These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / infiniband / ulp / srp / ib_srp.c
1 /*
2  * Copyright (c) 2005 Cisco Systems.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <rdma/ib_cache.h>
44
45 #include <linux/atomic.h>
46
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_dbg.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/srp.h>
52 #include <scsi/scsi_transport_srp.h>
53
54 #include "ib_srp.h"
55
56 #define DRV_NAME        "ib_srp"
57 #define PFX             DRV_NAME ": "
58 #define DRV_VERSION     "2.0"
59 #define DRV_RELDATE     "July 26, 2015"
60
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64 MODULE_VERSION(DRV_VERSION);
65 MODULE_INFO(release_date, DRV_RELDATE);
66
67 static unsigned int srp_sg_tablesize;
68 static unsigned int cmd_sg_entries;
69 static unsigned int indirect_sg_entries;
70 static bool allow_ext_sg;
71 static bool prefer_fr = true;
72 static bool register_always = true;
73 static int topspin_workarounds = 1;
74
75 module_param(srp_sg_tablesize, uint, 0444);
76 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
77
78 module_param(cmd_sg_entries, uint, 0444);
79 MODULE_PARM_DESC(cmd_sg_entries,
80                  "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
81
82 module_param(indirect_sg_entries, uint, 0444);
83 MODULE_PARM_DESC(indirect_sg_entries,
84                  "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")");
85
86 module_param(allow_ext_sg, bool, 0444);
87 MODULE_PARM_DESC(allow_ext_sg,
88                   "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
89
90 module_param(topspin_workarounds, int, 0444);
91 MODULE_PARM_DESC(topspin_workarounds,
92                  "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
93
94 module_param(prefer_fr, bool, 0444);
95 MODULE_PARM_DESC(prefer_fr,
96 "Whether to use fast registration if both FMR and fast registration are supported");
97
98 module_param(register_always, bool, 0444);
99 MODULE_PARM_DESC(register_always,
100                  "Use memory registration even for contiguous memory regions");
101
102 static const struct kernel_param_ops srp_tmo_ops;
103
104 static int srp_reconnect_delay = 10;
105 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
106                 S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
108
109 static int srp_fast_io_fail_tmo = 15;
110 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
111                 S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(fast_io_fail_tmo,
113                  "Number of seconds between the observation of a transport"
114                  " layer error and failing all I/O. \"off\" means that this"
115                  " functionality is disabled.");
116
117 static int srp_dev_loss_tmo = 600;
118 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
119                 S_IRUGO | S_IWUSR);
120 MODULE_PARM_DESC(dev_loss_tmo,
121                  "Maximum number of seconds that the SRP transport should"
122                  " insulate transport layer errors. After this time has been"
123                  " exceeded the SCSI host is removed. Should be"
124                  " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
125                  " if fast_io_fail_tmo has not been set. \"off\" means that"
126                  " this functionality is disabled.");
127
128 static unsigned ch_count;
129 module_param(ch_count, uint, 0444);
130 MODULE_PARM_DESC(ch_count,
131                  "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
132
133 static void srp_add_one(struct ib_device *device);
134 static void srp_remove_one(struct ib_device *device, void *client_data);
135 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr);
136 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr);
137 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event);
138
139 static struct scsi_transport_template *ib_srp_transport_template;
140 static struct workqueue_struct *srp_remove_wq;
141
142 static struct ib_client srp_client = {
143         .name   = "srp",
144         .add    = srp_add_one,
145         .remove = srp_remove_one
146 };
147
148 static struct ib_sa_client srp_sa_client;
149
150 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
151 {
152         int tmo = *(int *)kp->arg;
153
154         if (tmo >= 0)
155                 return sprintf(buffer, "%d", tmo);
156         else
157                 return sprintf(buffer, "off");
158 }
159
160 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
161 {
162         int tmo, res;
163
164         res = srp_parse_tmo(&tmo, val);
165         if (res)
166                 goto out;
167
168         if (kp->arg == &srp_reconnect_delay)
169                 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
170                                     srp_dev_loss_tmo);
171         else if (kp->arg == &srp_fast_io_fail_tmo)
172                 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
173         else
174                 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
175                                     tmo);
176         if (res)
177                 goto out;
178         *(int *)kp->arg = tmo;
179
180 out:
181         return res;
182 }
183
184 static const struct kernel_param_ops srp_tmo_ops = {
185         .get = srp_tmo_get,
186         .set = srp_tmo_set,
187 };
188
189 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
190 {
191         return (struct srp_target_port *) host->hostdata;
192 }
193
194 static const char *srp_target_info(struct Scsi_Host *host)
195 {
196         return host_to_target(host)->target_name;
197 }
198
199 static int srp_target_is_topspin(struct srp_target_port *target)
200 {
201         static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
202         static const u8 cisco_oui[3]   = { 0x00, 0x1b, 0x0d };
203
204         return topspin_workarounds &&
205                 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
206                  !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
207 }
208
209 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
210                                    gfp_t gfp_mask,
211                                    enum dma_data_direction direction)
212 {
213         struct srp_iu *iu;
214
215         iu = kmalloc(sizeof *iu, gfp_mask);
216         if (!iu)
217                 goto out;
218
219         iu->buf = kzalloc(size, gfp_mask);
220         if (!iu->buf)
221                 goto out_free_iu;
222
223         iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
224                                     direction);
225         if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
226                 goto out_free_buf;
227
228         iu->size      = size;
229         iu->direction = direction;
230
231         return iu;
232
233 out_free_buf:
234         kfree(iu->buf);
235 out_free_iu:
236         kfree(iu);
237 out:
238         return NULL;
239 }
240
241 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
242 {
243         if (!iu)
244                 return;
245
246         ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
247                             iu->direction);
248         kfree(iu->buf);
249         kfree(iu);
250 }
251
252 static void srp_qp_event(struct ib_event *event, void *context)
253 {
254         pr_debug("QP event %s (%d)\n",
255                  ib_event_msg(event->event), event->event);
256 }
257
258 static int srp_init_qp(struct srp_target_port *target,
259                        struct ib_qp *qp)
260 {
261         struct ib_qp_attr *attr;
262         int ret;
263
264         attr = kmalloc(sizeof *attr, GFP_KERNEL);
265         if (!attr)
266                 return -ENOMEM;
267
268         ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
269                                   target->srp_host->port,
270                                   be16_to_cpu(target->pkey),
271                                   &attr->pkey_index);
272         if (ret)
273                 goto out;
274
275         attr->qp_state        = IB_QPS_INIT;
276         attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
277                                     IB_ACCESS_REMOTE_WRITE);
278         attr->port_num        = target->srp_host->port;
279
280         ret = ib_modify_qp(qp, attr,
281                            IB_QP_STATE          |
282                            IB_QP_PKEY_INDEX     |
283                            IB_QP_ACCESS_FLAGS   |
284                            IB_QP_PORT);
285
286 out:
287         kfree(attr);
288         return ret;
289 }
290
291 static int srp_new_cm_id(struct srp_rdma_ch *ch)
292 {
293         struct srp_target_port *target = ch->target;
294         struct ib_cm_id *new_cm_id;
295
296         new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
297                                     srp_cm_handler, ch);
298         if (IS_ERR(new_cm_id))
299                 return PTR_ERR(new_cm_id);
300
301         if (ch->cm_id)
302                 ib_destroy_cm_id(ch->cm_id);
303         ch->cm_id = new_cm_id;
304         ch->path.sgid = target->sgid;
305         ch->path.dgid = target->orig_dgid;
306         ch->path.pkey = target->pkey;
307         ch->path.service_id = target->service_id;
308
309         return 0;
310 }
311
312 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target)
313 {
314         struct srp_device *dev = target->srp_host->srp_dev;
315         struct ib_fmr_pool_param fmr_param;
316
317         memset(&fmr_param, 0, sizeof(fmr_param));
318         fmr_param.pool_size         = target->scsi_host->can_queue;
319         fmr_param.dirty_watermark   = fmr_param.pool_size / 4;
320         fmr_param.cache             = 1;
321         fmr_param.max_pages_per_fmr = dev->max_pages_per_mr;
322         fmr_param.page_shift        = ilog2(dev->mr_page_size);
323         fmr_param.access            = (IB_ACCESS_LOCAL_WRITE |
324                                        IB_ACCESS_REMOTE_WRITE |
325                                        IB_ACCESS_REMOTE_READ);
326
327         return ib_create_fmr_pool(dev->pd, &fmr_param);
328 }
329
330 /**
331  * srp_destroy_fr_pool() - free the resources owned by a pool
332  * @pool: Fast registration pool to be destroyed.
333  */
334 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
335 {
336         int i;
337         struct srp_fr_desc *d;
338
339         if (!pool)
340                 return;
341
342         for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
343                 if (d->mr)
344                         ib_dereg_mr(d->mr);
345         }
346         kfree(pool);
347 }
348
349 /**
350  * srp_create_fr_pool() - allocate and initialize a pool for fast registration
351  * @device:            IB device to allocate fast registration descriptors for.
352  * @pd:                Protection domain associated with the FR descriptors.
353  * @pool_size:         Number of descriptors to allocate.
354  * @max_page_list_len: Maximum fast registration work request page list length.
355  */
356 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
357                                               struct ib_pd *pd, int pool_size,
358                                               int max_page_list_len)
359 {
360         struct srp_fr_pool *pool;
361         struct srp_fr_desc *d;
362         struct ib_mr *mr;
363         int i, ret = -EINVAL;
364
365         if (pool_size <= 0)
366                 goto err;
367         ret = -ENOMEM;
368         pool = kzalloc(sizeof(struct srp_fr_pool) +
369                        pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL);
370         if (!pool)
371                 goto err;
372         pool->size = pool_size;
373         pool->max_page_list_len = max_page_list_len;
374         spin_lock_init(&pool->lock);
375         INIT_LIST_HEAD(&pool->free_list);
376
377         for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
378                 mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG,
379                                  max_page_list_len);
380                 if (IS_ERR(mr)) {
381                         ret = PTR_ERR(mr);
382                         goto destroy_pool;
383                 }
384                 d->mr = mr;
385                 list_add_tail(&d->entry, &pool->free_list);
386         }
387
388 out:
389         return pool;
390
391 destroy_pool:
392         srp_destroy_fr_pool(pool);
393
394 err:
395         pool = ERR_PTR(ret);
396         goto out;
397 }
398
399 /**
400  * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
401  * @pool: Pool to obtain descriptor from.
402  */
403 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
404 {
405         struct srp_fr_desc *d = NULL;
406         unsigned long flags;
407
408         spin_lock_irqsave(&pool->lock, flags);
409         if (!list_empty(&pool->free_list)) {
410                 d = list_first_entry(&pool->free_list, typeof(*d), entry);
411                 list_del(&d->entry);
412         }
413         spin_unlock_irqrestore(&pool->lock, flags);
414
415         return d;
416 }
417
418 /**
419  * srp_fr_pool_put() - put an FR descriptor back in the free list
420  * @pool: Pool the descriptor was allocated from.
421  * @desc: Pointer to an array of fast registration descriptor pointers.
422  * @n:    Number of descriptors to put back.
423  *
424  * Note: The caller must already have queued an invalidation request for
425  * desc->mr->rkey before calling this function.
426  */
427 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
428                             int n)
429 {
430         unsigned long flags;
431         int i;
432
433         spin_lock_irqsave(&pool->lock, flags);
434         for (i = 0; i < n; i++)
435                 list_add(&desc[i]->entry, &pool->free_list);
436         spin_unlock_irqrestore(&pool->lock, flags);
437 }
438
439 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
440 {
441         struct srp_device *dev = target->srp_host->srp_dev;
442
443         return srp_create_fr_pool(dev->dev, dev->pd,
444                                   target->scsi_host->can_queue,
445                                   dev->max_pages_per_mr);
446 }
447
448 /**
449  * srp_destroy_qp() - destroy an RDMA queue pair
450  * @ch: SRP RDMA channel.
451  *
452  * Change a queue pair into the error state and wait until all receive
453  * completions have been processed before destroying it. This avoids that
454  * the receive completion handler can access the queue pair while it is
455  * being destroyed.
456  */
457 static void srp_destroy_qp(struct srp_rdma_ch *ch)
458 {
459         static struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
460         static struct ib_recv_wr wr = { .wr_id = SRP_LAST_WR_ID };
461         struct ib_recv_wr *bad_wr;
462         int ret;
463
464         /* Destroying a QP and reusing ch->done is only safe if not connected */
465         WARN_ON_ONCE(ch->connected);
466
467         ret = ib_modify_qp(ch->qp, &attr, IB_QP_STATE);
468         WARN_ONCE(ret, "ib_cm_init_qp_attr() returned %d\n", ret);
469         if (ret)
470                 goto out;
471
472         init_completion(&ch->done);
473         ret = ib_post_recv(ch->qp, &wr, &bad_wr);
474         WARN_ONCE(ret, "ib_post_recv() returned %d\n", ret);
475         if (ret == 0)
476                 wait_for_completion(&ch->done);
477
478 out:
479         ib_destroy_qp(ch->qp);
480 }
481
482 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
483 {
484         struct srp_target_port *target = ch->target;
485         struct srp_device *dev = target->srp_host->srp_dev;
486         struct ib_qp_init_attr *init_attr;
487         struct ib_cq *recv_cq, *send_cq;
488         struct ib_qp *qp;
489         struct ib_fmr_pool *fmr_pool = NULL;
490         struct srp_fr_pool *fr_pool = NULL;
491         const int m = dev->use_fast_reg ? 3 : 1;
492         struct ib_cq_init_attr cq_attr = {};
493         int ret;
494
495         init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
496         if (!init_attr)
497                 return -ENOMEM;
498
499         /* + 1 for SRP_LAST_WR_ID */
500         cq_attr.cqe = target->queue_size + 1;
501         cq_attr.comp_vector = ch->comp_vector;
502         recv_cq = ib_create_cq(dev->dev, srp_recv_completion, NULL, ch,
503                                &cq_attr);
504         if (IS_ERR(recv_cq)) {
505                 ret = PTR_ERR(recv_cq);
506                 goto err;
507         }
508
509         cq_attr.cqe = m * target->queue_size;
510         cq_attr.comp_vector = ch->comp_vector;
511         send_cq = ib_create_cq(dev->dev, srp_send_completion, NULL, ch,
512                                &cq_attr);
513         if (IS_ERR(send_cq)) {
514                 ret = PTR_ERR(send_cq);
515                 goto err_recv_cq;
516         }
517
518         ib_req_notify_cq(recv_cq, IB_CQ_NEXT_COMP);
519
520         init_attr->event_handler       = srp_qp_event;
521         init_attr->cap.max_send_wr     = m * target->queue_size;
522         init_attr->cap.max_recv_wr     = target->queue_size + 1;
523         init_attr->cap.max_recv_sge    = 1;
524         init_attr->cap.max_send_sge    = 1;
525         init_attr->sq_sig_type         = IB_SIGNAL_REQ_WR;
526         init_attr->qp_type             = IB_QPT_RC;
527         init_attr->send_cq             = send_cq;
528         init_attr->recv_cq             = recv_cq;
529
530         qp = ib_create_qp(dev->pd, init_attr);
531         if (IS_ERR(qp)) {
532                 ret = PTR_ERR(qp);
533                 goto err_send_cq;
534         }
535
536         ret = srp_init_qp(target, qp);
537         if (ret)
538                 goto err_qp;
539
540         if (dev->use_fast_reg) {
541                 fr_pool = srp_alloc_fr_pool(target);
542                 if (IS_ERR(fr_pool)) {
543                         ret = PTR_ERR(fr_pool);
544                         shost_printk(KERN_WARNING, target->scsi_host, PFX
545                                      "FR pool allocation failed (%d)\n", ret);
546                         goto err_qp;
547                 }
548         } else if (dev->use_fmr) {
549                 fmr_pool = srp_alloc_fmr_pool(target);
550                 if (IS_ERR(fmr_pool)) {
551                         ret = PTR_ERR(fmr_pool);
552                         shost_printk(KERN_WARNING, target->scsi_host, PFX
553                                      "FMR pool allocation failed (%d)\n", ret);
554                         goto err_qp;
555                 }
556         }
557
558         if (ch->qp)
559                 srp_destroy_qp(ch);
560         if (ch->recv_cq)
561                 ib_destroy_cq(ch->recv_cq);
562         if (ch->send_cq)
563                 ib_destroy_cq(ch->send_cq);
564
565         ch->qp = qp;
566         ch->recv_cq = recv_cq;
567         ch->send_cq = send_cq;
568
569         if (dev->use_fast_reg) {
570                 if (ch->fr_pool)
571                         srp_destroy_fr_pool(ch->fr_pool);
572                 ch->fr_pool = fr_pool;
573         } else if (dev->use_fmr) {
574                 if (ch->fmr_pool)
575                         ib_destroy_fmr_pool(ch->fmr_pool);
576                 ch->fmr_pool = fmr_pool;
577         }
578
579         kfree(init_attr);
580         return 0;
581
582 err_qp:
583         ib_destroy_qp(qp);
584
585 err_send_cq:
586         ib_destroy_cq(send_cq);
587
588 err_recv_cq:
589         ib_destroy_cq(recv_cq);
590
591 err:
592         kfree(init_attr);
593         return ret;
594 }
595
596 /*
597  * Note: this function may be called without srp_alloc_iu_bufs() having been
598  * invoked. Hence the ch->[rt]x_ring checks.
