These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / iio / magnetometer / bmc150_magn.c
1 /*
2  * Bosch BMC150 three-axis magnetic field sensor driver
3  *
4  * Copyright (c) 2015, Intel Corporation.
5  *
6  * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com:
7  *
8  * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms and conditions of the GNU General Public License,
12  * version 2, as published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  */
19
20 #include <linux/module.h>
21 #include <linux/i2c.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/acpi.h>
26 #include <linux/gpio/consumer.h>
27 #include <linux/pm.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/iio/iio.h>
30 #include <linux/iio/sysfs.h>
31 #include <linux/iio/buffer.h>
32 #include <linux/iio/events.h>
33 #include <linux/iio/trigger.h>
34 #include <linux/iio/trigger_consumer.h>
35 #include <linux/iio/triggered_buffer.h>
36 #include <linux/regmap.h>
37
38 #define BMC150_MAGN_DRV_NAME                    "bmc150_magn"
39 #define BMC150_MAGN_IRQ_NAME                    "bmc150_magn_event"
40
41 #define BMC150_MAGN_REG_CHIP_ID                 0x40
42 #define BMC150_MAGN_CHIP_ID_VAL                 0x32
43
44 #define BMC150_MAGN_REG_X_L                     0x42
45 #define BMC150_MAGN_REG_X_M                     0x43
46 #define BMC150_MAGN_REG_Y_L                     0x44
47 #define BMC150_MAGN_REG_Y_M                     0x45
48 #define BMC150_MAGN_SHIFT_XY_L                  3
49 #define BMC150_MAGN_REG_Z_L                     0x46
50 #define BMC150_MAGN_REG_Z_M                     0x47
51 #define BMC150_MAGN_SHIFT_Z_L                   1
52 #define BMC150_MAGN_REG_RHALL_L                 0x48
53 #define BMC150_MAGN_REG_RHALL_M                 0x49
54 #define BMC150_MAGN_SHIFT_RHALL_L               2
55
56 #define BMC150_MAGN_REG_INT_STATUS              0x4A
57
58 #define BMC150_MAGN_REG_POWER                   0x4B
59 #define BMC150_MAGN_MASK_POWER_CTL              BIT(0)
60
61 #define BMC150_MAGN_REG_OPMODE_ODR              0x4C
62 #define BMC150_MAGN_MASK_OPMODE                 GENMASK(2, 1)
63 #define BMC150_MAGN_SHIFT_OPMODE                1
64 #define BMC150_MAGN_MODE_NORMAL                 0x00
65 #define BMC150_MAGN_MODE_FORCED                 0x01
66 #define BMC150_MAGN_MODE_SLEEP                  0x03
67 #define BMC150_MAGN_MASK_ODR                    GENMASK(5, 3)
68 #define BMC150_MAGN_SHIFT_ODR                   3
69
70 #define BMC150_MAGN_REG_INT                     0x4D
71
72 #define BMC150_MAGN_REG_INT_DRDY                0x4E
73 #define BMC150_MAGN_MASK_DRDY_EN                BIT(7)
74 #define BMC150_MAGN_SHIFT_DRDY_EN               7
75 #define BMC150_MAGN_MASK_DRDY_INT3              BIT(6)
76 #define BMC150_MAGN_MASK_DRDY_Z_EN              BIT(5)
77 #define BMC150_MAGN_MASK_DRDY_Y_EN              BIT(4)
78 #define BMC150_MAGN_MASK_DRDY_X_EN              BIT(3)
79 #define BMC150_MAGN_MASK_DRDY_DR_POLARITY       BIT(2)
80 #define BMC150_MAGN_MASK_DRDY_LATCHING          BIT(1)
81 #define BMC150_MAGN_MASK_DRDY_INT3_POLARITY     BIT(0)
82
83 #define BMC150_MAGN_REG_LOW_THRESH              0x4F
84 #define BMC150_MAGN_REG_HIGH_THRESH             0x50
85 #define BMC150_MAGN_REG_REP_XY                  0x51
86 #define BMC150_MAGN_REG_REP_Z                   0x52
87 #define BMC150_MAGN_REG_REP_DATAMASK            GENMASK(7, 0)
88
89 #define BMC150_MAGN_REG_TRIM_START              0x5D
90 #define BMC150_MAGN_REG_TRIM_END                0x71
91
92 #define BMC150_MAGN_XY_OVERFLOW_VAL             -4096
93 #define BMC150_MAGN_Z_OVERFLOW_VAL              -16384
94
95 /* Time from SUSPEND to SLEEP */
96 #define BMC150_MAGN_START_UP_TIME_MS            3
97
98 #define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS       2000
