Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / infiniband / ulp / iser / iser_verbs.c
1 /*
2  * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
3  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
4  * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 #include <linux/delay.h>
38
39 #include "iscsi_iser.h"
40
41 #define ISCSI_ISER_MAX_CONN     8
42 #define ISER_MAX_RX_LEN         (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN)
43 #define ISER_MAX_TX_LEN         (ISER_QP_MAX_REQ_DTOS  * ISCSI_ISER_MAX_CONN)
44 #define ISER_MAX_CQ_LEN         (ISER_MAX_RX_LEN + ISER_MAX_TX_LEN + \
45                                  ISCSI_ISER_MAX_CONN)
46
47 static int iser_cq_poll_limit = 512;
48
49 static void iser_cq_tasklet_fn(unsigned long data);
50 static void iser_cq_callback(struct ib_cq *cq, void *cq_context);
51
52 static void iser_cq_event_callback(struct ib_event *cause, void *context)
53 {
54         iser_err("got cq event %d \n", cause->event);
55 }
56
57 static void iser_qp_event_callback(struct ib_event *cause, void *context)
58 {
59         iser_err("got qp event %d\n",cause->event);
60 }
61
62 static void iser_event_handler(struct ib_event_handler *handler,
63                                 struct ib_event *event)
64 {
65         iser_err("async event %d on device %s port %d\n", event->event,
66                 event->device->name, event->element.port_num);
67 }
68
69 /**
70  * iser_create_device_ib_res - creates Protection Domain (PD), Completion
71  * Queue (CQ), DMA Memory Region (DMA MR) with the device associated with
72  * the adapator.
73  *
74  * returns 0 on success, -1 on failure
75  */
76 static int iser_create_device_ib_res(struct iser_device *device)
77 {
78         struct ib_device_attr *dev_attr = &device->dev_attr;
79         int ret, i, max_cqe;
80
81         ret = ib_query_device(device->ib_device, dev_attr);
82         if (ret) {
83                 pr_warn("Query device failed for %s\n", device->ib_device->name);
84                 return ret;
85         }
86
87         /* Assign function handles  - based on FMR support */
88         if (device->ib_device->alloc_fmr && device->ib_device->dealloc_fmr &&
89             device->ib_device->map_phys_fmr && device->ib_device->unmap_fmr) {
90                 iser_info("FMR supported, using FMR for registration\n");
91                 device->iser_alloc_rdma_reg_res = iser_create_fmr_pool;
92                 device->iser_free_rdma_reg_res = iser_free_fmr_pool;
93                 device->iser_reg_rdma_mem = iser_reg_rdma_mem_fmr;
94                 device->iser_unreg_rdma_mem = iser_unreg_mem_fmr;
95         } else
96         if (dev_attr->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) {
97                 iser_info("FastReg supported, using FastReg for registration\n");
98                 device->iser_alloc_rdma_reg_res = iser_create_fastreg_pool;
99                 device->iser_free_rdma_reg_res = iser_free_fastreg_pool;
100                 device->iser_reg_rdma_mem = iser_reg_rdma_mem_fastreg;
101                 device->iser_unreg_rdma_mem = iser_unreg_mem_fastreg;
102         } else {
103                 iser_err("IB device does not support FMRs nor FastRegs, can't register memory\n");
104                 return -1;
105         }
106
107         device->comps_used = min_t(int, num_online_cpus(),
108                                  device->ib_device->num_comp_vectors);
109
110         device->comps = kcalloc(device->comps_used, sizeof(*device->comps),
111                                 GFP_KERNEL);
112         if (!device->comps)
113                 goto comps_err;
114
115         max_cqe = min(ISER_MAX_CQ_LEN, dev_attr->max_cqe);
116
117         iser_info("using %d CQs, device %s supports %d vectors max_cqe %d\n",
118                   device->comps_used, device->ib_device->name,
119                   device->ib_device->num_comp_vectors, max_cqe);
120
121         device->pd = ib_alloc_pd(device->ib_device);
122         if (IS_ERR(device->pd))
123                 goto pd_err;
124
125         for (i = 0; i < device->comps_used; i++) {
126                 struct iser_comp *comp = &device->comps[i];
127
128                 comp->device = device;
129                 comp->cq = ib_create_cq(device->ib_device,
130                                         iser_cq_callback,
131                                         iser_cq_event_callback,
132                                         (void *)comp,
133                                         max_cqe, i);
134                 if (IS_ERR(comp->cq)) {
135                         comp->cq = NULL;
136                         goto cq_err;
137                 }
138
139                 if (ib_req_notify_cq(comp->cq, IB_CQ_NEXT_COMP))
140                         goto cq_err;
141
142                 tasklet_init(&comp->tasklet, iser_cq_tasklet_fn,
143                              (unsigned long)comp);
144         }
145
146         device->mr = ib_get_dma_mr(device->pd, IB_ACCESS_LOCAL_WRITE |
147                                    IB_ACCESS_REMOTE_WRITE |
148                                    IB_ACCESS_REMOTE_READ);
149         if (IS_ERR(device->mr))
150                 goto dma_mr_err;
151
152         INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device,
153                                 iser_event_handler);
154         if (ib_register_event_handler(&device->event_handler))
155                 goto handler_err;
156
157         return 0;
158
159 handler_err:
160         ib_dereg_mr(device->mr);
161 dma_mr_err:
162         for (i = 0; i < device->comps_used; i++)
163                 tasklet_kill(&device->comps[i].tasklet);
164 cq_err:
165         for (i = 0; i < device->comps_used; i++) {
166                 struct iser_comp *comp = &device->comps[i];
167
168                 if (comp->cq)
169                         ib_destroy_cq(comp->cq);
170         }
171         ib_dealloc_pd(device->pd);
172 pd_err:
173         kfree(device->comps);
174 comps_err:
175         iser_err("failed to allocate an IB resource\n");
176         return -1;
177 }
178
179 /**
180  * iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR,
181  * CQ and PD created with the device associated with the adapator.
