Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / infiniband / hw / cxgb4 / t4.h
1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 #ifndef __T4_H__
32 #define __T4_H__
33
34 #include "t4_hw.h"
35 #include "t4_regs.h"
36 #include "t4_msg.h"
37 #include "t4fw_ri_api.h"
38
39 #define T4_MAX_NUM_PD 65536
40 #define T4_MAX_MR_SIZE (~0ULL)
41 #define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
42 #define T4_STAG_UNSET 0xffffffff
43 #define T4_FW_MAJ 0
44 #define PCIE_MA_SYNC_A 0x30b4
45
46 struct t4_status_page {
47         __be32 rsvd1;   /* flit 0 - hw owns */
48         __be16 rsvd2;
49         __be16 qid;
50         __be16 cidx;
51         __be16 pidx;
52         u8 qp_err;      /* flit 1 - sw owns */
53         u8 db_off;
54         u8 pad;
55         u16 host_wq_pidx;
56         u16 host_cidx;
57         u16 host_pidx;
58 };
59
60 #define T4_EQ_ENTRY_SIZE 64
61
62 #define T4_SQ_NUM_SLOTS 5
63 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
64 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
65                         sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
66 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
67                         sizeof(struct fw_ri_immd)))
68 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
69                         sizeof(struct fw_ri_rdma_write_wr) - \
70                         sizeof(struct fw_ri_immd)))
71 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
72                         sizeof(struct fw_ri_rdma_write_wr) - \
73                         sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
74 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
75                         sizeof(struct fw_ri_immd)) & ~31UL)
76 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
77 #define T4_MAX_FR_DSGL 1024
78 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
79
80 static inline int t4_max_fr_depth(int use_dsgl)
81 {
82         return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
83 }
84
85 #define T4_RQ_NUM_SLOTS 2
86 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
87 #define T4_MAX_RECV_SGE 4
88
89 union t4_wr {
90         struct fw_ri_res_wr res;
91         struct fw_ri_wr ri;
92         struct fw_ri_rdma_write_wr write;
93         struct fw_ri_send_wr send;
94         struct fw_ri_rdma_read_wr read;
95         struct fw_ri_bind_mw_wr bind;
96         struct fw_ri_fr_nsmr_wr fr;
97         struct fw_ri_inv_lstag_wr inv;
98         struct t4_status_page status;
99         __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
100 };
101
102 union t4_recv_wr {
103         struct fw_ri_recv_wr recv;
104         struct t4_status_page status;
105         __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
106 };
107
108 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
109                                enum fw_wr_opcodes opcode, u8 flags, u8 len16)
110 {
111         wqe->send.opcode = (u8)opcode;
112         wqe->send.flags = flags;
113         wqe->send.wrid = wrid;
114         wqe->send.r1[0] = 0;
115         wqe->send.r1[1] = 0;
116         wqe->send.r1[2] = 0;
117         wqe->send.len16 = len16;
118 }
119
120 /* CQE/AE status codes */
121 #define T4_ERR_SUCCESS                     0x0
122 #define T4_ERR_STAG                        0x1  /* STAG invalid: either the */
123                                                 /* STAG is offlimt, being 0, */
124                                                 /* or STAG_key mismatch */
125 #define T4_ERR_PDID                        0x2  /* PDID mismatch */
126 #define T4_ERR_QPID                        0x3  /* QPID mismatch */
127 #define T4_ERR_ACCESS                      0x4  /* Invalid access right */
128 #define T4_ERR_WRAP                        0x5  /* Wrap error */
129 #define T4_ERR_BOUND                       0x6  /* base and bounds voilation */
130 #define T4_ERR_INVALIDATE_SHARED_MR        0x7  /* attempt to invalidate a  */
131                                                 /* shared memory region */
132 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8  /* attempt to invalidate a  */
133                                                 /* shared memory region */
134 #define T4_ERR_ECC                         0x9  /* ECC error detected */
135 #define T4_ERR_ECC_PSTAG                   0xA  /* ECC error detected when  */
136                                                 /* reading PSTAG for a MW  */
137                                                 /* Invalidate */
138 #define T4_ERR_PBL_ADDR_BOUND              0xB  /* pbl addr out of bounds:  */
139                                                 /* software error */
140 #define T4_ERR_SWFLUSH                     0xC  /* SW FLUSHED */
141 #define T4_ERR_CRC                         0x10 /* CRC error */
142 #define T4_ERR_MARKER                      0x11 /* Marker error */
143 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