99
100 #define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1)
101 #define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1)
102 #define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2)
103 #define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1)
104
105 enum bmc150_magn_axis {
106         AXIS_X,
107         AXIS_Y,
108         AXIS_Z,
109         RHALL,
110         AXIS_XYZ_MAX = RHALL,
111         AXIS_XYZR_MAX,
112 };
113
114 enum bmc150_magn_power_modes {
115         BMC150_MAGN_POWER_MODE_SUSPEND,
116         BMC150_MAGN_POWER_MODE_SLEEP,
117         BMC150_MAGN_POWER_MODE_NORMAL,
118 };
119
120 struct bmc150_magn_trim_regs {
121         s8 x1;
122         s8 y1;
123         __le16 reserved1;
124         u8 reserved2;
125         __le16 z4;
126         s8 x2;
127         s8 y2;
128         __le16 reserved3;
129         __le16 z2;
130         __le16 z1;
131         __le16 xyz1;
132         __le16 z3;
133         s8 xy2;
134         u8 xy1;
135 } __packed;
136
137 struct bmc150_magn_data {
138         struct i2c_client *client;
139         /*
140          * 1. Protect this structure.
141          * 2. Serialize sequences that power on/off the device and access HW.
142          */
143         struct mutex mutex;
144         struct regmap *regmap;
145         /* 4 x 32 bits for x, y z, 4 bytes align, 64 bits timestamp */
146         s32 buffer[6];
147         struct iio_trigger *dready_trig;
148         bool dready_trigger_on;
149         int max_odr;
150 };
151
152 static const struct {
153         int freq;
154         u8 reg_val;
155 } bmc150_magn_samp_freq_table[] = { {2, 0x01},
156                                     {6, 0x02},
157                                     {8, 0x03},
158                                     {10, 0x00},
159                                     {15, 0x04},
160                                     {20, 0x05},
161                                     {25, 0x06},
162                                     {30, 0x07} };
163
164 enum bmc150_magn_presets {
165         LOW_POWER_PRESET,
166         REGULAR_PRESET,
167         ENHANCED_REGULAR_PRESET,
168         HIGH_ACCURACY_PRESET
169 };
170
171 static const struct bmc150_magn_preset {
172         u8 rep_xy;
173         u8 rep_z;
174         u8 odr;
175 } bmc150_magn_presets_table[] = {
176         [LOW_POWER_PRESET] = {3, 3, 10},
177         [REGULAR_PRESET] =  {9, 15, 10},
178         [ENHANCED_REGULAR_PRESET] =  {15, 27, 10},
179         [HIGH_ACCURACY_PRESET] =  {47, 83, 20},
180 };
181
182 #define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET
183
184 static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg)
185 {
186         switch (reg) {
187         case BMC150_MAGN_REG_POWER:
188         case BMC150_MAGN_REG_OPMODE_ODR:
189         case BMC150_MAGN_REG_INT:
190         case BMC150_MAGN_REG_INT_DRDY:
191         case BMC150_MAGN_REG_LOW_THRESH:
192         case BMC150_MAGN_REG_HIGH_THRESH:
193         case BMC150_MAGN_REG_REP_XY:
194         case BMC150_MAGN_REG_REP_Z:
195                 return true;
196         default:
197                 return false;
198         };
199 }
200
201 static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg)
202 {
203         switch (reg) {
204         case BMC150_MAGN_REG_X_L:
205         case BMC150_MAGN_REG_X_M:
206         case BMC150_MAGN_REG_Y_L:
207         case BMC150_MAGN_REG_Y_M:
208         case BMC150_MAGN_REG_Z_L:
209         case BMC150_MAGN_REG_Z_M:
210         case BMC150_MAGN_REG_RHALL_L:
211         case BMC150_MAGN_REG_RHALL_M:
212         case BMC150_MAGN_REG_INT_STATUS:
213                 return true;
214         default:
215                 return false;
216         }
217 }
218
219 static const struct regmap_config bmc150_magn_regmap_config = {