182  */
183 static void iser_free_device_ib_res(struct iser_device *device)
184 {
185         int i;
186         BUG_ON(device->mr == NULL);
187
188         for (i = 0; i < device->comps_used; i++) {
189                 struct iser_comp *comp = &device->comps[i];
190
191                 tasklet_kill(&comp->tasklet);
192                 ib_destroy_cq(comp->cq);
193                 comp->cq = NULL;
194         }
195
196         (void)ib_unregister_event_handler(&device->event_handler);
197         (void)ib_dereg_mr(device->mr);
198         (void)ib_dealloc_pd(device->pd);
199
200         kfree(device->comps);
201         device->comps = NULL;
202
203         device->mr = NULL;
204         device->pd = NULL;
205 }
206
207 /**
208  * iser_create_fmr_pool - Creates FMR pool and page_vector
209  *
210  * returns 0 on success, or errno code on failure
211  */
212 int iser_create_fmr_pool(struct ib_conn *ib_conn, unsigned cmds_max)
213 {
214         struct iser_device *device = ib_conn->device;
215         struct ib_fmr_pool_param params;
216         int ret = -ENOMEM;
217
218         ib_conn->fmr.page_vec = kmalloc(sizeof(*ib_conn->fmr.page_vec) +
219                                         (sizeof(u64)*(ISCSI_ISER_SG_TABLESIZE + 1)),
220                                         GFP_KERNEL);
221         if (!ib_conn->fmr.page_vec)
222                 return ret;
223
224         ib_conn->fmr.page_vec->pages = (u64 *)(ib_conn->fmr.page_vec + 1);
225
226         params.page_shift        = SHIFT_4K;
227         /* when the first/last SG element are not start/end *
228          * page aligned, the map whould be of N+1 pages     */
229         params.max_pages_per_fmr = ISCSI_ISER_SG_TABLESIZE + 1;
230         /* make the pool size twice the max number of SCSI commands *
231          * the ML is expected to queue, watermark for unmap at 50%  */
232         params.pool_size         = cmds_max * 2;
233         params.dirty_watermark   = cmds_max;
234         params.cache             = 0;
235         params.flush_function    = NULL;
236         params.access            = (IB_ACCESS_LOCAL_WRITE  |
237                                     IB_ACCESS_REMOTE_WRITE |
238                                     IB_ACCESS_REMOTE_READ);
239
240         ib_conn->fmr.pool = ib_create_fmr_pool(device->pd, &params);
241         if (!IS_ERR(ib_conn->fmr.pool))
242                 return 0;
243
244         /* no FMR => no need for page_vec */
245         kfree(ib_conn->fmr.page_vec);
246         ib_conn->fmr.page_vec = NULL;
247
248         ret = PTR_ERR(ib_conn->fmr.pool);
249         ib_conn->fmr.pool = NULL;
250         if (ret != -ENOSYS) {
251                 iser_err("FMR allocation failed, err %d\n", ret);
252                 return ret;
253         } else {
254                 iser_warn("FMRs are not supported, using unaligned mode\n");
255                 return 0;
256         }
257 }
258
259 /**
260  * iser_free_fmr_pool - releases the FMR pool and page vec
261  */
262 void iser_free_fmr_pool(struct ib_conn *ib_conn)
263 {
264         iser_info("freeing conn %p fmr pool %p\n",
265                   ib_conn, ib_conn->fmr.pool);
266
267         if (ib_conn->fmr.pool != NULL)
268                 ib_destroy_fmr_pool(ib_conn->fmr.pool);
269
270         ib_conn->fmr.pool = NULL;
271
272         kfree(ib_conn->fmr.page_vec);
273         ib_conn->fmr.page_vec = NULL;
274 }
275
276 static int
277 iser_alloc_pi_ctx(struct ib_device *ib_device, struct ib_pd *pd,
278                   struct fast_reg_descriptor *desc)
279 {
280         struct iser_pi_context *pi_ctx = NULL;
281         struct ib_mr_init_attr mr_init_attr = {.max_reg_descriptors = 2,
282                                                .flags = IB_MR_SIGNATURE_EN};
283         int ret = 0;
284
285         desc->pi_ctx = kzalloc(sizeof(*desc->pi_ctx), GFP_KERNEL);
286         if (!desc->pi_ctx)
287                 return -ENOMEM;
288
289         pi_ctx = desc->pi_ctx;
290
291         pi_ctx->prot_frpl = ib_alloc_fast_reg_page_list(ib_device,
292                                             ISCSI_ISER_SG_TABLESIZE);
293         if (IS_ERR(pi_ctx->prot_frpl)) {
294                 ret = PTR_ERR(pi_ctx->prot_frpl);
295                 goto prot_frpl_failure;
296         }
297
298         pi_ctx->prot_mr = ib_alloc_fast_reg_mr(pd,
299                                         ISCSI_ISER_SG_TABLESIZE + 1);
300         if (IS_ERR(pi_ctx->prot_mr)) {
301                 ret = PTR_ERR(pi_ctx->prot_mr);
302                 goto prot_mr_failure;
303         }
304         desc->reg_indicators |= ISER_PROT_KEY_VALID;
305
306         pi_ctx->sig_mr = ib_create_mr(pd, &mr_init_attr);
307         if (IS_ERR(pi_ctx->sig_mr)) {
308                 ret = PTR_ERR(pi_ctx->sig_mr);
309                 goto sig_mr_failure;
310         }
311         desc->reg_indicators |= ISER_SIG_KEY_VALID;
312         desc->reg_indicators &= ~ISER_FASTREG_PROTECTED;
313
314         return 0;
315
316 sig_mr_failure:
317         ib_dereg_mr(desc->pi_ctx->prot_mr);
318 prot_mr_failure:
319         ib_free_fast_reg_page_list(desc->pi_ctx->prot_frpl);
320 prot_frpl_failure:
321         kfree(desc->pi_ctx);
322
323         return ret;
324 }
325
326 static void
327 iser_free_pi_ctx(struct iser_pi_context *pi_ctx)
328 {
329         ib_free_fast_reg_page_list(pi_ctx->prot_frpl);
330         ib_dereg_mr(pi_ctx->prot_mr);
331         ib_destroy_mr(pi_ctx->sig_mr);
332         kfree(pi_ctx);
333 }
334
335 static int
336 iser_create_fastreg_desc(struct ib_device *ib_device, struct ib_pd *pd,
337                          bool pi_enable, struct fast_reg_descriptor *desc)
338 {
339         int ret;
340
341         desc->data_frpl = ib_alloc_fast_reg_page_list(ib_device,
342                                                       ISCSI_ISER_SG_TABLESIZE + 1);
343         if (IS_ERR(desc->data_frpl)) {
344                 ret = PTR_ERR(desc->data_frpl);
345                 iser_err("Failed to allocate ib_fast_reg_page_list err=%d\n",