599  */
600 static void srp_free_ch_ib(struct srp_target_port *target,
601                            struct srp_rdma_ch *ch)
602 {
603         struct srp_device *dev = target->srp_host->srp_dev;
604         int i;
605
606         if (!ch->target)
607                 return;
608
609         if (ch->cm_id) {
610                 ib_destroy_cm_id(ch->cm_id);
611                 ch->cm_id = NULL;
612         }
613
614         /* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
615         if (!ch->qp)
616                 return;
617
618         if (dev->use_fast_reg) {
619                 if (ch->fr_pool)
620                         srp_destroy_fr_pool(ch->fr_pool);
621         } else if (dev->use_fmr) {
622                 if (ch->fmr_pool)
623                         ib_destroy_fmr_pool(ch->fmr_pool);
624         }
625         srp_destroy_qp(ch);
626         ib_destroy_cq(ch->send_cq);
627         ib_destroy_cq(ch->recv_cq);
628
629         /*
630          * Avoid that the SCSI error handler tries to use this channel after
631          * it has been freed. The SCSI error handler can namely continue
632          * trying to perform recovery actions after scsi_remove_host()
633          * returned.
634          */
635         ch->target = NULL;
636
637         ch->qp = NULL;
638         ch->send_cq = ch->recv_cq = NULL;
639
640         if (ch->rx_ring) {
641                 for (i = 0; i < target->queue_size; ++i)
642                         srp_free_iu(target->srp_host, ch->rx_ring[i]);
643                 kfree(ch->rx_ring);
644                 ch->rx_ring = NULL;
645         }
646         if (ch->tx_ring) {
647                 for (i = 0; i < target->queue_size; ++i)
648                         srp_free_iu(target->srp_host, ch->tx_ring[i]);
649                 kfree(ch->tx_ring);
650                 ch->tx_ring = NULL;
651         }
652 }
653
654 static void srp_path_rec_completion(int status,
655                                     struct ib_sa_path_rec *pathrec,
656                                     void *ch_ptr)
657 {
658         struct srp_rdma_ch *ch = ch_ptr;
659         struct srp_target_port *target = ch->target;
660
661         ch->status = status;
662         if (status)
663                 shost_printk(KERN_ERR, target->scsi_host,
664                              PFX "Got failed path rec status %d\n", status);
665         else
666                 ch->path = *pathrec;
667         complete(&ch->done);
668 }
669
670 static int srp_lookup_path(struct srp_rdma_ch *ch)
671 {
672         struct srp_target_port *target = ch->target;
673         int ret;
674
675         ch->path.numb_path = 1;
676
677         init_completion(&ch->done);
678
679         ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client,
680                                                target->srp_host->srp_dev->dev,
681                                                target->srp_host->port,
682                                                &ch->path,
683                                                IB_SA_PATH_REC_SERVICE_ID |
684                                                IB_SA_PATH_REC_DGID       |
685                                                IB_SA_PATH_REC_SGID       |
686                                                IB_SA_PATH_REC_NUMB_PATH  |
687                                                IB_SA_PATH_REC_PKEY,
688                                                SRP_PATH_REC_TIMEOUT_MS,
689                                                GFP_KERNEL,
690                                                srp_path_rec_completion,
691                                                ch, &ch->path_query);
692         if (ch->path_query_id < 0)
693                 return ch->path_query_id;
694
695         ret = wait_for_completion_interruptible(&ch->done);
696         if (ret < 0)
697                 return ret;
698
699         if (ch->status < 0)
700                 shost_printk(KERN_WARNING, target->scsi_host,
701                              PFX "Path record query failed\n");
702
703         return ch->status;
704 }
705
706 static int srp_send_req(struct srp_rdma_ch *ch, bool multich)
707 {
708         struct srp_target_port *target = ch->target;
709         struct {
710                 struct ib_cm_req_param param;
711                 struct srp_login_req   priv;
712         } *req = NULL;
713         int status;
714
715         req = kzalloc(sizeof *req, GFP_KERNEL);
716         if (!req)
717                 return -ENOMEM;
718
719         req->param.primary_path               = &ch->path;
720         req->param.alternate_path             = NULL;
721         req->param.service_id                 = target->service_id;
722         req->param.qp_num                     = ch->qp->qp_num;
723         req->param.qp_type                    = ch->qp->qp_type;
724         req->param.private_data               = &req->priv;
725         req->param.private_data_len           = sizeof req->priv;
726         req->param.flow_control               = 1;
727
728         get_random_bytes(&req->param.starting_psn, 4);
729         req->param.starting_psn              &= 0xffffff;
730
731         /*
732          * Pick some arbitrary defaults here; we could make these
733          * module parameters if anyone cared about setting them.
734          */
735         req->param.responder_resources        = 4;
736         req->param.remote_cm_response_timeout = 20;
737         req->param.local_cm_response_timeout  = 20;
738         req->param.retry_count                = target->tl_retry_count;
739         req->param.rnr_retry_count            = 7;
740         req->param.max_cm_retries             = 15;
741
742         req->priv.opcode        = SRP_LOGIN_REQ;
743         req->priv.tag           = 0;
744         req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len);
745         req->priv.req_buf_fmt   = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
746                                               SRP_BUF_FORMAT_INDIRECT);
747         req->priv.req_flags     = (multich ? SRP_MULTICHAN_MULTI :
748                                    SRP_MULTICHAN_SINGLE);
749         /*
750          * In the published SRP specification (draft rev. 16a), the
751          * port identifier format is 8 bytes of ID extension followed
752          * by 8 bytes of GUID.  Older drafts put the two halves in the
753          * opposite order, so that the GUID comes first.
754          *
755          * Targets conforming to these obsolete drafts can be
756          * recognized by the I/O Class they report.
757          */
758         if (target->io_class == SRP_REV10_IB_IO_CLASS) {
759                 memcpy(req->priv.initiator_port_id,
760                        &target->sgid.global.interface_id, 8);
761                 memcpy(req->priv.initiator_port_id + 8,
762                        &target->initiator_ext, 8);
763                 memcpy(req->priv.target_port_id,     &target->ioc_guid, 8);
764                 memcpy(req->priv.target_port_id + 8, &target->id_ext, 8);
765         } else {
766                 memcpy(req->priv.initiator_port_id,
767                        &target->initiator_ext, 8);
768                 memcpy(req->priv.initiator_port_id + 8,
769                        &target->sgid.global.interface_id, 8);
770                 memcpy(req->priv.target_port_id,     &target->id_ext, 8);
771                 memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8);
772         }
773
774         /*
775          * Topspin/Cisco SRP targets will reject our login unless we
776          * zero out the first 8 bytes of our initiator port ID and set
777          * the second 8 bytes to the local node GUID.
778          */
779         if (srp_target_is_topspin(target)) {
780                 shost_printk(KERN_DEBUG, target->scsi_host,
781                              PFX "Topspin/Cisco initiator port ID workaround "
782                              "activated for target GUID %016llx\n",
783                              be64_to_cpu(target->ioc_guid));
784                 memset(req->priv.initiator_port_id, 0, 8);
785                 memcpy(req->priv.initiator_port_id + 8,
786                        &target->srp_host->srp_dev->dev->node_guid, 8);
787         }
788
789         status = ib_send_cm_req(ch->cm_id, &req->param);
790
791         kfree(req);
792
793         return status;
794 }
795
796 static bool srp_queue_remove_work(struct srp_target_port *target)
797 {
798         bool changed = false;
799
800         spin_lock_irq(&target->lock);
801         if (target->state != SRP_TARGET_REMOVED) {
802                 target->state = SRP_TARGET_REMOVED;
803                 changed = true;
804         }
805         spin_unlock_irq(&target->lock);
806
807         if (changed)
808                 queue_work(srp_remove_wq, &target->remove_work);
809
810         return changed;
811 }
812
813 static void srp_disconnect_target(struct srp_target_port *target)
814 {
815         struct srp_rdma_ch *ch;
816         int i;
817
818         /* XXX should send SRP_I_LOGOUT request */
819
820         for (i = 0; i < target->ch_count; i++) {
821                 ch = &target->ch[i];
822                 ch->connected = false;
823                 if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) {
824                         shost_printk(KERN_DEBUG, target->scsi_host,
825                                      PFX "Sending CM DREQ failed\n");
826                 }
827         }
828 }
829
830 static void srp_free_req_data(struct srp_target_port *target,
831                               struct srp_rdma_ch *ch)
832 {
833         struct srp_device *dev = target->srp_host->srp_dev;
834         struct ib_device *ibdev = dev->dev;
835         struct srp_request *req;
836         int i;
837
838         if (!ch->req_ring)
839                 return;
840
841         for (i = 0; i < target->req_ring_size; ++i) {
842                 req = &ch->req_ring[i];
843                 if (dev->use_fast_reg) {
844                         kfree(req->fr_list);
845                 } else {
846                         kfree(req->fmr_list);
847                         kfree(req->map_page);
848                 }
849                 if (req->indirect_dma_addr) {
850                         ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
851                                             target->indirect_size,
852                                             DMA_TO_DEVICE);
853                 }
854                 kfree(req->indirect_desc);
855         }
856
857         kfree(ch->req_ring);
858         ch->req_ring = NULL;
859 }
860
861 static int srp_alloc_req_data(struct srp_rdma_ch *ch)
862 {
863         struct srp_target_port *target = ch->target;
864         struct srp_device *srp_dev = target->srp_host->srp_dev;
865         struct ib_device *ibdev = srp_dev->dev;
866         struct srp_request *req;
867         void *mr_list;
868         dma_addr_t dma_addr;
869         int i, ret = -ENOMEM;
870
871         ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring),
872                                GFP_KERNEL);
873         if (!ch->req_ring)
874                 goto out;
875
876         for (i = 0; i < target->req_ring_size; ++i) {
877                 req = &ch->req_ring[i];
878                 mr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *),
879                                   GFP_KERNEL);
880                 if (!mr_list)
881                         goto out;
882                 if (srp_dev->use_fast_reg) {
883                         req->fr_list = mr_list;
884                 } else {
885                         req->fmr_list = mr_list;
886                         req->map_page = kmalloc(srp_dev->max_pages_per_mr *
887                                                 sizeof(void *), GFP_KERNEL);
888                         if (!req->map_page)
889                                 goto out;
890                 }
891                 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
892                 if (!req->indirect_desc)
893                         goto out;
894
895                 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
896                                              target->indirect_size,
897                                              DMA_TO_DEVICE);
898                 if (ib_dma_mapping_error(ibdev, dma_addr))
899                         goto out;
900
901                 req->indirect_dma_addr = dma_addr;
902         }
903         ret = 0;
904
905 out:
906         return ret;
907 }
908
909 /**
910  * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
911  * @shost: SCSI host whose attributes to remove from sysfs.
912  *
913  * Note: Any attributes defined in the host template and that did not exist
914  * before invocation of this function will be ignored.
915  */
916 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
917 {
918         struct device_attribute **attr;
919
920         for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
921                 device_remove_file(&shost->shost_dev, *attr);
922 }
923
924 static void srp_remove_target(struct srp_target_port *target)
925 {
926         struct srp_rdma_ch *ch;
927         int i;
928
929         WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
930
931         srp_del_scsi_host_attr(target->scsi_host);
932         srp_rport_get(target->rport);
933         srp_remove_host(target->scsi_host);
934         scsi_remove_host(target->scsi_host);
935         srp_stop_rport_timers(target->rport);
936         srp_disconnect_target(target);
937         for (i = 0; i < target->ch_count; i++) {
938                 ch = &target->ch[i];
939                 srp_free_ch_ib(target, ch);
940         }
941         cancel_work_sync(&target->tl_err_work);
942         srp_rport_put(target->rport);
943         for (i = 0; i < target->ch_count; i++) {
944                 ch = &target->ch[i];
945                 srp_free_req_data(target, ch);
946         }
947         kfree(target->ch);
948         target->ch = NULL;
949
950         spin_lock(&target->srp_host->target_lock);
951         list_del(&target->list);
952         spin_unlock(&target->srp_host->target_lock);
953
954         scsi_host_put(target->scsi_host);
955 }
956
957 static void srp_remove_work(struct work_struct *work)
958 {
959         struct srp_target_port *target =
960                 container_of(work, struct srp_target_port, remove_work);
961
962         WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
963
964         srp_remove_target(target);
965 }
966
967 static void srp_rport_delete(struct srp_rport *rport)
968 {
969         struct srp_target_port *target = rport->lld_data;
970
971         srp_queue_remove_work(target);
972 }
973
974 /**
975  * srp_connected_ch() - number of connected channels
976  * @target: SRP target port.
977  */
978 static int srp_connected_ch(struct srp_target_port *target)
979 {
980         int i, c = 0;
981
982         for (i = 0; i < target->ch_count; i++)
983                 c += target->ch[i].connected;
984
985         return c;
986 }
987
988 static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich)
989 {
990         struct srp_target_port *target = ch->target;
991         int ret;
992
993         WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
994
995         ret = srp_lookup_path(ch);
996         if (ret)
997                 goto out;
998
999         while (1) {
1000                 init_completion(&ch->done);
1001                 ret = srp_send_req(ch, multich);
1002                 if (ret)
1003                         goto out;
1004                 ret = wait_for_completion_interruptible(&ch->done);
1005                 if (ret < 0)
1006                         goto out;
1007
1008                 /*
1009                  * The CM event handling code will set status to
1010                  * SRP_PORT_REDIRECT if we get a port redirect REJ
1011                  * back, or SRP_DLID_REDIRECT if we get a lid/qp
1012                  * redirect REJ back.
