
1476
1477 out_free_asid:
1478         arm_smmu_bitmap_free(smmu->asid_map, asid);
1479         return ret;
1480 }
1481
1482 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1483                                        struct io_pgtable_cfg *pgtbl_cfg)
1484 {
1485         int vmid;
1486         struct arm_smmu_device *smmu = smmu_domain->smmu;
1487         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1488
1489         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1490         if (IS_ERR_VALUE(vmid))
1491                 return vmid;
1492
1493         cfg->vmid       = (u16)vmid;
1494         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1495         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1496         return 0;
1497 }
1498
1499 static struct iommu_ops arm_smmu_ops;
1500
1501 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1502 {
1503         int ret;
1504         unsigned long ias, oas;
1505         enum io_pgtable_fmt fmt;
1506         struct io_pgtable_cfg pgtbl_cfg;
1507         struct io_pgtable_ops *pgtbl_ops;
1508         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1509                                  struct io_pgtable_cfg *);
1510         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1511         struct arm_smmu_device *smmu = smmu_domain->smmu;
1512
1513         /* Restrict the stage to what we can actually support */
1514         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1515                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1516         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1517                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1518
1519         switch (smmu_domain->stage) {
1520         case ARM_SMMU_DOMAIN_S1:
1521                 ias = VA_BITS;
1522                 oas = smmu->ias;
1523                 fmt = ARM_64_LPAE_S1;
1524                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1525                 break;
1526         case ARM_SMMU_DOMAIN_NESTED:
1527         case ARM_SMMU_DOMAIN_S2:
1528                 ias = smmu->ias;
1529                 oas = smmu->oas;
1530                 fmt = ARM_64_LPAE_S2;
1531                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1532                 break;
1533         default:
1534                 return -EINVAL;
1535         }
1536
1537         pgtbl_cfg = (struct io_pgtable_cfg) {
1538                 .pgsize_bitmap  = arm_smmu_ops.pgsize_bitmap,
1539                 .ias            = ias,
1540                 .oas            = oas,
1541                 .tlb            = &arm_smmu_gather_ops,
1542                 .iommu_dev      = smmu->dev,
1543         };
1544
1545         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1546         if (!pgtbl_ops)
1547                 return -ENOMEM;
1548
1549         arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1550         smmu_domain->pgtbl_ops = pgtbl_ops;
1551
1552         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1553         if (IS_ERR_VALUE(ret))
1554                 free_io_pgtable_ops(pgtbl_ops);
1555
1556         return ret;
1557 }
1558
1559 static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1560 {
1561         struct iommu_group *group;
1562         struct arm_smmu_group *smmu_group;
1563
1564         group = iommu_group_get(dev);
1565         if (!group)
1566                 return NULL;
1567
1568         smmu_group = iommu_group_get_iommudata(group);
1569         iommu_group_put(group);
1570         return smmu_group;
1571 }
1572
1573 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1574 {
1575         __le64 *step;
1576         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1577
1578         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1579                 struct arm_smmu_strtab_l1_desc *l1_desc;
1580                 int idx;
1581
1582                 /* Two-level walk */
1583                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1584                 l1_desc = &cfg->l1_desc[idx];
1585                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1586                 step = &l1_desc->l2ptr[idx];
1587         } else {
1588                 /* Simple linear lookup */
1589                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1590         }
1591
1592         return step;
1593 }
1594
1595 static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1596 {
1597         int i;
1598         struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1599         struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1600         struct arm_smmu_device *smmu = smmu_group->smmu;
1601
1602         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1603                 ste->s1_cfg = &smmu_domain->s1_cfg;
1604                 ste->s2_cfg = NULL;
1605                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1606         } else {
1607                 ste->s1_cfg = NULL;
1608                 ste->s2_cfg = &smmu_domain->s2_cfg;
1609         }
1610
1611         for (i = 0; i < smmu_group->num_sids; ++i) {
1612                 u32 sid = smmu_group->sids[i];
1613                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1614
1615                 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1616         }
1617
