These changes are a raw update to a vanilla kernel 4.1.10, with the
[kvmfornfv.git] / kernel / drivers / infiniband / ulp / srp / ib_srp.c
1 /*
2  * Copyright (c) 2005 Cisco Systems.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <rdma/ib_cache.h>
44
45 #include <linux/atomic.h>
46
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_dbg.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/srp.h>
52 #include <scsi/scsi_transport_srp.h>
53
54 #include "ib_srp.h"
55
56 #define DRV_NAME        "ib_srp"
57 #define PFX             DRV_NAME ": "
58 #define DRV_VERSION     "1.0"
59 #define DRV_RELDATE     "July 1, 2013"
60
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator "
63                    "v" DRV_VERSION " (" DRV_RELDATE ")");
64 MODULE_LICENSE("Dual BSD/GPL");
65
66 static unsigned int srp_sg_tablesize;
67 static unsigned int cmd_sg_entries;
68 static unsigned int indirect_sg_entries;
69 static bool allow_ext_sg;
70 static bool prefer_fr;
71 static bool register_always;
72 static int topspin_workarounds = 1;
73
74 module_param(srp_sg_tablesize, uint, 0444);
75 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
76
77 module_param(cmd_sg_entries, uint, 0444);
78 MODULE_PARM_DESC(cmd_sg_entries,
79                  "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
80
81 module_param(indirect_sg_entries, uint, 0444);
82 MODULE_PARM_DESC(indirect_sg_entries,
83                  "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")");
84
85 module_param(allow_ext_sg, bool, 0444);
86 MODULE_PARM_DESC(allow_ext_sg,
87                   "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
88
89 module_param(topspin_workarounds, int, 0444);
90 MODULE_PARM_DESC(topspin_workarounds,
91                  "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
92
93 module_param(prefer_fr, bool, 0444);
94 MODULE_PARM_DESC(prefer_fr,
95 "Whether to use fast registration if both FMR and fast registration are supported");
96
97 module_param(register_always, bool, 0444);
98 MODULE_PARM_DESC(register_always,
99                  "Use memory registration even for contiguous memory regions");
100
101 static struct kernel_param_ops srp_tmo_ops;
102
103 static int srp_reconnect_delay = 10;
104 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
105                 S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
107
108 static int srp_fast_io_fail_tmo = 15;
109 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
110                 S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(fast_io_fail_tmo,
112                  "Number of seconds between the observation of a transport"
113                  " layer error and failing all I/O. \"off\" means that this"
114                  " functionality is disabled.");
115
116 static int srp_dev_loss_tmo = 600;
117 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
118                 S_IRUGO | S_IWUSR);
119 MODULE_PARM_DESC(dev_loss_tmo,
120                  "Maximum number of seconds that the SRP transport should"
121                  " insulate transport layer errors. After this time has been"
122                  " exceeded the SCSI host is removed. Should be"
123                  " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
124                  " if fast_io_fail_tmo has not been set. \"off\" means that"
125                  " this functionality is disabled.");
126
127 static unsigned ch_count;
128 module_param(ch_count, uint, 0444);
129 MODULE_PARM_DESC(ch_count,
130                  "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
131
132 static void srp_add_one(struct ib_device *device);
133 static void srp_remove_one(struct ib_device *device);
134 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr);
135 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr);
136 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event);
137
138 static struct scsi_transport_template *ib_srp_transport_template;
139 static struct workqueue_struct *srp_remove_wq;
140
141 static struct ib_client srp_client = {
142         .name   = "srp",
143         .add    = srp_add_one,
144         .remove = srp_remove_one
145 };
146
147 static struct ib_sa_client srp_sa_client;
148
149 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
150 {
151         int tmo = *(int *)kp->arg;
152
153         if (tmo >= 0)
154                 return sprintf(buffer, "%d", tmo);
155         else
156                 return sprintf(buffer, "off");
157 }
158
159 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
160 {
161         int tmo, res;
162
163         if (strncmp(val, "off", 3) != 0) {
164                 res = kstrtoint(val, 0, &tmo);
165                 if (res)
166                         goto out;
167         } else {
168                 tmo = -1;
169         }
170         if (kp->arg == &srp_reconnect_delay)
171                 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
172                                     srp_dev_loss_tmo);
173         else if (kp->arg == &srp_fast_io_fail_tmo)
174                 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
175         else
176                 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
177                                     tmo);
178         if (res)
179                 goto out;
180         *(int *)kp->arg = tmo;
181
182 out:
183         return res;
184 }
185
186 static struct kernel_param_ops srp_tmo_ops = {
187         .get = srp_tmo_get,
188         .set = srp_tmo_set,
189 };
190
191 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
192 {
193         return (struct srp_target_port *) host->hostdata;
194 }
195
196 static const char *srp_target_info(struct Scsi_Host *host)
197 {
198         return host_to_target(host)->target_name;
199 }
200
201 static int srp_target_is_topspin(struct srp_target_port *target)
202 {
203         static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
204         static const u8 cisco_oui[3]   = { 0x00, 0x1b, 0x0d };
205
206         return topspin_workarounds &&
207                 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
208                  !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
209 }
210
211 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
212                                    gfp_t gfp_mask,
213                                    enum dma_data_direction direction)
214 {
215         struct srp_iu *iu;
216
217         iu = kmalloc(sizeof *iu, gfp_mask);
218         if (!iu)
219                 goto out;
220
221         iu->buf = kzalloc(size, gfp_mask);
222         if (!iu->buf)
223                 goto out_free_iu;
224
225         iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
226                                     direction);
227         if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
228                 goto out_free_buf;
229
230         iu->size      = size;
231         iu->direction = direction;
232
233         return iu;
234
235 out_free_buf:
236         kfree(iu->buf);
237 out_free_iu:
238         kfree(iu);
239 out:
240         return NULL;
241 }
242
243 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
244 {
245         if (!iu)
246                 return;
247
248         ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
249                             iu->direction);
250         kfree(iu->buf);
251         kfree(iu);
252 }
253
254 static void srp_qp_event(struct ib_event *event, void *context)
255 {
256         pr_debug("QP event %d\n", event->event);
257 }
258
259 static int srp_init_qp(struct srp_target_port *target,
260                        struct ib_qp *qp)
261 {
262         struct ib_qp_attr *attr;
263         int ret;
264
265         attr = kmalloc(sizeof *attr, GFP_KERNEL);
266         if (!attr)
267                 return -ENOMEM;
268
269         ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
270                                   target->srp_host->port,
271                                   be16_to_cpu(target->pkey),
272                                   &attr->pkey_index);
273         if (ret)
274                 goto out;
275
276         attr->qp_state        = IB_QPS_INIT;
277         attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
278                                     IB_ACCESS_REMOTE_WRITE);
279         attr->port_num        = target->srp_host->port;
280
281         ret = ib_modify_qp(qp, attr,
282                            IB_QP_STATE          |
283                            IB_QP_PKEY_INDEX     |
284                            IB_QP_ACCESS_FLAGS   |
285                            IB_QP_PORT);
286
287 out:
288         kfree(attr);
289         return ret;
290 }
291
292 static int srp_new_cm_id(struct srp_rdma_ch *ch)
293 {
294         struct srp_target_port *target = ch->target;
295         struct ib_cm_id *new_cm_id;
296
297         new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
298                                     srp_cm_handler, ch);
299         if (IS_ERR(new_cm_id))
300                 return PTR_ERR(new_cm_id);
301
302         if (ch->cm_id)
303                 ib_destroy_cm_id(ch->cm_id);
304         ch->cm_id = new_cm_id;
305         ch->path.sgid = target->sgid;
306         ch->path.dgid = target->orig_dgid;
307         ch->path.pkey = target->pkey;
308         ch->path.service_id = target->service_id;
309
310         return 0;
311 }
312
313 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target)
314 {
315         struct srp_device *dev = target->srp_host->srp_dev;
316         struct ib_fmr_pool_param fmr_param;
317
318         memset(&fmr_param, 0, sizeof(fmr_param));
319         fmr_param.pool_size         = target->scsi_host->can_queue;
320         fmr_param.dirty_watermark   = fmr_param.pool_size / 4;
321         fmr_param.cache             = 1;
322         fmr_param.max_pages_per_fmr = dev->max_pages_per_mr;
323         fmr_param.page_shift        = ilog2(dev->mr_page_size);
324         fmr_param.access            = (IB_ACCESS_LOCAL_WRITE |
325                                        IB_ACCESS_REMOTE_WRITE |
326                                        IB_ACCESS_REMOTE_READ);
327
328         return ib_create_fmr_pool(dev->pd, &fmr_param);
329 }
330
331 /**
332  * srp_destroy_fr_pool() - free the resources owned by a pool
333  * @pool: Fast registration pool to be destroyed.
334  */
335 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
336 {
337         int i;
338         struct srp_fr_desc *d;
339
340         if (!pool)
341                 return;
342
343         for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
344                 if (d->frpl)
345                         ib_free_fast_reg_page_list(d->frpl);
346                 if (d->mr)
347                         ib_dereg_mr(d->mr);
348         }
349         kfree(pool);
350 }
351
352 /**
353  * srp_create_fr_pool() - allocate and initialize a pool for fast registration
354  * @device:            IB device to allocate fast registration descriptors for.
355  * @pd:                Protection domain associated with the FR descriptors.
356  * @pool_size:         Number of descriptors to allocate.
357  * @max_page_list_len: Maximum fast registration work request page list length.
358  */
359 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
360                                               struct ib_pd *pd, int pool_size,
361                                               int max_page_list_len)
362 {
363         struct srp_fr_pool *pool;
364         struct srp_fr_desc *d;
365         struct ib_mr *mr;
366         struct ib_fast_reg_page_list *frpl;
367         int i, ret = -EINVAL;
368
369         if (pool_size <= 0)
370                 goto err;
371         ret = -ENOMEM;
372         pool = kzalloc(sizeof(struct srp_fr_pool) +
373                        pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL);
374         if (!pool)
375                 goto err;
376         pool->size = pool_size;
377         pool->max_page_list_len = max_page_list_len;
378         spin_lock_init(&pool->lock);
379         INIT_LIST_HEAD(&pool->free_list);
380
381         for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
382                 mr = ib_alloc_fast_reg_mr(pd, max_page_list_len);
383                 if (IS_ERR(mr)) {
384                         ret = PTR_ERR(mr);
385                         goto destroy_pool;
386                 }
387                 d->mr = mr;
388                 frpl = ib_alloc_fast_reg_page_list(device, max_page_list_len);
389                 if (IS_ERR(frpl)) {
390                         ret = PTR_ERR(frpl);
391                         goto destroy_pool;
392                 }
393                 d->frpl = frpl;
394                 list_add_tail(&d->entry, &pool->free_list);
395         }
396
397 out:
398         return pool;
399
400 destroy_pool:
401         srp_destroy_fr_pool(pool);
402
403 err:
404         pool = ERR_PTR(ret);
405         goto out;
406 }
407
408 /**
409  * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
410  * @pool: Pool to obtain descriptor from.
411  */
412 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
413 {
414         struct srp_fr_desc *d = NULL;
415         unsigned long flags;
416
417         spin_lock_irqsave(&pool->lock, flags);
418         if (!list_empty(&pool->free_list)) {
419                 d = list_first_entry(&pool->free_list, typeof(*d), entry);
420                 list_del(&d->entry);
421         }
422         spin_unlock_irqrestore(&pool->lock, flags);
423
424         return d;
425 }
426
427 /**
428  * srp_fr_pool_put() - put an FR descriptor back in the free list
429  * @pool: Pool the descriptor was allocated from.
430  * @desc: Pointer to an array of fast registration descriptor pointers.
431  * @n:    Number of descriptors to put back.
432  *
433  * Note: The caller must already have queued an invalidation request for
434  * desc->mr->rkey before calling this function.
435  */
436 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
437                             int n)
438 {
439         unsigned long flags;
440         int i;
441
442         spin_lock_irqsave(&pool->lock, flags);
443         for (i = 0; i < n; i++)
444                 list_add(&desc[i]->entry, &pool->free_list);
445         spin_unlock_irqrestore(&pool->lock, flags);
446 }
447
448 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
449 {
450         struct srp_device *dev = target->srp_host->srp_dev;
451
452         return srp_create_fr_pool(dev->dev, dev->pd,
453                                   target->scsi_host->can_queue,
454                                   dev->max_pages_per_mr);
455 }
456
457 /**
458  * srp_destroy_qp() - destroy an RDMA queue pair
459  * @ch: SRP RDMA channel.
460  *
461  * Change a queue pair into the error state and wait until all receive
462  * completions have been processed before destroying it. This avoids that
463  * the receive completion handler can access the queue pair while it is
464  * being destroyed.
465  */
466 static void srp_destroy_qp(struct srp_rdma_ch *ch)
467 {
468         static struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
469         static struct ib_recv_wr wr = { .wr_id = SRP_LAST_WR_ID };
470         struct ib_recv_wr *bad_wr;
471         int ret;
472
473         /* Destroying a QP and reusing ch->done is only safe if not connected */
474         WARN_ON_ONCE(ch->connected);
475
476         ret = ib_modify_qp(ch->qp, &attr, IB_QP_STATE);
477         WARN_ONCE(ret, "ib_cm_init_qp_attr() returned %d\n", ret);
478         if (ret)
479                 goto out;
480
481         init_completion(&ch->done);
482         ret = ib_post_recv(ch->qp, &wr, &bad_wr);
483         WARN_ONCE(ret, "ib_post_recv() returned %d\n", ret);
484         if (ret == 0)
485                 wait_for_completion(&ch->done);
486
487 out:
488         ib_destroy_qp(ch->qp);
489 }
490
491 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
492 {
493         struct srp_target_port *target = ch->target;
494         struct srp_device *dev = target->srp_host->srp_dev;
495         struct ib_qp_init_attr *init_attr;
496         struct ib_cq *recv_cq, *send_cq;
497         struct ib_qp *qp;
498         struct ib_fmr_pool *fmr_pool = NULL;
499         struct srp_fr_pool *fr_pool = NULL;
500         const int m = 1 + dev->use_fast_reg;
501         int ret;
502
503         init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
504         if (!init_attr)
505                 return -ENOMEM;
506
507         /* + 1 for SRP_LAST_WR_ID */
508         recv_cq = ib_create_cq(dev->dev, srp_recv_completion, NULL, ch,
509                                target->queue_size + 1, ch->comp_vector);
510         if (IS_ERR(recv_cq)) {
511                 ret = PTR_ERR(recv_cq);
512                 goto err;
513         }
514
515         send_cq = ib_create_cq(dev->dev, srp_send_completion, NULL, ch,
516                                m * target->queue_size, ch->comp_vector);
517         if (IS_ERR(send_cq)) {
518                 ret = PTR_ERR(send_cq);
519                 goto err_recv_cq;
520         }
521
522         ib_req_notify_cq(recv_cq, IB_CQ_NEXT_COMP);
523
524         init_attr->event_handler       = srp_qp_event;
525         init_attr->cap.max_send_wr     = m * target->queue_size;
526         init_attr->cap.max_recv_wr     = target->queue_size + 1;
527         init_attr->cap.max_recv_sge    = 1;
528         init_attr->cap.max_send_sge    = 1;
529         init_attr->sq_sig_type         = IB_SIGNAL_REQ_WR;
530         init_attr->qp_type             = IB_QPT_RC;
531         init_attr->send_cq             = send_cq;
532         init_attr->recv_cq             = recv_cq;
533
534         qp = ib_create_qp(dev->pd, init_attr);
535         if (IS_ERR(qp)) {
536                 ret = PTR_ERR(qp);
537                 goto err_send_cq;
538         }
539
540         ret = srp_init_qp(target, qp);
541         if (ret)
542                 goto err_qp;
543
544         if (dev->use_fast_reg && dev->has_fr) {
545                 fr_pool = srp_alloc_fr_pool(target);
546                 if (IS_ERR(fr_pool)) {
547                         ret = PTR_ERR(fr_pool);
548                         shost_printk(KERN_WARNING, target->scsi_host, PFX
549                                      "FR pool allocation failed (%d)\n", ret);
550                         goto err_qp;
551                 }
552                 if (ch->fr_pool)
553                         srp_destroy_fr_pool(ch->fr_pool);
554                 ch->fr_pool = fr_pool;
555         } else if (!dev->use_fast_reg && dev->has_fmr) {
556                 fmr_pool = srp_alloc_fmr_pool(target);
557                 if (IS_ERR(fmr_pool)) {
558                         ret = PTR_ERR(fmr_pool);
559                         shost_printk(KERN_WARNING, target->scsi_host, PFX
560                                      "FMR pool allocation failed (%d)\n", ret);
561                         goto err_qp;
562                 }
563                 if (ch->fmr_pool)
564                         ib_destroy_fmr_pool(ch->fmr_pool);
565                 ch->fmr_pool = fmr_pool;
566         }
567
568         if (ch->qp)
569                 srp_destroy_qp(ch);
570         if (ch->recv_cq)
571                 ib_destroy_cq(ch->recv_cq);
572         if (ch->send_cq)
573                 ib_destroy_cq(ch->send_cq);
574
575         ch->qp = qp;
576         ch->recv_cq = recv_cq;
577         ch->send_cq = send_cq;
578
579         kfree(init_attr);
580         return 0;
581
582 err_qp:
583         ib_destroy_qp(qp);
584
585 err_send_cq:
586         ib_destroy_cq(send_cq);
587
588 err_recv_cq:
589         ib_destroy_cq(recv_cq);
590
591 err:
592         kfree(init_attr);
593         return ret;
594 }
595
596 /*
597  * Note: this function may be called without srp_alloc_iu_bufs() having been
598  * invoked. Hence the ch->[rt]x_ring checks.