1013                  */
1014                 ret = ch->status;
1015                 switch (ret) {
1016                 case 0:
1017                         ch->connected = true;
1018                         goto out;
1019
1020                 case SRP_PORT_REDIRECT:
1021                         ret = srp_lookup_path(ch);
1022                         if (ret)
1023                                 goto out;
1024                         break;
1025
1026                 case SRP_DLID_REDIRECT:
1027                         break;
1028
1029                 case SRP_STALE_CONN:
1030                         shost_printk(KERN_ERR, target->scsi_host, PFX
1031                                      "giving up on stale connection\n");
1032                         ret = -ECONNRESET;
1033                         goto out;
1034
1035                 default:
1036                         goto out;
1037                 }
1038         }
1039
1040 out:
1041         return ret <= 0 ? ret : -ENODEV;
1042 }
1043
1044 static int srp_inv_rkey(struct srp_rdma_ch *ch, u32 rkey)
1045 {
1046         struct ib_send_wr *bad_wr;
1047         struct ib_send_wr wr = {
1048                 .opcode             = IB_WR_LOCAL_INV,
1049                 .wr_id              = LOCAL_INV_WR_ID_MASK,
1050                 .next               = NULL,
1051                 .num_sge            = 0,
1052                 .send_flags         = 0,
1053                 .ex.invalidate_rkey = rkey,
1054         };
1055
1056         return ib_post_send(ch->qp, &wr, &bad_wr);
1057 }
1058
1059 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1060                            struct srp_rdma_ch *ch,
1061                            struct srp_request *req)
1062 {
1063         struct srp_target_port *target = ch->target;
1064         struct srp_device *dev = target->srp_host->srp_dev;
1065         struct ib_device *ibdev = dev->dev;
1066         int i, res;
1067
1068         if (!scsi_sglist(scmnd) ||
1069             (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1070              scmnd->sc_data_direction != DMA_FROM_DEVICE))
1071                 return;
1072
1073         if (dev->use_fast_reg) {
1074                 struct srp_fr_desc **pfr;
1075
1076                 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1077                         res = srp_inv_rkey(ch, (*pfr)->mr->rkey);
1078                         if (res < 0) {
1079                                 shost_printk(KERN_ERR, target->scsi_host, PFX
1080                                   "Queueing INV WR for rkey %#x failed (%d)\n",
1081                                   (*pfr)->mr->rkey, res);
1082                                 queue_work(system_long_wq,
1083                                            &target->tl_err_work);
1084                         }
1085                 }
1086                 if (req->nmdesc)
1087                         srp_fr_pool_put(ch->fr_pool, req->fr_list,
1088                                         req->nmdesc);
1089         } else if (dev->use_fmr) {
1090                 struct ib_pool_fmr **pfmr;
1091
1092                 for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++)
1093                         ib_fmr_pool_unmap(*pfmr);
1094         }
1095
1096         ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1097                         scmnd->sc_data_direction);
1098 }
1099
1100 /**
1101  * srp_claim_req - Take ownership of the scmnd associated with a request.
1102  * @ch: SRP RDMA channel.
1103  * @req: SRP request.
1104  * @sdev: If not NULL, only take ownership for this SCSI device.
1105  * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1106  *         ownership of @req->scmnd if it equals @scmnd.
1107  *
1108  * Return value:
1109  * Either NULL or a pointer to the SCSI command the caller became owner of.
1110  */
1111 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1112                                        struct srp_request *req,
1113                                        struct scsi_device *sdev,
1114                                        struct scsi_cmnd *scmnd)
1115 {
1116         unsigned long flags;
1117
1118         spin_lock_irqsave(&ch->lock, flags);
1119         if (req->scmnd &&
1120             (!sdev || req->scmnd->device == sdev) &&
1121             (!scmnd || req->scmnd == scmnd)) {
1122                 scmnd = req->scmnd;
1123                 req->scmnd = NULL;
1124         } else {
1125                 scmnd = NULL;
1126         }
1127         spin_unlock_irqrestore(&ch->lock, flags);
1128
1129         return scmnd;
1130 }
1131
1132 /**
1133  * srp_free_req() - Unmap data and add request to the free request list.
1134  * @ch:     SRP RDMA channel.
1135  * @req:    Request to be freed.
1136  * @scmnd:  SCSI command associated with @req.
1137  * @req_lim_delta: Amount to be added to @target->req_lim.
1138  */
1139 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1140                          struct scsi_cmnd *scmnd, s32 req_lim_delta)
1141 {
1142         unsigned long flags;
1143
1144         srp_unmap_data(scmnd, ch, req);
1145
1146         spin_lock_irqsave(&ch->lock, flags);
1147         ch->req_lim += req_lim_delta;
1148         spin_unlock_irqrestore(&ch->lock, flags);
1149 }
1150
1151 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1152                            struct scsi_device *sdev, int result)
1153 {
1154         struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1155
1156         if (scmnd) {
1157                 srp_free_req(ch, req, scmnd, 0);
1158                 scmnd->result = result;
1159                 scmnd->scsi_done(scmnd);
1160         }
1161 }
1162
1163 static void srp_terminate_io(struct srp_rport *rport)
1164 {
1165         struct srp_target_port *target = rport->lld_data;
1166         struct srp_rdma_ch *ch;
1167         struct Scsi_Host *shost = target->scsi_host;
1168         struct scsi_device *sdev;
1169         int i, j;
1170
1171         /*
1172          * Invoking srp_terminate_io() while srp_queuecommand() is running
1173          * is not safe. Hence the warning statement below.
1174          */
1175         shost_for_each_device(sdev, shost)
1176                 WARN_ON_ONCE(sdev->request_queue->request_fn_active);
1177
1178         for (i = 0; i < target->ch_count; i++) {
1179                 ch = &target->ch[i];
1180
1181                 for (j = 0; j < target->req_ring_size; ++j) {
1182                         struct srp_request *req = &ch->req_ring[j];
1183
1184                         srp_finish_req(ch, req, NULL,
1185                                        DID_TRANSPORT_FAILFAST << 16);
1186                 }
1187         }
1188 }
1189
1190 /*
1191  * It is up to the caller to ensure that srp_rport_reconnect() calls are
1192  * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1193  * srp_reset_device() or srp_reset_host() calls will occur while this function
1194  * is in progress. One way to realize that is not to call this function
1195  * directly but to call srp_reconnect_rport() instead since that last function
1196  * serializes calls of this function via rport->mutex and also blocks
1197  * srp_queuecommand() calls before invoking this function.
1198  */
1199 static int srp_rport_reconnect(struct srp_rport *rport)
1200 {
1201         struct srp_target_port *target = rport->lld_data;
1202         struct srp_rdma_ch *ch;
1203         int i, j, ret = 0;
1204         bool multich = false;
1205
1206         srp_disconnect_target(target);
1207
1208         if (target->state == SRP_TARGET_SCANNING)
1209                 return -ENODEV;
1210
1211         /*
1212          * Now get a new local CM ID so that we avoid confusing the target in
1213          * case things are really fouled up. Doing so also ensures that all CM
1214          * callbacks will have finished before a new QP is allocated.
1215          */
1216         for (i = 0; i < target->ch_count; i++) {
1217                 ch = &target->ch[i];
1218                 ret += srp_new_cm_id(ch);
1219         }
1220         for (i = 0; i < target->ch_count; i++) {
1221                 ch = &target->ch[i];
1222                 for (j = 0; j < target->req_ring_size; ++j) {
1223                         struct srp_request *req = &ch->req_ring[j];
1224
1225                         srp_finish_req(ch, req, NULL, DID_RESET << 16);
1226                 }
1227         }
1228         for (i = 0; i < target->ch_count; i++) {
1229                 ch = &target->ch[i];
1230                 /*
1231                  * Whether or not creating a new CM ID succeeded, create a new
1232                  * QP. This guarantees that all completion callback function
1233                  * invocations have finished before request resetting starts.
1234                  */
1235                 ret += srp_create_ch_ib(ch);
1236
1237                 INIT_LIST_HEAD(&ch->free_tx);
1238                 for (j = 0; j < target->queue_size; ++j)
1239                         list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1240         }
1241
1242         target->qp_in_error = false;
1243
1244         for (i = 0; i < target->ch_count; i++) {
1245                 ch = &target->ch[i];
1246                 if (ret)
1247                         break;
1248                 ret = srp_connect_ch(ch, multich);
1249                 multich = true;
1250         }
1251
1252         if (ret == 0)
1253                 shost_printk(KERN_INFO, target->scsi_host,
1254                              PFX "reconnect succeeded\n");
1255
1256         return ret;
1257 }
1258
1259 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1260                          unsigned int dma_len, u32 rkey)
1261 {
1262         struct srp_direct_buf *desc = state->desc;
1263
1264         WARN_ON_ONCE(!dma_len);
1265
1266         desc->va = cpu_to_be64(dma_addr);
1267         desc->key = cpu_to_be32(rkey);
1268         desc->len = cpu_to_be32(dma_len);
1269
1270         state->total_len += dma_len;
1271         state->desc++;
1272         state->ndesc++;
1273 }
1274
1275 static int srp_map_finish_fmr(struct srp_map_state *state,
1276                               struct srp_rdma_ch *ch)
1277 {
1278         struct srp_target_port *target = ch->target;
1279         struct srp_device *dev = target->srp_host->srp_dev;
1280         struct ib_pool_fmr *fmr;
1281         u64 io_addr = 0;
1282
1283         if (state->fmr.next >= state->fmr.end)
1284                 return -ENOMEM;
1285
1286         WARN_ON_ONCE(!dev->use_fmr);
1287
1288         if (state->npages == 0)
1289                 return 0;
1290
1291         if (state->npages == 1 && target->global_mr) {
1292                 srp_map_desc(state, state->base_dma_addr, state->dma_len,
1293                              target->global_mr->rkey);
1294                 goto reset_state;
1295         }
1296
1297         fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages,
1298                                    state->npages, io_addr);
1299         if (IS_ERR(fmr))
1300                 return PTR_ERR(fmr);
1301
1302         *state->fmr.next++ = fmr;
1303         state->nmdesc++;
1304
1305         srp_map_desc(state, state->base_dma_addr & ~dev->mr_page_mask,
1306                      state->dma_len, fmr->fmr->rkey);
1307
1308 reset_state:
1309         state->npages = 0;
1310         state->dma_len = 0;
1311
1312         return 0;
1313 }
1314
1315 static int srp_map_finish_fr(struct srp_map_state *state,
1316                              struct srp_rdma_ch *ch, int sg_nents)
1317 {
1318         struct srp_target_port *target = ch->target;
1319         struct srp_device *dev = target->srp_host->srp_dev;
1320         struct ib_send_wr *bad_wr;
1321         struct ib_reg_wr wr;
1322         struct srp_fr_desc *desc;
1323         u32 rkey;
1324         int n, err;
1325
1326         if (state->fr.next >= state->fr.end)
1327                 return -ENOMEM;
1328
1329         WARN_ON_ONCE(!dev->use_fast_reg);
1330
1331         if (sg_nents == 0)
1332                 return 0;
1333
1334         if (sg_nents == 1 && target->global_mr) {
1335                 srp_map_desc(state, sg_dma_address(state->sg),
1336                              sg_dma_len(state->sg),
1337                              target->global_mr->rkey);
1338                 return 1;
1339         }
1340
1341         desc = srp_fr_pool_get(ch->fr_pool);
1342         if (!desc)
1343                 return -ENOMEM;
1344
1345         rkey = ib_inc_rkey(desc->mr->rkey);
1346         ib_update_fast_reg_key(desc->mr, rkey);
1347
1348         n = ib_map_mr_sg(desc->mr, state->sg, sg_nents, dev->mr_page_size);
1349         if (unlikely(n < 0))
1350                 return n;
1351
1352         wr.wr.next = NULL;
1353         wr.wr.opcode = IB_WR_REG_MR;
1354         wr.wr.wr_id = FAST_REG_WR_ID_MASK;
1355         wr.wr.num_sge = 0;
1356         wr.wr.send_flags = 0;
1357         wr.mr = desc->mr;
1358         wr.key = desc->mr->rkey;
1359         wr.access = (IB_ACCESS_LOCAL_WRITE |
1360                      IB_ACCESS_REMOTE_READ |
1361                      IB_ACCESS_REMOTE_WRITE);
1362
1363         *state->fr.next++ = desc;
1364         state->nmdesc++;
1365
1366         srp_map_desc(state, desc->mr->iova,
1367                      desc->mr->length, desc->mr->rkey);
1368
1369         err = ib_post_send(ch->qp, &wr.wr, &bad_wr);
1370         if (unlikely(err))
1371                 return err;
1372
1373         return n;
1374 }
1375
1376 static int srp_map_sg_entry(struct srp_map_state *state,
1377                             struct srp_rdma_ch *ch,
1378                             struct scatterlist *sg, int sg_index)
1379 {
1380         struct srp_target_port *target = ch->target;
1381         struct srp_device *dev = target->srp_host->srp_dev;
1382         struct ib_device *ibdev = dev->dev;
1383         dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg);
1384         unsigned int dma_len = ib_sg_dma_len(ibdev, sg);
1385         unsigned int len = 0;
1386         int ret;
1387
1388         WARN_ON_ONCE(!dma_len);
1389
1390         while (dma_len) {
1391                 unsigned offset = dma_addr & ~dev->mr_page_mask;
1392                 if (state->npages == dev->max_pages_per_mr || offset != 0) {
1393                         ret = srp_map_finish_fmr(state, ch);
1394                         if (ret)
1395                                 return ret;
1396                 }
1397
1398                 len = min_t(unsigned int, dma_len, dev->mr_page_size - offset);
1399
1400                 if (!state->npages)
1401                         state->base_dma_addr = dma_addr;
1402                 state->pages[state->npages++] = dma_addr & dev->mr_page_mask;
1403                 state->dma_len += len;
1404                 dma_addr += len;
1405                 dma_len -= len;
1406         }
1407
1408         /*
1409          * If the last entry of the MR wasn't a full page, then we need to
1410          * close it out and start a new one -- we can only merge at page
1411          * boundries.