1618         return 0;
1619 }
1620
1621 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1622 {
1623         int ret = 0;
1624         struct arm_smmu_device *smmu;
1625         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1626         struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1627
1628         if (!smmu_group)
1629                 return -ENOENT;
1630
1631         /* Already attached to a different domain? */
1632         if (smmu_group->domain && smmu_group->domain != smmu_domain)
1633                 return -EEXIST;
1634
1635         smmu = smmu_group->smmu;
1636         mutex_lock(&smmu_domain->init_mutex);
1637
1638         if (!smmu_domain->smmu) {
1639                 smmu_domain->smmu = smmu;
1640                 ret = arm_smmu_domain_finalise(domain);
1641                 if (ret) {
1642                         smmu_domain->smmu = NULL;
1643                         goto out_unlock;
1644                 }
1645         } else if (smmu_domain->smmu != smmu) {
1646                 dev_err(dev,
1647                         "cannot attach to SMMU %s (upstream of %s)\n",
1648                         dev_name(smmu_domain->smmu->dev),
1649                         dev_name(smmu->dev));
1650                 ret = -ENXIO;
1651                 goto out_unlock;
1652         }
1653
1654         /* Group already attached to this domain? */
1655         if (smmu_group->domain)
1656                 goto out_unlock;
1657
1658         smmu_group->domain      = smmu_domain;
1659         smmu_group->ste.bypass  = false;
1660
1661         ret = arm_smmu_install_ste_for_group(smmu_group);
1662         if (IS_ERR_VALUE(ret))
1663                 smmu_group->domain = NULL;
1664
1665 out_unlock:
1666         mutex_unlock(&smmu_domain->init_mutex);
1667         return ret;
1668 }
1669
1670 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1671 {
1672         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1673         struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1674
1675         BUG_ON(!smmu_domain);
1676         BUG_ON(!smmu_group);
1677
1678         mutex_lock(&smmu_domain->init_mutex);
1679         BUG_ON(smmu_group->domain != smmu_domain);
1680
1681         smmu_group->ste.bypass = true;
1682         if (IS_ERR_VALUE(arm_smmu_install_ste_for_group(smmu_group)))
1683                 dev_warn(dev, "failed to install bypass STE\n");
1684
1685         smmu_group->domain = NULL;
1686         mutex_unlock(&smmu_domain->init_mutex);
1687 }
1688
1689 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1690                         phys_addr_t paddr, size_t size, int prot)
1691 {
1692         int ret;
1693         unsigned long flags;
1694         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1695         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1696
1697         if (!ops)
1698                 return -ENODEV;
1699
1700         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1701         ret = ops->map(ops, iova, paddr, size, prot);
1702         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1703         return ret;
1704 }
1705
1706 static size_t
1707 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1708 {
1709         size_t ret;
1710         unsigned long flags;
1711         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1712         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1713
1714         if (!ops)
1715                 return 0;
1716
1717         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1718         ret = ops->unmap(ops, iova, size);
1719         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1720         return ret;
1721 }
1722
1723 static phys_addr_t
1724 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1725 {
1726         phys_addr_t ret;
1727         unsigned long flags;
1728         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1729         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1730
1731         if (!ops)
1732                 return 0;
1733
1734         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1735         ret = ops->iova_to_phys(ops, iova);
1736         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1737
1738         return ret;
1739 }
1740
1741 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1742 {
1743         *(u32 *)sidp = alias;
1744         return 0; /* Continue walking */
1745 }
1746
1747 static void __arm_smmu_release_pci_iommudata(void *data)
1748 {
1749         kfree(data);
1750 }
1751
1752 static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1753 {
1754         struct device_node *of_node;
1755         struct platform_device *smmu_pdev;
1756         struct arm_smmu_device *smmu = NULL;
1757         struct pci_bus *bus = pdev->bus;
1758
1759         /* Walk up to the root bus */
1760         while (!pci_is_root_bus(bus))
1761                 bus = bus->parent;
1762
1763         /* Follow the "iommus" phandle from the host controller */
1764         of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1765         if (!of_node)
1766                 return NULL;
1767
1768         /* See if we can find an SMMU corresponding to the phandle */
1769         smmu_pdev = of_find_device_by_node(of_node);
1770         if (smmu_pdev)
1771                 smmu = platform_get_drvdata(smmu_pdev);