346                          ret);
347                 return PTR_ERR(desc->data_frpl);
348         }
349
350         desc->data_mr = ib_alloc_fast_reg_mr(pd, ISCSI_ISER_SG_TABLESIZE + 1);
351         if (IS_ERR(desc->data_mr)) {
352                 ret = PTR_ERR(desc->data_mr);
353                 iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret);
354                 goto fast_reg_mr_failure;
355         }
356         desc->reg_indicators |= ISER_DATA_KEY_VALID;
357
358         if (pi_enable) {
359                 ret = iser_alloc_pi_ctx(ib_device, pd, desc);
360                 if (ret)
361                         goto pi_ctx_alloc_failure;
362         }
363
364         return 0;
365 pi_ctx_alloc_failure:
366         ib_dereg_mr(desc->data_mr);
367 fast_reg_mr_failure:
368         ib_free_fast_reg_page_list(desc->data_frpl);
369
370         return ret;
371 }
372
373 /**
374  * iser_create_fastreg_pool - Creates pool of fast_reg descriptors
375  * for fast registration work requests.
376  * returns 0 on success, or errno code on failure
377  */
378 int iser_create_fastreg_pool(struct ib_conn *ib_conn, unsigned cmds_max)
379 {
380         struct iser_device *device = ib_conn->device;
381         struct fast_reg_descriptor *desc;
382         int i, ret;
383
384         INIT_LIST_HEAD(&ib_conn->fastreg.pool);
385         ib_conn->fastreg.pool_size = 0;
386         for (i = 0; i < cmds_max; i++) {
387                 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
388                 if (!desc) {
389                         iser_err("Failed to allocate a new fast_reg descriptor\n");
390                         ret = -ENOMEM;
391                         goto err;
392                 }
393
394                 ret = iser_create_fastreg_desc(device->ib_device, device->pd,
395                                                ib_conn->pi_support, desc);
396                 if (ret) {
397                         iser_err("Failed to create fastreg descriptor err=%d\n",
398                                  ret);
399                         kfree(desc);
400                         goto err;
401                 }
402
403                 list_add_tail(&desc->list, &ib_conn->fastreg.pool);
404                 ib_conn->fastreg.pool_size++;
405         }
406
407         return 0;
408
409 err:
410         iser_free_fastreg_pool(ib_conn);
411         return ret;
412 }
413
414 /**
415  * iser_free_fastreg_pool - releases the pool of fast_reg descriptors
416  */
417 void iser_free_fastreg_pool(struct ib_conn *ib_conn)
418 {
419         struct fast_reg_descriptor *desc, *tmp;
420         int i = 0;
421
422         if (list_empty(&ib_conn->fastreg.pool))
423                 return;
424
425         iser_info("freeing conn %p fr pool\n", ib_conn);
426
427         list_for_each_entry_safe(desc, tmp, &ib_conn->fastreg.pool, list) {
428                 list_del(&desc->list);
429                 ib_free_fast_reg_page_list(desc->data_frpl);
430                 ib_dereg_mr(desc->data_mr);
431                 if (desc->pi_ctx)
432                         iser_free_pi_ctx(desc->pi_ctx);
433                 kfree(desc);
434                 ++i;
435         }
436
437         if (i < ib_conn->fastreg.pool_size)
438                 iser_warn("pool still has %d regions registered\n",
439                           ib_conn->fastreg.pool_size - i);
440 }
441
442 /**
443  * iser_create_ib_conn_res - Queue-Pair (QP)
444  *
445  * returns 0 on success, -1 on failure
446  */
447 static int iser_create_ib_conn_res(struct ib_conn *ib_conn)
448 {
449         struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
450                                                    ib_conn);
451         struct iser_device      *device;
452         struct ib_device_attr *dev_attr;
453         struct ib_qp_init_attr  init_attr;
454         int                     ret = -ENOMEM;
455         int index, min_index = 0;
456
457         BUG_ON(ib_conn->device == NULL);
458
459         device = ib_conn->device;
460         dev_attr = &device->dev_attr;
461
462         memset(&init_attr, 0, sizeof init_attr);
463
464         mutex_lock(&ig.connlist_mutex);
465         /* select the CQ with the minimal number of usages */
466         for (index = 0; index < device->comps_used; index++) {
467                 if (device->comps[index].active_qps <
468                     device->comps[min_index].active_qps)
469                         min_index = index;
470         }
471         ib_conn->comp = &device->comps[min_index];
472         ib_conn->comp->active_qps++;
473         mutex_unlock(&ig.connlist_mutex);
474         iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn);
475
476         init_attr.event_handler = iser_qp_event_callback;
477         init_attr.qp_context    = (void *)ib_conn;
478         init_attr.send_cq       = ib_conn->comp->cq;
479         init_attr.recv_cq       = ib_conn->comp->cq;
480         init_attr.cap.max_recv_wr  = ISER_QP_MAX_RECV_DTOS;
481         init_attr.cap.max_send_sge = 2;
482         init_attr.cap.max_recv_sge = 1;
483         init_attr.sq_sig_type   = IB_SIGNAL_REQ_WR;
484         init_attr.qp_type       = IB_QPT_RC;
485         if (ib_conn->pi_support) {
486                 init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1;
487                 init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN;
488                 iser_conn->max_cmds =
489                         ISER_GET_MAX_XMIT_CMDS(ISER_QP_SIG_MAX_REQ_DTOS);
490         } else {
491                 if (dev_attr->max_qp_wr > ISER_QP_MAX_REQ_DTOS) {
492                         init_attr.cap.max_send_wr  = ISER_QP_MAX_REQ_DTOS + 1;
493                         iser_conn->max_cmds =
494                                 ISER_GET_MAX_XMIT_CMDS(ISER_QP_MAX_REQ_DTOS);
495                 } else {
496                         init_attr.cap.max_send_wr = dev_attr->max_qp_wr;
497                         iser_conn->max_cmds =
498                                 ISER_GET_MAX_XMIT_CMDS(dev_attr->max_qp_wr);