144 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
145 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
146 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
147 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
148 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
149 #define T4_ERR_MSN                         0x18 /* MSN error */
150 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
151 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
152                                                 /* or READ_REQ */
153 #define T4_ERR_MSN_GAP                     0x1B
154 #define T4_ERR_MSN_RANGE                   0x1C
155 #define T4_ERR_IRD_OVERFLOW                0x1D
156 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
157                                                 /* software error */
158 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
159                                                 /* mismatch) */
160 /*
161  * CQE defs
162  */
163 struct t4_cqe {
164         __be32 header;
165         __be32 len;
166         union {
167                 struct {
168                         __be32 stag;
169                         __be32 msn;
170                 } rcqe;
171                 struct {
172                         u32 nada1;
173                         u16 nada2;
174                         u16 cidx;
175                 } scqe;
176                 struct {
177                         __be32 wrid_hi;
178                         __be32 wrid_low;
179                 } gen;
180         } u;
181         __be64 reserved;
182         __be64 bits_type_ts;
183 };
184
185 /* macros for flit 0 of the cqe */
186
187 #define CQE_QPID_S        12
188 #define CQE_QPID_M        0xFFFFF
189 #define CQE_QPID_G(x)     ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
190 #define CQE_QPID_V(x)     ((x)<<CQE_QPID_S)
191
192 #define CQE_SWCQE_S       11
193 #define CQE_SWCQE_M       0x1
194 #define CQE_SWCQE_G(x)    ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
195 #define CQE_SWCQE_V(x)    ((x)<<CQE_SWCQE_S)
196
197 #define CQE_STATUS_S      5
198 #define CQE_STATUS_M      0x1F
199 #define CQE_STATUS_G(x)   ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
200 #define CQE_STATUS_V(x)   ((x)<<CQE_STATUS_S)
201
202 #define CQE_TYPE_S        4
203 #define CQE_TYPE_M        0x1
204 #define CQE_TYPE_G(x)     ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
205 #define CQE_TYPE_V(x)     ((x)<<CQE_TYPE_S)
206
207 #define CQE_OPCODE_S      0
208 #define CQE_OPCODE_M      0xF
209 #define CQE_OPCODE_G(x)   ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
210 #define CQE_OPCODE_V(x)   ((x)<<CQE_OPCODE_S)
211
212 #define SW_CQE(x)         (CQE_SWCQE_G(be32_to_cpu((x)->header)))
213 #define CQE_QPID(x)       (CQE_QPID_G(be32_to_cpu((x)->header)))
214 #define CQE_TYPE(x)       (CQE_TYPE_G(be32_to_cpu((x)->header)))
215 #define SQ_TYPE(x)        (CQE_TYPE((x)))
216 #define RQ_TYPE(x)        (!CQE_TYPE((x)))
217 #define CQE_STATUS(x)     (CQE_STATUS_G(be32_to_cpu((x)->header)))
218 #define CQE_OPCODE(x)     (CQE_OPCODE_G(be32_to_cpu((x)->header)))
219
220 #define CQE_SEND_OPCODE(x)( \
221         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
222         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
223         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
224         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
225
226 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
227
228 /* used for RQ completion processing */
229 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
230 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
231
232 /* used for SQ completion processing */
233 #define CQE_WRID_SQ_IDX(x)      ((x)->u.scqe.cidx)
234
235 /* generic accessor macros */
236 #define CQE_WRID_HI(x)          (be32_to_cpu((x)->u.gen.wrid_hi))
237 #define CQE_WRID_LOW(x)         (be32_to_cpu((x)->u.gen.wrid_low))
238
239 /* macros for flit 3 of the cqe */
240 #define CQE_GENBIT_S    63
241 #define CQE_GENBIT_M    0x1
242 #define CQE_GENBIT_G(x) (((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
243 #define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
244
245 #define CQE_OVFBIT_S    62
246 #define CQE_OVFBIT_M    0x1
247 #define CQE_OVFBIT_G(x) ((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
248
249 #define CQE_IQTYPE_S    60
250 #define CQE_IQTYPE_M    0x3
251 #define CQE_IQTYPE_G(x) ((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
252
253 #define CQE_TS_M        0x0fffffffffffffffULL
254 #define CQE_TS_G(x)     ((x) & CQE_TS_M)
255
256 #define CQE_OVFBIT(x)   ((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
257 #define CQE_GENBIT(x)   ((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
258 #define CQE_TS(x)       (CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
259
260 struct t4_swsqe {
261         u64                     wr_id;
262         struct t4_cqe           cqe;