599  */
600 static void srp_free_ch_ib(struct srp_target_port *target,
601                            struct srp_rdma_ch *ch)
602 {
603         struct srp_device *dev = target->srp_host->srp_dev;
604         int i;
605
606         if (!ch->target)
607                 return;
608
609         if (ch->cm_id) {
610                 ib_destroy_cm_id(ch->cm_id);
611                 ch->cm_id = NULL;
612         }
613
614         /* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
615         if (!ch->qp)
616                 return;
617
618         if (dev->use_fast_reg) {
619                 if (ch->fr_pool)
620                         srp_destroy_fr_pool(ch->fr_pool);
621         } else {
622                 if (ch->fmr_pool)
623                         ib_destroy_fmr_pool(ch->fmr_pool);
624         }
625         srp_destroy_qp(ch);
626         ib_destroy_cq(ch->send_cq);
627         ib_destroy_cq(ch->recv_cq);
628
629         /*
630          * Avoid that the SCSI error handler tries to use this channel after
631          * it has been freed. The SCSI error handler can namely continue
632          * trying to perform recovery actions after scsi_remove_host()
633          * returned.
634          */
635         ch->target = NULL;
636
637         ch->qp = NULL;
638         ch->send_cq = ch->recv_cq = NULL;
639
640         if (ch->rx_ring) {
641                 for (i = 0; i < target->queue_size; ++i)
642                         srp_free_iu(target->srp_host, ch->rx_ring[i]);
643                 kfree(ch->rx_ring);
644                 ch->rx_ring = NULL;
645         }
646         if (ch->tx_ring) {
647                 for (i = 0; i < target->queue_size; ++i)
648                         srp_free_iu(target->srp_host, ch->tx_ring[i]);
649                 kfree(ch->tx_ring);
650                 ch->tx_ring = NULL;
651         }
652 }
653
654 static void srp_path_rec_completion(int status,
655                                     struct ib_sa_path_rec *pathrec,
656                                     void *ch_ptr)
657 {
658         struct srp_rdma_ch *ch = ch_ptr;
659         struct srp_target_port *target = ch->target;
660
661         ch->status = status;
662         if (status)
663                 shost_printk(KERN_ERR, target->scsi_host,
664                              PFX "Got failed path rec status %d\n", status);
665         else
666                 ch->path = *pathrec;
667         complete(&ch->done);
668 }
669
670 static int srp_lookup_path(struct srp_rdma_ch *ch)
671 {
672         struct srp_target_port *target = ch->target;
673         int ret;
674
675         ch->path.numb_path = 1;
676
677         init_completion(&ch->done);
678
679         ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client,
680                                                target->srp_host->srp_dev->dev,
681                                                target->srp_host->port,
682                                                &ch->path,
683                                                IB_SA_PATH_REC_SERVICE_ID |
684                                                IB_SA_PATH_REC_DGID       |
685                                                IB_SA_PATH_REC_SGID       |
686                                                IB_SA_PATH_REC_NUMB_PATH  |
687                                                IB_SA_PATH_REC_PKEY,
688                                                SRP_PATH_REC_TIMEOUT_MS,
689                                                GFP_KERNEL,
690                                                srp_path_rec_completion,
691                                                ch, &ch->path_query);
692         if (ch->path_query_id < 0)
693                 return ch->path_query_id;
694
695         ret = wait_for_completion_interruptible(&ch->done);
696         if (ret < 0)
697                 return ret;
698
699         if (ch->status < 0)
700                 shost_printk(KERN_WARNING, target->scsi_host,
701                              PFX "Path record query failed\n");
702
703         return ch->status;
704 }
705
706 static int srp_send_req(struct srp_rdma_ch *ch, bool multich)
707 {
708         struct srp_target_port *target = ch->target;
709         struct {
710                 struct ib_cm_req_param param;
711                 struct srp_login_req   priv;
712         } *req = NULL;
713         int status;
714
715         req = kzalloc(sizeof *req, GFP_KERNEL);
716         if (!req)
717                 return -ENOMEM;
718
719         req->param.primary_path               = &ch->path;
720         req->param.alternate_path             = NULL;
721         req->param.service_id                 = target->service_id;
722         req->param.qp_num                     = ch->qp->qp_num;
723         req->param.qp_type                    = ch->qp->qp_type;
724         req->param.private_data               = &req->priv;
725         req->param.private_data_len           = sizeof req->priv;
726         req->param.flow_control               = 1;
727
728         get_random_bytes(&req->param.starting_psn, 4);
729         req->param.starting_psn              &= 0xffffff;
730
731         /*
732          * Pick some arbitrary defaults here; we could make these
733          * module parameters if anyone cared about setting them.
734          */
735         req->param.responder_resources        = 4;
736         req->param.remote_cm_response_timeout = 20;
737         req->param.local_cm_response_timeout  = 20;
738         req->param.retry_count                = target->tl_retry_count;
739         req->param.rnr_retry_count            = 7;
740         req->param.max_cm_retries             = 15;
741
742         req->priv.opcode        = SRP_LOGIN_REQ;
743         req->priv.tag           = 0;
744         req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len);
745         req->priv.req_buf_fmt   = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
746                                               SRP_BUF_FORMAT_INDIRECT);
747         req->priv.req_flags     = (multich ? SRP_MULTICHAN_MULTI :
748                                    SRP_MULTICHAN_SINGLE);
749         /*
750          * In the published SRP specification (draft rev. 16a), the
751          * port identifier format is 8 bytes of ID extension followed
752          * by 8 bytes of GUID.  Older drafts put the two halves in the
753          * opposite order, so that the GUID comes first.
754          *
755          * Targets conforming to these obsolete drafts can be
756          * recognized by the I/O Class they report.
757          */
758         if (target->io_class == SRP_REV10_IB_IO_CLASS) {
759                 memcpy(req->priv.initiator_port_id,
760                        &target->sgid.global.interface_id, 8);
761                 memcpy(req->priv.initiator_port_id + 8,
762                        &target->initiator_ext, 8);
763                 memcpy(req->priv.target_port_id,     &target->ioc_guid, 8);
764                 memcpy(req->priv.target_port_id + 8, &target->id_ext, 8);
765         } else {
766                 memcpy(req->priv.initiator_port_id,
767                        &target->initiator_ext, 8);
768                 memcpy(req->priv.initiator_port_id + 8,
769                        &target->sgid.global.interface_id, 8);
770                 memcpy(req->priv.target_port_id,     &target->id_ext, 8);
771                 memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8);
772         }
773
774         /*
775          * Topspin/Cisco SRP targets will reject our login unless we
776          * zero out the first 8 bytes of our initiator port ID and set
777          * the second 8 bytes to the local node GUID.
778          */
779         if (srp_target_is_topspin(target)) {
780                 shost_printk(KERN_DEBUG, target->scsi_host,
781                              PFX "Topspin/Cisco initiator port ID workaround "
782                              "activated for target GUID %016llx\n",
783                              (unsigned long long) be64_to_cpu(target->ioc_guid));
784                 memset(req->priv.initiator_port_id, 0, 8);
785                 memcpy(req->priv.initiator_port_id + 8,
786                        &target->srp_host->srp_dev->dev->node_guid, 8);
787         }
788
789         status = ib_send_cm_req(ch->cm_id, &req->param);
790
791         kfree(req);
792
793         return status;
794 }
795
796 static bool srp_queue_remove_work(struct srp_target_port *target)
797 {
798         bool changed = false;
799
800         spin_lock_irq(&target->lock);
801         if (target->state != SRP_TARGET_REMOVED) {
802                 target->state = SRP_TARGET_REMOVED;
803                 changed = true;
804         }
805         spin_unlock_irq(&target->lock);
806
807         if (changed)
808                 queue_work(srp_remove_wq, &target->remove_work);
809
810         return changed;
811 }
812
813 static void srp_disconnect_target(struct srp_target_port *target)
814 {
815         struct srp_rdma_ch *ch;
816         int i;
817
818         /* XXX should send SRP_I_LOGOUT request */
819
820         for (i = 0; i < target->ch_count; i++) {
821                 ch = &target->ch[i];
822                 ch->connected = false;
823                 if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) {
824                         shost_printk(KERN_DEBUG, target->scsi_host,
825                                      PFX "Sending CM DREQ failed\n");
826                 }
827         }
828 }
829
830 static void srp_free_req_data(struct srp_target_port *target,
831                               struct srp_rdma_ch *ch)
832 {
833         struct srp_device *dev = target->srp_host->srp_dev;
834         struct ib_device *ibdev = dev->dev;
835         struct srp_request *req;
836         int i;
837
838         if (!ch->target || !ch->req_ring)
839                 return;
840
841         for (i = 0; i < target->req_ring_size; ++i) {
842                 req = &ch->req_ring[i];
843                 if (dev->use_fast_reg)
844                         kfree(req->fr_list);
845                 else
846                         kfree(req->fmr_list);
847                 kfree(req->map_page);
848                 if (req->indirect_dma_addr) {
849                         ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
850                                             target->indirect_size,
851                                             DMA_TO_DEVICE);
852                 }
853                 kfree(req->indirect_desc);
854         }
855
856         kfree(ch->req_ring);
857         ch->req_ring = NULL;
858 }
859
860 static int srp_alloc_req_data(struct srp_rdma_ch *ch)
861 {
862         struct srp_target_port *target = ch->target;
863         struct srp_device *srp_dev = target->srp_host->srp_dev;
864         struct ib_device *ibdev = srp_dev->dev;
865         struct srp_request *req;
866         void *mr_list;
867         dma_addr_t dma_addr;
868         int i, ret = -ENOMEM;
869
870         ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring),
871                                GFP_KERNEL);
872         if (!ch->req_ring)
873                 goto out;
874
875         for (i = 0; i < target->req_ring_size; ++i) {
876                 req = &ch->req_ring[i];
877                 mr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *),
878                                   GFP_KERNEL);
879                 if (!mr_list)
880                         goto out;
881                 if (srp_dev->use_fast_reg)
882                         req->fr_list = mr_list;
883                 else
884                         req->fmr_list = mr_list;
885                 req->map_page = kmalloc(srp_dev->max_pages_per_mr *
886                                         sizeof(void *), GFP_KERNEL);
887                 if (!req->map_page)
888                         goto out;
889                 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
890                 if (!req->indirect_desc)
891                         goto out;
892
893                 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
894                                              target->indirect_size,
895                                              DMA_TO_DEVICE);
896                 if (ib_dma_mapping_error(ibdev, dma_addr))
897                         goto out;
898
899                 req->indirect_dma_addr = dma_addr;
900         }
901         ret = 0;
902
903 out:
904         return ret;
905 }
906
907 /**
908  * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
909  * @shost: SCSI host whose attributes to remove from sysfs.
910  *
911  * Note: Any attributes defined in the host template and that did not exist
912  * before invocation of this function will be ignored.
913  */
914 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
915 {
916         struct device_attribute **attr;
917
918         for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
919                 device_remove_file(&shost->shost_dev, *attr);
920 }
921
922 static void srp_remove_target(struct srp_target_port *target)
923 {
924         struct srp_rdma_ch *ch;
925         int i;
926
927         WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
928
929         srp_del_scsi_host_attr(target->scsi_host);
930         srp_rport_get(target->rport);
931         srp_remove_host(target->scsi_host);
932         scsi_remove_host(target->scsi_host);
933         srp_stop_rport_timers(target->rport);
934         srp_disconnect_target(target);
935         for (i = 0; i < target->ch_count; i++) {
936                 ch = &target->ch[i];
937                 srp_free_ch_ib(target, ch);
938         }
939         cancel_work_sync(&target->tl_err_work);
940         srp_rport_put(target->rport);
941         for (i = 0; i < target->ch_count; i++) {
942                 ch = &target->ch[i];
943                 srp_free_req_data(target, ch);
944         }
945         kfree(target->ch);
946         target->ch = NULL;
947
948         spin_lock(&target->srp_host->target_lock);
949         list_del(&target->list);
950         spin_unlock(&target->srp_host->target_lock);
951
952         scsi_host_put(target->scsi_host);
953 }
954
955 static void srp_remove_work(struct work_struct *work)
956 {
957         struct srp_target_port *target =
958                 container_of(work, struct srp_target_port, remove_work);
959
960         WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
961
962         srp_remove_target(target);
963 }
964
965 static void srp_rport_delete(struct srp_rport *rport)
966 {
967         struct srp_target_port *target = rport->lld_data;
968
969         srp_queue_remove_work(target);
970 }
971
972 /**
973  * srp_connected_ch() - number of connected channels
974  * @target: SRP target port.