1772
1773         of_node_put(of_node);
1774         return smmu;
1775 }
1776
1777 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1778 {
1779         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1780
1781         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1782                 limit *= 1UL << STRTAB_SPLIT;
1783
1784         return sid < limit;
1785 }
1786
1787 static int arm_smmu_add_device(struct device *dev)
1788 {
1789         int i, ret;
1790         u32 sid, *sids;
1791         struct pci_dev *pdev;
1792         struct iommu_group *group;
1793         struct arm_smmu_group *smmu_group;
1794         struct arm_smmu_device *smmu;
1795
1796         /* We only support PCI, for now */
1797         if (!dev_is_pci(dev))
1798                 return -ENODEV;
1799
1800         pdev = to_pci_dev(dev);
1801         group = iommu_group_get_for_dev(dev);
1802         if (IS_ERR(group))
1803                 return PTR_ERR(group);
1804
1805         smmu_group = iommu_group_get_iommudata(group);
1806         if (!smmu_group) {
1807                 smmu = arm_smmu_get_for_pci_dev(pdev);
1808                 if (!smmu) {
1809                         ret = -ENOENT;
1810                         goto out_put_group;
1811                 }
1812
1813                 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1814                 if (!smmu_group) {
1815                         ret = -ENOMEM;
1816                         goto out_put_group;
1817                 }
1818
1819                 smmu_group->ste.valid   = true;
1820                 smmu_group->smmu        = smmu;
1821                 iommu_group_set_iommudata(group, smmu_group,
1822                                           __arm_smmu_release_pci_iommudata);
1823         } else {
1824                 smmu = smmu_group->smmu;
1825         }
1826
1827         /* Assume SID == RID until firmware tells us otherwise */
1828         pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1829         for (i = 0; i < smmu_group->num_sids; ++i) {
1830                 /* If we already know about this SID, then we're done */
1831                 if (smmu_group->sids[i] == sid)
1832                         return 0;
1833         }
1834
1835         /* Check the SID is in range of the SMMU and our stream table */
1836         if (!arm_smmu_sid_in_range(smmu, sid)) {
1837                 ret = -ERANGE;
1838                 goto out_put_group;
1839         }
1840
1841         /* Ensure l2 strtab is initialised */
1842         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1843                 ret = arm_smmu_init_l2_strtab(smmu, sid);
1844                 if (ret)
1845                         goto out_put_group;
1846         }
1847
1848         /* Resize the SID array for the group */
1849         smmu_group->num_sids++;
1850         sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1851                         GFP_KERNEL);
1852         if (!sids) {
1853                 smmu_group->num_sids--;
1854                 ret = -ENOMEM;
1855                 goto out_put_group;
1856         }
1857
1858         /* Add the new SID */
1859         sids[smmu_group->num_sids - 1] = sid;
1860         smmu_group->sids = sids;
1861         return 0;
1862
1863 out_put_group:
1864         iommu_group_put(group);
1865         return ret;
1866 }
1867
1868 static void arm_smmu_remove_device(struct device *dev)
1869 {
1870         iommu_group_remove_device(dev);
1871 }
1872
1873 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1874                                     enum iommu_attr attr, void *data)
1875 {
1876         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1877
1878         switch (attr) {
1879         case DOMAIN_ATTR_NESTING:
1880                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1881                 return 0;
1882         default:
1883                 return -ENODEV;
1884         }
1885 }
1886
1887 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1888                                     enum iommu_attr attr, void *data)
1889 {
1890         int ret = 0;
1891         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1892
1893         mutex_lock(&smmu_domain->init_mutex);
1894
1895         switch (attr) {
1896         case DOMAIN_ATTR_NESTING:
1897                 if (smmu_domain->smmu) {
1898                         ret = -EPERM;
1899                         goto out_unlock;
1900                 }
1901
1902                 if (*(int *)data)
1903                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1904                 else
1905                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1906
1907                 break;
1908         default:
1909                 ret = -ENODEV;
1910         }
1911
1912 out_unlock:
1913         mutex_unlock(&smmu_domain->init_mutex);
1914         return ret;
1915 }
1916
1917 static struct iommu_ops arm_smmu_ops = {
1918         .capable                = arm_smmu_capable,
1919         .domain_alloc           = arm_smmu_domain_alloc,
1920         .domain_free            = arm_smmu_domain_free,
1921         .attach_dev             = arm_smmu_attach_dev,
1922         .detach_dev             = arm_smmu_detach_dev,
1923         .map                    = arm_smmu_map,
1924         .unmap                  = arm_smmu_unmap,