499                         iser_dbg("device %s supports max_send_wr %d\n",
500                                  device->ib_device->name, dev_attr->max_qp_wr);
501                 }
502         }
503
504         ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr);
505         if (ret)
506                 goto out_err;
507
508         ib_conn->qp = ib_conn->cma_id->qp;
509         iser_info("setting conn %p cma_id %p qp %p\n",
510                   ib_conn, ib_conn->cma_id,
511                   ib_conn->cma_id->qp);
512         return ret;
513
514 out_err:
515         mutex_lock(&ig.connlist_mutex);
516         ib_conn->comp->active_qps--;
517         mutex_unlock(&ig.connlist_mutex);
518         iser_err("unable to alloc mem or create resource, err %d\n", ret);
519
520         return ret;
521 }
522
523 /**
524  * based on the resolved device node GUID see if there already allocated
525  * device for this device. If there's no such, create one.
526  */
527 static
528 struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id)
529 {
530         struct iser_device *device;
531
532         mutex_lock(&ig.device_list_mutex);
533
534         list_for_each_entry(device, &ig.device_list, ig_list)
535                 /* find if there's a match using the node GUID */
536                 if (device->ib_device->node_guid == cma_id->device->node_guid)
537                         goto inc_refcnt;
538
539         device = kzalloc(sizeof *device, GFP_KERNEL);
540         if (device == NULL)
541                 goto out;
542
543         /* assign this device to the device */
544         device->ib_device = cma_id->device;
545         /* init the device and link it into ig device list */
546         if (iser_create_device_ib_res(device)) {
547                 kfree(device);
548                 device = NULL;
549                 goto out;
550         }
551         list_add(&device->ig_list, &ig.device_list);
552
553 inc_refcnt:
554         device->refcount++;
555 out:
556         mutex_unlock(&ig.device_list_mutex);
557         return device;
558 }
559
560 /* if there's no demand for this device, release it */
561 static void iser_device_try_release(struct iser_device *device)
562 {
563         mutex_lock(&ig.device_list_mutex);
564         device->refcount--;
565         iser_info("device %p refcount %d\n", device, device->refcount);
566         if (!device->refcount) {
567                 iser_free_device_ib_res(device);
568                 list_del(&device->ig_list);
569                 kfree(device);
570         }
571         mutex_unlock(&ig.device_list_mutex);
572 }
573
574 /**
575  * Called with state mutex held
576  **/
577 static int iser_conn_state_comp_exch(struct iser_conn *iser_conn,
578                                      enum iser_conn_state comp,
579                                      enum iser_conn_state exch)
580 {
581         int ret;
582
583         ret = (iser_conn->state == comp);
584         if (ret)
585                 iser_conn->state = exch;
586
587         return ret;
588 }
589
590 void iser_release_work(struct work_struct *work)
591 {
592         struct iser_conn *iser_conn;
593
594         iser_conn = container_of(work, struct iser_conn, release_work);
595
596         /* Wait for conn_stop to complete */
597         wait_for_completion(&iser_conn->stop_completion);
598         /* Wait for IB resouces cleanup to complete */
599         wait_for_completion(&iser_conn->ib_completion);
600
601         mutex_lock(&iser_conn->state_mutex);
602         iser_conn->state = ISER_CONN_DOWN;
603         mutex_unlock(&iser_conn->state_mutex);
604
605         iser_conn_release(iser_conn);
606 }
607
608 /**
609  * iser_free_ib_conn_res - release IB related resources
610  * @iser_conn: iser connection struct
611  * @destroy: indicator if we need to try to release the
612  *     iser device and memory regoins pool (only iscsi
613  *     shutdown and DEVICE_REMOVAL will use this).
614  *
615  * This routine is called with the iser state mutex held
616  * so the cm_id removal is out of here. It is Safe to
617  * be invoked multiple times.
618  */
619 static void iser_free_ib_conn_res(struct iser_conn *iser_conn,
620                                   bool destroy)
621 {
622         struct ib_conn *ib_conn = &iser_conn->ib_conn;
623         struct iser_device *device = ib_conn->device;
624
625         iser_info("freeing conn %p cma_id %p qp %p\n",
626                   iser_conn, ib_conn->cma_id, ib_conn->qp);
627
628         if (ib_conn->qp != NULL) {
629                 ib_conn->comp->active_qps--;
630                 rdma_destroy_qp(ib_conn->cma_id);
631                 ib_conn->qp = NULL;
632         }
633
634         if (destroy) {
635                 if (iser_conn->rx_descs)
636                         iser_free_rx_descriptors(iser_conn);
637
638                 if (device != NULL) {
639                         iser_device_try_release(device);
640                         ib_conn->device = NULL;
641                 }
642         }
643 }
644
645 /**
646  * Frees all conn objects and deallocs conn descriptor
647  */
648 void iser_conn_release(struct iser_conn *iser_conn)
649 {
650         struct ib_conn *ib_conn = &iser_conn->ib_conn;
651
652         mutex_lock(&ig.connlist_mutex);
653         list_del(&iser_conn->conn_list);
654         mutex_unlock(&ig.connlist_mutex);
655
656         mutex_lock(&iser_conn->state_mutex);
657         /* In case we endup here without ep_disconnect being invoked. */
658         if (iser_conn->state != ISER_CONN_DOWN) {
659                 iser_warn("iser conn %p state %d, expected state down.\n",
660                           iser_conn, iser_conn->state);
661                 iscsi_destroy_endpoint(iser_conn->ep);
662                 iser_conn->state = ISER_CONN_DOWN;
663         }
664         /*
665          * In case we never got to bind stage, we still need to
666          * release IB resources (which is safe to call more than once).