1412          */
1413         ret = 0;
1414         if (len != dev->mr_page_size)
1415                 ret = srp_map_finish_fmr(state, ch);
1416         return ret;
1417 }
1418
1419 static int srp_map_sg_fmr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1420                           struct srp_request *req, struct scatterlist *scat,
1421                           int count)
1422 {
1423         struct scatterlist *sg;
1424         int i, ret;
1425
1426         state->desc = req->indirect_desc;
1427         state->pages = req->map_page;
1428         state->fmr.next = req->fmr_list;
1429         state->fmr.end = req->fmr_list + ch->target->cmd_sg_cnt;
1430
1431         for_each_sg(scat, sg, count, i) {
1432                 ret = srp_map_sg_entry(state, ch, sg, i);
1433                 if (ret)
1434                         return ret;
1435         }
1436
1437         ret = srp_map_finish_fmr(state, ch);
1438         if (ret)
1439                 return ret;
1440
1441         req->nmdesc = state->nmdesc;
1442
1443         return 0;
1444 }
1445
1446 static int srp_map_sg_fr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1447                          struct srp_request *req, struct scatterlist *scat,
1448                          int count)
1449 {
1450         state->desc = req->indirect_desc;
1451         state->fr.next = req->fr_list;
1452         state->fr.end = req->fr_list + ch->target->cmd_sg_cnt;
1453         state->sg = scat;
1454
1455         while (count) {
1456                 int i, n;
1457
1458                 n = srp_map_finish_fr(state, ch, count);
1459                 if (unlikely(n < 0))
1460                         return n;
1461
1462                 count -= n;
1463                 for (i = 0; i < n; i++)
1464                         state->sg = sg_next(state->sg);
1465         }
1466
1467         req->nmdesc = state->nmdesc;
1468
1469         return 0;
1470 }
1471
1472 static int srp_map_sg_dma(struct srp_map_state *state, struct srp_rdma_ch *ch,
1473                           struct srp_request *req, struct scatterlist *scat,
1474                           int count)
1475 {
1476         struct srp_target_port *target = ch->target;
1477         struct srp_device *dev = target->srp_host->srp_dev;
1478         struct scatterlist *sg;
1479         int i;
1480
1481         state->desc = req->indirect_desc;
1482         for_each_sg(scat, sg, count, i) {
1483                 srp_map_desc(state, ib_sg_dma_address(dev->dev, sg),
1484                              ib_sg_dma_len(dev->dev, sg),
1485                              target->global_mr->rkey);
1486         }
1487
1488         req->nmdesc = state->nmdesc;
1489
1490         return 0;
1491 }
1492
1493 /*
1494  * Register the indirect data buffer descriptor with the HCA.
1495  *
1496  * Note: since the indirect data buffer descriptor has been allocated with
1497  * kmalloc() it is guaranteed that this buffer is a physically contiguous
1498  * memory buffer.
1499  */
1500 static int srp_map_idb(struct srp_rdma_ch *ch, struct srp_request *req,
1501                        void **next_mr, void **end_mr, u32 idb_len,
1502                        __be32 *idb_rkey)
1503 {
1504         struct srp_target_port *target = ch->target;
1505         struct srp_device *dev = target->srp_host->srp_dev;
1506         struct srp_map_state state;
1507         struct srp_direct_buf idb_desc;
1508         u64 idb_pages[1];
1509         struct scatterlist idb_sg[1];
1510         int ret;
1511
1512         memset(&state, 0, sizeof(state));
1513         memset(&idb_desc, 0, sizeof(idb_desc));
1514         state.gen.next = next_mr;
1515         state.gen.end = end_mr;
1516         state.desc = &idb_desc;
1517         state.base_dma_addr = req->indirect_dma_addr;
1518         state.dma_len = idb_len;
1519
1520         if (dev->use_fast_reg) {
1521                 state.sg = idb_sg;
1522                 sg_set_buf(idb_sg, req->indirect_desc, idb_len);
1523                 idb_sg->dma_address = req->indirect_dma_addr; /* hack! */
1524 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1525                 idb_sg->dma_length = idb_sg->length;          /* hack^2 */
1526 #endif
1527                 ret = srp_map_finish_fr(&state, ch, 1);
1528                 if (ret < 0)
1529                         return ret;
1530         } else if (dev->use_fmr) {
1531                 state.pages = idb_pages;
1532                 state.pages[0] = (req->indirect_dma_addr &
1533                                   dev->mr_page_mask);
1534                 state.npages = 1;
1535                 ret = srp_map_finish_fmr(&state, ch);
1536                 if (ret < 0)
1537                         return ret;
1538         } else {
1539                 return -EINVAL;
1540         }
1541
1542         *idb_rkey = idb_desc.key;
1543
1544         return 0;
1545 }
1546
1547 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1548                         struct srp_request *req)
1549 {
1550         struct srp_target_port *target = ch->target;
1551         struct scatterlist *scat;
1552         struct srp_cmd *cmd = req->cmd->buf;
1553         int len, nents, count, ret;
1554         struct srp_device *dev;
1555         struct ib_device *ibdev;
1556         struct srp_map_state state;
1557         struct srp_indirect_buf *indirect_hdr;
1558         u32 idb_len, table_len;
1559         __be32 idb_rkey;
1560         u8 fmt;
1561
1562         if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1563                 return sizeof (struct srp_cmd);
1564
1565         if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1566             scmnd->sc_data_direction != DMA_TO_DEVICE) {
1567                 shost_printk(KERN_WARNING, target->scsi_host,
1568                              PFX "Unhandled data direction %d\n",
1569                              scmnd->sc_data_direction);
1570                 return -EINVAL;
1571         }
1572
1573         nents = scsi_sg_count(scmnd);
1574         scat  = scsi_sglist(scmnd);
1575
1576         dev = target->srp_host->srp_dev;
1577         ibdev = dev->dev;
1578
1579         count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1580         if (unlikely(count == 0))
1581                 return -EIO;
1582
1583         fmt = SRP_DATA_DESC_DIRECT;
1584         len = sizeof (struct srp_cmd) + sizeof (struct srp_direct_buf);
1585
1586         if (count == 1 && target->global_mr) {
1587                 /*
1588                  * The midlayer only generated a single gather/scatter
1589                  * entry, or DMA mapping coalesced everything to a
1590                  * single entry.  So a direct descriptor along with
1591                  * the DMA MR suffices.
1592                  */
1593                 struct srp_direct_buf *buf = (void *) cmd->add_data;
1594
1595                 buf->va  = cpu_to_be64(ib_sg_dma_address(ibdev, scat));
1596                 buf->key = cpu_to_be32(target->global_mr->rkey);
1597                 buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat));
1598
1599                 req->nmdesc = 0;
1600                 goto map_complete;
1601         }
1602
1603         /*
1604          * We have more than one scatter/gather entry, so build our indirect
1605          * descriptor table, trying to merge as many entries as we can.
1606          */
1607         indirect_hdr = (void *) cmd->add_data;
1608
1609         ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1610                                    target->indirect_size, DMA_TO_DEVICE);
1611
1612         memset(&state, 0, sizeof(state));
1613         if (dev->use_fast_reg)
1614                 srp_map_sg_fr(&state, ch, req, scat, count);
1615         else if (dev->use_fmr)
1616                 srp_map_sg_fmr(&state, ch, req, scat, count);
1617         else
1618                 srp_map_sg_dma(&state, ch, req, scat, count);
1619
1620         /* We've mapped the request, now pull as much of the indirect
1621          * descriptor table as we can into the command buffer. If this
1622          * target is not using an external indirect table, we are
1623          * guaranteed to fit into the command, as the SCSI layer won't
1624          * give us more S/G entries than we allow.
1625          */
1626         if (state.ndesc == 1) {
1627                 /*
1628                  * Memory registration collapsed the sg-list into one entry,
1629                  * so use a direct descriptor.
1630                  */
1631                 struct srp_direct_buf *buf = (void *) cmd->add_data;
1632
1633                 *buf = req->indirect_desc[0];
1634                 goto map_complete;
1635         }
1636
1637         if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1638                                                 !target->allow_ext_sg)) {
1639                 shost_printk(KERN_ERR, target->scsi_host,
1640                              "Could not fit S/G list into SRP_CMD\n");
1641                 return -EIO;
1642         }
1643
1644         count = min(state.ndesc, target->cmd_sg_cnt);
1645         table_len = state.ndesc * sizeof (struct srp_direct_buf);
1646         idb_len = sizeof(struct srp_indirect_buf) + table_len;
1647
1648         fmt = SRP_DATA_DESC_INDIRECT;
1649         len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf);
1650         len += count * sizeof (struct srp_direct_buf);
1651
1652         memcpy(indirect_hdr->desc_list, req->indirect_desc,
1653                count * sizeof (struct srp_direct_buf));
1654
1655         if (!target->global_mr) {
1656                 ret = srp_map_idb(ch, req, state.gen.next, state.gen.end,
1657                                   idb_len, &idb_rkey);
1658                 if (ret < 0)
1659                         return ret;
1660                 req->nmdesc++;
1661         } else {
1662                 idb_rkey = cpu_to_be32(target->global_mr->rkey);
1663         }
1664
1665         indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1666         indirect_hdr->table_desc.key = idb_rkey;
1667         indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1668         indirect_hdr->len = cpu_to_be32(state.total_len);
1669
1670         if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1671                 cmd->data_out_desc_cnt = count;
1672         else
1673                 cmd->data_in_desc_cnt = count;
1674
1675         ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1676                                       DMA_TO_DEVICE);
1677
1678 map_complete:
1679         if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1680                 cmd->buf_fmt = fmt << 4;
1681         else
1682                 cmd->buf_fmt = fmt;
1683
1684         return len;
1685 }
1686
1687 /*
1688  * Return an IU and possible credit to the free pool
1689  */
1690 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1691                           enum srp_iu_type iu_type)
1692 {
1693         unsigned long flags;
1694
1695         spin_lock_irqsave(&ch->lock, flags);
1696         list_add(&iu->list, &ch->free_tx);
1697         if (iu_type != SRP_IU_RSP)
1698                 ++ch->req_lim;
1699         spin_unlock_irqrestore(&ch->lock, flags);
1700 }
1701
1702 /*
1703  * Must be called with ch->lock held to protect req_lim and free_tx.
1704  * If IU is not sent, it must be returned using srp_put_tx_iu().
1705  *
1706  * Note:
1707  * An upper limit for the number of allocated information units for each
1708  * request type is:
1709  * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1710  *   more than Scsi_Host.can_queue requests.
1711  * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1712  * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1713  *   one unanswered SRP request to an initiator.
1714  */
1715 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1716                                       enum srp_iu_type iu_type)
1717 {
1718         struct srp_target_port *target = ch->target;
1719         s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1720         struct srp_iu *iu;
1721
1722         srp_send_completion(ch->send_cq, ch);
1723
1724         if (list_empty(&ch->free_tx))
1725                 return NULL;
1726
1727         /* Initiator responses to target requests do not consume credits */
1728         if (iu_type != SRP_IU_RSP) {
1729                 if (ch->req_lim <= rsv) {
1730                         ++target->zero_req_lim;
1731                         return NULL;
1732                 }
1733
1734                 --ch->req_lim;
1735         }
1736
1737         iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1738         list_del(&iu->list);
1739         return iu;
1740 }
1741
1742 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1743 {
1744         struct srp_target_port *target = ch->target;
1745         struct ib_sge list;
1746         struct ib_send_wr wr, *bad_wr;
1747
1748         list.addr   = iu->dma;
1749         list.length = len;
1750         list.lkey   = target->lkey;
1751
1752         wr.next       = NULL;
1753         wr.wr_id      = (uintptr_t) iu;
1754         wr.sg_list    = &list;
1755         wr.num_sge    = 1;
1756         wr.opcode     = IB_WR_SEND;
1757         wr.send_flags = IB_SEND_SIGNALED;
1758
1759         return ib_post_send(ch->qp, &wr, &bad_wr);
1760 }
1761
1762 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1763 {
1764         struct srp_target_port *target = ch->target;
1765         struct ib_recv_wr wr, *bad_wr;
1766         struct ib_sge list;
1767
1768         list.addr   = iu->dma;
1769         list.length = iu->size;
1770         list.lkey   = target->lkey;
1771
1772         wr.next     = NULL;
1773         wr.wr_id    = (uintptr_t) iu;
1774         wr.sg_list  = &list;
1775         wr.num_sge  = 1;
1776
1777         return ib_post_recv(ch->qp, &wr, &bad_wr);
1778 }
1779
1780 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1781 {
1782         struct srp_target_port *target = ch->target;
1783         struct srp_request *req;
1784         struct scsi_cmnd *scmnd;
1785         unsigned long flags;
1786
1787         if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1788                 spin_lock_irqsave(&ch->lock, flags);
1789                 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1790                 spin_unlock_irqrestore(&ch->lock, flags);
1791
1792                 ch->tsk_mgmt_status = -1;
1793                 if (be32_to_cpu(rsp->resp_data_len) >= 4)
1794                         ch->tsk_mgmt_status = rsp->data[3];
1795                 complete(&ch->tsk_mgmt_done);
1796         } else {
1797                 scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1798                 if (scmnd) {
1799                         req = (void *)scmnd->host_scribble;
1800                         scmnd = srp_claim_req(ch, req, NULL, scmnd);
1801                 }
1802                 if (!scmnd) {
1803                         shost_printk(KERN_ERR, target->scsi_host,
1804                                      "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1805                                      rsp->tag, ch - target->ch, ch->qp->qp_num);
1806
1807                         spin_lock_irqsave(&ch->lock, flags);
1808                         ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1809                         spin_unlock_irqrestore(&ch->lock, flags);
1810
1811                         return;
1812                 }
1813                 scmnd->result = rsp->status;
1814
1815                 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1816                         memcpy(scmnd->sense_buffer, rsp->data +
1817                                be32_to_cpu(rsp->resp_data_len),
1818                                min_t(int, be32_to_cpu(rsp->sense_data_len),
1819                                      SCSI_SENSE_BUFFERSIZE));
1820                 }
1821
1822                 if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1823                         scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1824                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1825                         scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1826                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1827                         scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1828                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1829                         scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1830
1831                 srp_free_req(ch, req, scmnd,
1832                              be32_to_cpu(rsp->req_lim_delta));
1833
1834                 scmnd->host_scribble = NULL;
1835                 scmnd->scsi_done(scmnd);
1836         }
1837 }
1838
1839 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1840                                void *rsp, int len)
1841 {
1842         struct srp_target_port *target = ch->target;
1843         struct ib_device *dev = target->srp_host->srp_dev->dev;
1844         unsigned long flags;
1845         struct srp_iu *iu;
1846         int err;
1847
1848         spin_lock_irqsave(&ch->lock, flags);
1849         ch->req_lim += req_delta;
1850         iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
1851         spin_unlock_irqrestore(&ch->lock, flags);
1852
1853         if (!iu) {
1854                 shost_printk(KERN_ERR, target->scsi_host, PFX
1855                              "no IU available to send response\n");
1856                 return 1;
1857         }
1858
1859         ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
1860         memcpy(iu->buf, rsp, len);
1861         ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
1862
1863         err = srp_post_send(ch, iu, len);
1864         if (err) {
1865                 shost_printk(KERN_ERR, target->scsi_host, PFX
1866                              "unable to post response: %d\n", err);
1867                 srp_put_tx_iu(ch, iu, SRP_IU_RSP);
1868         }
1869
1870         return err;
1871 }
1872
1873 static void srp_process_cred_req(struct srp_rdma_ch *ch,
1874                                  struct srp_cred_req *req)
1875 {
1876         struct srp_cred_rsp rsp = {
1877                 .opcode = SRP_CRED_RSP,
1878                 .tag = req->tag,
1879         };
1880         s32 delta = be32_to_cpu(req->req_lim_delta);
1881
1882         if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1883                 shost_printk(KERN_ERR, ch->target->scsi_host, PFX
1884                              "problems processing SRP_CRED_REQ\n");
1885 }
1886
1887 static void srp_process_aer_req(struct srp_rdma_ch *ch,
1888                                 struct srp_aer_req *req)
1889 {
1890         struct srp_target_port *target = ch->target;
1891         struct srp_aer_rsp rsp = {
1892                 .opcode = SRP_AER_RSP,
1893                 .tag = req->tag,
1894         };
1895         s32 delta = be32_to_cpu(req->req_lim_delta);
1896
1897         shost_printk(KERN_ERR, target->scsi_host, PFX
1898                      "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
1899
1900         if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1901                 shost_printk(KERN_ERR, target->scsi_host, PFX
1902                              "problems processing SRP_AER_REQ\n");
1903 }
1904
1905 static void srp_handle_recv(struct srp_rdma_ch *ch, struct ib_wc *wc)
1906 {
1907         struct srp_target_port *target = ch->target;
1908         struct ib_device *dev = target->srp_host->srp_dev->dev;
1909         struct srp_iu *iu = (struct srp_iu *) (uintptr_t) wc->wr_id;
1910         int res;
1911         u8 opcode;
1912
1913         ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
1914                                    DMA_FROM_DEVICE);
1915
1916         opcode = *(u8 *) iu->buf;
1917
1918         if (0) {
1919                 shost_printk(KERN_ERR, target->scsi_host,
1920                              PFX "recv completion, opcode 0x%02x\n", opcode);
1921                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
1922                                iu->buf, wc->byte_len, true);
1923         }
1924
1925         switch (opcode) {
1926         case SRP_RSP:
1927                 srp_process_rsp(ch, iu->buf);
1928                 break;
1929
1930         case SRP_CRED_REQ:
1931                 srp_process_cred_req(ch, iu->buf);
1932                 break;
1933
1934         case SRP_AER_REQ:
1935                 srp_process_aer_req(ch, iu->buf);
1936                 break;
1937
1938         case SRP_T_LOGOUT:
1939                 /* XXX Handle target logout */
1940                 shost_printk(KERN_WARNING, target->scsi_host,
1941                              PFX "Got target logout request\n");
1942                 break;
1943
1944         default:
1945                 shost_printk(KERN_WARNING, target->scsi_host,
1946                              PFX "Unhandled SRP opcode 0x%02x\n", opcode);
1947                 break;
1948         }
1949
1950         ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
1951                                       DMA_FROM_DEVICE);
1952
1953         res = srp_post_recv(ch, iu);
1954         if (res != 0)
1955                 shost_printk(KERN_ERR, target->scsi_host,
1956                              PFX "Recv failed with error code %d\n", res);
1957 }
1958
1959 /**
1960  * srp_tl_err_work() - handle a transport layer error
1961  * @work: Work structure embedded in an SRP target port.