1925         .map_sg                 = default_iommu_map_sg,
1926         .iova_to_phys           = arm_smmu_iova_to_phys,
1927         .add_device             = arm_smmu_add_device,
1928         .remove_device          = arm_smmu_remove_device,
1929         .device_group           = pci_device_group,
1930         .domain_get_attr        = arm_smmu_domain_get_attr,
1931         .domain_set_attr        = arm_smmu_domain_set_attr,
1932         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1933 };
1934
1935 /* Probing and initialisation functions */
1936 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1937                                    struct arm_smmu_queue *q,
1938                                    unsigned long prod_off,
1939                                    unsigned long cons_off,
1940                                    size_t dwords)
1941 {
1942         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1943
1944         q->base = dma_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1945         if (!q->base) {
1946                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1947                         qsz);
1948                 return -ENOMEM;
1949         }
1950
1951         q->prod_reg     = smmu->base + prod_off;
1952         q->cons_reg     = smmu->base + cons_off;
1953         q->ent_dwords   = dwords;
1954
1955         q->q_base  = Q_BASE_RWA;
1956         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1957         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1958                      << Q_BASE_LOG2SIZE_SHIFT;
1959
1960         q->prod = q->cons = 0;
1961         return 0;
1962 }
1963
1964 static void arm_smmu_free_one_queue(struct arm_smmu_device *smmu,
1965                                     struct arm_smmu_queue *q)
1966 {
1967         size_t qsz = ((1 << q->max_n_shift) * q->ent_dwords) << 3;
1968
1969         dma_free_coherent(smmu->dev, qsz, q->base, q->base_dma);
1970 }
1971
1972 static void arm_smmu_free_queues(struct arm_smmu_device *smmu)
1973 {
1974         arm_smmu_free_one_queue(smmu, &smmu->cmdq.q);
1975         arm_smmu_free_one_queue(smmu, &smmu->evtq.q);
1976
1977         if (smmu->features & ARM_SMMU_FEAT_PRI)
1978                 arm_smmu_free_one_queue(smmu, &smmu->priq.q);
1979 }
1980
1981 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1982 {
1983         int ret;
1984
1985         /* cmdq */
1986         spin_lock_init(&smmu->cmdq.lock);
1987         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1988                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1989         if (ret)
1990                 goto out;
1991
1992         /* evtq */
1993         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1994                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1995         if (ret)
1996                 goto out_free_cmdq;
1997
1998         /* priq */
1999         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
2000                 return 0;
2001
2002         ret = arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2003                                       ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
2004         if (ret)
2005                 goto out_free_evtq;
2006
2007         return 0;
2008
2009 out_free_evtq:
2010         arm_smmu_free_one_queue(smmu, &smmu->evtq.q);
2011 out_free_cmdq:
2012         arm_smmu_free_one_queue(smmu, &smmu->cmdq.q);
2013 out:
2014         return ret;
2015 }
2016
2017 static void arm_smmu_free_l2_strtab(struct arm_smmu_device *smmu)
2018 {
2019         int i;
2020         size_t size;
2021         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2022
2023         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
2024         for (i = 0; i < cfg->num_l1_ents; ++i) {
2025                 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[i];
2026
2027                 if (!desc->l2ptr)
2028                         continue;
2029
2030                 dma_free_coherent(smmu->dev, size, desc->l2ptr,
2031                                   desc->l2ptr_dma);
2032         }
2033 }
2034
2035 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2036 {
2037         unsigned int i;
2038         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2039         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2040         void *strtab = smmu->strtab_cfg.strtab;
2041
2042         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2043         if (!cfg->l1_desc) {
2044                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2045                 return -ENOMEM;
2046         }
2047
2048         for (i = 0; i < cfg->num_l1_ents; ++i) {
2049                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2050                 strtab += STRTAB_L1_DESC_DWORDS << 3;
2051         }
2052
2053         return 0;
2054 }
2055
2056 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2057 {
2058         void *strtab;
2059         u64 reg;
2060         u32 size, l1size;
2061         int ret;
2062         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2063
2064         /*
2065          * If we can resolve everything with a single L2 table, then we
2066          * just need a single L1 descriptor. Otherwise, calculate the L1
2067          * size, capped to the SIDSIZE.