263         int                     read_len;
264         int                     opcode;
265         int                     complete;
266         int                     signaled;
267         u16                     idx;
268         int                     flushed;
269         struct timespec         host_ts;
270         u64                     sge_ts;
271 };
272
273 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
274 {
275 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
276         return pgprot_writecombine(prot);
277 #else
278         return pgprot_noncached(prot);
279 #endif
280 }
281
282 enum {
283         T4_SQ_ONCHIP = (1<<0),
284 };
285
286 struct t4_sq {
287         union t4_wr *queue;
288         dma_addr_t dma_addr;
289         DEFINE_DMA_UNMAP_ADDR(mapping);
290         unsigned long phys_addr;
291         struct t4_swsqe *sw_sq;
292         struct t4_swsqe *oldest_read;
293         u64 __iomem *udb;
294         size_t memsize;
295         u32 qid;
296         u16 in_use;
297         u16 size;
298         u16 cidx;
299         u16 pidx;
300         u16 wq_pidx;
301         u16 wq_pidx_inc;
302         u16 flags;
303         short flush_cidx;
304 };
305
306 struct t4_swrqe {
307         u64 wr_id;
308         struct timespec host_ts;
309         u64 sge_ts;
310 };
311
312 struct t4_rq {
313         union  t4_recv_wr *queue;
314         dma_addr_t dma_addr;
315         DEFINE_DMA_UNMAP_ADDR(mapping);
316         struct t4_swrqe *sw_rq;
317         u64 __iomem *udb;
318         size_t memsize;
319         u32 qid;
320         u32 msn;
321         u32 rqt_hwaddr;
322         u16 rqt_size;
323         u16 in_use;
324         u16 size;
325         u16 cidx;
326         u16 pidx;
327         u16 wq_pidx;
328         u16 wq_pidx_inc;
329 };
330
331 struct t4_wq {
332         struct t4_sq sq;
333         struct t4_rq rq;
334         void __iomem *db;
335         void __iomem *gts;
336         struct c4iw_rdev *rdev;
337         int flushed;
338 };
339
340 static inline int t4_rqes_posted(struct t4_wq *wq)
341 {
342         return wq->rq.in_use;
343 }
344
345 static inline int t4_rq_empty(struct t4_wq *wq)
346 {
347         return wq->rq.in_use == 0;
348 }
349
350 static inline int t4_rq_full(struct t4_wq *wq)
351 {
352         return wq->rq.in_use == (wq->rq.size - 1);
353 }
354
355 static inline u32 t4_rq_avail(struct t4_wq *wq)
356 {
357         return wq->rq.size - 1 - wq->rq.in_use;
358 }
359
360 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
361 {
362         wq->rq.in_use++;
363         if (++wq->rq.pidx == wq->rq.size)
364                 wq->rq.pidx = 0;
365         wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
366         if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
367                 wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
368 }
369
370 static inline void t4_rq_consume(struct t4_wq *wq)
371 {
372         wq->rq.in_use--;
373         wq->rq.msn++;
374         if (++wq->rq.cidx == wq->rq.size)
375                 wq->rq.cidx = 0;
376 }
377
378 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
379 {
380         return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
381 }
382
383 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
384 {
385                 return wq->rq.size * T4_RQ_NUM_SLOTS;
386 }
387
388 static inline int t4_sq_onchip(struct t4_sq *sq)
389 {
390         return sq->flags & T4_SQ_ONCHIP;
391 }
392
393 static inline int t4_sq_empty(struct t4_wq *wq)
394 {
395         return wq->sq.in_use == 0;
396 }
397
398 static inline int t4_sq_full(struct t4_wq *wq)
399 {
400         return wq->sq.in_use == (wq->sq.size - 1);
401 }
402
403 static inline u32 t4_sq_avail(struct t4_wq *wq)
404 {
405         return wq->sq.size - 1 - wq->sq.in_use;
406 }
407
408 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
409 {
410         wq->sq.in_use++;
411         if (++wq->sq.pidx == wq->sq.size)
412                 wq->sq.pidx = 0;
413         wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
414         if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
415                 wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
416 }
417
418 static inline void t4_sq_consume(struct t4_wq *wq)
419 {
420         BUG_ON(wq->sq.in_use < 1);
421         if (wq->sq.cidx == wq->sq.flush_cidx)
422                 wq->sq.flush_cidx = -1;
423         wq->sq.in_use--;
424         if (++wq->sq.cidx == wq->sq.size)
425                 wq->sq.cidx = 0;
426 }
427
428 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
429 {
430         return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
431 }
432
433 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
434 {
435                 return wq->sq.size * T4_SQ_NUM_SLOTS;
436 }
437
438 /* This function copies 64 byte coalesced work request to memory
439  * mapped BAR2 space. For coalesced WRs, the SGE fetches data
440  * from the FIFO instead of from Host.