1962  *
1963  * Note: This function may get invoked before the rport has been created,
1964  * hence the target->rport test.
1965  */
1966 static void srp_tl_err_work(struct work_struct *work)
1967 {
1968         struct srp_target_port *target;
1969
1970         target = container_of(work, struct srp_target_port, tl_err_work);
1971         if (target->rport)
1972                 srp_start_tl_fail_timers(target->rport);
1973 }
1974
1975 static void srp_handle_qp_err(u64 wr_id, enum ib_wc_status wc_status,
1976                               bool send_err, struct srp_rdma_ch *ch)
1977 {
1978         struct srp_target_port *target = ch->target;
1979
1980         if (wr_id == SRP_LAST_WR_ID) {
1981                 complete(&ch->done);
1982                 return;
1983         }
1984
1985         if (ch->connected && !target->qp_in_error) {
1986                 if (wr_id & LOCAL_INV_WR_ID_MASK) {
1987                         shost_printk(KERN_ERR, target->scsi_host, PFX
1988                                      "LOCAL_INV failed with status %s (%d)\n",
1989                                      ib_wc_status_msg(wc_status), wc_status);
1990                 } else if (wr_id & FAST_REG_WR_ID_MASK) {
1991                         shost_printk(KERN_ERR, target->scsi_host, PFX
1992                                      "FAST_REG_MR failed status %s (%d)\n",
1993                                      ib_wc_status_msg(wc_status), wc_status);
1994                 } else {
1995                         shost_printk(KERN_ERR, target->scsi_host,
1996                                      PFX "failed %s status %s (%d) for iu %p\n",
1997                                      send_err ? "send" : "receive",
1998                                      ib_wc_status_msg(wc_status), wc_status,
1999                                      (void *)(uintptr_t)wr_id);
2000                 }
2001                 queue_work(system_long_wq, &target->tl_err_work);
2002         }
2003         target->qp_in_error = true;
2004 }
2005
2006 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr)
2007 {
2008         struct srp_rdma_ch *ch = ch_ptr;
2009         struct ib_wc wc;
2010
2011         ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2012         while (ib_poll_cq(cq, 1, &wc) > 0) {
2013                 if (likely(wc.status == IB_WC_SUCCESS)) {
2014                         srp_handle_recv(ch, &wc);
2015                 } else {
2016                         srp_handle_qp_err(wc.wr_id, wc.status, false, ch);
2017                 }
2018         }
2019 }
2020
2021 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr)
2022 {
2023         struct srp_rdma_ch *ch = ch_ptr;
2024         struct ib_wc wc;
2025         struct srp_iu *iu;
2026
2027         while (ib_poll_cq(cq, 1, &wc) > 0) {
2028                 if (likely(wc.status == IB_WC_SUCCESS)) {
2029                         iu = (struct srp_iu *) (uintptr_t) wc.wr_id;
2030                         list_add(&iu->list, &ch->free_tx);
2031                 } else {
2032                         srp_handle_qp_err(wc.wr_id, wc.status, true, ch);
2033                 }
2034         }
2035 }
2036
2037 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
2038 {
2039         struct srp_target_port *target = host_to_target(shost);
2040         struct srp_rport *rport = target->rport;
2041         struct srp_rdma_ch *ch;
2042         struct srp_request *req;
2043         struct srp_iu *iu;
2044         struct srp_cmd *cmd;
2045         struct ib_device *dev;
2046         unsigned long flags;
2047         u32 tag;
2048         u16 idx;
2049         int len, ret;
2050         const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler;
2051
2052         /*
2053          * The SCSI EH thread is the only context from which srp_queuecommand()
2054          * can get invoked for blocked devices (SDEV_BLOCK /
2055          * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by
2056          * locking the rport mutex if invoked from inside the SCSI EH.
2057          */
2058         if (in_scsi_eh)
2059                 mutex_lock(&rport->mutex);
2060
2061         scmnd->result = srp_chkready(target->rport);
2062         if (unlikely(scmnd->result))
2063                 goto err;
2064
2065         WARN_ON_ONCE(scmnd->request->tag < 0);
2066         tag = blk_mq_unique_tag(scmnd->request);
2067         ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2068         idx = blk_mq_unique_tag_to_tag(tag);
2069         WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n",
2070                   dev_name(&shost->shost_gendev), tag, idx,
2071                   target->req_ring_size);
2072
2073         spin_lock_irqsave(&ch->lock, flags);
2074         iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2075         spin_unlock_irqrestore(&ch->lock, flags);
2076
2077         if (!iu)
2078                 goto err;
2079
2080         req = &ch->req_ring[idx];
2081         dev = target->srp_host->srp_dev->dev;
2082         ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len,
2083                                    DMA_TO_DEVICE);
2084
2085         scmnd->host_scribble = (void *) req;
2086
2087         cmd = iu->buf;
2088         memset(cmd, 0, sizeof *cmd);
2089
2090         cmd->opcode = SRP_CMD;
2091         int_to_scsilun(scmnd->device->lun, &cmd->lun);
2092         cmd->tag    = tag;
2093         memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2094
2095         req->scmnd    = scmnd;
2096         req->cmd      = iu;
2097
2098         len = srp_map_data(scmnd, ch, req);
2099         if (len < 0) {
2100                 shost_printk(KERN_ERR, target->scsi_host,
2101                              PFX "Failed to map data (%d)\n", len);
2102                 /*
2103                  * If we ran out of memory descriptors (-ENOMEM) because an
2104                  * application is queuing many requests with more than
2105                  * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2106                  * to reduce queue depth temporarily.
2107                  */
2108                 scmnd->result = len == -ENOMEM ?
2109                         DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
2110                 goto err_iu;
2111         }
2112
2113         ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len,
2114                                       DMA_TO_DEVICE);
2115
2116         if (srp_post_send(ch, iu, len)) {
2117                 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2118                 goto err_unmap;
2119         }
2120
2121         ret = 0;
2122
2123 unlock_rport:
2124         if (in_scsi_eh)
2125                 mutex_unlock(&rport->mutex);
2126
2127         return ret;
2128
2129 err_unmap:
2130         srp_unmap_data(scmnd, ch, req);
2131
2132 err_iu:
2133         srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2134
2135         /*
2136          * Avoid that the loops that iterate over the request ring can
2137          * encounter a dangling SCSI command pointer.
2138          */
2139         req->scmnd = NULL;
2140
2141 err:
2142         if (scmnd->result) {
2143                 scmnd->scsi_done(scmnd);
2144                 ret = 0;
2145         } else {
2146                 ret = SCSI_MLQUEUE_HOST_BUSY;
2147         }
2148
2149         goto unlock_rport;
2150 }
2151
2152 /*
2153  * Note: the resources allocated in this function are freed in
2154  * srp_free_ch_ib().
2155  */
2156 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2157 {
2158         struct srp_target_port *target = ch->target;
2159         int i;
2160
2161         ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2162                               GFP_KERNEL);
2163         if (!ch->rx_ring)
2164                 goto err_no_ring;
2165         ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2166                               GFP_KERNEL);
2167         if (!ch->tx_ring)
2168                 goto err_no_ring;
2169
2170         for (i = 0; i < target->queue_size; ++i) {
2171                 ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2172                                               ch->max_ti_iu_len,
2173                                               GFP_KERNEL, DMA_FROM_DEVICE);
2174                 if (!ch->rx_ring[i])
2175                         goto err;
2176         }
2177
2178         for (i = 0; i < target->queue_size; ++i) {
2179                 ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2180                                               target->max_iu_len,
2181                                               GFP_KERNEL, DMA_TO_DEVICE);
2182                 if (!ch->tx_ring[i])
2183                         goto err;
2184
2185                 list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2186         }
2187
2188         return 0;
2189
2190 err:
2191         for (i = 0; i < target->queue_size; ++i) {
2192                 srp_free_iu(target->srp_host, ch->rx_ring[i]);
2193                 srp_free_iu(target->srp_host, ch->tx_ring[i]);
2194         }
2195
2196
2197 err_no_ring:
2198         kfree(ch->tx_ring);
2199         ch->tx_ring = NULL;
2200         kfree(ch->rx_ring);
2201         ch->rx_ring = NULL;
2202
2203         return -ENOMEM;
2204 }
2205
2206 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2207 {
2208         uint64_t T_tr_ns, max_compl_time_ms;
2209         uint32_t rq_tmo_jiffies;
2210
2211         /*
2212          * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2213          * table 91), both the QP timeout and the retry count have to be set
2214          * for RC QP's during the RTR to RTS transition.
2215          */
2216         WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2217                      (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2218
2219         /*
2220          * Set target->rq_tmo_jiffies to one second more than the largest time
2221          * it can take before an error completion is generated. See also
2222          * C9-140..142 in the IBTA spec for more information about how to
2223          * convert the QP Local ACK Timeout value to nanoseconds.
2224          */
2225         T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2226         max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2227         do_div(max_compl_time_ms, NSEC_PER_MSEC);
2228         rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2229
2230         return rq_tmo_jiffies;
2231 }
2232
2233 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2234                                const struct srp_login_rsp *lrsp,
2235                                struct srp_rdma_ch *ch)
2236 {
2237         struct srp_target_port *target = ch->target;
2238         struct ib_qp_attr *qp_attr = NULL;
2239         int attr_mask = 0;
2240         int ret;
2241         int i;
2242
2243         if (lrsp->opcode == SRP_LOGIN_RSP) {
2244                 ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2245                 ch->req_lim       = be32_to_cpu(lrsp->req_lim_delta);
2246
2247                 /*
2248                  * Reserve credits for task management so we don't
2249                  * bounce requests back to the SCSI mid-layer.
2250                  */
2251                 target->scsi_host->can_queue
2252                         = min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2253                               target->scsi_host->can_queue);
2254                 target->scsi_host->cmd_per_lun
2255                         = min_t(int, target->scsi_host->can_queue,
2256                                 target->scsi_host->cmd_per_lun);
2257         } else {
2258                 shost_printk(KERN_WARNING, target->scsi_host,
2259                              PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2260                 ret = -ECONNRESET;
2261                 goto error;
2262         }
2263
2264         if (!ch->rx_ring) {
2265                 ret = srp_alloc_iu_bufs(ch);
2266                 if (ret)
2267                         goto error;
2268         }
2269
2270         ret = -ENOMEM;
2271         qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL);
2272         if (!qp_attr)
2273                 goto error;
2274
2275         qp_attr->qp_state = IB_QPS_RTR;
2276         ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2277         if (ret)
2278                 goto error_free;
2279
2280         ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2281         if (ret)
2282                 goto error_free;
2283
2284         for (i = 0; i < target->queue_size; i++) {
2285                 struct srp_iu *iu = ch->rx_ring[i];
2286
2287                 ret = srp_post_recv(ch, iu);
2288                 if (ret)
2289                         goto error_free;
2290         }
2291
2292         qp_attr->qp_state = IB_QPS_RTS;
2293         ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2294         if (ret)
2295                 goto error_free;
2296
2297         target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2298
2299         ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2300         if (ret)
2301                 goto error_free;
2302
2303         ret = ib_send_cm_rtu(cm_id, NULL, 0);
2304
2305 error_free:
2306         kfree(qp_attr);
2307
2308 error:
2309         ch->status = ret;
2310 }
2311
2312 static void srp_cm_rej_handler(struct ib_cm_id *cm_id,
2313                                struct ib_cm_event *event,
2314                                struct srp_rdma_ch *ch)
2315 {
2316         struct srp_target_port *target = ch->target;
2317         struct Scsi_Host *shost = target->scsi_host;
2318         struct ib_class_port_info *cpi;
2319         int opcode;
2320
2321         switch (event->param.rej_rcvd.reason) {
2322         case IB_CM_REJ_PORT_CM_REDIRECT:
2323                 cpi = event->param.rej_rcvd.ari;
2324                 ch->path.dlid = cpi->redirect_lid;
2325                 ch->path.pkey = cpi->redirect_pkey;
2326                 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2327                 memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16);
2328
2329                 ch->status = ch->path.dlid ?
2330                         SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2331                 break;
2332
2333         case IB_CM_REJ_PORT_REDIRECT:
2334                 if (srp_target_is_topspin(target)) {
2335                         /*
2336                          * Topspin/Cisco SRP gateways incorrectly send
2337                          * reject reason code 25 when they mean 24
2338                          * (port redirect).