667          */
668         iser_free_ib_conn_res(iser_conn, true);
669         mutex_unlock(&iser_conn->state_mutex);
670
671         if (ib_conn->cma_id != NULL) {
672                 rdma_destroy_id(ib_conn->cma_id);
673                 ib_conn->cma_id = NULL;
674         }
675
676         kfree(iser_conn);
677 }
678
679 /**
680  * triggers start of the disconnect procedures and wait for them to be done
681  * Called with state mutex held
682  */
683 int iser_conn_terminate(struct iser_conn *iser_conn)
684 {
685         struct ib_conn *ib_conn = &iser_conn->ib_conn;
686         struct ib_send_wr *bad_wr;
687         int err = 0;
688
689         /* terminate the iser conn only if the conn state is UP */
690         if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP,
691                                        ISER_CONN_TERMINATING))
692                 return 0;
693
694         iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state);
695
696         /* suspend queuing of new iscsi commands */
697         if (iser_conn->iscsi_conn)
698                 iscsi_suspend_queue(iser_conn->iscsi_conn);
699
700         /*
701          * In case we didn't already clean up the cma_id (peer initiated
702          * a disconnection), we need to Cause the CMA to change the QP
703          * state to ERROR.
704          */
705         if (ib_conn->cma_id) {
706                 err = rdma_disconnect(ib_conn->cma_id);
707                 if (err)
708                         iser_err("Failed to disconnect, conn: 0x%p err %d\n",
709                                  iser_conn, err);
710
711                 /* post an indication that all flush errors were consumed */
712                 err = ib_post_send(ib_conn->qp, &ib_conn->beacon, &bad_wr);
713                 if (err) {
714                         iser_err("conn %p failed to post beacon", ib_conn);
715                         return 1;
716                 }
717
718                 wait_for_completion(&ib_conn->flush_comp);
719         }
720
721         return 1;
722 }
723
724 /**
725  * Called with state mutex held
726  **/
727 static void iser_connect_error(struct rdma_cm_id *cma_id)
728 {
729         struct iser_conn *iser_conn;
730
731         iser_conn = (struct iser_conn *)cma_id->context;
732         iser_conn->state = ISER_CONN_TERMINATING;
733 }
734
735 /**
736  * Called with state mutex held
737  **/
738 static void iser_addr_handler(struct rdma_cm_id *cma_id)
739 {
740         struct iser_device *device;
741         struct iser_conn   *iser_conn;
742         struct ib_conn   *ib_conn;
743         int    ret;
744
745         iser_conn = (struct iser_conn *)cma_id->context;
746         if (iser_conn->state != ISER_CONN_PENDING)
747                 /* bailout */
748                 return;
749
750         ib_conn = &iser_conn->ib_conn;
751         device = iser_device_find_by_ib_device(cma_id);
752         if (!device) {
753                 iser_err("device lookup/creation failed\n");
754                 iser_connect_error(cma_id);
755                 return;
756         }
757
758         ib_conn->device = device;
759
760         /* connection T10-PI support */
761         if (iser_pi_enable) {
762                 if (!(device->dev_attr.device_cap_flags &
763                       IB_DEVICE_SIGNATURE_HANDOVER)) {
764                         iser_warn("T10-PI requested but not supported on %s, "
765                                   "continue without T10-PI\n",
766                                   ib_conn->device->ib_device->name);
767                         ib_conn->pi_support = false;
768                 } else {
769                         ib_conn->pi_support = true;
770                 }
771         }
772
773         ret = rdma_resolve_route(cma_id, 1000);
774         if (ret) {
775                 iser_err("resolve route failed: %d\n", ret);
776                 iser_connect_error(cma_id);
777                 return;
778         }
779 }
780
781 /**
782  * Called with state mutex held
783  **/
784 static void iser_route_handler(struct rdma_cm_id *cma_id)
785 {
786         struct rdma_conn_param conn_param;
787         int    ret;
788         struct iser_cm_hdr req_hdr;
789         struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
790         struct ib_conn *ib_conn = &iser_conn->ib_conn;
791         struct iser_device *device = ib_conn->device;
792
793         if (iser_conn->state != ISER_CONN_PENDING)
794                 /* bailout */
795                 return;
796
797         ret = iser_create_ib_conn_res(ib_conn);
798         if (ret)
799                 goto failure;
800
801         memset(&conn_param, 0, sizeof conn_param);
802         conn_param.responder_resources = device->dev_attr.max_qp_rd_atom;
803         conn_param.initiator_depth     = 1;
804         conn_param.retry_count         = 7;
805         conn_param.rnr_retry_count     = 6;
806
807         memset(&req_hdr, 0, sizeof(req_hdr));
808         req_hdr.flags = (ISER_ZBVA_NOT_SUPPORTED |
809                         ISER_SEND_W_INV_NOT_SUPPORTED);
810         conn_param.private_data         = (void *)&req_hdr;
811         conn_param.private_data_len     = sizeof(struct iser_cm_hdr);
812
813         ret = rdma_connect(cma_id, &conn_param);
814         if (ret) {
815                 iser_err("failure connecting: %d\n", ret);
816                 goto failure;
817         }
818
819         return;
820 failure:
821         iser_connect_error(cma_id);
822 }
823
824 static void iser_connected_handler(struct rdma_cm_id *cma_id)
825 {
826         struct iser_conn *iser_conn;
827         struct ib_qp_attr attr;
828         struct ib_qp_init_attr init_attr;
829
830         iser_conn = (struct iser_conn *)cma_id->context;
831         if (iser_conn->state != ISER_CONN_PENDING)
832                 /* bailout */
833                 return;
834
835         (void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr);
836         iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num);
837
838         iser_conn->state = ISER_CONN_UP;
839         complete(&iser_conn->up_completion);
840 }
841
842 static void iser_disconnected_handler(struct rdma_cm_id *cma_id)
843 {
844         struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
845
846         if (iser_conn_terminate(iser_conn)) {
847                 if (iser_conn->iscsi_conn)
848                         iscsi_conn_failure(iser_conn->iscsi_conn,
849                                            ISCSI_ERR_CONN_FAILED);
850                 else
851                         iser_err("iscsi_iser connection isn't bound\n");
852         }
853 }
854
855 static void iser_cleanup_handler(struct rdma_cm_id *cma_id,
856                                  bool destroy)
857 {
858         struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
859
860         /*
861          * We are not guaranteed that we visited disconnected_handler
862          * by now, call it here to be safe that we handle CM drep
863          * and flush errors.