441  */
442 static inline void pio_copy(u64 __iomem *dst, u64 *src)
443 {
444         int count = 8;
445
446         while (count) {
447                 writeq(*src, dst);
448                 src++;
449                 dst++;
450                 count--;
451         }
452 }
453
454 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, u8 t5,
455                                  union t4_wr *wqe)
456 {
457
458         /* Flush host queue memory writes. */
459         wmb();
460         if (t5) {
461                 if (inc == 1 && wqe) {
462                         PDBG("%s: WC wq->sq.pidx = %d\n",
463                              __func__, wq->sq.pidx);
464                         pio_copy(wq->sq.udb + 7, (void *)wqe);
465                 } else {
466                         PDBG("%s: DB wq->sq.pidx = %d\n",
467                              __func__, wq->sq.pidx);
468                         writel(PIDX_T5_V(inc), wq->sq.udb);
469                 }
470
471                 /* Flush user doorbell area writes. */
472                 wmb();
473                 return;
474         }
475         writel(QID_V(wq->sq.qid) | PIDX_V(inc), wq->db);
476 }
477
478 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc, u8 t5,
479                                  union t4_recv_wr *wqe)
480 {
481
482         /* Flush host queue memory writes. */
483         wmb();
484         if (t5) {
485                 if (inc == 1 && wqe) {
486                         PDBG("%s: WC wq->rq.pidx = %d\n",
487                              __func__, wq->rq.pidx);
488                         pio_copy(wq->rq.udb + 7, (void *)wqe);
489                 } else {
490                         PDBG("%s: DB wq->rq.pidx = %d\n",
491                              __func__, wq->rq.pidx);
492                         writel(PIDX_T5_V(inc), wq->rq.udb);
493                 }
494
495                 /* Flush user doorbell area writes. */
496                 wmb();
497                 return;
498         }
499         writel(QID_V(wq->rq.qid) | PIDX_V(inc), wq->db);
500 }
501
502 static inline int t4_wq_in_error(struct t4_wq *wq)
503 {
504         return wq->rq.queue[wq->rq.size].status.qp_err;
505 }
506
507 static inline void t4_set_wq_in_error(struct t4_wq *wq)
508 {
509         wq->rq.queue[wq->rq.size].status.qp_err = 1;
510 }
511
512 static inline void t4_disable_wq_db(struct t4_wq *wq)
513 {
514         wq->rq.queue[wq->rq.size].status.db_off = 1;
515 }
516
517 static inline void t4_enable_wq_db(struct t4_wq *wq)
518 {
519         wq->rq.queue[wq->rq.size].status.db_off = 0;
520 }
521
522 static inline int t4_wq_db_enabled(struct t4_wq *wq)
523 {
524         return !wq->rq.queue[wq->rq.size].status.db_off;
525 }
526
527 enum t4_cq_flags {
528         CQ_ARMED        = 1,
529 };
530
531 struct t4_cq {
532         struct t4_cqe *queue;
533         dma_addr_t dma_addr;
534         DEFINE_DMA_UNMAP_ADDR(mapping);
535         struct t4_cqe *sw_queue;
536         void __iomem *gts;
537         struct c4iw_rdev *rdev;
538         u64 ugts;
539         size_t memsize;
540         __be64 bits_type_ts;
541         u32 cqid;
542         u32 qid_mask;
543         int vector;
544         u16 size; /* including status page */
545         u16 cidx;
546         u16 sw_pidx;
547         u16 sw_cidx;
548         u16 sw_in_use;
549         u16 cidx_inc;
550         u8 gen;
551         u8 error;
552         unsigned long flags;
553 };
554
555 static inline int t4_clear_cq_armed(struct t4_cq *cq)
556 {
557         return test_and_clear_bit(CQ_ARMED, &cq->flags);
558 }
559
560 static inline int t4_arm_cq(struct t4_cq *cq, int se)
561 {
562         u32 val;
563
564         set_bit(CQ_ARMED, &cq->flags);
565         while (cq->cidx_inc > CIDXINC_M) {