2339                          */
2340                         memcpy(ch->path.dgid.raw,
2341                                event->param.rej_rcvd.ari, 16);
2342
2343                         shost_printk(KERN_DEBUG, shost,
2344                                      PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2345                                      be64_to_cpu(ch->path.dgid.global.subnet_prefix),
2346                                      be64_to_cpu(ch->path.dgid.global.interface_id));
2347
2348                         ch->status = SRP_PORT_REDIRECT;
2349                 } else {
2350                         shost_printk(KERN_WARNING, shost,
2351                                      "  REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2352                         ch->status = -ECONNRESET;
2353                 }
2354                 break;
2355
2356         case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2357                 shost_printk(KERN_WARNING, shost,
2358                             "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2359                 ch->status = -ECONNRESET;
2360                 break;
2361
2362         case IB_CM_REJ_CONSUMER_DEFINED:
2363                 opcode = *(u8 *) event->private_data;
2364                 if (opcode == SRP_LOGIN_REJ) {
2365                         struct srp_login_rej *rej = event->private_data;
2366                         u32 reason = be32_to_cpu(rej->reason);
2367
2368                         if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2369                                 shost_printk(KERN_WARNING, shost,
2370                                              PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2371                         else
2372                                 shost_printk(KERN_WARNING, shost, PFX
2373                                              "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2374                                              target->sgid.raw,
2375                                              target->orig_dgid.raw, reason);
2376                 } else
2377                         shost_printk(KERN_WARNING, shost,
2378                                      "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2379                                      " opcode 0x%02x\n", opcode);
2380                 ch->status = -ECONNRESET;
2381                 break;
2382
2383         case IB_CM_REJ_STALE_CONN:
2384                 shost_printk(KERN_WARNING, shost, "  REJ reason: stale connection\n");
2385                 ch->status = SRP_STALE_CONN;
2386                 break;
2387
2388         default:
2389                 shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2390                              event->param.rej_rcvd.reason);
2391                 ch->status = -ECONNRESET;
2392         }
2393 }
2394
2395 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2396 {
2397         struct srp_rdma_ch *ch = cm_id->context;
2398         struct srp_target_port *target = ch->target;
2399         int comp = 0;
2400
2401         switch (event->event) {
2402         case IB_CM_REQ_ERROR:
2403                 shost_printk(KERN_DEBUG, target->scsi_host,
2404                              PFX "Sending CM REQ failed\n");
2405                 comp = 1;
2406                 ch->status = -ECONNRESET;
2407                 break;
2408
2409         case IB_CM_REP_RECEIVED:
2410                 comp = 1;
2411                 srp_cm_rep_handler(cm_id, event->private_data, ch);
2412                 break;
2413
2414         case IB_CM_REJ_RECEIVED:
2415                 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2416                 comp = 1;
2417
2418                 srp_cm_rej_handler(cm_id, event, ch);
2419                 break;
2420
2421         case IB_CM_DREQ_RECEIVED:
2422                 shost_printk(KERN_WARNING, target->scsi_host,
2423                              PFX "DREQ received - connection closed\n");
2424                 ch->connected = false;
2425                 if (ib_send_cm_drep(cm_id, NULL, 0))
2426                         shost_printk(KERN_ERR, target->scsi_host,
2427                                      PFX "Sending CM DREP failed\n");
2428                 queue_work(system_long_wq, &target->tl_err_work);
2429                 break;
2430
2431         case IB_CM_TIMEWAIT_EXIT:
2432                 shost_printk(KERN_ERR, target->scsi_host,
2433                              PFX "connection closed\n");
2434                 comp = 1;
2435
2436                 ch->status = 0;
2437                 break;
2438
2439         case IB_CM_MRA_RECEIVED:
2440         case IB_CM_DREQ_ERROR:
2441         case IB_CM_DREP_RECEIVED:
2442                 break;
2443
2444         default:
2445                 shost_printk(KERN_WARNING, target->scsi_host,
2446                              PFX "Unhandled CM event %d\n", event->event);
2447                 break;
2448         }
2449
2450         if (comp)
2451                 complete(&ch->done);
2452
2453         return 0;
2454 }
2455
2456 /**
2457  * srp_change_queue_depth - setting device queue depth
2458  * @sdev: scsi device struct
2459  * @qdepth: requested queue depth
2460  *
2461  * Returns queue depth.
2462  */
2463 static int
2464 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2465 {
2466         if (!sdev->tagged_supported)
2467                 qdepth = 1;
2468         return scsi_change_queue_depth(sdev, qdepth);
2469 }
2470
2471 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2472                              u8 func)
2473 {
2474         struct srp_target_port *target = ch->target;
2475         struct srp_rport *rport = target->rport;
2476         struct ib_device *dev = target->srp_host->srp_dev->dev;
2477         struct srp_iu *iu;
2478         struct srp_tsk_mgmt *tsk_mgmt;
2479
2480         if (!ch->connected || target->qp_in_error)
2481                 return -1;
2482
2483         init_completion(&ch->tsk_mgmt_done);
2484
2485         /*
2486          * Lock the rport mutex to avoid that srp_create_ch_ib() is
2487          * invoked while a task management function is being sent.
2488          */
2489         mutex_lock(&rport->mutex);
2490         spin_lock_irq(&ch->lock);
2491         iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2492         spin_unlock_irq(&ch->lock);
2493
2494         if (!iu) {
2495                 mutex_unlock(&rport->mutex);
2496
2497                 return -1;
2498         }
2499
2500         ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2501                                    DMA_TO_DEVICE);
2502         tsk_mgmt = iu->buf;
2503         memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2504
2505         tsk_mgmt->opcode        = SRP_TSK_MGMT;
2506         int_to_scsilun(lun, &tsk_mgmt->lun);
2507         tsk_mgmt->tag           = req_tag | SRP_TAG_TSK_MGMT;
2508         tsk_mgmt->tsk_mgmt_func = func;
2509         tsk_mgmt->task_tag      = req_tag;
2510
2511         ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2512                                       DMA_TO_DEVICE);
2513         if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2514                 srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2515                 mutex_unlock(&rport->mutex);
2516
2517                 return -1;
2518         }
2519         mutex_unlock(&rport->mutex);
2520
2521         if (!wait_for_completion_timeout(&ch->tsk_mgmt_done,
2522                                          msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS)))
2523                 return -1;
2524
2525         return 0;
2526 }
2527
2528 static int srp_abort(struct scsi_cmnd *scmnd)
2529 {
2530         struct srp_target_port *target = host_to_target(scmnd->device->host);
2531         struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2532         u32 tag;
2533         u16 ch_idx;
2534         struct srp_rdma_ch *ch;
2535         int ret;
2536
2537         shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2538
2539         if (!req)
2540                 return SUCCESS;
2541         tag = blk_mq_unique_tag(scmnd->request);
2542         ch_idx = blk_mq_unique_tag_to_hwq(tag);
2543         if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2544                 return SUCCESS;
2545         ch = &target->ch[ch_idx];
2546         if (!srp_claim_req(ch, req, NULL, scmnd))
2547                 return SUCCESS;
2548         shost_printk(KERN_ERR, target->scsi_host,
2549                      "Sending SRP abort for tag %#x\n", tag);
2550         if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2551                               SRP_TSK_ABORT_TASK) == 0)
2552                 ret = SUCCESS;
2553         else if (target->rport->state == SRP_RPORT_LOST)
2554                 ret = FAST_IO_FAIL;
2555         else
2556                 ret = FAILED;
2557         srp_free_req(ch, req, scmnd, 0);
2558         scmnd->result = DID_ABORT << 16;
2559         scmnd->scsi_done(scmnd);
2560
2561         return ret;
2562 }
2563
2564 static int srp_reset_device(struct scsi_cmnd *scmnd)
2565 {
2566         struct srp_target_port *target = host_to_target(scmnd->device->host);
2567         struct srp_rdma_ch *ch;
2568         int i;
2569
2570         shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2571
2572         ch = &target->ch[0];
2573         if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2574                               SRP_TSK_LUN_RESET))
2575                 return FAILED;
2576         if (ch->tsk_mgmt_status)
2577                 return FAILED;
2578
2579         for (i = 0; i < target->ch_count; i++) {
2580                 ch = &target->ch[i];
2581                 for (i = 0; i < target->req_ring_size; ++i) {
2582                         struct srp_request *req = &ch->req_ring[i];
2583
2584                         srp_finish_req(ch, req, scmnd->device, DID_RESET << 16);
2585                 }
2586         }
2587
2588         return SUCCESS;
2589 }
2590
2591 static int srp_reset_host(struct scsi_cmnd *scmnd)
2592 {
2593         struct srp_target_port *target = host_to_target(scmnd->device->host);
2594
2595         shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2596
2597         return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2598 }
2599
2600 static int srp_slave_configure(struct scsi_device *sdev)
2601 {
2602         struct Scsi_Host *shost = sdev->host;
2603         struct srp_target_port *target = host_to_target(shost);
2604         struct request_queue *q = sdev->request_queue;
2605         unsigned long timeout;
2606
2607         if (sdev->type == TYPE_DISK) {
2608                 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2609                 blk_queue_rq_timeout(q, timeout);
2610         }
2611
2612         return 0;
2613 }
2614
2615 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
2616                            char *buf)
2617 {
2618         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2619
2620         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2621 }
2622
2623 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
2624                              char *buf)
2625 {
2626         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2627
2628         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2629 }
2630
2631 static ssize_t show_service_id(struct device *dev,
2632                                struct device_attribute *attr, char *buf)
2633 {
2634         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2635
2636         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->service_id));
2637 }
2638
2639 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
2640                          char *buf)
2641 {
2642         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2643
2644         return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey));
2645 }
2646
2647 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
2648                          char *buf)
2649 {
2650         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2651
2652         return sprintf(buf, "%pI6\n", target->sgid.raw);
2653 }
2654
2655 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
2656                          char *buf)
2657 {
2658         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2659         struct srp_rdma_ch *ch = &target->ch[0];
2660
2661         return sprintf(buf, "%pI6\n", ch->path.dgid.raw);
2662 }
2663
2664 static ssize_t show_orig_dgid(struct device *dev,
2665                               struct device_attribute *attr, char *buf)
2666 {
2667         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2668
2669         return sprintf(buf, "%pI6\n", target->orig_dgid.raw);
2670 }
2671
2672 static ssize_t show_req_lim(struct device *dev,
2673                             struct device_attribute *attr, char *buf)
2674 {
2675         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2676         struct srp_rdma_ch *ch;
2677         int i, req_lim = INT_MAX;
2678
2679         for (i = 0; i < target->ch_count; i++) {
2680                 ch = &target->ch[i];
2681                 req_lim = min(req_lim, ch->req_lim);
2682         }
2683         return sprintf(buf, "%d\n", req_lim);
2684 }
2685
2686 static ssize_t show_zero_req_lim(struct device *dev,
2687                                  struct device_attribute *attr, char *buf)
2688 {
2689         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2690
2691         return sprintf(buf, "%d\n", target->zero_req_lim);
2692 }
2693
2694 static ssize_t show_local_ib_port(struct device *dev,
2695                                   struct device_attribute *attr, char *buf)
2696 {
2697         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2698
2699         return sprintf(buf, "%d\n", target->srp_host->port);
2700 }
2701
2702 static ssize_t show_local_ib_device(struct device *dev,
2703                                     struct device_attribute *attr, char *buf)
2704 {
2705         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2706
2707         return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name);
2708 }
2709
2710 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr,
2711                              char *buf)
2712 {
2713         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2714
2715         return sprintf(buf, "%d\n", target->ch_count);
2716 }
2717
2718 static ssize_t show_comp_vector(struct device *dev,
2719                                 struct device_attribute *attr, char *buf)
2720 {
2721         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2722
2723         return sprintf(buf, "%d\n", target->comp_vector);
2724 }
2725
2726 static ssize_t show_tl_retry_count(struct device *dev,
2727                                    struct device_attribute *attr, char *buf)
2728 {
2729         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2730
2731         return sprintf(buf, "%d\n", target->tl_retry_count);
2732 }
2733
2734 static ssize_t show_cmd_sg_entries(struct device *dev,
2735                                    struct device_attribute *attr, char *buf)
2736 {
2737         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2738
2739         return sprintf(buf, "%u\n", target->cmd_sg_cnt);
2740 }
2741
2742 static ssize_t show_allow_ext_sg(struct device *dev,
2743                                  struct device_attribute *attr, char *buf)
2744 {
2745         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2746
2747         return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
2748 }
2749
2750 static DEVICE_ATTR(id_ext,          S_IRUGO, show_id_ext,          NULL);
2751 static DEVICE_ATTR(ioc_guid,        S_IRUGO, show_ioc_guid,        NULL);
2752 static DEVICE_ATTR(service_id,      S_IRUGO, show_service_id,      NULL);
2753 static DEVICE_ATTR(pkey,            S_IRUGO, show_pkey,            NULL);
2754 static DEVICE_ATTR(sgid,            S_IRUGO, show_sgid,            NULL);
2755 static DEVICE_ATTR(dgid,            S_IRUGO, show_dgid,            NULL);
2756 static DEVICE_ATTR(orig_dgid,       S_IRUGO, show_orig_dgid,       NULL);
2757 static DEVICE_ATTR(req_lim,         S_IRUGO, show_req_lim,         NULL);
2758 static DEVICE_ATTR(zero_req_lim,    S_IRUGO, show_zero_req_lim,    NULL);
2759 static DEVICE_ATTR(local_ib_port,   S_IRUGO, show_local_ib_port,   NULL);
2760 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
2761 static DEVICE_ATTR(ch_count,        S_IRUGO, show_ch_count,        NULL);
2762 static DEVICE_ATTR(comp_vector,     S_IRUGO, show_comp_vector,     NULL);
2763 static DEVICE_ATTR(tl_retry_count,  S_IRUGO, show_tl_retry_count,  NULL);
2764 static DEVICE_ATTR(cmd_sg_entries,  S_IRUGO, show_cmd_sg_entries,  NULL);
2765 static DEVICE_ATTR(allow_ext_sg,    S_IRUGO, show_allow_ext_sg,    NULL);
2766
2767 static struct device_attribute *srp_host_attrs[] = {
2768         &dev_attr_id_ext,
2769         &dev_attr_ioc_guid,
2770         &dev_attr_service_id,
2771         &dev_attr_pkey,
2772         &dev_attr_sgid,
2773         &dev_attr_dgid,
2774         &dev_attr_orig_dgid,
2775         &dev_attr_req_lim,
2776         &dev_attr_zero_req_lim,
2777         &dev_attr_local_ib_port,
2778         &dev_attr_local_ib_device,
2779         &dev_attr_ch_count,
2780         &dev_attr_comp_vector,
2781         &dev_attr_tl_retry_count,
2782         &dev_attr_cmd_sg_entries,
2783         &dev_attr_allow_ext_sg,
2784         NULL
2785 };
2786
2787 static struct scsi_host_template srp_template = {
2788         .module                         = THIS_MODULE,
2789         .name                           = "InfiniBand SRP initiator",
2790         .proc_name                      = DRV_NAME,
2791         .slave_configure                = srp_slave_configure,
2792         .info                           = srp_target_info,
2793         .queuecommand                   = srp_queuecommand,
2794         .change_queue_depth             = srp_change_queue_depth,
2795         .eh_abort_handler               = srp_abort,
2796         .eh_device_reset_handler        = srp_reset_device,
2797         .eh_host_reset_handler          = srp_reset_host,
2798         .skip_settle_delay              = true,
2799         .sg_tablesize                   = SRP_DEF_SG_TABLESIZE,
2800         .can_queue                      = SRP_DEFAULT_CMD_SQ_SIZE,
2801         .this_id                        = -1,
2802         .cmd_per_lun                    = SRP_DEFAULT_CMD_SQ_SIZE,
2803         .use_clustering                 = ENABLE_CLUSTERING,
2804         .shost_attrs                    = srp_host_attrs,
2805         .track_queue_depth              = 1,
2806 };
2807
2808 static int srp_sdev_count(struct Scsi_Host *host)
2809 {
2810         struct scsi_device *sdev;
2811         int c = 0;
2812
2813         shost_for_each_device(sdev, host)
2814                 c++;
2815
2816         return c;
2817 }
2818
2819 /*
2820  * Return values:
2821  * < 0 upon failure. Caller is responsible for SRP target port cleanup.
2822  * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port
2823  *    removal has been scheduled.