2068          */
2069         if (smmu->sid_bits < STRTAB_SPLIT) {
2070                 size = 0;
2071         } else {
2072                 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2073                 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2074         }
2075         cfg->num_l1_ents = 1 << size;
2076
2077         size += STRTAB_SPLIT;
2078         if (size < smmu->sid_bits)
2079                 dev_warn(smmu->dev,
2080                          "2-level strtab only covers %u/%u bits of SID\n",
2081                          size, smmu->sid_bits);
2082
2083         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2084         strtab = dma_zalloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2085                                      GFP_KERNEL);
2086         if (!strtab) {
2087                 dev_err(smmu->dev,
2088                         "failed to allocate l1 stream table (%u bytes)\n",
2089                         size);
2090                 return -ENOMEM;
2091         }
2092         cfg->strtab = strtab;
2093
2094         /* Configure strtab_base_cfg for 2 levels */
2095         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2096         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2097                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2098         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2099                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2100         cfg->strtab_base_cfg = reg;
2101
2102         ret = arm_smmu_init_l1_strtab(smmu);
2103         if (ret)
2104                 dma_free_coherent(smmu->dev,
2105                                   l1size,
2106                                   strtab,
2107                                   cfg->strtab_dma);
2108         return ret;
2109 }
2110
2111 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2112 {
2113         void *strtab;
2114         u64 reg;
2115         u32 size;
2116         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2117
2118         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2119         strtab = dma_zalloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2120                                      GFP_KERNEL);
2121         if (!strtab) {
2122                 dev_err(smmu->dev,
2123                         "failed to allocate linear stream table (%u bytes)\n",
2124                         size);
2125                 return -ENOMEM;
2126         }
2127         cfg->strtab = strtab;
2128         cfg->num_l1_ents = 1 << smmu->sid_bits;
2129
2130         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2131         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2132         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2133                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2134         cfg->strtab_base_cfg = reg;
2135
2136         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2137         return 0;
2138 }
2139
2140 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2141 {
2142         u64 reg;
2143         int ret;
2144
2145         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2146                 ret = arm_smmu_init_strtab_2lvl(smmu);
2147         else
2148                 ret = arm_smmu_init_strtab_linear(smmu);
2149
2150         if (ret)
2151                 return ret;
2152
2153         /* Set the strtab base address */
2154         reg  = smmu->strtab_cfg.strtab_dma &
2155                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2156         reg |= STRTAB_BASE_RA;
2157         smmu->strtab_cfg.strtab_base = reg;
2158
2159         /* Allocate the first VMID for stage-2 bypass STEs */
2160         set_bit(0, smmu->vmid_map);
2161         return 0;
2162 }
2163
2164 static void arm_smmu_free_strtab(struct arm_smmu_device *smmu)
2165 {
2166         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2167         u32 size = cfg->num_l1_ents;
2168
2169         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
2170                 arm_smmu_free_l2_strtab(smmu);
2171                 size *= STRTAB_L1_DESC_DWORDS << 3;
2172         } else {
2173                 size *= STRTAB_STE_DWORDS * 3;
2174         }
2175
2176         dma_free_coherent(smmu->dev, size, cfg->strtab, cfg->strtab_dma);
2177 }
2178
2179 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2180 {
2181         int ret;
2182
2183         ret = arm_smmu_init_queues(smmu);
2184         if (ret)
2185                 return ret;
2186
2187         ret = arm_smmu_init_strtab(smmu);
2188         if (ret)
2189                 goto out_free_queues;
2190
2191         return 0;
2192
2193 out_free_queues:
2194         arm_smmu_free_queues(smmu);
2195         return ret;
2196 }
2197
2198 static void arm_smmu_free_structures(struct arm_smmu_device *smmu)
2199 {
2200         arm_smmu_free_strtab(smmu);
2201         arm_smmu_free_queues(smmu);
2202 }
2203
2204 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2205                                    unsigned int reg_off, unsigned int ack_off)
2206 {
2207         u32 reg;
2208
2209         writel_relaxed(val, smmu->base + reg_off);
2210         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2211                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2212 }
2213
2214 static void arm_smmu_free_msis(void *data)
2215 {
2216         struct device *dev = data;
2217         platform_msi_domain_free_irqs(dev);
2218 }
2219
2220 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2221 {
2222         phys_addr_t doorbell;
2223         struct device *dev = msi_desc_to_dev(desc);
2224         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2225         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2226
2227         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2228         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2229
2230         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2231         writel_relaxed(msg->data, smmu->base + cfg[1]);
2232         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2233 }
2234
2235 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2236 {
2237         struct msi_desc *desc;
2238         int ret, nvec = ARM_SMMU_MAX_MSIS;
2239         struct device *dev = smmu->dev;
2240
2241         /* Clear the MSI address regs */
2242         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2243         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2244
2245         if (smmu->features & ARM_SMMU_FEAT_PRI)
2246                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2247         else
2248                 nvec--;
2249
2250         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2251                 return;
2252
2253         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2254         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2255         if (ret) {
2256                 dev_warn(dev, "failed to allocate MSIs\n");
2257                 return;
2258         }
2259
2260         for_each_msi_entry(desc, dev) {
2261                 switch (desc->platform.msi_index) {
2262                 case EVTQ_MSI_INDEX:
2263                         smmu->evtq.q.irq = desc->irq;
2264                         break;
2265                 case GERROR_MSI_INDEX:
2266                         smmu->gerr_irq = desc->irq;
2267                         break;
2268                 case PRIQ_MSI_INDEX:
2269                         smmu->priq.q.irq = desc->irq;
2270                         break;
2271                 default:        /* Unknown */
2272                         continue;
2273                 }
2274         }
2275
2276         /* Add callback to free MSIs on teardown */
2277         devm_add_action(dev, arm_smmu_free_msis, dev);
2278 }
2279
2280 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2281 {
2282         int ret, irq;
2283         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2284
2285         /* Disable IRQs first */
2286         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2287                                       ARM_SMMU_IRQ_CTRLACK);
2288         if (ret) {
2289                 dev_err(smmu->dev, "failed to disable irqs\n");
2290                 return ret;
2291         }
2292
2293         arm_smmu_setup_msis(smmu);
2294