975  */
976 static int srp_connected_ch(struct srp_target_port *target)
977 {
978         int i, c = 0;
979
980         for (i = 0; i < target->ch_count; i++)
981                 c += target->ch[i].connected;
982
983         return c;
984 }
985
986 static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich)
987 {
988         struct srp_target_port *target = ch->target;
989         int ret;
990
991         WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
992
993         ret = srp_lookup_path(ch);
994         if (ret)
995                 return ret;
996
997         while (1) {
998                 init_completion(&ch->done);
999                 ret = srp_send_req(ch, multich);
1000                 if (ret)
1001                         return ret;
1002                 ret = wait_for_completion_interruptible(&ch->done);
1003                 if (ret < 0)
1004                         return ret;
1005
1006                 /*
1007                  * The CM event handling code will set status to
1008                  * SRP_PORT_REDIRECT if we get a port redirect REJ
1009                  * back, or SRP_DLID_REDIRECT if we get a lid/qp
1010                  * redirect REJ back.
1011                  */
1012                 switch (ch->status) {
1013                 case 0:
1014                         ch->connected = true;
1015                         return 0;
1016
1017                 case SRP_PORT_REDIRECT:
1018                         ret = srp_lookup_path(ch);
1019                         if (ret)
1020                                 return ret;
1021                         break;
1022
1023                 case SRP_DLID_REDIRECT:
1024                         break;
1025
1026                 case SRP_STALE_CONN:
1027                         shost_printk(KERN_ERR, target->scsi_host, PFX
1028                                      "giving up on stale connection\n");
1029                         ch->status = -ECONNRESET;
1030                         return ch->status;
1031
1032                 default:
1033                         return ch->status;
1034                 }
1035         }
1036 }
1037
1038 static int srp_inv_rkey(struct srp_rdma_ch *ch, u32 rkey)
1039 {
1040         struct ib_send_wr *bad_wr;
1041         struct ib_send_wr wr = {
1042                 .opcode             = IB_WR_LOCAL_INV,
1043                 .wr_id              = LOCAL_INV_WR_ID_MASK,
1044                 .next               = NULL,
1045                 .num_sge            = 0,
1046                 .send_flags         = 0,
1047                 .ex.invalidate_rkey = rkey,
1048         };
1049
1050         return ib_post_send(ch->qp, &wr, &bad_wr);
1051 }
1052
1053 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1054                            struct srp_rdma_ch *ch,
1055                            struct srp_request *req)
1056 {
1057         struct srp_target_port *target = ch->target;
1058         struct srp_device *dev = target->srp_host->srp_dev;
1059         struct ib_device *ibdev = dev->dev;
1060         int i, res;
1061
1062         if (!scsi_sglist(scmnd) ||
1063             (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1064              scmnd->sc_data_direction != DMA_FROM_DEVICE))
1065                 return;
1066
1067         if (dev->use_fast_reg) {
1068                 struct srp_fr_desc **pfr;
1069
1070                 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1071                         res = srp_inv_rkey(ch, (*pfr)->mr->rkey);
1072                         if (res < 0) {
1073                                 shost_printk(KERN_ERR, target->scsi_host, PFX
1074                                   "Queueing INV WR for rkey %#x failed (%d)\n",
1075                                   (*pfr)->mr->rkey, res);
1076                                 queue_work(system_long_wq,
1077                                            &target->tl_err_work);
1078                         }
1079                 }
1080                 if (req->nmdesc)
1081                         srp_fr_pool_put(ch->fr_pool, req->fr_list,
1082                                         req->nmdesc);
1083         } else {
1084                 struct ib_pool_fmr **pfmr;
1085
1086                 for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++)
1087                         ib_fmr_pool_unmap(*pfmr);
1088         }
1089
1090         ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1091                         scmnd->sc_data_direction);
1092 }
1093
1094 /**
1095  * srp_claim_req - Take ownership of the scmnd associated with a request.
1096  * @ch: SRP RDMA channel.
1097  * @req: SRP request.
1098  * @sdev: If not NULL, only take ownership for this SCSI device.
1099  * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1100  *         ownership of @req->scmnd if it equals @scmnd.
1101  *
1102  * Return value:
1103  * Either NULL or a pointer to the SCSI command the caller became owner of.
1104  */
1105 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1106                                        struct srp_request *req,
1107                                        struct scsi_device *sdev,
1108                                        struct scsi_cmnd *scmnd)
1109 {
1110         unsigned long flags;
1111
1112         spin_lock_irqsave(&ch->lock, flags);
1113         if (req->scmnd &&
1114             (!sdev || req->scmnd->device == sdev) &&
1115             (!scmnd || req->scmnd == scmnd)) {
1116                 scmnd = req->scmnd;
1117                 req->scmnd = NULL;
1118         } else {
1119                 scmnd = NULL;
1120         }
1121         spin_unlock_irqrestore(&ch->lock, flags);
1122
1123         return scmnd;
1124 }
1125
1126 /**
1127  * srp_free_req() - Unmap data and add request to the free request list.
1128  * @ch:     SRP RDMA channel.
1129  * @req:    Request to be freed.
1130  * @scmnd:  SCSI command associated with @req.
1131  * @req_lim_delta: Amount to be added to @target->req_lim.
1132  */
1133 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1134                          struct scsi_cmnd *scmnd, s32 req_lim_delta)
1135 {
1136         unsigned long flags;
1137
1138         srp_unmap_data(scmnd, ch, req);
1139
1140         spin_lock_irqsave(&ch->lock, flags);
1141         ch->req_lim += req_lim_delta;
1142         spin_unlock_irqrestore(&ch->lock, flags);
1143 }
1144
1145 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1146                            struct scsi_device *sdev, int result)
1147 {
1148         struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1149
1150         if (scmnd) {
1151                 srp_free_req(ch, req, scmnd, 0);
1152                 scmnd->result = result;
1153                 scmnd->scsi_done(scmnd);
1154         }
1155 }
1156
1157 static void srp_terminate_io(struct srp_rport *rport)
1158 {
1159         struct srp_target_port *target = rport->lld_data;
1160         struct srp_rdma_ch *ch;
1161         struct Scsi_Host *shost = target->scsi_host;
1162         struct scsi_device *sdev;
1163         int i, j;
1164
1165         /*
1166          * Invoking srp_terminate_io() while srp_queuecommand() is running
1167          * is not safe. Hence the warning statement below.
1168          */
1169         shost_for_each_device(sdev, shost)
1170                 WARN_ON_ONCE(sdev->request_queue->request_fn_active);
1171
1172         for (i = 0; i < target->ch_count; i++) {
1173                 ch = &target->ch[i];
1174
1175                 for (j = 0; j < target->req_ring_size; ++j) {
1176                         struct srp_request *req = &ch->req_ring[j];
1177
1178                         srp_finish_req(ch, req, NULL,
1179                                        DID_TRANSPORT_FAILFAST << 16);
1180                 }
1181         }
1182 }
1183
1184 /*
1185  * It is up to the caller to ensure that srp_rport_reconnect() calls are
1186  * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1187  * srp_reset_device() or srp_reset_host() calls will occur while this function
1188  * is in progress. One way to realize that is not to call this function
1189  * directly but to call srp_reconnect_rport() instead since that last function
1190  * serializes calls of this function via rport->mutex and also blocks
1191  * srp_queuecommand() calls before invoking this function.
1192  */
1193 static int srp_rport_reconnect(struct srp_rport *rport)
1194 {
1195         struct srp_target_port *target = rport->lld_data;
1196         struct srp_rdma_ch *ch;
1197         int i, j, ret = 0;
1198         bool multich = false;
1199
1200         srp_disconnect_target(target);
1201
1202         if (target->state == SRP_TARGET_SCANNING)
1203                 return -ENODEV;
1204
1205         /*
1206          * Now get a new local CM ID so that we avoid confusing the target in
1207          * case things are really fouled up. Doing so also ensures that all CM
1208          * callbacks will have finished before a new QP is allocated.
1209          */
1210         for (i = 0; i < target->ch_count; i++) {
1211                 ch = &target->ch[i];
1212                 if (!ch->target)
1213                         break;
1214                 ret += srp_new_cm_id(ch);
1215         }
1216         for (i = 0; i < target->ch_count; i++) {
1217                 ch = &target->ch[i];
1218                 if (!ch->target)
1219                         break;
1220                 for (j = 0; j < target->req_ring_size; ++j) {
1221                         struct srp_request *req = &ch->req_ring[j];
1222
1223                         srp_finish_req(ch, req, NULL, DID_RESET << 16);
1224                 }
1225         }
1226         for (i = 0; i < target->ch_count; i++) {
1227                 ch = &target->ch[i];
1228                 if (!ch->target)
1229                         break;
1230                 /*
1231                  * Whether or not creating a new CM ID succeeded, create a new
1232                  * QP. This guarantees that all completion callback function
1233                  * invocations have finished before request resetting starts.
1234                  */
1235                 ret += srp_create_ch_ib(ch);
1236
1237                 INIT_LIST_HEAD(&ch->free_tx);
1238                 for (j = 0; j < target->queue_size; ++j)
1239                         list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1240         }
1241
1242         target->qp_in_error = false;
1243
1244         for (i = 0; i < target->ch_count; i++) {
1245                 ch = &target->ch[i];
1246                 if (ret || !ch->target)
1247                         break;
1248                 ret = srp_connect_ch(ch, multich);
1249                 multich = true;
1250         }
1251
1252         if (ret == 0)
1253                 shost_printk(KERN_INFO, target->scsi_host,
1254                              PFX "reconnect succeeded\n");
1255
1256         return ret;
1257 }
1258
1259 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1260                          unsigned int dma_len, u32 rkey)
1261 {
1262         struct srp_direct_buf *desc = state->desc;
1263
1264         desc->va = cpu_to_be64(dma_addr);
1265         desc->key = cpu_to_be32(rkey);
1266         desc->len = cpu_to_be32(dma_len);
1267
1268         state->total_len += dma_len;
1269         state->desc++;
1270         state->ndesc++;
1271 }
1272
1273 static int srp_map_finish_fmr(struct srp_map_state *state,
1274                               struct srp_rdma_ch *ch)
1275 {
1276         struct ib_pool_fmr *fmr;
1277         u64 io_addr = 0;
1278
1279         fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages,
1280                                    state->npages, io_addr);
1281         if (IS_ERR(fmr))
1282                 return PTR_ERR(fmr);
1283
1284         *state->next_fmr++ = fmr;
1285         state->nmdesc++;
1286
1287         srp_map_desc(state, 0, state->dma_len, fmr->fmr->rkey);
1288
1289         return 0;
1290 }
1291
1292 static int srp_map_finish_fr(struct srp_map_state *state,
1293                              struct srp_rdma_ch *ch)
1294 {
1295         struct srp_target_port *target = ch->target;
1296         struct srp_device *dev = target->srp_host->srp_dev;
1297         struct ib_send_wr *bad_wr;
1298         struct ib_send_wr wr;
1299         struct srp_fr_desc *desc;
1300         u32 rkey;
1301
1302         desc = srp_fr_pool_get(ch->fr_pool);
1303         if (!desc)
1304                 return -ENOMEM;
1305
1306         rkey = ib_inc_rkey(desc->mr->rkey);
1307         ib_update_fast_reg_key(desc->mr, rkey);
1308
1309         memcpy(desc->frpl->page_list, state->pages,
1310                sizeof(state->pages[0]) * state->npages);
1311
1312         memset(&wr, 0, sizeof(wr));
1313         wr.opcode = IB_WR_FAST_REG_MR;
1314         wr.wr_id = FAST_REG_WR_ID_MASK;
1315         wr.wr.fast_reg.iova_start = state->base_dma_addr;
1316         wr.wr.fast_reg.page_list = desc->frpl;
1317         wr.wr.fast_reg.page_list_len = state->npages;
1318         wr.wr.fast_reg.page_shift = ilog2(dev->mr_page_size);
1319         wr.wr.fast_reg.length = state->dma_len;
1320         wr.wr.fast_reg.access_flags = (IB_ACCESS_LOCAL_WRITE |
1321                                        IB_ACCESS_REMOTE_READ |
1322                                        IB_ACCESS_REMOTE_WRITE);
1323         wr.wr.fast_reg.rkey = desc->mr->lkey;
1324
1325         *state->next_fr++ = desc;
1326         state->nmdesc++;
1327
1328         srp_map_desc(state, state->base_dma_addr, state->dma_len,
1329                      desc->mr->rkey);
1330
1331         return ib_post_send(ch->qp, &wr, &bad_wr);
1332 }
1333
1334 static int srp_finish_mapping(struct srp_map_state *state,
1335                               struct srp_rdma_ch *ch)
1336 {
1337         struct srp_target_port *target = ch->target;
1338         int ret = 0;
1339
1340         if (state->npages == 0)
1341                 return 0;
1342
1343         if (state->npages == 1 && !register_always)
1344                 srp_map_desc(state, state->base_dma_addr, state->dma_len,
1345                              target->rkey);
1346         else
1347                 ret = target->srp_host->srp_dev->use_fast_reg ?
1348                         srp_map_finish_fr(state, ch) :
1349                         srp_map_finish_fmr(state, ch);
1350
1351         if (ret == 0) {
1352                 state->npages = 0;
1353                 state->dma_len = 0;
1354         }
1355
1356         return ret;
1357 }
1358
1359 static void srp_map_update_start(struct srp_map_state *state,
1360                                  struct scatterlist *sg, int sg_index,
1361                                  dma_addr_t dma_addr)
1362 {
1363         state->unmapped_sg = sg;
1364         state->unmapped_index = sg_index;
1365         state->unmapped_addr = dma_addr;
1366 }
1367
1368 static int srp_map_sg_entry(struct srp_map_state *state,
1369                             struct srp_rdma_ch *ch,
1370                             struct scatterlist *sg, int sg_index,
1371                             bool use_mr)
1372 {
1373         struct srp_target_port *target = ch->target;
1374         struct srp_device *dev = target->srp_host->srp_dev;
1375         struct ib_device *ibdev = dev->dev;
1376         dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg);
1377         unsigned int dma_len = ib_sg_dma_len(ibdev, sg);
1378         unsigned int len;
1379         int ret;
1380
1381         if (!dma_len)
1382                 return 0;
1383
1384         if (!use_mr) {
1385                 /*
1386                  * Once we're in direct map mode for a request, we don't
1387                  * go back to FMR or FR mode, so no need to update anything
1388                  * other than the descriptor.
1389                  */
1390                 srp_map_desc(state, dma_addr, dma_len, target->rkey);
1391                 return 0;
1392         }
1393
1394         /*
1395          * Since not all RDMA HW drivers support non-zero page offsets for
1396          * FMR, if we start at an offset into a page, don't merge into the
1397          * current FMR mapping. Finish it out, and use the kernel's MR for
1398          * this sg entry.
1399          */
1400         if ((!dev->use_fast_reg && dma_addr & ~dev->mr_page_mask) ||
1401             dma_len > dev->mr_max_size) {
1402                 ret = srp_finish_mapping(state, ch);
1403                 if (ret)
1404                         return ret;
1405
1406                 srp_map_desc(state, dma_addr, dma_len, target->rkey);
1407                 srp_map_update_start(state, NULL, 0, 0);
1408                 return 0;
1409         }
1410
1411         /*
1412          * If this is the first sg that will be mapped via FMR or via FR, save
1413          * our position. We need to know the first unmapped entry, its index,
1414          * and the first unmapped address within that entry to be able to
1415          * restart mapping after an error.