220         .reg_bits = 8,
221         .val_bits = 8,
222
223         .max_register = BMC150_MAGN_REG_TRIM_END,
224         .cache_type = REGCACHE_RBTREE,
225
226         .writeable_reg = bmc150_magn_is_writeable_reg,
227         .volatile_reg = bmc150_magn_is_volatile_reg,
228 };
229
230 static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data,
231                                       enum bmc150_magn_power_modes mode,
232                                       bool state)
233 {
234         int ret;
235
236         switch (mode) {
237         case BMC150_MAGN_POWER_MODE_SUSPEND:
238                 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER,
239                                          BMC150_MAGN_MASK_POWER_CTL, !state);
240                 if (ret < 0)
241                         return ret;
242                 usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000);
243                 return 0;
244         case BMC150_MAGN_POWER_MODE_SLEEP:
245                 return regmap_update_bits(data->regmap,
246                                           BMC150_MAGN_REG_OPMODE_ODR,
247                                           BMC150_MAGN_MASK_OPMODE,
248                                           BMC150_MAGN_MODE_SLEEP <<
249                                           BMC150_MAGN_SHIFT_OPMODE);
250         case BMC150_MAGN_POWER_MODE_NORMAL:
251                 return regmap_update_bits(data->regmap,
252                                           BMC150_MAGN_REG_OPMODE_ODR,
253                                           BMC150_MAGN_MASK_OPMODE,
254                                           BMC150_MAGN_MODE_NORMAL <<
255                                           BMC150_MAGN_SHIFT_OPMODE);
256         }
257
258         return -EINVAL;
259 }
260
261 static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on)
262 {
263 #ifdef CONFIG_PM
264         int ret;
265
266         if (on) {
267                 ret = pm_runtime_get_sync(&data->client->dev);
268         } else {
269                 pm_runtime_mark_last_busy(&data->client->dev);
270                 ret = pm_runtime_put_autosuspend(&data->client->dev);
271         }
272
273         if (ret < 0) {
274                 dev_err(&data->client->dev,
275                         "failed to change power state to %d\n", on);
276                 if (on)
277                         pm_runtime_put_noidle(&data->client->dev);
278
279                 return ret;
280         }
281 #endif
282
283         return 0;
284 }
285
286 static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val)
287 {
288         int ret, reg_val;
289         u8 i, odr_val;
290
291         ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, &reg_val);
292         if (ret < 0)
293                 return ret;
294         odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR;
295
296         for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++)
297                 if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) {
298                         *val = bmc150_magn_samp_freq_table[i].freq;
299                         return 0;
300                 }
301
302         return -EINVAL;
303 }
304
305 static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val)
306 {
307         int ret;
308         u8 i;
309
310         for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
311                 if (bmc150_magn_samp_freq_table[i].freq == val) {
312                         ret = regmap_update_bits(data->regmap,
313                                                  BMC150_MAGN_REG_OPMODE_ODR,
314                                                  BMC150_MAGN_MASK_ODR,
315                                                  bmc150_magn_samp_freq_table[i].