2295         /* Request interrupt lines */
2296         irq = smmu->evtq.q.irq;
2297         if (irq) {
2298                 ret = devm_request_threaded_irq(smmu->dev, irq,
2299                                                 arm_smmu_evtq_handler,
2300                                                 arm_smmu_evtq_thread,
2301                                                 0, "arm-smmu-v3-evtq", smmu);
2302                 if (IS_ERR_VALUE(ret))
2303                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2304         }
2305
2306         irq = smmu->cmdq.q.irq;
2307         if (irq) {
2308                 ret = devm_request_irq(smmu->dev, irq,
2309                                        arm_smmu_cmdq_sync_handler, 0,
2310                                        "arm-smmu-v3-cmdq-sync", smmu);
2311                 if (IS_ERR_VALUE(ret))
2312                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2313         }
2314
2315         irq = smmu->gerr_irq;
2316         if (irq) {
2317                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2318                                        0, "arm-smmu-v3-gerror", smmu);
2319                 if (IS_ERR_VALUE(ret))
2320                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2321         }
2322
2323         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2324                 irq = smmu->priq.q.irq;
2325                 if (irq) {
2326                         ret = devm_request_threaded_irq(smmu->dev, irq,
2327                                                         arm_smmu_priq_handler,
2328                                                         arm_smmu_priq_thread,
2329                                                         0, "arm-smmu-v3-priq",
2330                                                         smmu);
2331                         if (IS_ERR_VALUE(ret))
2332                                 dev_warn(smmu->dev,
2333                                          "failed to enable priq irq\n");
2334                         else
2335                                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2336                 }
2337         }
2338
2339         /* Enable interrupt generation on the SMMU */
2340         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2341                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2342         if (ret)
2343                 dev_warn(smmu->dev, "failed to enable irqs\n");
2344
2345         return 0;
2346 }
2347
2348 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2349 {
2350         int ret;
2351
2352         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2353         if (ret)
2354                 dev_err(smmu->dev, "failed to clear cr0\n");
2355
2356         return ret;
2357 }
2358
2359 static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2360 {
2361         int ret;
2362         u32 reg, enables;
2363         struct arm_smmu_cmdq_ent cmd;
2364
2365         /* Clear CR0 and sync (disables SMMU and queue processing) */
2366         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2367         if (reg & CR0_SMMUEN)
2368                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2369
2370         ret = arm_smmu_device_disable(smmu);
2371         if (ret)
2372                 return ret;
2373
2374         /* CR1 (table and queue memory attributes) */
2375         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2376               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2377               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2378               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2379               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2380               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2381         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2382
2383         /* CR2 (random crap) */
2384         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2385         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2386
2387         /* Stream table */
2388         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2389                        smmu->base + ARM_SMMU_STRTAB_BASE);
2390         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2391                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2392
2393         /* Command queue */
2394         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2395         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2396         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2397
2398         enables = CR0_CMDQEN;
2399         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2400                                       ARM_SMMU_CR0ACK);
2401         if (ret) {
2402                 dev_err(smmu->dev, "failed to enable command queue\n");
2403                 return ret;
2404         }
2405
2406         /* Invalidate any cached configuration */
2407         cmd.opcode = CMDQ_OP_CFGI_ALL;
2408         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2409         cmd.opcode = CMDQ_OP_CMD_SYNC;
2410         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2411
2412         /* Invalidate any stale TLB entries */
2413         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2414                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2415                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2416         }
2417
2418         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2419         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2420         cmd.opcode = CMDQ_OP_CMD_SYNC;
2421         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2422
2423         /* Event queue */
2424         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2425         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2426         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2427
2428         enables |= CR0_EVTQEN;
2429         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2430                                       ARM_SMMU_CR0ACK);
2431         if (ret) {
2432                 dev_err(smmu->dev, "failed to enable event queue\n");
2433                 return ret;
2434         }
2435
2436         /* PRI queue */
2437         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2438                 writeq_relaxed(smmu->priq.q.q_base,
2439                                smmu->base + ARM_SMMU_PRIQ_BASE);
2440                 writel_relaxed(smmu->priq.q.prod,
2441                                smmu->base + ARM_SMMU_PRIQ_PROD);
2442                 writel_relaxed(smmu->priq.q.cons,
2443                                smmu->base + ARM_SMMU_PRIQ_CONS);
2444
2445                 enables |= CR0_PRIQEN;
2446                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2447                                               ARM_SMMU_CR0ACK);
2448                 if (ret) {
2449                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2450                         return ret;
2451                 }
2452         }
2453
2454         ret = arm_smmu_setup_irqs(smmu);
2455         if (ret) {
2456                 dev_err(smmu->dev, "failed to setup irqs\n");
2457                 return ret;
2458         }
2459
2460         /* Enable the SMMU interface */
2461         enables |= CR0_SMMUEN;
2462         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2463                                       ARM_SMMU_CR0ACK);
2464         if (ret) {
2465                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2466                 return ret;
2467         }
2468
2469         return 0;
2470 }
2471
2472 static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2473 {
2474         u32 reg;
2475         bool coherent;
2476         unsigned long pgsize_bitmap = 0;
2477
2478         /* IDR0 */
2479         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2480
2481         /* 2-level structures */
2482         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2483                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2484
2485         if (reg & IDR0_CD2L)
2486                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2487
2488         /*
2489          * Translation table endianness.