1416          */
1417         if (!state->unmapped_sg)
1418                 srp_map_update_start(state, sg, sg_index, dma_addr);
1419
1420         while (dma_len) {
1421                 unsigned offset = dma_addr & ~dev->mr_page_mask;
1422                 if (state->npages == dev->max_pages_per_mr || offset != 0) {
1423                         ret = srp_finish_mapping(state, ch);
1424                         if (ret)
1425                                 return ret;
1426
1427                         srp_map_update_start(state, sg, sg_index, dma_addr);
1428                 }
1429
1430                 len = min_t(unsigned int, dma_len, dev->mr_page_size - offset);
1431
1432                 if (!state->npages)
1433                         state->base_dma_addr = dma_addr;
1434                 state->pages[state->npages++] = dma_addr & dev->mr_page_mask;
1435                 state->dma_len += len;
1436                 dma_addr += len;
1437                 dma_len -= len;
1438         }
1439
1440         /*
1441          * If the last entry of the MR wasn't a full page, then we need to
1442          * close it out and start a new one -- we can only merge at page
1443          * boundries.
1444          */
1445         ret = 0;
1446         if (len != dev->mr_page_size) {
1447                 ret = srp_finish_mapping(state, ch);
1448                 if (!ret)
1449                         srp_map_update_start(state, NULL, 0, 0);
1450         }
1451         return ret;
1452 }
1453
1454 static int srp_map_sg(struct srp_map_state *state, struct srp_rdma_ch *ch,
1455                       struct srp_request *req, struct scatterlist *scat,
1456                       int count)
1457 {
1458         struct srp_target_port *target = ch->target;
1459         struct srp_device *dev = target->srp_host->srp_dev;
1460         struct ib_device *ibdev = dev->dev;
1461         struct scatterlist *sg;
1462         int i;
1463         bool use_mr;
1464
1465         state->desc     = req->indirect_desc;
1466         state->pages    = req->map_page;
1467         if (dev->use_fast_reg) {
1468                 state->next_fr = req->fr_list;
1469                 use_mr = !!ch->fr_pool;
1470         } else {
1471                 state->next_fmr = req->fmr_list;
1472                 use_mr = !!ch->fmr_pool;
1473         }
1474
1475         for_each_sg(scat, sg, count, i) {
1476                 if (srp_map_sg_entry(state, ch, sg, i, use_mr)) {
1477                         /*
1478                          * Memory registration failed, so backtrack to the
1479                          * first unmapped entry and continue on without using
1480                          * memory registration.
1481                          */
1482                         dma_addr_t dma_addr;
1483                         unsigned int dma_len;
1484
1485 backtrack:
1486                         sg = state->unmapped_sg;
1487                         i = state->unmapped_index;
1488
1489                         dma_addr = ib_sg_dma_address(ibdev, sg);
1490                         dma_len = ib_sg_dma_len(ibdev, sg);
1491                         dma_len -= (state->unmapped_addr - dma_addr);
1492                         dma_addr = state->unmapped_addr;
1493                         use_mr = false;
1494                         srp_map_desc(state, dma_addr, dma_len, target->rkey);
1495                 }
1496         }
1497
1498         if (use_mr && srp_finish_mapping(state, ch))
1499                 goto backtrack;
1500
1501         req->nmdesc = state->nmdesc;
1502
1503         return 0;
1504 }
1505
1506 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1507                         struct srp_request *req)
1508 {
1509         struct srp_target_port *target = ch->target;
1510         struct scatterlist *scat;
1511         struct srp_cmd *cmd = req->cmd->buf;
1512         int len, nents, count;
1513         struct srp_device *dev;
1514         struct ib_device *ibdev;
1515         struct srp_map_state state;
1516         struct srp_indirect_buf *indirect_hdr;
1517         u32 table_len;
1518         u8 fmt;
1519
1520         if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1521                 return sizeof (struct srp_cmd);
1522
1523         if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1524             scmnd->sc_data_direction != DMA_TO_DEVICE) {
1525                 shost_printk(KERN_WARNING, target->scsi_host,
1526                              PFX "Unhandled data direction %d\n",
1527                              scmnd->sc_data_direction);
1528                 return -EINVAL;
1529         }
1530
1531         nents = scsi_sg_count(scmnd);
1532         scat  = scsi_sglist(scmnd);
1533
1534         dev = target->srp_host->srp_dev;
1535         ibdev = dev->dev;
1536
1537         count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1538         if (unlikely(count == 0))
1539                 return -EIO;
1540
1541         fmt = SRP_DATA_DESC_DIRECT;
1542         len = sizeof (struct srp_cmd) + sizeof (struct srp_direct_buf);
1543
1544         if (count == 1 && !register_always) {
1545                 /*
1546                  * The midlayer only generated a single gather/scatter
1547                  * entry, or DMA mapping coalesced everything to a
1548                  * single entry.  So a direct descriptor along with
1549                  * the DMA MR suffices.
1550                  */
1551                 struct srp_direct_buf *buf = (void *) cmd->add_data;
1552
1553                 buf->va  = cpu_to_be64(ib_sg_dma_address(ibdev, scat));
1554                 buf->key = cpu_to_be32(target->rkey);
1555                 buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat));
1556
1557                 req->nmdesc = 0;
1558                 goto map_complete;
1559         }
1560
1561         /*
1562          * We have more than one scatter/gather entry, so build our indirect
1563          * descriptor table, trying to merge as many entries as we can.
1564          */
1565         indirect_hdr = (void *) cmd->add_data;
1566
1567         ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1568                                    target->indirect_size, DMA_TO_DEVICE);
1569
1570         memset(&state, 0, sizeof(state));
1571         srp_map_sg(&state, ch, req, scat, count);
1572
1573         /* We've mapped the request, now pull as much of the indirect
1574          * descriptor table as we can into the command buffer. If this
1575          * target is not using an external indirect table, we are
1576          * guaranteed to fit into the command, as the SCSI layer won't
1577          * give us more S/G entries than we allow.
1578          */
1579         if (state.ndesc == 1) {
1580                 /*
1581                  * Memory registration collapsed the sg-list into one entry,
1582                  * so use a direct descriptor.
1583                  */
1584                 struct srp_direct_buf *buf = (void *) cmd->add_data;
1585
1586                 *buf = req->indirect_desc[0];
1587                 goto map_complete;
1588         }
1589
1590         if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1591                                                 !target->allow_ext_sg)) {
1592                 shost_printk(KERN_ERR, target->scsi_host,
1593                              "Could not fit S/G list into SRP_CMD\n");
1594                 return -EIO;
1595         }
1596
1597         count = min(state.ndesc, target->cmd_sg_cnt);
1598         table_len = state.ndesc * sizeof (struct srp_direct_buf);
1599
1600         fmt = SRP_DATA_DESC_INDIRECT;
1601         len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf);
1602         len += count * sizeof (struct srp_direct_buf);
1603
1604         memcpy(indirect_hdr->desc_list, req->indirect_desc,
1605                count * sizeof (struct srp_direct_buf));
1606
1607         indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1608         indirect_hdr->table_desc.key = cpu_to_be32(target->rkey);
1609         indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1610         indirect_hdr->len = cpu_to_be32(state.total_len);
1611
1612         if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1613                 cmd->data_out_desc_cnt = count;
1614         else
1615                 cmd->data_in_desc_cnt = count;
1616
1617         ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1618                                       DMA_TO_DEVICE);
1619
1620 map_complete:
1621         if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1622                 cmd->buf_fmt = fmt << 4;
1623         else
1624                 cmd->buf_fmt = fmt;
1625
1626         return len;
1627 }
1628
1629 /*
1630  * Return an IU and possible credit to the free pool
1631  */
1632 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1633                           enum srp_iu_type iu_type)
1634 {
1635         unsigned long flags;
1636
1637         spin_lock_irqsave(&ch->lock, flags);
1638         list_add(&iu->list, &ch->free_tx);
1639         if (iu_type != SRP_IU_RSP)
1640                 ++ch->req_lim;
1641         spin_unlock_irqrestore(&ch->lock, flags);
1642 }
1643
1644 /*
1645  * Must be called with ch->lock held to protect req_lim and free_tx.
1646  * If IU is not sent, it must be returned using srp_put_tx_iu().
1647  *
1648  * Note:
1649  * An upper limit for the number of allocated information units for each
1650  * request type is:
1651  * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1652  *   more than Scsi_Host.can_queue requests.
1653  * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1654  * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1655  *   one unanswered SRP request to an initiator.
1656  */
1657 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1658                                       enum srp_iu_type iu_type)
1659 {
1660         struct srp_target_port *target = ch->target;
1661         s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1662         struct srp_iu *iu;
1663
1664         srp_send_completion(ch->send_cq, ch);
1665
1666         if (list_empty(&ch->free_tx))
1667                 return NULL;
1668
1669         /* Initiator responses to target requests do not consume credits */
1670         if (iu_type != SRP_IU_RSP) {
1671                 if (ch->req_lim <= rsv) {
1672                         ++target->zero_req_lim;
1673                         return NULL;
1674                 }
1675
1676                 --ch->req_lim;
1677         }
1678
1679         iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1680         list_del(&iu->list);
1681         return iu;
1682 }
1683
1684 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1685 {
1686         struct srp_target_port *target = ch->target;
1687         struct ib_sge list;
1688         struct ib_send_wr wr, *bad_wr;
1689
1690         list.addr   = iu->dma;
1691         list.length = len;
1692         list.lkey   = target->lkey;
1693
1694         wr.next       = NULL;
1695         wr.wr_id      = (uintptr_t) iu;
1696         wr.sg_list    = &list;
1697         wr.num_sge    = 1;
1698         wr.opcode     = IB_WR_SEND;
1699         wr.send_flags = IB_SEND_SIGNALED;
1700
1701         return ib_post_send(ch->qp, &wr, &bad_wr);
1702 }
1703
1704 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1705 {
1706         struct srp_target_port *target = ch->target;
1707         struct ib_recv_wr wr, *bad_wr;
1708         struct ib_sge list;
1709
1710         list.addr   = iu->dma;
1711         list.length = iu->size;
1712         list.lkey   = target->lkey;
1713
1714         wr.next     = NULL;
1715         wr.wr_id    = (uintptr_t) iu;
1716         wr.sg_list  = &list;
1717         wr.num_sge  = 1;
1718
1719         return ib_post_recv(ch->qp, &wr, &bad_wr);
1720 }
1721
1722 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1723 {
1724         struct srp_target_port *target = ch->target;
1725         struct srp_request *req;
1726         struct scsi_cmnd *scmnd;
1727         unsigned long flags;
1728
1729         if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1730                 spin_lock_irqsave(&ch->lock, flags);
1731                 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1732                 spin_unlock_irqrestore(&ch->lock, flags);
1733
1734                 ch->tsk_mgmt_status = -1;
1735                 if (be32_to_cpu(rsp->resp_data_len) >= 4)
1736                         ch->tsk_mgmt_status = rsp->data[3];
1737                 complete(&ch->tsk_mgmt_done);
1738         } else {
1739                 scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1740                 if (scmnd) {
1741                         req = (void *)scmnd->host_scribble;
1742                         scmnd = srp_claim_req(ch, req, NULL, scmnd);
1743                 }
1744                 if (!scmnd) {
1745                         shost_printk(KERN_ERR, target->scsi_host,
1746                                      "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1747                                      rsp->tag, ch - target->ch, ch->qp->qp_num);
1748
1749                         spin_lock_irqsave(&ch->lock, flags);
1750                         ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1751                         spin_unlock_irqrestore(&ch->lock, flags);
1752
1753                         return;
1754                 }
1755                 scmnd->result = rsp->status;
1756
1757                 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1758                         memcpy(scmnd->sense_buffer, rsp->data +
1759                                be32_to_cpu(rsp->resp_data_len),
1760                                min_t(int, be32_to_cpu(rsp->sense_data_len),
1761                                      SCSI_SENSE_BUFFERSIZE));
1762                 }
1763
1764                 if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1765                         scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1766                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1767                         scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1768                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1769                         scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1770                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1771                         scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1772
1773                 srp_free_req(ch, req, scmnd,
1774                              be32_to_cpu(rsp->req_lim_delta));
1775
1776                 scmnd->host_scribble = NULL;
1777                 scmnd->scsi_done(scmnd);
1778         }
1779 }
1780
1781 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1782                                void *rsp, int len)
1783 {
1784         struct srp_target_port *target = ch->target;
1785         struct ib_device *dev = target->srp_host->srp_dev->dev;
1786         unsigned long flags;
1787         struct srp_iu *iu;
1788         int err;
1789
1790         spin_lock_irqsave(&ch->lock, flags);
1791         ch->req_lim += req_delta;
1792         iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
1793         spin_unlock_irqrestore(&ch->lock, flags);
1794
1795         if (!iu) {
1796                 shost_printk(KERN_ERR, target->scsi_host, PFX
1797                              "no IU available to send response\n");
1798                 return 1;
1799         }
1800
1801         ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
1802         memcpy(iu->buf, rsp, len);
1803         ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
1804
1805         err = srp_post_send(ch, iu, len);
1806         if (err) {
1807                 shost_printk(KERN_ERR, target->scsi_host, PFX
1808                              "unable to post response: %d\n", err);
1809                 srp_put_tx_iu(ch, iu, SRP_IU_RSP);
1810         }
1811
1812         return err;
1813 }
1814
1815 static void srp_process_cred_req(struct srp_rdma_ch *ch,
1816                                  struct srp_cred_req *req)
1817 {
1818         struct srp_cred_rsp rsp = {
1819                 .opcode = SRP_CRED_RSP,
1820                 .tag = req->tag,
1821         };
1822         s32 delta = be32_to_cpu(req->req_lim_delta);
1823
1824         if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1825                 shost_printk(KERN_ERR, ch->target->scsi_host, PFX
1826                              "problems processing SRP_CRED_REQ\n");
1827 }
1828
1829 static void srp_process_aer_req(struct srp_rdma_ch *ch,
1830                                 struct srp_aer_req *req)
1831 {
1832         struct srp_target_port *target = ch->target;
1833         struct srp_aer_rsp rsp = {
1834                 .opcode = SRP_AER_RSP,
1835                 .tag = req->tag,
1836         };
1837         s32 delta = be32_to_cpu(req->req_lim_delta);
1838
1839         shost_printk(KERN_ERR, target->scsi_host, PFX
1840                      "ignoring AER for LUN %llu\n", be64_to_cpu(req->lun));
1841
1842         if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1843                 shost_printk(KERN_ERR, target->scsi_host, PFX
1844                              "problems processing SRP_AER_REQ\n");
1845 }
1846
1847 static void srp_handle_recv(struct srp_rdma_ch *ch, struct ib_wc *wc)
1848 {
1849         struct srp_target_port *target = ch->target;
1850         struct ib_device *dev = target->srp_host->srp_dev->dev;
1851         struct srp_iu *iu = (struct srp_iu *) (uintptr_t) wc->wr_id;
1852         int res;
1853         u8 opcode;
1854
1855         ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
1856                                    DMA_FROM_DEVICE);
1857
1858         opcode = *(u8 *) iu->buf;
1859
1860         if (0) {
1861                 shost_printk(KERN_ERR, target->scsi_host,
1862                              PFX "recv completion, opcode 0x%02x\n", opcode);
1863                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
1864                                iu->buf, wc->byte_len, true);
1865         }
1866
1867         switch (opcode) {
1868         case SRP_RSP:
1869                 srp_process_rsp(ch, iu->buf);
1870                 break;
1871
1872         case SRP_CRED_REQ:
1873                 srp_process_cred_req(ch, iu->buf);
1874                 break;
1875
1876         case SRP_AER_REQ:
1877                 srp_process_aer_req(ch, iu->buf);
1878                 break;
1879
1880         case SRP_T_LOGOUT:
1881                 /* XXX Handle target logout */
1882                 shost_printk(KERN_WARNING, target->scsi_host,
1883                              PFX "Got target logout request\n");
1884                 break;
1885
1886         default:
1887                 shost_printk(KERN_WARNING, target->scsi_host,
1888                              PFX "Unhandled SRP opcode 0x%02x\n", opcode);
1889                 break;
1890         }
1891
1892         ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
1893                                       DMA_FROM_DEVICE);
1894
1895         res = srp_post_recv(ch, iu);
1896         if (res != 0)
1897                 shost_printk(KERN_ERR, target->scsi_host,
1898                              PFX "Recv failed with error code %d\n", res);
1899 }
1900
1901 /**
1902  * srp_tl_err_work() - handle a transport layer error
1903  * @work: Work structure embedded in an SRP target port.