2824  * 0 and target->state != SRP_TARGET_REMOVED upon success.
2825  */
2826 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
2827 {
2828         struct srp_rport_identifiers ids;
2829         struct srp_rport *rport;
2830
2831         target->state = SRP_TARGET_SCANNING;
2832         sprintf(target->target_name, "SRP.T10:%016llX",
2833                 be64_to_cpu(target->id_ext));
2834
2835         if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device))
2836                 return -ENODEV;
2837
2838         memcpy(ids.port_id, &target->id_ext, 8);
2839         memcpy(ids.port_id + 8, &target->ioc_guid, 8);
2840         ids.roles = SRP_RPORT_ROLE_TARGET;
2841         rport = srp_rport_add(target->scsi_host, &ids);
2842         if (IS_ERR(rport)) {
2843                 scsi_remove_host(target->scsi_host);
2844                 return PTR_ERR(rport);
2845         }
2846
2847         rport->lld_data = target;
2848         target->rport = rport;
2849
2850         spin_lock(&host->target_lock);
2851         list_add_tail(&target->list, &host->target_list);
2852         spin_unlock(&host->target_lock);
2853
2854         scsi_scan_target(&target->scsi_host->shost_gendev,
2855                          0, target->scsi_id, SCAN_WILD_CARD, 0);
2856
2857         if (srp_connected_ch(target) < target->ch_count ||
2858             target->qp_in_error) {
2859                 shost_printk(KERN_INFO, target->scsi_host,
2860                              PFX "SCSI scan failed - removing SCSI host\n");
2861                 srp_queue_remove_work(target);
2862                 goto out;
2863         }
2864
2865         pr_debug(PFX "%s: SCSI scan succeeded - detected %d LUNs\n",
2866                  dev_name(&target->scsi_host->shost_gendev),
2867                  srp_sdev_count(target->scsi_host));
2868
2869         spin_lock_irq(&target->lock);
2870         if (target->state == SRP_TARGET_SCANNING)
2871                 target->state = SRP_TARGET_LIVE;
2872         spin_unlock_irq(&target->lock);
2873
2874 out:
2875         return 0;
2876 }
2877
2878 static void srp_release_dev(struct device *dev)
2879 {
2880         struct srp_host *host =
2881                 container_of(dev, struct srp_host, dev);
2882
2883         complete(&host->released);
2884 }
2885
2886 static struct class srp_class = {
2887         .name    = "infiniband_srp",
2888         .dev_release = srp_release_dev
2889 };
2890
2891 /**
2892  * srp_conn_unique() - check whether the connection to a target is unique
2893  * @host:   SRP host.
2894  * @target: SRP target port.
2895  */
2896 static bool srp_conn_unique(struct srp_host *host,
2897                             struct srp_target_port *target)
2898 {
2899         struct srp_target_port *t;
2900         bool ret = false;
2901
2902         if (target->state == SRP_TARGET_REMOVED)
2903                 goto out;
2904
2905         ret = true;
2906
2907         spin_lock(&host->target_lock);
2908         list_for_each_entry(t, &host->target_list, list) {
2909                 if (t != target &&
2910                     target->id_ext == t->id_ext &&
2911                     target->ioc_guid == t->ioc_guid &&
2912                     target->initiator_ext == t->initiator_ext) {
2913                         ret = false;
2914                         break;
2915                 }
2916         }
2917         spin_unlock(&host->target_lock);
2918
2919 out:
2920         return ret;
2921 }
2922
2923 /*
2924  * Target ports are added by writing
2925  *
2926  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
2927  *     pkey=<P_Key>,service_id=<service ID>
2928  *
2929  * to the add_target sysfs attribute.
2930  */
2931 enum {
2932         SRP_OPT_ERR             = 0,
2933         SRP_OPT_ID_EXT          = 1 << 0,
2934         SRP_OPT_IOC_GUID        = 1 << 1,
2935         SRP_OPT_DGID            = 1 << 2,
2936         SRP_OPT_PKEY            = 1 << 3,
2937         SRP_OPT_SERVICE_ID      = 1 << 4,
2938         SRP_OPT_MAX_SECT        = 1 << 5,
2939         SRP_OPT_MAX_CMD_PER_LUN = 1 << 6,
2940         SRP_OPT_IO_CLASS        = 1 << 7,
2941         SRP_OPT_INITIATOR_EXT   = 1 << 8,
2942         SRP_OPT_CMD_SG_ENTRIES  = 1 << 9,
2943         SRP_OPT_ALLOW_EXT_SG    = 1 << 10,
2944         SRP_OPT_SG_TABLESIZE    = 1 << 11,
2945         SRP_OPT_COMP_VECTOR     = 1 << 12,
2946         SRP_OPT_TL_RETRY_COUNT  = 1 << 13,
2947         SRP_OPT_QUEUE_SIZE      = 1 << 14,
2948         SRP_OPT_ALL             = (SRP_OPT_ID_EXT       |
2949                                    SRP_OPT_IOC_GUID     |
2950                                    SRP_OPT_DGID         |
2951                                    SRP_OPT_PKEY         |
2952                                    SRP_OPT_SERVICE_ID),
2953 };
2954
2955 static const match_table_t srp_opt_tokens = {
2956         { SRP_OPT_ID_EXT,               "id_ext=%s"             },
2957         { SRP_OPT_IOC_GUID,             "ioc_guid=%s"           },
2958         { SRP_OPT_DGID,                 "dgid=%s"               },
2959         { SRP_OPT_PKEY,                 "pkey=%x"               },
2960         { SRP_OPT_SERVICE_ID,           "service_id=%s"         },
2961         { SRP_OPT_MAX_SECT,             "max_sect=%d"           },
2962         { SRP_OPT_MAX_CMD_PER_LUN,      "max_cmd_per_lun=%d"    },
2963         { SRP_OPT_IO_CLASS,             "io_class=%x"           },
2964         { SRP_OPT_INITIATOR_EXT,        "initiator_ext=%s"      },
2965         { SRP_OPT_CMD_SG_ENTRIES,       "cmd_sg_entries=%u"     },
2966         { SRP_OPT_ALLOW_EXT_SG,         "allow_ext_sg=%u"       },
2967         { SRP_OPT_SG_TABLESIZE,         "sg_tablesize=%u"       },
2968         { SRP_OPT_COMP_VECTOR,          "comp_vector=%u"        },
2969         { SRP_OPT_TL_RETRY_COUNT,       "tl_retry_count=%u"     },
2970         { SRP_OPT_QUEUE_SIZE,           "queue_size=%d"         },
2971         { SRP_OPT_ERR,                  NULL                    }
2972 };
2973
2974 static int srp_parse_options(const char *buf, struct srp_target_port *target)
2975 {
2976         char *options, *sep_opt;
2977         char *p;
2978         char dgid[3];
2979         substring_t args[MAX_OPT_ARGS];
2980         int opt_mask = 0;
2981         int token;
2982         int ret = -EINVAL;
2983         int i;
2984
2985         options = kstrdup(buf, GFP_KERNEL);
2986         if (!options)
2987                 return -ENOMEM;
2988
2989         sep_opt = options;
2990         while ((p = strsep(&sep_opt, ",\n")) != NULL) {
2991                 if (!*p)
2992                         continue;
2993
2994                 token = match_token(p, srp_opt_tokens, args);
2995                 opt_mask |= token;
2996
2997                 switch (token) {
2998                 case SRP_OPT_ID_EXT:
2999                         p = match_strdup(args);
3000                         if (!p) {
3001                                 ret = -ENOMEM;
3002                                 goto out;
3003                         }
3004                         target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3005                         kfree(p);
3006                         break;
3007
3008                 case SRP_OPT_IOC_GUID:
3009                         p = match_strdup(args);
3010                         if (!p) {
3011                                 ret = -ENOMEM;
3012                                 goto out;
3013                         }
3014                         target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16));
3015                         kfree(p);
3016                         break;
3017
3018                 case SRP_OPT_DGID:
3019                         p = match_strdup(args);
3020                         if (!p) {
3021                                 ret = -ENOMEM;
3022                                 goto out;
3023                         }
3024                         if (strlen(p) != 32) {
3025                                 pr_warn("bad dest GID parameter '%s'\n", p);
3026                                 kfree(p);
3027                                 goto out;
3028                         }
3029
3030                         for (i = 0; i < 16; ++i) {
3031                                 strlcpy(dgid, p + i * 2, sizeof(dgid));
3032                                 if (sscanf(dgid, "%hhx",
3033                                            &target->orig_dgid.raw[i]) < 1) {
3034                                         ret = -EINVAL;
3035                                         kfree(p);
3036                                         goto out;
3037                                 }
3038                         }
3039                         kfree(p);
3040                         break;
3041
3042                 case SRP_OPT_PKEY:
3043                         if (match_hex(args, &token)) {
3044                                 pr_warn("bad P_Key parameter '%s'\n", p);
3045                                 goto out;
3046                         }
3047                         target->pkey = cpu_to_be16(token);
3048                         break;
3049
3050                 case SRP_OPT_SERVICE_ID:
3051                         p = match_strdup(args);
3052                         if (!p) {
3053                                 ret = -ENOMEM;
3054                                 goto out;
3055                         }
3056                         target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16));
3057                         kfree(p);
3058                         break;
3059
3060                 case SRP_OPT_MAX_SECT:
3061                         if (match_int(args, &token)) {
3062                                 pr_warn("bad max sect parameter '%s'\n", p);
3063                                 goto out;
3064                         }
3065                         target->scsi_host->max_sectors = token;
3066                         break;
3067
3068                 case SRP_OPT_QUEUE_SIZE:
3069                         if (match_int(args, &token) || token < 1) {
3070                                 pr_warn("bad queue_size parameter '%s'\n", p);
3071                                 goto out;
3072                         }
3073                         target->scsi_host->can_queue = token;
3074                         target->queue_size = token + SRP_RSP_SQ_SIZE +
3075                                              SRP_TSK_MGMT_SQ_SIZE;
3076                         if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3077                                 target->scsi_host->cmd_per_lun = token;
3078                         break;
3079
3080                 case SRP_OPT_MAX_CMD_PER_LUN:
3081                         if (match_int(args, &token) || token < 1) {
3082                                 pr_warn("bad max cmd_per_lun parameter '%s'\n",
3083                                         p);
3084                                 goto out;
3085                         }
3086                         target->scsi_host->cmd_per_lun = token;
3087                         break;
3088
3089                 case SRP_OPT_IO_CLASS:
3090                         if (match_hex(args, &token)) {
3091                                 pr_warn("bad IO class parameter '%s'\n", p);
3092                                 goto out;
3093                         }
3094                         if (token != SRP_REV10_IB_IO_CLASS &&
3095                             token != SRP_REV16A_IB_IO_CLASS) {
3096                                 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3097                                         token, SRP_REV10_IB_IO_CLASS,
3098                                         SRP_REV16A_IB_IO_CLASS);
3099                                 goto out;
3100                         }
3101                         target->io_class = token;
3102                         break;
3103
3104                 case SRP_OPT_INITIATOR_EXT:
3105                         p = match_strdup(args);
3106                         if (!p) {
3107                                 ret = -ENOMEM;
3108                                 goto out;
3109                         }
3110                         target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3111                         kfree(p);
3112                         break;
3113
3114                 case SRP_OPT_CMD_SG_ENTRIES:
3115                         if (match_int(args, &token) || token < 1 || token > 255) {
3116                                 pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3117                                         p);
3118                                 goto out;
3119                         }
3120                         target->cmd_sg_cnt = token;
3121                         break;
3122
3123                 case SRP_OPT_ALLOW_EXT_SG:
3124                         if (match_int(args, &token)) {
3125                                 pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3126                                 goto out;
3127                         }
3128                         target->allow_ext_sg = !!token;
3129                         break;
3130
3131                 case SRP_OPT_SG_TABLESIZE:
3132                         if (match_int(args, &token) || token < 1 ||
3133                                         token > SCSI_MAX_SG_CHAIN_SEGMENTS) {
3134                                 pr_warn("bad max sg_tablesize parameter '%s'\n",
3135                                         p);
3136                                 goto out;
3137                         }
3138                         target->sg_tablesize = token;
3139                         break;
3140
3141                 case SRP_OPT_COMP_VECTOR:
3142                         if (match_int(args, &token) || token < 0) {
3143                                 pr_warn("bad comp_vector parameter '%s'\n", p);
3144                                 goto out;
3145                         }
3146                         target->comp_vector = token;
3147                         break;
3148
3149                 case SRP_OPT_TL_RETRY_COUNT:
3150                         if (match_int(args, &token) || token < 2 || token > 7) {
3151                                 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3152                                         p);
3153                                 goto out;
3154                         }
3155                         target->tl_retry_count = token;
3156                         break;
3157
3158                 default:
3159                         pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3160                                 p);
3161                         goto out;
3162                 }
3163         }
3164
3165         if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL)
3166                 ret = 0;
3167         else
3168                 for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i)
3169                         if ((srp_opt_tokens[i].token & SRP_OPT_ALL) &&
3170                             !(srp_opt_tokens[i].token & opt_mask))
3171                                 pr_warn("target creation request is missing parameter '%s'\n",
3172                                         srp_opt_tokens[i].pattern);
3173
3174         if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3175             && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3176                 pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3177                         target->scsi_host->cmd_per_lun,
3178                         target->scsi_host->can_queue);
3179
3180 out:
3181         kfree(options);
3182         return ret;
3183 }
3184
3185 static ssize_t srp_create_target(struct device *dev,
3186                                  struct device_attribute *attr,
3187                                  const char *buf, size_t count)
3188 {
3189         struct srp_host *host =
3190                 container_of(dev, struct srp_host, dev);
3191         struct Scsi_Host *target_host;
3192         struct srp_target_port *target;
3193         struct srp_rdma_ch *ch;
3194         struct srp_device *srp_dev = host->srp_dev;
3195         struct ib_device *ibdev = srp_dev->dev;
3196         int ret, node_idx, node, cpu, i;
3197         bool multich = false;
3198
3199         target_host = scsi_host_alloc(&srp_template,
3200                                       sizeof (struct srp_target_port));
3201         if (!target_host)
3202                 return -ENOMEM;
3203
3204         target_host->transportt  = ib_srp_transport_template;
3205         target_host->max_channel = 0;
3206         target_host->max_id      = 1;
3207         target_host->max_lun     = -1LL;
3208         target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3209
3210         target = host_to_target(target_host);
3211
3212         target->io_class        = SRP_REV16A_IB_IO_CLASS;
3213         target->scsi_host       = target_host;
3214         target->srp_host        = host;
3215         target->lkey            = host->srp_dev->pd->local_dma_lkey;
3216         target->global_mr       = host->srp_dev->global_mr;
3217         target->cmd_sg_cnt      = cmd_sg_entries;
3218         target->sg_tablesize    = indirect_sg_entries ? : cmd_sg_entries;
3219         target->allow_ext_sg    = allow_ext_sg;
3220         target->tl_retry_count  = 7;
3221         target->queue_size      = SRP_DEFAULT_QUEUE_SIZE;
3222
3223         /*
3224          * Avoid that the SCSI host can be removed by srp_remove_target()
3225          * before this function returns.