864          */
865         iser_disconnected_handler(cma_id);
866         iser_free_ib_conn_res(iser_conn, destroy);
867         complete(&iser_conn->ib_completion);
868 };
869
870 static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event)
871 {
872         struct iser_conn *iser_conn;
873         int ret = 0;
874
875         iser_conn = (struct iser_conn *)cma_id->context;
876         iser_info("event %d status %d conn %p id %p\n",
877                   event->event, event->status, cma_id->context, cma_id);
878
879         mutex_lock(&iser_conn->state_mutex);
880         switch (event->event) {
881         case RDMA_CM_EVENT_ADDR_RESOLVED:
882                 iser_addr_handler(cma_id);
883                 break;
884         case RDMA_CM_EVENT_ROUTE_RESOLVED:
885                 iser_route_handler(cma_id);
886                 break;
887         case RDMA_CM_EVENT_ESTABLISHED:
888                 iser_connected_handler(cma_id);
889                 break;
890         case RDMA_CM_EVENT_ADDR_ERROR:
891         case RDMA_CM_EVENT_ROUTE_ERROR:
892         case RDMA_CM_EVENT_CONNECT_ERROR:
893         case RDMA_CM_EVENT_UNREACHABLE:
894         case RDMA_CM_EVENT_REJECTED:
895                 iser_connect_error(cma_id);
896                 break;
897         case RDMA_CM_EVENT_DISCONNECTED:
898         case RDMA_CM_EVENT_ADDR_CHANGE:
899         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
900                 iser_cleanup_handler(cma_id, false);
901                 break;
902         case RDMA_CM_EVENT_DEVICE_REMOVAL:
903                 /*
904                  * we *must* destroy the device as we cannot rely
905                  * on iscsid to be around to initiate error handling.
906                  * also if we are not in state DOWN implicitly destroy
907                  * the cma_id.
908                  */
909                 iser_cleanup_handler(cma_id, true);
910                 if (iser_conn->state != ISER_CONN_DOWN) {
911                         iser_conn->ib_conn.cma_id = NULL;
912                         ret = 1;
913                 }
914                 break;
915         default:
916                 iser_err("Unexpected RDMA CM event (%d)\n", event->event);
917                 break;
918         }
919         mutex_unlock(&iser_conn->state_mutex);
920
921         return ret;
922 }
923
924 void iser_conn_init(struct iser_conn *iser_conn)
925 {
926         iser_conn->state = ISER_CONN_INIT;
927         iser_conn->ib_conn.post_recv_buf_count = 0;
928         init_completion(&iser_conn->ib_conn.flush_comp);
929         init_completion(&iser_conn->stop_completion);
930         init_completion(&iser_conn->ib_completion);
931         init_completion(&iser_conn->up_completion);
932         INIT_LIST_HEAD(&iser_conn->conn_list);
933         spin_lock_init(&iser_conn->ib_conn.lock);
934         mutex_init(&iser_conn->state_mutex);
935 }
936
937  /**
938  * starts the process of connecting to the target
939  * sleeps until the connection is established or rejected
940  */
941 int iser_connect(struct iser_conn   *iser_conn,
942                  struct sockaddr    *src_addr,
943                  struct sockaddr    *dst_addr,
944                  int                 non_blocking)
945 {
946         struct ib_conn *ib_conn = &iser_conn->ib_conn;
947         int err = 0;
948
949         mutex_lock(&iser_conn->state_mutex);
950
951         sprintf(iser_conn->name, "%pISp", dst_addr);
952
953         iser_info("connecting to: %s\n", iser_conn->name);
954
955         /* the device is known only --after-- address resolution */
956         ib_conn->device = NULL;
957
958         iser_conn->state = ISER_CONN_PENDING;
959
960         ib_conn->beacon.wr_id = ISER_BEACON_WRID;
961         ib_conn->beacon.opcode = IB_WR_SEND;
962
963         ib_conn->cma_id = rdma_create_id(iser_cma_handler,
964                                          (void *)iser_conn,
965                                          RDMA_PS_TCP, IB_QPT_RC);
966         if (IS_ERR(ib_conn->cma_id)) {
967                 err = PTR_ERR(ib_conn->cma_id);
968                 iser_err("rdma_create_id failed: %d\n", err);
969                 goto id_failure;
970         }
971
972         err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000);
973         if (err) {
974                 iser_err("rdma_resolve_addr failed: %d\n", err);
975                 goto addr_failure;
976         }
977
978         if (!non_blocking) {
979                 wait_for_completion_interruptible(&iser_conn->up_completion);
980
981                 if (iser_conn->state != ISER_CONN_UP) {
982                         err =  -EIO;
983                         goto connect_failure;
984                 }
985         }
986         mutex_unlock(&iser_conn->state_mutex);
987
988         mutex_lock(&ig.connlist_mutex);
989         list_add(&iser_conn->conn_list, &ig.connlist);