1904  *
1905  * Note: This function may get invoked before the rport has been created,
1906  * hence the target->rport test.
1907  */
1908 static void srp_tl_err_work(struct work_struct *work)
1909 {
1910         struct srp_target_port *target;
1911
1912         target = container_of(work, struct srp_target_port, tl_err_work);
1913         if (target->rport)
1914                 srp_start_tl_fail_timers(target->rport);
1915 }
1916
1917 static void srp_handle_qp_err(u64 wr_id, enum ib_wc_status wc_status,
1918                               bool send_err, struct srp_rdma_ch *ch)
1919 {
1920         struct srp_target_port *target = ch->target;
1921
1922         if (wr_id == SRP_LAST_WR_ID) {
1923                 complete(&ch->done);
1924                 return;
1925         }
1926
1927         if (ch->connected && !target->qp_in_error) {
1928                 if (wr_id & LOCAL_INV_WR_ID_MASK) {
1929                         shost_printk(KERN_ERR, target->scsi_host, PFX
1930                                      "LOCAL_INV failed with status %d\n",
1931                                      wc_status);
1932                 } else if (wr_id & FAST_REG_WR_ID_MASK) {
1933                         shost_printk(KERN_ERR, target->scsi_host, PFX
1934                                      "FAST_REG_MR failed status %d\n",
1935                                      wc_status);
1936                 } else {
1937                         shost_printk(KERN_ERR, target->scsi_host,
1938                                      PFX "failed %s status %d for iu %p\n",
1939                                      send_err ? "send" : "receive",
1940                                      wc_status, (void *)(uintptr_t)wr_id);
1941                 }
1942                 queue_work(system_long_wq, &target->tl_err_work);
1943         }
1944         target->qp_in_error = true;
1945 }
1946
1947 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr)
1948 {
1949         struct srp_rdma_ch *ch = ch_ptr;
1950         struct ib_wc wc;
1951
1952         ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1953         while (ib_poll_cq(cq, 1, &wc) > 0) {
1954                 if (likely(wc.status == IB_WC_SUCCESS)) {
1955                         srp_handle_recv(ch, &wc);
1956                 } else {
1957                         srp_handle_qp_err(wc.wr_id, wc.status, false, ch);
1958                 }
1959         }
1960 }
1961
1962 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr)
1963 {
1964         struct srp_rdma_ch *ch = ch_ptr;
1965         struct ib_wc wc;
1966         struct srp_iu *iu;
1967
1968         while (ib_poll_cq(cq, 1, &wc) > 0) {
1969                 if (likely(wc.status == IB_WC_SUCCESS)) {
1970                         iu = (struct srp_iu *) (uintptr_t) wc.wr_id;
1971                         list_add(&iu->list, &ch->free_tx);
1972                 } else {
1973                         srp_handle_qp_err(wc.wr_id, wc.status, true, ch);
1974                 }
1975         }
1976 }
1977
1978 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
1979 {
1980         struct srp_target_port *target = host_to_target(shost);
1981         struct srp_rport *rport = target->rport;
1982         struct srp_rdma_ch *ch;
1983         struct srp_request *req;
1984         struct srp_iu *iu;
1985         struct srp_cmd *cmd;
1986         struct ib_device *dev;
1987         unsigned long flags;
1988         u32 tag;
1989         u16 idx;
1990         int len, ret;
1991         const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler;
1992
1993         /*
1994          * The SCSI EH thread is the only context from which srp_queuecommand()
1995          * can get invoked for blocked devices (SDEV_BLOCK /
1996          * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by
1997          * locking the rport mutex if invoked from inside the SCSI EH.
1998          */
1999         if (in_scsi_eh)
2000                 mutex_lock(&rport->mutex);
2001
2002         scmnd->result = srp_chkready(target->rport);
2003         if (unlikely(scmnd->result))
2004                 goto err;
2005
2006         WARN_ON_ONCE(scmnd->request->tag < 0);
2007         tag = blk_mq_unique_tag(scmnd->request);
2008         ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2009         idx = blk_mq_unique_tag_to_tag(tag);
2010         WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n",
2011                   dev_name(&shost->shost_gendev), tag, idx,
2012                   target->req_ring_size);
2013
2014         spin_lock_irqsave(&ch->lock, flags);
2015         iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2016         spin_unlock_irqrestore(&ch->lock, flags);
2017
2018         if (!iu)
2019                 goto err;
2020
2021         req = &ch->req_ring[idx];
2022         dev = target->srp_host->srp_dev->dev;
2023         ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len,
2024                                    DMA_TO_DEVICE);
2025
2026         scmnd->host_scribble = (void *) req;
2027
2028         cmd = iu->buf;
2029         memset(cmd, 0, sizeof *cmd);
2030
2031         cmd->opcode = SRP_CMD;
2032         cmd->lun    = cpu_to_be64((u64) scmnd->device->lun << 48);
2033         cmd->tag    = tag;
2034         memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2035
2036         req->scmnd    = scmnd;
2037         req->cmd      = iu;
2038
2039         len = srp_map_data(scmnd, ch, req);
2040         if (len < 0) {
2041                 shost_printk(KERN_ERR, target->scsi_host,
2042                              PFX "Failed to map data (%d)\n", len);
2043                 /*
2044                  * If we ran out of memory descriptors (-ENOMEM) because an
2045                  * application is queuing many requests with more than
2046                  * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2047                  * to reduce queue depth temporarily.
2048                  */
2049                 scmnd->result = len == -ENOMEM ?
2050                         DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
2051                 goto err_iu;
2052         }
2053
2054         ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len,
2055                                       DMA_TO_DEVICE);
2056
2057         if (srp_post_send(ch, iu, len)) {
2058                 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2059                 goto err_unmap;
2060         }
2061
2062         ret = 0;
2063
2064 unlock_rport:
2065         if (in_scsi_eh)
2066                 mutex_unlock(&rport->mutex);
2067
2068         return ret;
2069
2070 err_unmap:
2071         srp_unmap_data(scmnd, ch, req);
2072
2073 err_iu:
2074         srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2075
2076         /*
2077          * Avoid that the loops that iterate over the request ring can
2078          * encounter a dangling SCSI command pointer.
2079          */
2080         req->scmnd = NULL;
2081
2082 err:
2083         if (scmnd->result) {
2084                 scmnd->scsi_done(scmnd);
2085                 ret = 0;
2086         } else {
2087                 ret = SCSI_MLQUEUE_HOST_BUSY;
2088         }
2089
2090         goto unlock_rport;
2091 }
2092
2093 /*
2094  * Note: the resources allocated in this function are freed in
2095  * srp_free_ch_ib().
2096  */
2097 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2098 {
2099         struct srp_target_port *target = ch->target;
2100         int i;
2101
2102         ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2103                               GFP_KERNEL);
2104         if (!ch->rx_ring)
2105                 goto err_no_ring;
2106         ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2107                               GFP_KERNEL);
2108         if (!ch->tx_ring)
2109                 goto err_no_ring;
2110
2111         for (i = 0; i < target->queue_size; ++i) {
2112                 ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2113                                               ch->max_ti_iu_len,
2114                                               GFP_KERNEL, DMA_FROM_DEVICE);
2115                 if (!ch->rx_ring[i])
2116                         goto err;
2117         }
2118
2119         for (i = 0; i < target->queue_size; ++i) {
2120                 ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2121                                               target->max_iu_len,
2122                                               GFP_KERNEL, DMA_TO_DEVICE);
2123                 if (!ch->tx_ring[i])
2124                         goto err;
2125
2126                 list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2127         }
2128
2129         return 0;
2130
2131 err:
2132         for (i = 0; i < target->queue_size; ++i) {
2133                 srp_free_iu(target->srp_host, ch->rx_ring[i]);
2134                 srp_free_iu(target->srp_host, ch->tx_ring[i]);
2135         }
2136
2137
2138 err_no_ring:
2139         kfree(ch->tx_ring);
2140         ch->tx_ring = NULL;
2141         kfree(ch->rx_ring);
2142         ch->rx_ring = NULL;
2143
2144         return -ENOMEM;
2145 }
2146
2147 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2148 {
2149         uint64_t T_tr_ns, max_compl_time_ms;
2150         uint32_t rq_tmo_jiffies;
2151
2152         /*
2153          * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2154          * table 91), both the QP timeout and the retry count have to be set
2155          * for RC QP's during the RTR to RTS transition.
2156          */
2157         WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2158                      (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2159
2160         /*
2161          * Set target->rq_tmo_jiffies to one second more than the largest time
2162          * it can take before an error completion is generated. See also
2163          * C9-140..142 in the IBTA spec for more information about how to
2164          * convert the QP Local ACK Timeout value to nanoseconds.
2165          */
2166         T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2167         max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2168         do_div(max_compl_time_ms, NSEC_PER_MSEC);
2169         rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2170
2171         return rq_tmo_jiffies;
2172 }
2173
2174 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2175                                struct srp_login_rsp *lrsp,
2176                                struct srp_rdma_ch *ch)
2177 {
2178         struct srp_target_port *target = ch->target;
2179         struct ib_qp_attr *qp_attr = NULL;
2180         int attr_mask = 0;
2181         int ret;
2182         int i;
2183
2184         if (lrsp->opcode == SRP_LOGIN_RSP) {
2185                 ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2186                 ch->req_lim       = be32_to_cpu(lrsp->req_lim_delta);
2187
2188                 /*
2189                  * Reserve credits for task management so we don't
2190                  * bounce requests back to the SCSI mid-layer.
2191                  */
2192                 target->scsi_host->can_queue
2193                         = min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2194                               target->scsi_host->can_queue);
2195                 target->scsi_host->cmd_per_lun
2196                         = min_t(int, target->scsi_host->can_queue,
2197                                 target->scsi_host->cmd_per_lun);
2198         } else {
2199                 shost_printk(KERN_WARNING, target->scsi_host,
2200                              PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2201                 ret = -ECONNRESET;
2202                 goto error;
2203         }
2204
2205         if (!ch->rx_ring) {
2206                 ret = srp_alloc_iu_bufs(ch);
2207                 if (ret)
2208                         goto error;
2209         }
2210
2211         ret = -ENOMEM;
2212         qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL);
2213         if (!qp_attr)
2214                 goto error;
2215
2216         qp_attr->qp_state = IB_QPS_RTR;
2217         ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2218         if (ret)
2219                 goto error_free;
2220
2221         ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2222         if (ret)
2223                 goto error_free;
2224
2225         for (i = 0; i < target->queue_size; i++) {
2226                 struct srp_iu *iu = ch->rx_ring[i];
2227
2228                 ret = srp_post_recv(ch, iu);
2229                 if (ret)
2230                         goto error_free;
2231         }
2232
2233         qp_attr->qp_state = IB_QPS_RTS;
2234         ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2235         if (ret)
2236                 goto error_free;
2237
2238         target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2239
2240         ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2241         if (ret)
2242                 goto error_free;
2243
2244         ret = ib_send_cm_rtu(cm_id, NULL, 0);
2245
2246 error_free:
2247         kfree(qp_attr);
2248
2249 error:
2250         ch->status = ret;
2251 }
2252
2253 static void srp_cm_rej_handler(struct ib_cm_id *cm_id,
2254                                struct ib_cm_event *event,
2255                                struct srp_rdma_ch *ch)
2256 {
2257         struct srp_target_port *target = ch->target;
2258         struct Scsi_Host *shost = target->scsi_host;
2259         struct ib_class_port_info *cpi;
2260         int opcode;
2261
2262         switch (event->param.rej_rcvd.reason) {
2263         case IB_CM_REJ_PORT_CM_REDIRECT:
2264                 cpi = event->param.rej_rcvd.ari;
2265                 ch->path.dlid = cpi->redirect_lid;
2266                 ch->path.pkey = cpi->redirect_pkey;
2267                 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2268                 memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16);
2269
2270                 ch->status = ch->path.dlid ?
2271                         SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2272                 break;
2273
2274         case IB_CM_REJ_PORT_REDIRECT:
2275                 if (srp_target_is_topspin(target)) {
2276                         /*
2277                          * Topspin/Cisco SRP gateways incorrectly send
2278                          * reject reason code 25 when they mean 24
2279                          * (port redirect).