3226          */
3227         scsi_host_get(target->scsi_host);
3228
3229         mutex_lock(&host->add_target_mutex);
3230
3231         ret = srp_parse_options(buf, target);
3232         if (ret)
3233                 goto out;
3234
3235         target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;
3236
3237         if (!srp_conn_unique(target->srp_host, target)) {
3238                 shost_printk(KERN_INFO, target->scsi_host,
3239                              PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3240                              be64_to_cpu(target->id_ext),
3241                              be64_to_cpu(target->ioc_guid),
3242                              be64_to_cpu(target->initiator_ext));
3243                 ret = -EEXIST;
3244                 goto out;
3245         }
3246
3247         if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg &&
3248             target->cmd_sg_cnt < target->sg_tablesize) {
3249                 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3250                 target->sg_tablesize = target->cmd_sg_cnt;
3251         }
3252
3253         target_host->sg_tablesize = target->sg_tablesize;
3254         target->indirect_size = target->sg_tablesize *
3255                                 sizeof (struct srp_direct_buf);
3256         target->max_iu_len = sizeof (struct srp_cmd) +
3257                              sizeof (struct srp_indirect_buf) +
3258                              target->cmd_sg_cnt * sizeof (struct srp_direct_buf);
3259
3260         INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3261         INIT_WORK(&target->remove_work, srp_remove_work);
3262         spin_lock_init(&target->lock);
3263         ret = ib_query_gid(ibdev, host->port, 0, &target->sgid, NULL);
3264         if (ret)
3265                 goto out;
3266
3267         ret = -ENOMEM;
3268         target->ch_count = max_t(unsigned, num_online_nodes(),
3269                                  min(ch_count ? :
3270                                      min(4 * num_online_nodes(),
3271                                          ibdev->num_comp_vectors),
3272                                      num_online_cpus()));
3273         target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3274                              GFP_KERNEL);
3275         if (!target->ch)
3276                 goto out;
3277
3278         node_idx = 0;
3279         for_each_online_node(node) {
3280                 const int ch_start = (node_idx * target->ch_count /
3281                                       num_online_nodes());
3282                 const int ch_end = ((node_idx + 1) * target->ch_count /
3283                                     num_online_nodes());
3284                 const int cv_start = (node_idx * ibdev->num_comp_vectors /
3285                                       num_online_nodes() + target->comp_vector)
3286                                      % ibdev->num_comp_vectors;
3287                 const int cv_end = ((node_idx + 1) * ibdev->num_comp_vectors /
3288                                     num_online_nodes() + target->comp_vector)
3289                                    % ibdev->num_comp_vectors;
3290                 int cpu_idx = 0;
3291
3292                 for_each_online_cpu(cpu) {
3293                         if (cpu_to_node(cpu) != node)
3294                                 continue;
3295                         if (ch_start + cpu_idx >= ch_end)
3296                                 continue;
3297                         ch = &target->ch[ch_start + cpu_idx];
3298                         ch->target = target;
3299                         ch->comp_vector = cv_start == cv_end ? cv_start :
3300                                 cv_start + cpu_idx % (cv_end - cv_start);
3301                         spin_lock_init(&ch->lock);
3302                         INIT_LIST_HEAD(&ch->free_tx);
3303                         ret = srp_new_cm_id(ch);
3304                         if (ret)
3305                                 goto err_disconnect;
3306
3307                         ret = srp_create_ch_ib(ch);
3308                         if (ret)
3309                                 goto err_disconnect;
3310
3311                         ret = srp_alloc_req_data(ch);
3312                         if (ret)
3313                                 goto err_disconnect;
3314
3315                         ret = srp_connect_ch(ch, multich);
3316                         if (ret) {
3317                                 shost_printk(KERN_ERR, target->scsi_host,
3318                                              PFX "Connection %d/%d failed\n",
3319                                              ch_start + cpu_idx,
3320                                              target->ch_count);
3321                                 if (node_idx == 0 && cpu_idx == 0) {
3322                                         goto err_disconnect;
3323                                 } else {
3324                                         srp_free_ch_ib(target, ch);
3325                                         srp_free_req_data(target, ch);
3326                                         target->ch_count = ch - target->ch;
3327                                         goto connected;
3328                                 }
3329                         }
3330
3331                         multich = true;
3332                         cpu_idx++;
3333                 }
3334                 node_idx++;
3335         }
3336
3337 connected:
3338         target->scsi_host->nr_hw_queues = target->ch_count;
3339
3340         ret = srp_add_target(host, target);
3341         if (ret)
3342                 goto err_disconnect;
3343
3344         if (target->state != SRP_TARGET_REMOVED) {
3345                 shost_printk(KERN_DEBUG, target->scsi_host, PFX
3346                              "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3347                              be64_to_cpu(target->id_ext),
3348                              be64_to_cpu(target->ioc_guid),
3349                              be16_to_cpu(target->pkey),
3350                              be64_to_cpu(target->service_id),
3351                              target->sgid.raw, target->orig_dgid.raw);
3352         }
3353
3354         ret = count;
3355
3356 out:
3357         mutex_unlock(&host->add_target_mutex);
3358
3359         scsi_host_put(target->scsi_host);
3360         if (ret < 0)
3361                 scsi_host_put(target->scsi_host);
3362
3363         return ret;
3364
3365 err_disconnect:
3366         srp_disconnect_target(target);
3367
3368         for (i = 0; i < target->ch_count; i++) {
3369                 ch = &target->ch[i];
3370                 srp_free_ch_ib(target, ch);
3371                 srp_free_req_data(target, ch);
3372         }
3373
3374         kfree(target->ch);
3375         goto out;
3376 }
3377
3378 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
3379
3380 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
3381                           char *buf)
3382 {
3383         struct srp_host *host = container_of(dev, struct srp_host, dev);
3384
3385         return sprintf(buf, "%s\n", host->srp_dev->dev->name);
3386 }
3387
3388 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
3389
3390 static ssize_t show_port(struct device *dev, struct device_attribute *attr,
3391                          char *buf)
3392 {
3393         struct srp_host *host = container_of(dev, struct srp_host, dev);
3394
3395         return sprintf(buf, "%d\n", host->port);
3396 }
3397
3398 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
3399
3400 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3401 {
3402         struct srp_host *host;
3403
3404         host = kzalloc(sizeof *host, GFP_KERNEL);
3405         if (!host)
3406                 return NULL;
3407
3408         INIT_LIST_HEAD(&host->target_list);
3409         spin_lock_init(&host->target_lock);
3410         init_completion(&host->released);
3411         mutex_init(&host->add_target_mutex);
3412         host->srp_dev = device;
3413         host->port = port;
3414
3415         host->dev.class = &srp_class;
3416         host->dev.parent = device->dev->dma_device;
3417         dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port);
3418
3419         if (device_register(&host->dev))
3420                 goto free_host;
3421         if (device_create_file(&host->dev, &dev_attr_add_target))
3422                 goto err_class;
3423         if (device_create_file(&host->dev, &dev_attr_ibdev))
3424                 goto err_class;
3425         if (device_create_file(&host->dev, &dev_attr_port))
3426                 goto err_class;
3427
3428         return host;
3429
3430 err_class:
3431         device_unregister(&host->dev);
3432
3433 free_host:
3434         kfree(host);
3435
3436         return NULL;
3437 }
3438
3439 static void srp_add_one(struct ib_device *device)
3440 {
3441         struct srp_device *srp_dev;
3442         struct ib_device_attr *dev_attr;
3443         struct srp_host *host;
3444         int mr_page_shift, p;
3445         u64 max_pages_per_mr;
3446
3447         dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL);
3448         if (!dev_attr)
3449                 return;
3450
3451         if (ib_query_device(device, dev_attr)) {
3452                 pr_warn("Query device failed for %s\n", device->name);
3453                 goto free_attr;
3454         }
3455
3456         srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL);
3457         if (!srp_dev)
3458                 goto free_attr;
3459
3460         srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
3461                             device->map_phys_fmr && device->unmap_fmr);
3462         srp_dev->has_fr = (dev_attr->device_cap_flags &
3463                            IB_DEVICE_MEM_MGT_EXTENSIONS);
3464         if (!srp_dev->has_fmr && !srp_dev->has_fr)
3465                 dev_warn(&device->dev, "neither FMR nor FR is supported\n");
3466
3467         srp_dev->use_fast_reg = (srp_dev->has_fr &&
3468                                  (!srp_dev->has_fmr || prefer_fr));
3469         srp_dev->use_fmr = !srp_dev->use_fast_reg && srp_dev->has_fmr;
3470
3471         /*
3472          * Use the smallest page size supported by the HCA, down to a
3473          * minimum of 4096 bytes. We're unlikely to build large sglists
3474          * out of smaller entries.
3475          */
3476         mr_page_shift           = max(12, ffs(dev_attr->page_size_cap) - 1);
3477         srp_dev->mr_page_size   = 1 << mr_page_shift;
3478         srp_dev->mr_page_mask   = ~((u64) srp_dev->mr_page_size - 1);
3479         max_pages_per_mr        = dev_attr->max_mr_size;
3480         do_div(max_pages_per_mr, srp_dev->mr_page_size);
3481         srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
3482                                           max_pages_per_mr);
3483         if (srp_dev->use_fast_reg) {
3484                 srp_dev->max_pages_per_mr =
3485                         min_t(u32, srp_dev->max_pages_per_mr,
3486                               dev_attr->max_fast_reg_page_list_len);
3487         }
3488         srp_dev->mr_max_size    = srp_dev->mr_page_size *
3489                                    srp_dev->max_pages_per_mr;
3490         pr_debug("%s: mr_page_shift = %d, dev_attr->max_mr_size = %#llx, dev_attr->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3491                  device->name, mr_page_shift, dev_attr->max_mr_size,
3492                  dev_attr->max_fast_reg_page_list_len,
3493                  srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3494
3495         INIT_LIST_HEAD(&srp_dev->dev_list);
3496
3497         srp_dev->dev = device;
3498         srp_dev->pd  = ib_alloc_pd(device);
3499         if (IS_ERR(srp_dev->pd))
3500                 goto free_dev;
3501
3502         if (!register_always || (!srp_dev->has_fmr && !srp_dev->has_fr)) {
3503                 srp_dev->global_mr = ib_get_dma_mr(srp_dev->pd,
3504                                                    IB_ACCESS_LOCAL_WRITE |
3505                                                    IB_ACCESS_REMOTE_READ |
3506                                                    IB_ACCESS_REMOTE_WRITE);
3507                 if (IS_ERR(srp_dev->global_mr))
3508                         goto err_pd;
3509         } else {
3510                 srp_dev->global_mr = NULL;
3511         }
3512
3513         for (p = rdma_start_port(device); p <= rdma_end_port(device); ++p) {
3514                 host = srp_add_port(srp_dev, p);
3515                 if (host)
3516                         list_add_tail(&host->list, &srp_dev->dev_list);
3517         }
3518
3519         ib_set_client_data(device, &srp_client, srp_dev);
3520
3521         goto free_attr;
3522
3523 err_pd:
3524         ib_dealloc_pd(srp_dev->pd);
3525
3526 free_dev:
3527         kfree(srp_dev);
3528
3529 free_attr:
3530         kfree(dev_attr);
3531 }
3532
3533 static void srp_remove_one(struct ib_device *device, void *client_data)
3534 {
3535         struct srp_device *srp_dev;
3536         struct srp_host *host, *tmp_host;
3537         struct srp_target_port *target;
3538
3539         srp_dev = client_data;
3540         if (!srp_dev)
3541                 return;
3542
3543         list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3544                 device_unregister(&host->dev);
3545                 /*
3546                  * Wait for the sysfs entry to go away, so that no new
3547                  * target ports can be created.
3548                  */
3549                 wait_for_completion(&host->released);
3550
3551                 /*
3552                  * Remove all target ports.
3553                  */
3554                 spin_lock(&host->target_lock);
3555                 list_for_each_entry(target, &host->target_list, list)
3556                         srp_queue_remove_work(target);
3557                 spin_unlock(&host->target_lock);
3558
3559                 /*
3560                  * Wait for tl_err and target port removal tasks.
3561                  */
3562                 flush_workqueue(system_long_wq);
3563                 flush_workqueue(srp_remove_wq);
3564
3565                 kfree(host);
3566         }
3567
3568         if (srp_dev->global_mr)
3569                 ib_dereg_mr(srp_dev->global_mr);
3570         ib_dealloc_pd(srp_dev->pd);
3571
3572         kfree(srp_dev);
3573 }
3574
3575 static struct srp_function_template ib_srp_transport_functions = {
3576         .has_rport_state         = true,
3577         .reset_timer_if_blocked  = true,
3578         .reconnect_delay         = &srp_reconnect_delay,
3579         .fast_io_fail_tmo        = &srp_fast_io_fail_tmo,
3580         .dev_loss_tmo            = &srp_dev_loss_tmo,
3581         .reconnect               = srp_rport_reconnect,
3582         .rport_delete            = srp_rport_delete,
3583         .terminate_rport_io      = srp_terminate_io,
3584 };
3585
3586 static int __init srp_init_module(void)
3587 {
3588         int ret;
3589
3590         BUILD_BUG_ON(FIELD_SIZEOF(struct ib_wc, wr_id) < sizeof(void *));
3591
3592         if (srp_sg_tablesize) {
3593                 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
3594                 if (!cmd_sg_entries)
3595                         cmd_sg_entries = srp_sg_tablesize;
3596         }
3597
3598         if (!cmd_sg_entries)
3599                 cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
3600
3601         if (cmd_sg_entries > 255) {
3602                 pr_warn("Clamping cmd_sg_entries to 255\n");
3603                 cmd_sg_entries = 255;
3604         }
3605
3606         if (!indirect_sg_entries)
3607                 indirect_sg_entries = cmd_sg_entries;
3608         else if (indirect_sg_entries < cmd_sg_entries) {
3609                 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
3610                         cmd_sg_entries);
3611                 indirect_sg_entries = cmd_sg_entries;
3612         }
3613
3614         srp_remove_wq = create_workqueue("srp_remove");
3615         if (!srp_remove_wq) {
3616                 ret = -ENOMEM;
3617                 goto out;
3618         }
3619
3620         ret = -ENOMEM;
3621         ib_srp_transport_template =
3622                 srp_attach_transport(&ib_srp_transport_functions);
3623         if (!ib_srp_transport_template)
3624                 goto destroy_wq;
3625
3626         ret = class_register(&srp_class);
3627         if (ret) {
3628                 pr_err("couldn't register class infiniband_srp\n");
3629                 goto release_tr;
3630         }
3631
3632         ib_sa_register_client(&srp_sa_client);
3633
3634         ret = ib_register_client(&srp_client);
3635         if (ret) {
3636                 pr_err("couldn't register IB client\n");
3637                 goto unreg_sa;
3638         }
3639
3640 out:
3641         return ret;
3642
3643 unreg_sa:
3644         ib_sa_unregister_client(&srp_sa_client);
3645         class_unregister(&srp_class);
3646
3647 release_tr:
3648         srp_release_transport(ib_srp_transport_template);
3649
3650 destroy_wq:
3651         destroy_workqueue(srp_remove_wq);
3652         goto out;
3653 }
3654
3655 static void __exit srp_cleanup_module(void)
3656 {
3657         ib_unregister_client(&srp_client);
3658         ib_sa_unregister_client(&srp_sa_client);
3659         class_unregister(&srp_class);
3660         srp_release_transport(ib_srp_transport_template);
3661         destroy_workqueue(srp_remove_wq);
3662 }
3663
3664 module_init(srp_init_module);
3665 module_exit(srp_cleanup_module);