566                 val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7) |
567                       INGRESSQID_V(cq->cqid & cq->qid_mask);
568                 writel(val, cq->gts);
569                 cq->cidx_inc -= CIDXINC_M;
570         }
571         val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6) |
572               INGRESSQID_V(cq->cqid & cq->qid_mask);
573         writel(val, cq->gts);
574         cq->cidx_inc = 0;
575         return 0;
576 }
577
578 static inline void t4_swcq_produce(struct t4_cq *cq)
579 {
580         cq->sw_in_use++;
581         if (cq->sw_in_use == cq->size) {
582                 PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
583                 cq->error = 1;
584                 BUG_ON(1);
585         }
586         if (++cq->sw_pidx == cq->size)
587                 cq->sw_pidx = 0;
588 }
589
590 static inline void t4_swcq_consume(struct t4_cq *cq)
591 {
592         BUG_ON(cq->sw_in_use < 1);
593         cq->sw_in_use--;
594         if (++cq->sw_cidx == cq->size)
595                 cq->sw_cidx = 0;
596 }
597
598 static inline void t4_hwcq_consume(struct t4_cq *cq)
599 {
600         cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
601         if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
602                 u32 val;
603
604                 val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7) |
605                       INGRESSQID_V(cq->cqid & cq->qid_mask);
606                 writel(val, cq->gts);
607                 cq->cidx_inc = 0;
608         }
609         if (++cq->cidx == cq->size) {
610                 cq->cidx = 0;
611                 cq->gen ^= 1;
612         }
613 }
614
615 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
616 {
617         return (CQE_GENBIT(cqe) == cq->gen);
618 }
619
620 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
621 {
622         int ret;
623         u16 prev_cidx;
624
625         if (cq->cidx == 0)
626                 prev_cidx = cq->size - 1;
627         else
628                 prev_cidx = cq->cidx - 1;
629
630         if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
631                 ret = -EOVERFLOW;
632                 cq->error = 1;
633                 printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
634                 BUG_ON(1);
635         } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
636
637                 /* Ensure CQE is flushed to memory */
638                 rmb();
639                 *cqe = &cq->queue[cq->cidx];
640                 ret = 0;
641         } else
642                 ret = -ENODATA;
643         return ret;
644 }
645
646 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
647 {
648         if (cq->sw_in_use == cq->size) {
649                 PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
650                 cq->error = 1;
651                 BUG_ON(1);
652                 return NULL;
653         }
654         if (cq->sw_in_use)
655                 return &cq->sw_queue[cq->sw_cidx];
656         return NULL;
657 }
658
659 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
660 {
661         int ret = 0;
662
663         if (cq->error)
664                 ret = -ENODATA;
665         else if (cq->sw_in_use)
666                 *cqe = &cq->sw_queue[cq->sw_cidx];
667         else
668                 ret = t4_next_hw_cqe(cq, cqe);
669         return ret;
670 }
671
672 static inline int t4_cq_in_error(struct t4_cq *cq)
673 {
674         return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
675 }
676
677 static inline void t4_set_cq_in_error(struct t4_cq *cq)
678 {
679         ((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
680 }
681 #endif
682
683 struct t4_dev_status_page {
684         u8 db_off;
685 };