2280                          */
2281                         memcpy(ch->path.dgid.raw,
2282                                event->param.rej_rcvd.ari, 16);
2283
2284                         shost_printk(KERN_DEBUG, shost,
2285                                      PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2286                                      be64_to_cpu(ch->path.dgid.global.subnet_prefix),
2287                                      be64_to_cpu(ch->path.dgid.global.interface_id));
2288
2289                         ch->status = SRP_PORT_REDIRECT;
2290                 } else {
2291                         shost_printk(KERN_WARNING, shost,
2292                                      "  REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2293                         ch->status = -ECONNRESET;
2294                 }
2295                 break;
2296
2297         case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2298                 shost_printk(KERN_WARNING, shost,
2299                             "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2300                 ch->status = -ECONNRESET;
2301                 break;
2302
2303         case IB_CM_REJ_CONSUMER_DEFINED:
2304                 opcode = *(u8 *) event->private_data;
2305                 if (opcode == SRP_LOGIN_REJ) {
2306                         struct srp_login_rej *rej = event->private_data;
2307                         u32 reason = be32_to_cpu(rej->reason);
2308
2309                         if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2310                                 shost_printk(KERN_WARNING, shost,
2311                                              PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2312                         else
2313                                 shost_printk(KERN_WARNING, shost, PFX
2314                                              "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2315                                              target->sgid.raw,
2316                                              target->orig_dgid.raw, reason);
2317                 } else
2318                         shost_printk(KERN_WARNING, shost,
2319                                      "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2320                                      " opcode 0x%02x\n", opcode);
2321                 ch->status = -ECONNRESET;
2322                 break;
2323
2324         case IB_CM_REJ_STALE_CONN:
2325                 shost_printk(KERN_WARNING, shost, "  REJ reason: stale connection\n");
2326                 ch->status = SRP_STALE_CONN;
2327                 break;
2328
2329         default:
2330                 shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2331                              event->param.rej_rcvd.reason);
2332                 ch->status = -ECONNRESET;
2333         }
2334 }
2335
2336 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2337 {
2338         struct srp_rdma_ch *ch = cm_id->context;
2339         struct srp_target_port *target = ch->target;
2340         int comp = 0;
2341
2342         switch (event->event) {
2343         case IB_CM_REQ_ERROR:
2344                 shost_printk(KERN_DEBUG, target->scsi_host,
2345                              PFX "Sending CM REQ failed\n");
2346                 comp = 1;
2347                 ch->status = -ECONNRESET;
2348                 break;
2349
2350         case IB_CM_REP_RECEIVED:
2351                 comp = 1;
2352                 srp_cm_rep_handler(cm_id, event->private_data, ch);
2353                 break;
2354
2355         case IB_CM_REJ_RECEIVED:
2356                 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2357                 comp = 1;
2358
2359                 srp_cm_rej_handler(cm_id, event, ch);
2360                 break;
2361
2362         case IB_CM_DREQ_RECEIVED:
2363                 shost_printk(KERN_WARNING, target->scsi_host,
2364                              PFX "DREQ received - connection closed\n");
2365                 ch->connected = false;
2366                 if (ib_send_cm_drep(cm_id, NULL, 0))
2367                         shost_printk(KERN_ERR, target->scsi_host,
2368                                      PFX "Sending CM DREP failed\n");
2369                 queue_work(system_long_wq, &target->tl_err_work);
2370                 break;
2371
2372         case IB_CM_TIMEWAIT_EXIT:
2373                 shost_printk(KERN_ERR, target->scsi_host,
2374                              PFX "connection closed\n");
2375                 comp = 1;
2376
2377                 ch->status = 0;
2378                 break;
2379
2380         case IB_CM_MRA_RECEIVED:
2381         case IB_CM_DREQ_ERROR:
2382         case IB_CM_DREP_RECEIVED:
2383                 break;
2384
2385         default:
2386                 shost_printk(KERN_WARNING, target->scsi_host,
2387                              PFX "Unhandled CM event %d\n", event->event);
2388                 break;
2389         }
2390
2391         if (comp)
2392                 complete(&ch->done);
2393
2394         return 0;
2395 }
2396
2397 /**
2398  * srp_change_queue_depth - setting device queue depth
2399  * @sdev: scsi device struct
2400  * @qdepth: requested queue depth
2401  *
2402  * Returns queue depth.
2403  */
2404 static int
2405 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2406 {
2407         if (!sdev->tagged_supported)
2408                 qdepth = 1;
2409         return scsi_change_queue_depth(sdev, qdepth);
2410 }
2411
2412 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag,
2413                              unsigned int lun, u8 func)
2414 {
2415         struct srp_target_port *target = ch->target;
2416         struct srp_rport *rport = target->rport;
2417         struct ib_device *dev = target->srp_host->srp_dev->dev;
2418         struct srp_iu *iu;
2419         struct srp_tsk_mgmt *tsk_mgmt;
2420
2421         if (!ch->connected || target->qp_in_error)
2422                 return -1;
2423
2424         init_completion(&ch->tsk_mgmt_done);
2425
2426         /*
2427          * Lock the rport mutex to avoid that srp_create_ch_ib() is
2428          * invoked while a task management function is being sent.
2429          */
2430         mutex_lock(&rport->mutex);
2431         spin_lock_irq(&ch->lock);
2432         iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2433         spin_unlock_irq(&ch->lock);
2434
2435         if (!iu) {
2436                 mutex_unlock(&rport->mutex);
2437
2438                 return -1;
2439         }
2440
2441         ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2442                                    DMA_TO_DEVICE);
2443         tsk_mgmt = iu->buf;
2444         memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2445
2446         tsk_mgmt->opcode        = SRP_TSK_MGMT;
2447         tsk_mgmt->lun           = cpu_to_be64((u64) lun << 48);
2448         tsk_mgmt->tag           = req_tag | SRP_TAG_TSK_MGMT;
2449         tsk_mgmt->tsk_mgmt_func = func;
2450         tsk_mgmt->task_tag      = req_tag;
2451
2452         ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2453                                       DMA_TO_DEVICE);
2454         if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2455                 srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2456                 mutex_unlock(&rport->mutex);
2457
2458                 return -1;
2459         }
2460         mutex_unlock(&rport->mutex);
2461
2462         if (!wait_for_completion_timeout(&ch->tsk_mgmt_done,
2463                                          msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS)))
2464                 return -1;
2465
2466         return 0;
2467 }
2468
2469 static int srp_abort(struct scsi_cmnd *scmnd)
2470 {
2471         struct srp_target_port *target = host_to_target(scmnd->device->host);
2472         struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2473         u32 tag;
2474         u16 ch_idx;
2475         struct srp_rdma_ch *ch;
2476         int ret;
2477
2478         shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2479
2480         if (!req)
2481                 return SUCCESS;
2482         tag = blk_mq_unique_tag(scmnd->request);
2483         ch_idx = blk_mq_unique_tag_to_hwq(tag);
2484         if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2485                 return SUCCESS;
2486         ch = &target->ch[ch_idx];
2487         if (!srp_claim_req(ch, req, NULL, scmnd))
2488                 return SUCCESS;
2489         shost_printk(KERN_ERR, target->scsi_host,
2490                      "Sending SRP abort for tag %#x\n", tag);
2491         if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2492                               SRP_TSK_ABORT_TASK) == 0)
2493                 ret = SUCCESS;
2494         else if (target->rport->state == SRP_RPORT_LOST)
2495                 ret = FAST_IO_FAIL;
2496         else
2497                 ret = FAILED;
2498         srp_free_req(ch, req, scmnd, 0);
2499         scmnd->result = DID_ABORT << 16;
2500         scmnd->scsi_done(scmnd);
2501
2502         return ret;
2503 }
2504
2505 static int srp_reset_device(struct scsi_cmnd *scmnd)
2506 {
2507         struct srp_target_port *target = host_to_target(scmnd->device->host);
2508         struct srp_rdma_ch *ch;
2509         int i;
2510
2511         shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2512
2513         ch = &target->ch[0];
2514         if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2515                               SRP_TSK_LUN_RESET))
2516                 return FAILED;
2517         if (ch->tsk_mgmt_status)
2518                 return FAILED;
2519
2520         for (i = 0; i < target->ch_count; i++) {
2521                 ch = &target->ch[i];
2522                 for (i = 0; i < target->req_ring_size; ++i) {
2523                         struct srp_request *req = &ch->req_ring[i];
2524
2525                         srp_finish_req(ch, req, scmnd->device, DID_RESET << 16);
2526                 }
2527         }
2528
2529         return SUCCESS;
2530 }
2531
2532 static int srp_reset_host(struct scsi_cmnd *scmnd)
2533 {
2534         struct srp_target_port *target = host_to_target(scmnd->device->host);
2535
2536         shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2537
2538         return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2539 }
2540
2541 static int srp_slave_configure(struct scsi_device *sdev)
2542 {
2543         struct Scsi_Host *shost = sdev->host;
2544         struct srp_target_port *target = host_to_target(shost);
2545         struct request_queue *q = sdev->request_queue;
2546         unsigned long timeout;
2547
2548         if (sdev->type == TYPE_DISK) {
2549                 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2550                 blk_queue_rq_timeout(q, timeout);
2551         }
2552
2553         return 0;
2554 }
2555
2556 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
2557                            char *buf)
2558 {
2559         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2560
2561         return sprintf(buf, "0x%016llx\n",
2562                        (unsigned long long) be64_to_cpu(target->id_ext));
2563 }
2564
2565 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
2566                              char *buf)
2567 {
2568         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2569
2570         return sprintf(buf, "0x%016llx\n",
2571                        (unsigned long long) be64_to_cpu(target->ioc_guid));
2572 }
2573
2574 static ssize_t show_service_id(struct device *dev,
2575                                struct device_attribute *attr, char *buf)
2576 {
2577         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2578
2579         return sprintf(buf, "0x%016llx\n",
2580                        (unsigned long long) be64_to_cpu(target->service_id));
2581 }
2582
2583 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
2584                          char *buf)
2585 {
2586         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2587
2588         return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey));
2589 }
2590
2591 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
2592                          char *buf)
2593 {
2594         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2595
2596         return sprintf(buf, "%pI6\n", target->sgid.raw);
2597 }
2598
2599 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
2600                          char *buf)
2601 {
2602         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2603         struct srp_rdma_ch *ch = &target->ch[0];
2604
2605         return sprintf(buf, "%pI6\n", ch->path.dgid.raw);
2606 }
2607
2608 static ssize_t show_orig_dgid(struct device *dev,
2609                               struct device_attribute *attr, char *buf)
2610 {
2611         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2612
2613         return sprintf(buf, "%pI6\n", target->orig_dgid.raw);
2614 }
2615
2616 static ssize_t show_req_lim(struct device *dev,
2617                             struct device_attribute *attr, char *buf)
2618 {
2619         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2620         struct srp_rdma_ch *ch;
2621         int i, req_lim = INT_MAX;
2622
2623         for (i = 0; i < target->ch_count; i++) {
2624                 ch = &target->ch[i];
2625                 req_lim = min(req_lim, ch->req_lim);
2626         }
2627         return sprintf(buf, "%d\n", req_lim);
2628 }
2629
2630 static ssize_t show_zero_req_lim(struct device *dev,
2631                                  struct device_attribute *attr, char *buf)
2632 {
2633         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2634
2635         return sprintf(buf, "%d\n", target->zero_req_lim);
2636 }
2637
2638 static ssize_t show_local_ib_port(struct device *dev,
2639                                   struct device_attribute *attr, char *buf)
2640 {
2641         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2642
2643         return sprintf(buf, "%d\n", target->srp_host->port);
2644 }
2645
2646 static ssize_t show_local_ib_device(struct device *dev,
2647                                     struct device_attribute *attr, char *buf)
2648 {
2649         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2650
2651         return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name);
2652 }
2653
2654 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr,
2655                              char *buf)
2656 {
2657         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2658
2659         return sprintf(buf, "%d\n", target->ch_count);
2660 }
2661
2662 static ssize_t show_comp_vector(struct device *dev,
2663                                 struct device_attribute *attr, char *buf)
2664 {
2665         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2666
2667         return sprintf(buf, "%d\n", target->comp_vector);
2668 }
2669
2670 static ssize_t show_tl_retry_count(struct device *dev,
2671                                    struct device_attribute *attr, char *buf)
2672 {
2673         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2674
2675         return sprintf(buf, "%d\n", target->tl_retry_count);
2676 }
2677
2678 static ssize_t show_cmd_sg_entries(struct device *dev,
2679                                    struct device_attribute *attr, char *buf)
2680 {
2681         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2682
2683         return sprintf(buf, "%u\n", target->cmd_sg_cnt);
2684 }
2685
2686 static ssize_t show_allow_ext_sg(struct device *dev,
2687                                  struct device_attribute *attr, char *buf)
2688 {
2689         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2690
2691         return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
2692 }
2693
2694 static DEVICE_ATTR(id_ext,          S_IRUGO, show_id_ext,          NULL);
2695 static DEVICE_ATTR(ioc_guid,        S_IRUGO, show_ioc_guid,        NULL);
2696 static DEVICE_ATTR(service_id,      S_IRUGO, show_service_id,      NULL);
2697 static DEVICE_ATTR(pkey,            S_IRUGO, show_pkey,            NULL);
2698 static DEVICE_ATTR(sgid,            S_IRUGO, show_sgid,            NULL);
2699 static DEVICE_ATTR(dgid,            S_IRUGO, show_dgid,            NULL);
2700 static DEVICE_ATTR(orig_dgid,       S_IRUGO, show_orig_dgid,       NULL);
2701 static DEVICE_ATTR(req_lim,         S_IRUGO, show_req_lim,         NULL);
2702 static DEVICE_ATTR(zero_req_lim,    S_IRUGO, show_zero_req_lim,    NULL);
2703 static DEVICE_ATTR(local_ib_port,   S_IRUGO, show_local_ib_port,   NULL);
2704 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
2705 static DEVICE_ATTR(ch_count,        S_IRUGO, show_ch_count,        NULL);
2706 static DEVICE_ATTR(comp_vector,     S_IRUGO, show_comp_vector,     NULL);
2707 static DEVICE_ATTR(tl_retry_count,  S_IRUGO, show_tl_retry_count,  NULL);
2708 static DEVICE_ATTR(cmd_sg_entries,  S_IRUGO, show_cmd_sg_entries,  NULL);
2709 static DEVICE_ATTR(allow_ext_sg,    S_IRUGO, show_allow_ext_sg,    NULL);
2710
2711 static struct device_attribute *srp_host_attrs[] = {
2712         &dev_attr_id_ext,
2713         &dev_attr_ioc_guid,
2714         &dev_attr_service_id,
2715         &dev_attr_pkey,
2716         &dev_attr_sgid,
2717         &dev_attr_dgid,
2718         &dev_attr_orig_dgid,
2719         &dev_attr_req_lim,
2720         &dev_attr_zero_req_lim,
2721         &dev_attr_local_ib_port,
2722         &dev_attr_local_ib_device,
2723         &dev_attr_ch_count,
2724         &dev_attr_comp_vector,
2725         &dev_attr_tl_retry_count,
2726         &dev_attr_cmd_sg_entries,
2727         &dev_attr_allow_ext_sg,
2728         NULL
2729 };
2730
2731 static struct scsi_host_template srp_template = {
2732         .module                         = THIS_MODULE,
2733         .name                           = "InfiniBand SRP initiator",
2734         .proc_name                      = DRV_NAME,
2735         .slave_configure                = srp_slave_configure,
2736         .info                           = srp_target_info,
2737         .queuecommand                   = srp_queuecommand,
2738         .change_queue_depth             = srp_change_queue_depth,
2739         .eh_abort_handler               = srp_abort,
2740         .eh_device_reset_handler        = srp_reset_device,
2741         .eh_host_reset_handler          = srp_reset_host,
2742         .skip_settle_delay              = true,
2743         .sg_tablesize                   = SRP_DEF_SG_TABLESIZE,
2744         .can_queue                      = SRP_DEFAULT_CMD_SQ_SIZE,
2745         .this_id                        = -1,
2746         .cmd_per_lun                    = SRP_DEFAULT_CMD_SQ_SIZE,
2747         .use_clustering                 = ENABLE_CLUSTERING,
2748         .shost_attrs                    = srp_host_attrs,
2749         .use_blk_tags                   = 1,
2750         .track_queue_depth              = 1,
2751 };
2752
2753 static int srp_sdev_count(struct Scsi_Host *host)
2754 {
2755         struct scsi_device *sdev;
2756         int c = 0;
2757
2758         shost_for_each_device(sdev, host)
2759                 c++;
2760
2761         return c;
2762 }
2763
2764 /*
2765  * Return values:
2766  * < 0 upon failure. Caller is responsible for SRP target port cleanup.
2767  * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port
2768  *    removal has been scheduled.
2769  * 0 and target->state != SRP_TARGET_REMOVED upon success.