2490          * We currently require the same endianness as the CPU, but this
2491          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2492          */
2493         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2494         case IDR0_TTENDIAN_MIXED:
2495                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2496                 break;
2497 #ifdef __BIG_ENDIAN
2498         case IDR0_TTENDIAN_BE:
2499                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2500                 break;
2501 #else
2502         case IDR0_TTENDIAN_LE:
2503                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2504                 break;
2505 #endif
2506         default:
2507                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2508                 return -ENXIO;
2509         }
2510
2511         /* Boolean feature flags */
2512         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2513                 smmu->features |= ARM_SMMU_FEAT_PRI;
2514
2515         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2516                 smmu->features |= ARM_SMMU_FEAT_ATS;
2517
2518         if (reg & IDR0_SEV)
2519                 smmu->features |= ARM_SMMU_FEAT_SEV;
2520
2521         if (reg & IDR0_MSI)
2522                 smmu->features |= ARM_SMMU_FEAT_MSI;
2523
2524         if (reg & IDR0_HYP)
2525                 smmu->features |= ARM_SMMU_FEAT_HYP;
2526
2527         /*
2528          * The dma-coherent property is used in preference to the ID
2529          * register, but warn on mismatch.
2530          */
2531         coherent = of_dma_is_coherent(smmu->dev->of_node);
2532         if (coherent)
2533                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2534
2535         if (!!(reg & IDR0_COHACC) != coherent)
2536                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2537                          coherent ? "true" : "false");
2538
2539         if (reg & IDR0_STALL_MODEL)
2540                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2541
2542         if (reg & IDR0_S1P)
2543                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2544
2545         if (reg & IDR0_S2P)
2546                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2547
2548         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2549                 dev_err(smmu->dev, "no translation support!\n");
2550                 return -ENXIO;
2551         }
2552
2553         /* We only support the AArch64 table format at present */
2554         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2555         case IDR0_TTF_AARCH32_64:
2556                 smmu->ias = 40;
2557                 /* Fallthrough */
2558         case IDR0_TTF_AARCH64:
2559                 break;
2560         default:
2561                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2562                 return -ENXIO;
2563         }
2564
2565         /* ASID/VMID sizes */
2566         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2567         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2568
2569         /* IDR1 */
2570         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2571         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2572                 dev_err(smmu->dev, "embedded implementation not supported\n");
2573                 return -ENXIO;
2574         }
2575
2576         /* Queue sizes, capped at 4k */
2577         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2578                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2579         if (!smmu->cmdq.q.max_n_shift) {
2580                 /* Odd alignment restrictions on the base, so ignore for now */
2581                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2582                 return -ENXIO;
2583         }
2584
2585         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2586                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2587         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2588                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2589
2590         /* SID/SSID sizes */
2591         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2592         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2593
2594         /* IDR5 */
2595         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2596
2597         /* Maximum number of outstanding stalls */
2598         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2599                                 & IDR5_STALL_MAX_MASK;
2600
2601         /* Page sizes */
2602         if (reg & IDR5_GRAN64K)
2603                 pgsize_bitmap |= SZ_64K | SZ_512M;
2604         if (reg & IDR5_GRAN16K)
2605                 pgsize_bitmap |= SZ_16K | SZ_32M;
2606         if (reg & IDR5_GRAN4K)
2607                 pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2608
2609         arm_smmu_ops.pgsize_bitmap &= pgsize_bitmap;
2610
2611         /* Output address size */
2612         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2613         case IDR5_OAS_32_BIT:
2614                 smmu->oas = 32;
2615                 break;
2616         case IDR5_OAS_36_BIT:
2617                 smmu->oas = 36;
2618                 break;
2619         case IDR5_OAS_40_BIT:
2620                 smmu->oas = 40;
2621                 break;
2622         case IDR5_OAS_42_BIT:
2623                 smmu->oas = 42;
2624                 break;
2625         case IDR5_OAS_44_BIT:
2626                 smmu->oas = 44;
2627                 break;
2628         default:
2629                 dev_info(smmu->dev,
2630                         "unknown output address size. Truncating to 48-bit\n");
2631                 /* Fallthrough */
2632         case IDR5_OAS_48_BIT:
2633                 smmu->oas = 48;
2634         }
2635
2636         /* Set the DMA mask for our table walker */
2637         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2638                 dev_warn(smmu->dev,
2639                          "failed to set DMA mask for table walker\n");
2640
2641         smmu->ias = max(smmu->ias, smmu->oas);
2642
2643         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2644                  smmu->ias, smmu->oas, smmu->features);
2645         return 0;
2646 }
2647
2648 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2649 {
2650         int irq, ret;
2651         struct resource *res;
2652         struct arm_smmu_device *smmu;
2653         struct device *dev = &pdev->dev;
2654
2655         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2656         if (!smmu) {
2657                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2658                 return -ENOMEM;
2659         }
2660         smmu->dev = dev;
2661
2662         /* Base address */
2663         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2664         if (resource_size(res) + 1 < SZ_128K) {
2665                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2666                 return -EINVAL;
2667         }
2668
2669         smmu->base = devm_ioremap_resource(dev, res);
2670         if (IS_ERR(smmu->base))
2671                 return PTR_ERR(smmu->base);
2672
2673         /* Interrupt lines */
2674         irq = platform_get_irq_byname(pdev, "eventq");
2675         if (irq > 0)
2676                 smmu->evtq.q.irq = irq;
2677
2678         irq = platform_get_irq_byname(pdev, "priq");
2679         if (irq > 0)
2680                 smmu->priq.q.irq = irq;
2681
2682         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2683         if (irq > 0)
2684                 smmu->cmdq.q.irq = irq;
2685
2686         irq = platform_get_irq_byname(pdev, "gerror");
2687         if (irq > 0)
2688                 smmu->gerr_irq = irq;
2689
2690         parse_driver_options(smmu);
2691
2692         /* Probe the h/w */
2693         ret = arm_smmu_device_probe(smmu);
2694         if (ret)
2695                 return ret;
2696
2697         /* Initialise in-memory data structures */
2698         ret = arm_smmu_init_structures(smmu);
2699         if (ret)
2700                 return ret;
2701
2702         /* Record our private device structure */
2703         platform_set_drvdata(pdev, smmu);
2704
2705         /* Reset the device */
2706         ret = arm_smmu_device_reset(smmu);
2707         if (ret)
2708                 goto out_free_structures;
2709
2710         return 0;
2711
2712 out_free_structures:
2713         arm_smmu_free_structures(smmu);
2714         return ret;
2715 }
2716
2717 static int arm_smmu_device_remove(struct platform_device *pdev)
2718 {
2719         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2720
2721         arm_smmu_device_disable(smmu);
2722         arm_smmu_free_structures(smmu);
2723         return 0;
2724 }
2725
2726 static struct of_device_id arm_smmu_of_match[] = {
2727         { .compatible = "arm,smmu-v3", },
2728         { },
2729 };
2730 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2731
2732 static struct platform_driver arm_smmu_driver = {
2733         .driver = {
2734                 .name           = "arm-smmu-v3",
2735                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2736         },
2737         .probe  = arm_smmu_device_dt_probe,
2738         .remove = arm_smmu_device_remove,
2739 };
2740
2741 static int __init arm_smmu_init(void)
2742 {
2743         struct device_node *np;
2744         int ret;
2745
2746         np = of_find_matching_node(NULL, arm_smmu_of_match);
2747         if (!np)
2748                 return 0;
2749
2750         of_node_put(np);
2751
2752         ret = platform_driver_register(&arm_smmu_driver);
2753         if (ret)
2754                 return ret;
2755
2756         return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2757 }
2758
2759 static void __exit arm_smmu_exit(void)
2760 {
2761         return platform_driver_unregister(&arm_smmu_driver);
2762 }
2763
2764 subsys_initcall(arm_smmu_init);
2765 module_exit(arm_smmu_exit);
2766
2767 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2768 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2769 MODULE_LICENSE("GPL v2");