990         mutex_unlock(&ig.connlist_mutex);
991         return 0;
992
993 id_failure:
994         ib_conn->cma_id = NULL;
995 addr_failure:
996         iser_conn->state = ISER_CONN_DOWN;
997 connect_failure:
998         mutex_unlock(&iser_conn->state_mutex);
999         iser_conn_release(iser_conn);
1000         return err;
1001 }
1002
1003 int iser_post_recvl(struct iser_conn *iser_conn)
1004 {
1005         struct ib_recv_wr rx_wr, *rx_wr_failed;
1006         struct ib_conn *ib_conn = &iser_conn->ib_conn;
1007         struct ib_sge     sge;
1008         int ib_ret;
1009
1010         sge.addr   = iser_conn->login_resp_dma;
1011         sge.length = ISER_RX_LOGIN_SIZE;
1012         sge.lkey   = ib_conn->device->mr->lkey;
1013
1014         rx_wr.wr_id   = (uintptr_t)iser_conn->login_resp_buf;
1015         rx_wr.sg_list = &sge;
1016         rx_wr.num_sge = 1;
1017         rx_wr.next    = NULL;
1018
1019         ib_conn->post_recv_buf_count++;
1020         ib_ret  = ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed);
1021         if (ib_ret) {
1022                 iser_err("ib_post_recv failed ret=%d\n", ib_ret);
1023                 ib_conn->post_recv_buf_count--;
1024         }
1025         return ib_ret;
1026 }
1027
1028 int iser_post_recvm(struct iser_conn *iser_conn, int count)
1029 {
1030         struct ib_recv_wr *rx_wr, *rx_wr_failed;
1031         int i, ib_ret;
1032         struct ib_conn *ib_conn = &iser_conn->ib_conn;
1033         unsigned int my_rx_head = iser_conn->rx_desc_head;
1034         struct iser_rx_desc *rx_desc;
1035
1036         for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) {
1037                 rx_desc         = &iser_conn->rx_descs[my_rx_head];
1038                 rx_wr->wr_id    = (uintptr_t)rx_desc;
1039                 rx_wr->sg_list  = &rx_desc->rx_sg;
1040                 rx_wr->num_sge  = 1;
1041                 rx_wr->next     = rx_wr + 1;
1042                 my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask;
1043         }
1044
1045         rx_wr--;
1046         rx_wr->next = NULL; /* mark end of work requests list */
1047
1048         ib_conn->post_recv_buf_count += count;
1049         ib_ret  = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed);
1050         if (ib_ret) {
1051                 iser_err("ib_post_recv failed ret=%d\n", ib_ret);
1052                 ib_conn->post_recv_buf_count -= count;
1053         } else
1054                 iser_conn->rx_desc_head = my_rx_head;
1055         return ib_ret;
1056 }
1057
1058
1059 /**
1060  * iser_start_send - Initiate a Send DTO operation
1061  *
1062  * returns 0 on success, -1 on failure
1063  */
1064 int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc,
1065                    bool signal)
1066 {
1067         int               ib_ret;
1068         struct ib_send_wr send_wr, *send_wr_failed;
1069
1070         ib_dma_sync_single_for_device(ib_conn->device->ib_device,
1071                                       tx_desc->dma_addr, ISER_HEADERS_LEN,
1072                                       DMA_TO_DEVICE);
1073
1074         send_wr.next       = NULL;
1075         send_wr.wr_id      = (uintptr_t)tx_desc;
1076         send_wr.sg_list    = tx_desc->tx_sg;
1077         send_wr.num_sge    = tx_desc->num_sge;
1078         send_wr.opcode     = IB_WR_SEND;
1079         send_wr.send_flags = signal ? IB_SEND_SIGNALED : 0;
1080
1081         ib_ret = ib_post_send(ib_conn->qp, &send_wr, &send_wr_failed);
1082         if (ib_ret)
1083                 iser_err("ib_post_send failed, ret:%d\n", ib_ret);
1084
1085         return ib_ret;
1086 }
1087
1088 /**
1089  * is_iser_tx_desc - Indicate if the completion wr_id
1090  *     is a TX descriptor or not.
1091  * @iser_conn: iser connection
1092  * @wr_id: completion WR identifier
1093  *
1094  * Since we cannot rely on wc opcode in FLUSH errors
1095  * we must work around it by checking if the wr_id address
1096  * falls in the iser connection rx_descs buffer. If so
1097  * it is an RX descriptor, otherwize it is a TX.
1098  */
1099 static inline bool
1100 is_iser_tx_desc(struct iser_conn *iser_conn, void *wr_id)
1101 {
1102         void *start = iser_conn->rx_descs;
1103         int len = iser_conn->num_rx_descs * sizeof(*iser_conn->rx_descs);
1104
1105         if (wr_id >= start && wr_id < start + len)
1106                 return false;
1107
1108         return true;
1109 }
1110
1111 /**
1112  * iser_handle_comp_error() - Handle error completion
1113  * @ib_conn:   connection RDMA resources
1114  * @wc:        work completion
1115  *
1116  * Notes: We may handle a FLUSH error completion and in this case
1117  *        we only cleanup in case TX type was DATAOUT. For non-FLUSH
1118  *        error completion we should also notify iscsi layer that
1119  *        connection is failed (in case we passed bind stage).