316                                                  reg_val <<
317                                                  BMC150_MAGN_SHIFT_ODR);
318                         if (ret < 0)
319                                 return ret;
320                         return 0;
321                 }
322         }
323
324         return -EINVAL;
325 }
326
327 static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy,
328                                    int rep_z, int odr)
329 {
330         int ret, reg_val, max_odr;
331
332         if (rep_xy <= 0) {
333                 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
334                                   &reg_val);
335                 if (ret < 0)
336                         return ret;
337                 rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val);
338         }
339         if (rep_z <= 0) {
340                 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
341                                   &reg_val);
342                 if (ret < 0)
343                         return ret;
344                 rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val);
345         }
346         if (odr <= 0) {
347                 ret = bmc150_magn_get_odr(data, &odr);
348                 if (ret < 0)
349                         return ret;
350         }
351         /* the maximum selectable read-out frequency from datasheet */
352         max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980);
353         if (odr > max_odr) {
354                 dev_err(&data->client->dev,
355                         "Can't set oversampling with sampling freq %d\n",
356                         odr);
357                 return -EINVAL;
358         }
359         data->max_odr = max_odr;
360
361         return 0;
362 }
363
364 static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x,
365                                     u16 rhall)
366 {
367         s16 val;
368         u16 xyz1 = le16_to_cpu(tregs->xyz1);
369
370         if (x == BMC150_MAGN_XY_OVERFLOW_VAL)
371                 return S32_MIN;
372
373         if (!rhall)
374                 rhall = xyz1;
375
376         val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
377         val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) *
378               ((s32)val)) >> 7)) + (((s32)val) *
379               ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
380               ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) +
381               (((s16)tregs->x1) << 3);
382
383         return (s32)val;
384 }
385
386 static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y,
387                                     u16 rhall)
388 {
389         s16 val;
390         u16 xyz1 = le16_to_cpu(tregs->xyz1);
391
392         if (y == BMC150_MAGN_XY_OVERFLOW_VAL)
393                 return S32_MIN;
394
395         if (!rhall)
396                 rhall = xyz1;
397
398         val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
399         val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) *
400               ((s32)val)) >> 7)) + (((s32)val) *
401               ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
402               ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) +
403               (((s16)tregs->y1) << 3);
404
405         return (s32)val;
406 }
407
408 static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z,
409                                     u16 rhall)
410 {
411         s32 val;
412         u16 xyz1 = le16_to_cpu(tregs->xyz1);
413         u16 z1 = le16_to_cpu(tregs->z1);
414         s16 z2 = le16_to_cpu(tregs->z2);
415         s16 z3 = le16_to_cpu(tregs->z3);
416         s16 z4 = le16_to_cpu(tregs->z4);
417
418         if (z == BMC150_MAGN_Z_OVERFLOW_VAL)
419                 return S32_MIN;
420
421         val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) -
422               ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) *
423               ((((s16)rhall) << 1))) + (1 << 15)) >> 16))));
424
425         return val;
426 }
427
428 static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer)
429 {
430         int ret;
431         __le16 values[AXIS_XYZR_MAX];
432         s16 raw_x, raw_y, raw_z;
433         u16 rhall;
434         struct bmc150_magn_trim_regs tregs;
435
436         ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L,
437                                values, sizeof(values));
438         if (ret < 0)
439                 return ret;
440
441         raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L;
442         raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L;
443         raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L;
444         rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L;
445
446         ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START,
447                                &tregs, sizeof(tregs));
448         if (ret < 0)
449                 return ret;
450
451         buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall);
452         buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall);
453         buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall);
454
455         return 0;
456 }
457
458 static int bmc150_magn_read_raw(struct iio_dev *indio_dev,
459                                 struct iio_chan_spec const *chan,
460                                 int *val, int *val2, long mask)
461 {
462         struct bmc150_magn_data *data = iio_priv(indio_dev);
463         int ret, tmp;
464         s32 values[AXIS_XYZ_MAX];
465
466         switch (mask) {
467         case IIO_CHAN_INFO_RAW:
468                 if (iio_buffer_enabled(indio_dev))
469                         return -EBUSY;
470                 mutex_lock(&data->mutex);
471
472                 ret = bmc150_magn_set_power_state(data, true);
473                 if (ret < 0) {
474                         mutex_unlock(&data->mutex);
475                         return ret;
476                 }
477
478                 ret = bmc150_magn_read_xyz(data, values);
479                 if (ret < 0) {
480                         bmc150_magn_set_power_state(data, false);
481                         mutex_unlock(&data->mutex);
482                         return ret;
483                 }
484                 *val = values[chan->scan_index];
485
486                 ret = bmc150_magn_set_power_state(data, false);
487                 if (ret < 0) {
488                         mutex_unlock(&data->mutex);
489                         return ret;
490                 }
491
492                 mutex_unlock(&data->mutex);
493                 return IIO_VAL_INT;
494         case IIO_CHAN_INFO_SCALE:
495                 /*
496                  * The API/driver performs an off-chip temperature
497                  * compensation and outputs x/y/z magnetic field data in
498                  * 16 LSB/uT to the upper application layer.