2770  */
2771 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
2772 {
2773         struct srp_rport_identifiers ids;
2774         struct srp_rport *rport;
2775
2776         target->state = SRP_TARGET_SCANNING;
2777         sprintf(target->target_name, "SRP.T10:%016llX",
2778                  (unsigned long long) be64_to_cpu(target->id_ext));
2779
2780         if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device))
2781                 return -ENODEV;
2782
2783         memcpy(ids.port_id, &target->id_ext, 8);
2784         memcpy(ids.port_id + 8, &target->ioc_guid, 8);
2785         ids.roles = SRP_RPORT_ROLE_TARGET;
2786         rport = srp_rport_add(target->scsi_host, &ids);
2787         if (IS_ERR(rport)) {
2788                 scsi_remove_host(target->scsi_host);
2789                 return PTR_ERR(rport);
2790         }
2791
2792         rport->lld_data = target;
2793         target->rport = rport;
2794
2795         spin_lock(&host->target_lock);
2796         list_add_tail(&target->list, &host->target_list);
2797         spin_unlock(&host->target_lock);
2798
2799         scsi_scan_target(&target->scsi_host->shost_gendev,
2800                          0, target->scsi_id, SCAN_WILD_CARD, 0);
2801
2802         if (srp_connected_ch(target) < target->ch_count ||
2803             target->qp_in_error) {
2804                 shost_printk(KERN_INFO, target->scsi_host,
2805                              PFX "SCSI scan failed - removing SCSI host\n");
2806                 srp_queue_remove_work(target);
2807                 goto out;
2808         }
2809
2810         pr_debug(PFX "%s: SCSI scan succeeded - detected %d LUNs\n",
2811                  dev_name(&target->scsi_host->shost_gendev),
2812                  srp_sdev_count(target->scsi_host));
2813
2814         spin_lock_irq(&target->lock);
2815         if (target->state == SRP_TARGET_SCANNING)
2816                 target->state = SRP_TARGET_LIVE;
2817         spin_unlock_irq(&target->lock);
2818
2819 out:
2820         return 0;
2821 }
2822
2823 static void srp_release_dev(struct device *dev)
2824 {
2825         struct srp_host *host =
2826                 container_of(dev, struct srp_host, dev);
2827
2828         complete(&host->released);
2829 }
2830
2831 static struct class srp_class = {
2832         .name    = "infiniband_srp",
2833         .dev_release = srp_release_dev
2834 };
2835
2836 /**
2837  * srp_conn_unique() - check whether the connection to a target is unique
2838  * @host:   SRP host.
2839  * @target: SRP target port.
2840  */
2841 static bool srp_conn_unique(struct srp_host *host,
2842                             struct srp_target_port *target)
2843 {
2844         struct srp_target_port *t;
2845         bool ret = false;
2846
2847         if (target->state == SRP_TARGET_REMOVED)
2848                 goto out;
2849
2850         ret = true;
2851
2852         spin_lock(&host->target_lock);
2853         list_for_each_entry(t, &host->target_list, list) {
2854                 if (t != target &&
2855                     target->id_ext == t->id_ext &&
2856                     target->ioc_guid == t->ioc_guid &&
2857                     target->initiator_ext == t->initiator_ext) {
2858                         ret = false;
2859                         break;
2860                 }
2861         }
2862         spin_unlock(&host->target_lock);
2863
2864 out:
2865         return ret;
2866 }
2867
2868 /*
2869  * Target ports are added by writing
2870  *
2871  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
2872  *     pkey=<P_Key>,service_id=<service ID>
2873  *
2874  * to the add_target sysfs attribute.
2875  */
2876 enum {
2877         SRP_OPT_ERR             = 0,
2878         SRP_OPT_ID_EXT          = 1 << 0,
2879         SRP_OPT_IOC_GUID        = 1 << 1,
2880         SRP_OPT_DGID            = 1 << 2,
2881         SRP_OPT_PKEY            = 1 << 3,
2882         SRP_OPT_SERVICE_ID      = 1 << 4,
2883         SRP_OPT_MAX_SECT        = 1 << 5,
2884         SRP_OPT_MAX_CMD_PER_LUN = 1 << 6,
2885         SRP_OPT_IO_CLASS        = 1 << 7,
2886         SRP_OPT_INITIATOR_EXT   = 1 << 8,
2887         SRP_OPT_CMD_SG_ENTRIES  = 1 << 9,
2888         SRP_OPT_ALLOW_EXT_SG    = 1 << 10,
2889         SRP_OPT_SG_TABLESIZE    = 1 << 11,
2890         SRP_OPT_COMP_VECTOR     = 1 << 12,
2891         SRP_OPT_TL_RETRY_COUNT  = 1 << 13,
2892         SRP_OPT_QUEUE_SIZE      = 1 << 14,
2893         SRP_OPT_ALL             = (SRP_OPT_ID_EXT       |
2894                                    SRP_OPT_IOC_GUID     |
2895                                    SRP_OPT_DGID         |
2896                                    SRP_OPT_PKEY         |
2897                                    SRP_OPT_SERVICE_ID),
2898 };
2899
2900 static const match_table_t srp_opt_tokens = {
2901         { SRP_OPT_ID_EXT,               "id_ext=%s"             },
2902         { SRP_OPT_IOC_GUID,             "ioc_guid=%s"           },
2903         { SRP_OPT_DGID,                 "dgid=%s"               },
2904         { SRP_OPT_PKEY,                 "pkey=%x"               },
2905         { SRP_OPT_SERVICE_ID,           "service_id=%s"         },
2906         { SRP_OPT_MAX_SECT,             "max_sect=%d"           },
2907         { SRP_OPT_MAX_CMD_PER_LUN,      "max_cmd_per_lun=%d"    },
2908         { SRP_OPT_IO_CLASS,             "io_class=%x"           },
2909         { SRP_OPT_INITIATOR_EXT,        "initiator_ext=%s"      },
2910         { SRP_OPT_CMD_SG_ENTRIES,       "cmd_sg_entries=%u"     },
2911         { SRP_OPT_ALLOW_EXT_SG,         "allow_ext_sg=%u"       },
2912         { SRP_OPT_SG_TABLESIZE,         "sg_tablesize=%u"       },
2913         { SRP_OPT_COMP_VECTOR,          "comp_vector=%u"        },
2914         { SRP_OPT_TL_RETRY_COUNT,       "tl_retry_count=%u"     },
2915         { SRP_OPT_QUEUE_SIZE,           "queue_size=%d"         },
2916         { SRP_OPT_ERR,                  NULL                    }
2917 };
2918
2919 static int srp_parse_options(const char *buf, struct srp_target_port *target)
2920 {
2921         char *options, *sep_opt;
2922         char *p;
2923         char dgid[3];
2924         substring_t args[MAX_OPT_ARGS];
2925         int opt_mask = 0;
2926         int token;
2927         int ret = -EINVAL;
2928         int i;
2929
2930         options = kstrdup(buf, GFP_KERNEL);
2931         if (!options)
2932                 return -ENOMEM;
2933
2934         sep_opt = options;
2935         while ((p = strsep(&sep_opt, ",\n")) != NULL) {
2936                 if (!*p)
2937                         continue;
2938
2939                 token = match_token(p, srp_opt_tokens, args);
2940                 opt_mask |= token;
2941
2942                 switch (token) {
2943                 case SRP_OPT_ID_EXT:
2944                         p = match_strdup(args);
2945                         if (!p) {
2946                                 ret = -ENOMEM;
2947                                 goto out;
2948                         }
2949                         target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
2950                         kfree(p);
2951                         break;
2952
2953                 case SRP_OPT_IOC_GUID:
2954                         p = match_strdup(args);
2955                         if (!p) {
2956                                 ret = -ENOMEM;
2957                                 goto out;
2958                         }
2959                         target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16));
2960                         kfree(p);
2961                         break;
2962
2963                 case SRP_OPT_DGID:
2964                         p = match_strdup(args);
2965                         if (!p) {
2966                                 ret = -ENOMEM;
2967                                 goto out;
2968                         }
2969                         if (strlen(p) != 32) {
2970                                 pr_warn("bad dest GID parameter '%s'\n", p);
2971                                 kfree(p);
2972                                 goto out;
2973                         }
2974
2975                         for (i = 0; i < 16; ++i) {
2976                                 strlcpy(dgid, p + i * 2, sizeof(dgid));
2977                                 if (sscanf(dgid, "%hhx",
2978                                            &target->orig_dgid.raw[i]) < 1) {
2979                                         ret = -EINVAL;
2980                                         kfree(p);
2981                                         goto out;
2982                                 }
2983                         }
2984                         kfree(p);
2985                         break;
2986
2987                 case SRP_OPT_PKEY:
2988                         if (match_hex(args, &token)) {
2989                                 pr_warn("bad P_Key parameter '%s'\n", p);
2990                                 goto out;
2991                         }
2992                         target->pkey = cpu_to_be16(token);
2993                         break;
2994
2995                 case SRP_OPT_SERVICE_ID:
2996                         p = match_strdup(args);
2997                         if (!p) {
2998                                 ret = -ENOMEM;
2999                                 goto out;
3000                         }
3001                         target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16));
3002                         kfree(p);
3003                         break;
3004
3005                 case SRP_OPT_MAX_SECT:
3006                         if (match_int(args, &token)) {
3007                                 pr_warn("bad max sect parameter '%s'\n", p);
3008                                 goto out;
3009                         }
3010                         target->scsi_host->max_sectors = token;
3011                         break;
3012
3013                 case SRP_OPT_QUEUE_SIZE:
3014                         if (match_int(args, &token) || token < 1) {
3015                                 pr_warn("bad queue_size parameter '%s'\n", p);
3016                                 goto out;
3017                         }
3018                         target->scsi_host->can_queue = token;
3019                         target->queue_size = token + SRP_RSP_SQ_SIZE +
3020                                              SRP_TSK_MGMT_SQ_SIZE;
3021                         if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3022                                 target->scsi_host->cmd_per_lun = token;
3023                         break;
3024
3025                 case SRP_OPT_MAX_CMD_PER_LUN:
3026                         if (match_int(args, &token) || token < 1) {
3027                                 pr_warn("bad max cmd_per_lun parameter '%s'\n",
3028                                         p);
3029                                 goto out;
3030                         }
3031                         target->scsi_host->cmd_per_lun = token;
3032                         break;
3033
3034                 case SRP_OPT_IO_CLASS:
3035                         if (match_hex(args, &token)) {
3036                                 pr_warn("bad IO class parameter '%s'\n", p);
3037                                 goto out;
3038                         }
3039                         if (token != SRP_REV10_IB_IO_CLASS &&
3040                             token != SRP_REV16A_IB_IO_CLASS) {
3041                                 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3042                                         token, SRP_REV10_IB_IO_CLASS,
3043                                         SRP_REV16A_IB_IO_CLASS);
3044                                 goto out;
3045                         }
3046                         target->io_class = token;
3047                         break;
3048
3049                 case SRP_OPT_INITIATOR_EXT:
3050                         p = match_strdup(args);
3051                         if (!p) {
3052                                 ret = -ENOMEM;
3053                                 goto out;
3054                         }
3055                         target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3056                         kfree(p);
3057                         break;
3058
3059                 case SRP_OPT_CMD_SG_ENTRIES:
3060                         if (match_int(args, &token) || token < 1 || token > 255) {
3061                                 pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3062                                         p);
3063                                 goto out;
3064                         }
3065                         target->cmd_sg_cnt = token;
3066                         break;
3067
3068                 case SRP_OPT_ALLOW_EXT_SG:
3069                         if (match_int(args, &token)) {
3070                                 pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3071                                 goto out;
3072                         }
3073                         target->allow_ext_sg = !!token;
3074                         break;
3075
3076                 case SRP_OPT_SG_TABLESIZE:
3077                         if (match_int(args, &token) || token < 1 ||
3078                                         token > SCSI_MAX_SG_CHAIN_SEGMENTS) {
3079                                 pr_warn("bad max sg_tablesize parameter '%s'\n",
3080                                         p);
3081                                 goto out;
3082                         }
3083                         target->sg_tablesize = token;
3084                         break;
3085
3086                 case SRP_OPT_COMP_VECTOR:
3087                         if (match_int(args, &token) || token < 0) {
3088                                 pr_warn("bad comp_vector parameter '%s'\n", p);
3089                                 goto out;
3090                         }
3091                         target->comp_vector = token;
3092                         break;
3093
3094                 case SRP_OPT_TL_RETRY_COUNT:
3095                         if (match_int(args, &token) || token < 2 || token > 7) {
3096                                 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3097                                         p);
3098                                 goto out;
3099                         }
3100                         target->tl_retry_count = token;
3101                         break;
3102
3103                 default:
3104                         pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3105                                 p);
3106                         goto out;
3107                 }
3108         }
3109
3110         if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL)
3111                 ret = 0;
3112         else
3113                 for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i)
3114                         if ((srp_opt_tokens[i].token & SRP_OPT_ALL) &&
3115                             !(srp_opt_tokens[i].token & opt_mask))
3116                                 pr_warn("target creation request is missing parameter '%s'\n",
3117                                         srp_opt_tokens[i].pattern);
3118
3119         if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3120             && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3121                 pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3122                         target->scsi_host->cmd_per_lun,
3123                         target->scsi_host->can_queue);
3124
3125 out:
3126         kfree(options);
3127         return ret;
3128 }
3129
3130 static ssize_t srp_create_target(struct device *dev,
3131                                  struct device_attribute *attr,
3132                                  const char *buf, size_t count)
3133 {
3134         struct srp_host *host =
3135                 container_of(dev, struct srp_host, dev);
3136         struct Scsi_Host *target_host;
3137         struct srp_target_port *target;
3138         struct srp_rdma_ch *ch;
3139         struct srp_device *srp_dev = host->srp_dev;
3140         struct ib_device *ibdev = srp_dev->dev;
3141         int ret, node_idx, node, cpu, i;
3142         bool multich = false;
3143
3144         target_host = scsi_host_alloc(&srp_template,
3145                                       sizeof (struct srp_target_port));
3146         if (!target_host)
3147                 return -ENOMEM;
3148
3149         target_host->transportt  = ib_srp_transport_template;
3150         target_host->max_channel = 0;
3151         target_host->max_id      = 1;
3152         target_host->max_lun     = SRP_MAX_LUN;
3153         target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3154
3155         target = host_to_target(target_host);
3156
3157         target->io_class        = SRP_REV16A_IB_IO_CLASS;
3158         target->scsi_host       = target_host;
3159         target->srp_host        = host;
3160         target->lkey            = host->srp_dev->mr->lkey;
3161         target->rkey            = host->srp_dev->mr->rkey;
3162         target->cmd_sg_cnt      = cmd_sg_entries;
3163         target->sg_tablesize    = indirect_sg_entries ? : cmd_sg_entries;
3164         target->allow_ext_sg    = allow_ext_sg;
3165         target->tl_retry_count  = 7;
3166         target->queue_size      = SRP_DEFAULT_QUEUE_SIZE;
3167
3168         /*
3169          * Avoid that the SCSI host can be removed by srp_remove_target()
3170          * before this function returns.