1120  */
1121 static void
1122 iser_handle_comp_error(struct ib_conn *ib_conn,
1123                        struct ib_wc *wc)
1124 {
1125         void *wr_id = (void *)(uintptr_t)wc->wr_id;
1126         struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
1127                                                    ib_conn);
1128
1129         if (wc->status != IB_WC_WR_FLUSH_ERR)
1130                 if (iser_conn->iscsi_conn)
1131                         iscsi_conn_failure(iser_conn->iscsi_conn,
1132                                            ISCSI_ERR_CONN_FAILED);
1133
1134         if (wc->wr_id == ISER_FASTREG_LI_WRID)
1135                 return;
1136
1137         if (is_iser_tx_desc(iser_conn, wr_id)) {
1138                 struct iser_tx_desc *desc = wr_id;
1139
1140                 if (desc->type == ISCSI_TX_DATAOUT)
1141                         kmem_cache_free(ig.desc_cache, desc);
1142         } else {
1143                 ib_conn->post_recv_buf_count--;
1144         }
1145 }
1146
1147 /**
1148  * iser_handle_wc - handle a single work completion
1149  * @wc: work completion
1150  *
1151  * Soft-IRQ context, work completion can be either
1152  * SEND or RECV, and can turn out successful or
1153  * with error (or flush error).
1154  */
1155 static void iser_handle_wc(struct ib_wc *wc)
1156 {
1157         struct ib_conn *ib_conn;
1158         struct iser_tx_desc *tx_desc;
1159         struct iser_rx_desc *rx_desc;
1160
1161         ib_conn = wc->qp->qp_context;
1162         if (likely(wc->status == IB_WC_SUCCESS)) {
1163                 if (wc->opcode == IB_WC_RECV) {
1164                         rx_desc = (struct iser_rx_desc *)(uintptr_t)wc->wr_id;
1165                         iser_rcv_completion(rx_desc, wc->byte_len,
1166                                             ib_conn);
1167                 } else
1168                 if (wc->opcode == IB_WC_SEND) {
1169                         tx_desc = (struct iser_tx_desc *)(uintptr_t)wc->wr_id;
1170                         iser_snd_completion(tx_desc, ib_conn);
1171                 } else {
1172                         iser_err("Unknown wc opcode %d\n", wc->opcode);
1173                 }
1174         } else {
1175                 if (wc->status != IB_WC_WR_FLUSH_ERR)
1176                         iser_err("wr id %llx status %d vend_err %x\n",
1177                                  wc->wr_id, wc->status, wc->vendor_err);
1178                 else
1179                         iser_dbg("flush error: wr id %llx\n", wc->wr_id);
1180
1181                 if (wc->wr_id == ISER_BEACON_WRID)
1182                         /* all flush errors were consumed */
1183                         complete(&ib_conn->flush_comp);
1184                 else
1185                         iser_handle_comp_error(ib_conn, wc);
1186         }
1187 }
1188
1189 /**
1190  * iser_cq_tasklet_fn - iSER completion polling loop
1191  * @data: iSER completion context
1192  *
1193  * Soft-IRQ context, polling connection CQ until
1194  * either CQ was empty or we exausted polling budget
1195  */
1196 static void iser_cq_tasklet_fn(unsigned long data)
1197 {
1198         struct iser_comp *comp = (struct iser_comp *)data;
1199         struct ib_cq *cq = comp->cq;
1200         struct ib_wc *const wcs = comp->wcs;
1201         int i, n, completed = 0;
1202
1203         while ((n = ib_poll_cq(cq, ARRAY_SIZE(comp->wcs), wcs)) > 0) {
1204                 for (i = 0; i < n; i++)
1205                         iser_handle_wc(&wcs[i]);
1206
1207                 completed += n;
1208                 if (completed >= iser_cq_poll_limit)
1209                         break;
1210         }
1211
1212         /*
1213          * It is assumed here that arming CQ only once its empty
1214          * would not cause interrupts to be missed.
1215          */
1216         ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1217
1218         iser_dbg("got %d completions\n", completed);
1219 }
1220
1221 static void iser_cq_callback(struct ib_cq *cq, void *cq_context)
1222 {
1223         struct iser_comp *comp = cq_context;
1224
1225         tasklet_schedule(&comp->tasklet);
1226 }
1227
1228 u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task,
1229                              enum iser_data_dir cmd_dir, sector_t *sector)
1230 {
1231         struct iser_mem_reg *reg = &iser_task->rdma_reg[cmd_dir];
1232         struct fast_reg_descriptor *desc = reg->mem_h;
1233         unsigned long sector_size = iser_task->sc->device->sector_size;
1234         struct ib_mr_status mr_status;
1235         int ret;
1236
1237         if (desc && desc->reg_indicators & ISER_FASTREG_PROTECTED) {
1238                 desc->reg_indicators &= ~ISER_FASTREG_PROTECTED;
1239                 ret = ib_check_mr_status(desc->pi_ctx->sig_mr,
1240                                          IB_MR_CHECK_SIG_STATUS, &mr_status);
1241                 if (ret) {
1242                         pr_err("ib_check_mr_status failed, ret %d\n", ret);
1243                         goto err;
1244                 }
1245
1246                 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
1247                         sector_t sector_off = mr_status.sig_err.sig_err_offset;
1248
1249                         do_div(sector_off, sector_size + 8);
1250                         *sector = scsi_get_lba(iser_task->sc) + sector_off;
1251
1252                         pr_err("PI error found type %d at sector %llx "
1253                                "expected %x vs actual %x\n",
1254                                mr_status.sig_err.err_type,
1255                                (unsigned long long)*sector,
1256                                mr_status.sig_err.expected,
1257                                mr_status.sig_err.actual);
1258
1259                         switch (mr_status.sig_err.err_type) {
1260                         case IB_SIG_BAD_GUARD:
1261                                 return 0x1;
1262                         case IB_SIG_BAD_REFTAG:
1263                                 return 0x3;
1264                         case IB_SIG_BAD_APPTAG:
1265                                 return 0x2;
1266                         }
1267                 }
1268         }
1269
1270         return 0;
1271 err:
1272         /* Not alot we can do here, return ambiguous guard error */
1273         return 0x1;
1274 }