499                  */
500                 *val = 0;
501                 *val2 = 625;
502                 return IIO_VAL_INT_PLUS_MICRO;
503         case IIO_CHAN_INFO_SAMP_FREQ:
504                 ret = bmc150_magn_get_odr(data, val);
505                 if (ret < 0)
506                         return ret;
507                 return IIO_VAL_INT;
508         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
509                 switch (chan->channel2) {
510                 case IIO_MOD_X:
511                 case IIO_MOD_Y:
512                         ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
513                                           &tmp);
514                         if (ret < 0)
515                                 return ret;
516                         *val = BMC150_MAGN_REGVAL_TO_REPXY(tmp);
517                         return IIO_VAL_INT;
518                 case IIO_MOD_Z:
519                         ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
520                                           &tmp);
521                         if (ret < 0)
522                                 return ret;
523                         *val = BMC150_MAGN_REGVAL_TO_REPZ(tmp);
524                         return IIO_VAL_INT;
525                 default:
526                         return -EINVAL;
527                 }
528         default:
529                 return -EINVAL;
530         }
531 }
532
533 static int bmc150_magn_write_raw(struct iio_dev *indio_dev,
534                                  struct iio_chan_spec const *chan,
535                                  int val, int val2, long mask)
536 {
537         struct bmc150_magn_data *data = iio_priv(indio_dev);
538         int ret;
539
540         switch (mask) {
541         case IIO_CHAN_INFO_SAMP_FREQ:
542                 if (val > data->max_odr)
543                         return -EINVAL;
544                 mutex_lock(&data->mutex);
545                 ret = bmc150_magn_set_odr(data, val);
546                 mutex_unlock(&data->mutex);
547                 return ret;
548         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
549                 switch (chan->channel2) {
550                 case IIO_MOD_X:
551                 case IIO_MOD_Y:
552                         if (val < 1 || val > 511)
553                                 return -EINVAL;
554                         mutex_lock(&data->mutex);
555                         ret = bmc150_magn_set_max_odr(data, val, 0, 0);
556                         if (ret < 0) {
557                                 mutex_unlock(&data->mutex);
558                                 return ret;
559                         }
560                         ret = regmap_update_bits(data->regmap,
561                                                  BMC150_MAGN_REG_REP_XY,
562                                                  BMC150_MAGN_REG_REP_DATAMASK,
563                                                  BMC150_MAGN_REPXY_TO_REGVAL
564                                                  (val));
565                         mutex_unlock(&data->mutex);
566                         return ret;
567                 case IIO_MOD_Z:
568                         if (val < 1 || val > 256)
569                                 return -EINVAL;
570                         mutex_lock(&data->mutex);
571                         ret = bmc150_magn_set_max_odr(data, 0, val, 0);
572                         if (ret < 0) {
573                                 mutex_unlock(&data->mutex);
574                                 return ret;
575                         }
576                         ret = regmap_update_bits(data->regmap,
577                                                  BMC150_MAGN_REG_REP_Z,
578                                                  BMC150_MAGN_REG_REP_DATAMASK,
579                                                  BMC150_MAGN_REPZ_TO_REGVAL
580                                                  (val));
581                         mutex_unlock(&data->mutex);
582                         return ret;
583                 default:
584                         return -EINVAL;
585                 }
586         default:
587                 return -EINVAL;
588         }
589 }
590
591 static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev,
592                                                 struct device_attribute *attr,
593                                                 char *buf)
594 {
595         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
596         struct bmc150_magn_data *data = iio_priv(indio_dev);
597         size_t len = 0;
598         u8 i;
599
600         for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
601                 if (bmc150_magn_samp_freq_table[i].freq > data->max_odr)
602                         break;
603                 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
604                                  bmc150_magn_samp_freq_table[i].freq);
605         }
606         /* replace last space with a newline */
607         buf[len - 1] = '\n';
608
609         return len;
610 }
611
612 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail);
613
614 static struct attribute *bmc150_magn_attributes[] = {
615         &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