3171          */
3172         scsi_host_get(target->scsi_host);
3173
3174         mutex_lock(&host->add_target_mutex);
3175
3176         ret = srp_parse_options(buf, target);
3177         if (ret)
3178                 goto out;
3179
3180         ret = scsi_init_shared_tag_map(target_host, target_host->can_queue);
3181         if (ret)
3182                 goto out;
3183
3184         target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;
3185
3186         if (!srp_conn_unique(target->srp_host, target)) {
3187                 shost_printk(KERN_INFO, target->scsi_host,
3188                              PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3189                              be64_to_cpu(target->id_ext),
3190                              be64_to_cpu(target->ioc_guid),
3191                              be64_to_cpu(target->initiator_ext));
3192                 ret = -EEXIST;
3193                 goto out;
3194         }
3195
3196         if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg &&
3197             target->cmd_sg_cnt < target->sg_tablesize) {
3198                 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3199                 target->sg_tablesize = target->cmd_sg_cnt;
3200         }
3201
3202         target_host->sg_tablesize = target->sg_tablesize;
3203         target->indirect_size = target->sg_tablesize *
3204                                 sizeof (struct srp_direct_buf);
3205         target->max_iu_len = sizeof (struct srp_cmd) +
3206                              sizeof (struct srp_indirect_buf) +
3207                              target->cmd_sg_cnt * sizeof (struct srp_direct_buf);
3208
3209         INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3210         INIT_WORK(&target->remove_work, srp_remove_work);
3211         spin_lock_init(&target->lock);
3212         ret = ib_query_gid(ibdev, host->port, 0, &target->sgid);
3213         if (ret)
3214                 goto out;
3215
3216         ret = -ENOMEM;
3217         target->ch_count = max_t(unsigned, num_online_nodes(),
3218                                  min(ch_count ? :
3219                                      min(4 * num_online_nodes(),
3220                                          ibdev->num_comp_vectors),
3221                                      num_online_cpus()));
3222         target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3223                              GFP_KERNEL);
3224         if (!target->ch)
3225                 goto out;
3226
3227         node_idx = 0;
3228         for_each_online_node(node) {
3229                 const int ch_start = (node_idx * target->ch_count /
3230                                       num_online_nodes());
3231                 const int ch_end = ((node_idx + 1) * target->ch_count /
3232                                     num_online_nodes());
3233                 const int cv_start = (node_idx * ibdev->num_comp_vectors /
3234                                       num_online_nodes() + target->comp_vector)
3235                                      % ibdev->num_comp_vectors;
3236                 const int cv_end = ((node_idx + 1) * ibdev->num_comp_vectors /
3237                                     num_online_nodes() + target->comp_vector)
3238                                    % ibdev->num_comp_vectors;
3239                 int cpu_idx = 0;
3240
3241                 for_each_online_cpu(cpu) {
3242                         if (cpu_to_node(cpu) != node)
3243                                 continue;
3244                         if (ch_start + cpu_idx >= ch_end)
3245                                 continue;
3246                         ch = &target->ch[ch_start + cpu_idx];
3247                         ch->target = target;
3248                         ch->comp_vector = cv_start == cv_end ? cv_start :
3249                                 cv_start + cpu_idx % (cv_end - cv_start);
3250                         spin_lock_init(&ch->lock);
3251                         INIT_LIST_HEAD(&ch->free_tx);
3252                         ret = srp_new_cm_id(ch);
3253                         if (ret)
3254                                 goto err_disconnect;
3255
3256                         ret = srp_create_ch_ib(ch);
3257                         if (ret)
3258                                 goto err_disconnect;
3259
3260                         ret = srp_alloc_req_data(ch);
3261                         if (ret)
3262                                 goto err_disconnect;
3263
3264                         ret = srp_connect_ch(ch, multich);
3265                         if (ret) {
3266                                 shost_printk(KERN_ERR, target->scsi_host,
3267                                              PFX "Connection %d/%d failed\n",
3268                                              ch_start + cpu_idx,
3269                                              target->ch_count);
3270                                 if (node_idx == 0 && cpu_idx == 0) {
3271                                         goto err_disconnect;
3272                                 } else {
3273                                         srp_free_ch_ib(target, ch);
3274                                         srp_free_req_data(target, ch);
3275                                         target->ch_count = ch - target->ch;
3276                                         goto connected;
3277                                 }
3278                         }
3279
3280                         multich = true;
3281                         cpu_idx++;
3282                 }
3283                 node_idx++;
3284         }
3285
3286 connected:
3287         target->scsi_host->nr_hw_queues = target->ch_count;
3288
3289         ret = srp_add_target(host, target);
3290         if (ret)
3291                 goto err_disconnect;
3292
3293         if (target->state != SRP_TARGET_REMOVED) {
3294                 shost_printk(KERN_DEBUG, target->scsi_host, PFX
3295                              "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3296                              be64_to_cpu(target->id_ext),
3297                              be64_to_cpu(target->ioc_guid),
3298                              be16_to_cpu(target->pkey),
3299                              be64_to_cpu(target->service_id),
3300                              target->sgid.raw, target->orig_dgid.raw);
3301         }
3302
3303         ret = count;
3304
3305 out:
3306         mutex_unlock(&host->add_target_mutex);
3307
3308         scsi_host_put(target->scsi_host);
3309         if (ret < 0)
3310                 scsi_host_put(target->scsi_host);
3311
3312         return ret;
3313
3314 err_disconnect:
3315         srp_disconnect_target(target);
3316
3317         for (i = 0; i < target->ch_count; i++) {
3318                 ch = &target->ch[i];
3319                 srp_free_ch_ib(target, ch);
3320                 srp_free_req_data(target, ch);
3321         }
3322
3323         kfree(target->ch);
3324         goto out;
3325 }
3326
3327 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
3328
3329 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
3330                           char *buf)
3331 {
3332         struct srp_host *host = container_of(dev, struct srp_host, dev);
3333
3334         return sprintf(buf, "%s\n", host->srp_dev->dev->name);
3335 }
3336
3337 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
3338
3339 static ssize_t show_port(struct device *dev, struct device_attribute *attr,
3340                          char *buf)
3341 {
3342         struct srp_host *host = container_of(dev, struct srp_host, dev);
3343
3344         return sprintf(buf, "%d\n", host->port);
3345 }
3346
3347 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
3348
3349 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3350 {
3351         struct srp_host *host;
3352
3353         host = kzalloc(sizeof *host, GFP_KERNEL);
3354         if (!host)
3355                 return NULL;
3356
3357         INIT_LIST_HEAD(&host->target_list);
3358         spin_lock_init(&host->target_lock);
3359         init_completion(&host->released);
3360         mutex_init(&host->add_target_mutex);
3361         host->srp_dev = device;
3362         host->port = port;
3363
3364         host->dev.class = &srp_class;
3365         host->dev.parent = device->dev->dma_device;
3366         dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port);
3367
3368         if (device_register(&host->dev))
3369                 goto free_host;
3370         if (device_create_file(&host->dev, &dev_attr_add_target))
3371                 goto err_class;
3372         if (device_create_file(&host->dev, &dev_attr_ibdev))
3373                 goto err_class;
3374         if (device_create_file(&host->dev, &dev_attr_port))
3375                 goto err_class;
3376
3377         return host;
3378
3379 err_class:
3380         device_unregister(&host->dev);
3381
3382 free_host:
3383         kfree(host);
3384
3385         return NULL;
3386 }
3387
3388 static void srp_add_one(struct ib_device *device)
3389 {
3390         struct srp_device *srp_dev;
3391         struct ib_device_attr *dev_attr;
3392         struct srp_host *host;
3393         int mr_page_shift, s, e, p;
3394         u64 max_pages_per_mr;
3395
3396         dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL);
3397         if (!dev_attr)
3398                 return;
3399
3400         if (ib_query_device(device, dev_attr)) {
3401                 pr_warn("Query device failed for %s\n", device->name);
3402                 goto free_attr;
3403         }
3404
3405         srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL);
3406         if (!srp_dev)
3407                 goto free_attr;
3408
3409         srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
3410                             device->map_phys_fmr && device->unmap_fmr);
3411         srp_dev->has_fr = (dev_attr->device_cap_flags &
3412                            IB_DEVICE_MEM_MGT_EXTENSIONS);
3413         if (!srp_dev->has_fmr && !srp_dev->has_fr)
3414                 dev_warn(&device->dev, "neither FMR nor FR is supported\n");
3415
3416         srp_dev->use_fast_reg = (srp_dev->has_fr &&
3417                                  (!srp_dev->has_fmr || prefer_fr));
3418
3419         /*
3420          * Use the smallest page size supported by the HCA, down to a
3421          * minimum of 4096 bytes. We're unlikely to build large sglists
3422          * out of smaller entries.
3423          */
3424         mr_page_shift           = max(12, ffs(dev_attr->page_size_cap) - 1);
3425         srp_dev->mr_page_size   = 1 << mr_page_shift;
3426         srp_dev->mr_page_mask   = ~((u64) srp_dev->mr_page_size - 1);
3427         max_pages_per_mr        = dev_attr->max_mr_size;
3428         do_div(max_pages_per_mr, srp_dev->mr_page_size);
3429         srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
3430                                           max_pages_per_mr);
3431         if (srp_dev->use_fast_reg) {
3432                 srp_dev->max_pages_per_mr =
3433                         min_t(u32, srp_dev->max_pages_per_mr,
3434                               dev_attr->max_fast_reg_page_list_len);
3435         }
3436         srp_dev->mr_max_size    = srp_dev->mr_page_size *
3437                                    srp_dev->max_pages_per_mr;
3438         pr_debug("%s: mr_page_shift = %d, dev_attr->max_mr_size = %#llx, dev_attr->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3439                  device->name, mr_page_shift, dev_attr->max_mr_size,
3440                  dev_attr->max_fast_reg_page_list_len,
3441                  srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3442
3443         INIT_LIST_HEAD(&srp_dev->dev_list);
3444
3445         srp_dev->dev = device;
3446         srp_dev->pd  = ib_alloc_pd(device);
3447         if (IS_ERR(srp_dev->pd))
3448                 goto free_dev;
3449
3450         srp_dev->mr = ib_get_dma_mr(srp_dev->pd,
3451                                     IB_ACCESS_LOCAL_WRITE |
3452                                     IB_ACCESS_REMOTE_READ |
3453                                     IB_ACCESS_REMOTE_WRITE);
3454         if (IS_ERR(srp_dev->mr))
3455                 goto err_pd;
3456
3457         if (device->node_type == RDMA_NODE_IB_SWITCH) {
3458                 s = 0;
3459                 e = 0;
3460         } else {
3461                 s = 1;
3462                 e = device->phys_port_cnt;
3463         }
3464
3465         for (p = s; p <= e; ++p) {
3466                 host = srp_add_port(srp_dev, p);
3467                 if (host)
3468                         list_add_tail(&host->list, &srp_dev->dev_list);
3469         }
3470
3471         ib_set_client_data(device, &srp_client, srp_dev);
3472
3473         goto free_attr;
3474
3475 err_pd:
3476         ib_dealloc_pd(srp_dev->pd);
3477
3478 free_dev:
3479         kfree(srp_dev);
3480
3481 free_attr:
3482         kfree(dev_attr);
3483 }
3484
3485 static void srp_remove_one(struct ib_device *device)
3486 {
3487         struct srp_device *srp_dev;
3488         struct srp_host *host, *tmp_host;
3489         struct srp_target_port *target;
3490
3491         srp_dev = ib_get_client_data(device, &srp_client);
3492         if (!srp_dev)
3493                 return;
3494
3495         list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3496                 device_unregister(&host->dev);
3497                 /*
3498                  * Wait for the sysfs entry to go away, so that no new
3499                  * target ports can be created.
3500                  */
3501                 wait_for_completion(&host->released);
3502
3503                 /*
3504                  * Remove all target ports.
3505                  */
3506                 spin_lock(&host->target_lock);
3507                 list_for_each_entry(target, &host->target_list, list)
3508                         srp_queue_remove_work(target);
3509                 spin_unlock(&host->target_lock);
3510
3511                 /*
3512                  * Wait for tl_err and target port removal tasks.
3513                  */
3514                 flush_workqueue(system_long_wq);
3515                 flush_workqueue(srp_remove_wq);
3516
3517                 kfree(host);
3518         }
3519
3520         ib_dereg_mr(srp_dev->mr);
3521         ib_dealloc_pd(srp_dev->pd);
3522
3523         kfree(srp_dev);
3524 }
3525
3526 static struct srp_function_template ib_srp_transport_functions = {
3527         .has_rport_state         = true,
3528         .reset_timer_if_blocked  = true,
3529         .reconnect_delay         = &srp_reconnect_delay,
3530         .fast_io_fail_tmo        = &srp_fast_io_fail_tmo,
3531         .dev_loss_tmo            = &srp_dev_loss_tmo,
3532         .reconnect               = srp_rport_reconnect,
3533         .rport_delete            = srp_rport_delete,
3534         .terminate_rport_io      = srp_terminate_io,
3535 };
3536
3537 static int __init srp_init_module(void)
3538 {
3539         int ret;
3540
3541         BUILD_BUG_ON(FIELD_SIZEOF(struct ib_wc, wr_id) < sizeof(void *));
3542
3543         if (srp_sg_tablesize) {
3544                 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
3545                 if (!cmd_sg_entries)
3546                         cmd_sg_entries = srp_sg_tablesize;
3547         }
3548
3549         if (!cmd_sg_entries)
3550                 cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
3551
3552         if (cmd_sg_entries > 255) {
3553                 pr_warn("Clamping cmd_sg_entries to 255\n");
3554                 cmd_sg_entries = 255;
3555         }
3556
3557         if (!indirect_sg_entries)
3558                 indirect_sg_entries = cmd_sg_entries;
3559         else if (indirect_sg_entries < cmd_sg_entries) {
3560                 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
3561                         cmd_sg_entries);
3562                 indirect_sg_entries = cmd_sg_entries;
3563         }
3564
3565         srp_remove_wq = create_workqueue("srp_remove");
3566         if (!srp_remove_wq) {
3567                 ret = -ENOMEM;
3568                 goto out;
3569         }
3570
3571         ret = -ENOMEM;
3572         ib_srp_transport_template =
3573                 srp_attach_transport(&ib_srp_transport_functions);
3574         if (!ib_srp_transport_template)
3575                 goto destroy_wq;
3576
3577         ret = class_register(&srp_class);
3578         if (ret) {
3579                 pr_err("couldn't register class infiniband_srp\n");
3580                 goto release_tr;
3581         }
3582
3583         ib_sa_register_client(&srp_sa_client);
3584
3585         ret = ib_register_client(&srp_client);
3586         if (ret) {
3587                 pr_err("couldn't register IB client\n");
3588                 goto unreg_sa;
3589         }
3590
3591 out:
3592         return ret;
3593
3594 unreg_sa:
3595         ib_sa_unregister_client(&srp_sa_client);
3596         class_unregister(&srp_class);
3597
3598 release_tr:
3599         srp_release_transport(ib_srp_transport_template);
3600
3601 destroy_wq:
3602         destroy_workqueue(srp_remove_wq);
3603         goto out;
3604 }
3605
3606 static void __exit srp_cleanup_module(void)
3607 {
3608         ib_unregister_client(&srp_client);
3609         ib_sa_unregister_client(&srp_sa_client);
3610         class_unregister(&srp_class);
3611         srp_release_transport(ib_srp_transport_template);
3612         destroy_workqueue(srp_remove_wq);
3613 }
3614
3615 module_init(srp_init_module);
3616 module_exit(srp_cleanup_module);