616         NULL,
617 };
618
619 static const struct attribute_group bmc150_magn_attrs_group = {
620         .attrs = bmc150_magn_attributes,
621 };
622
623 #define BMC150_MAGN_CHANNEL(_axis) {                                    \
624         .type = IIO_MAGN,                                               \
625         .modified = 1,                                                  \
626         .channel2 = IIO_MOD_##_axis,                                    \
627         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |                  \
628                               BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),    \
629         .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) |      \
630                                     BIT(IIO_CHAN_INFO_SCALE),           \
631         .scan_index = AXIS_##_axis,                                     \
632         .scan_type = {                                                  \
633                 .sign = 's',                                            \
634                 .realbits = 32,                                         \
635                 .storagebits = 32,                                      \
636                 .endianness = IIO_LE                                    \
637         },                                                              \
638 }
639
640 static const struct iio_chan_spec bmc150_magn_channels[] = {
641         BMC150_MAGN_CHANNEL(X),
642         BMC150_MAGN_CHANNEL(Y),
643         BMC150_MAGN_CHANNEL(Z),
644         IIO_CHAN_SOFT_TIMESTAMP(3),
645 };
646
647 static const struct iio_info bmc150_magn_info = {
648         .attrs = &bmc150_magn_attrs_group,
649         .read_raw = bmc150_magn_read_raw,
650         .write_raw = bmc150_magn_write_raw,
651         .driver_module = THIS_MODULE,
652 };
653
654 static const unsigned long bmc150_magn_scan_masks[] = {
655                                         BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
656                                         0};
657
658 static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p)
659 {
660         struct iio_poll_func *pf = p;
661         struct iio_dev *indio_dev = pf->indio_dev;
662         struct bmc150_magn_data *data = iio_priv(indio_dev);
663         int ret;
664
665         mutex_lock(&data->mutex);
666         ret = bmc150_magn_read_xyz(data, data->buffer);
667         if (ret < 0)
668                 goto err;
669
670         iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
671                                            pf->timestamp);
672
673 err:
674         mutex_unlock(&data->mutex);
675         iio_trigger_notify_done(indio_dev->trig);
676
677         return IRQ_HANDLED;
678 }
679
680 static int bmc150_magn_init(struct bmc150_magn_data *data)
681 {
682         int ret, chip_id;
683         struct bmc150_magn_preset preset;
684
685         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND,
686                                          false);
687         if (ret < 0) {
688                 dev_err(&data->client->dev,
689                         "Failed to bring up device from suspend mode\n");
690                 return ret;
691         }
692
693         ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id);
694         if (ret < 0) {
695                 dev_err(&data->client->dev, "Failed reading chip id\n");
696                 goto err_poweroff;
697         }
698         if (chip_id != BMC150_MAGN_CHIP_ID_VAL) {
699                 dev_err(&data->client->dev, "Invalid chip id 0x%x\n", chip_id);
700                 ret = -ENODEV;
701                 goto err_poweroff;
702         }
703         dev_dbg(&data->client->dev, "Chip id %x\n", chip_id);
704
705         preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET];
706         ret = bmc150_magn_set_odr(data, preset.odr);
707         if (ret < 0) {
708                 dev_err(&data->client->dev, "Failed to set ODR to %d\n",
709                         preset.odr);
710                 goto err_poweroff;
711         }
712
713         ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY,
714                            BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy));
715         if (ret < 0) {
716                 dev_err(&data->client->dev, "Failed to set REP XY to %d\n",
717                         preset.rep_xy);
718                 goto err_poweroff;
719         }
720
721         ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z,
722                            BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z));
723         if (ret < 0) {
724                 dev_err(&data->client->dev, "Failed to set REP Z to %d\n",
725                         preset.rep_z);
726                 goto err_poweroff;
727         }
728
729         ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z,
730                                       preset.odr);
731         if (ret < 0)
732                 goto err_poweroff;
733
734         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
735                                          true);
736         if (ret < 0) {
737                 dev_err(&data->client->dev, "Failed to power on device\n");
738                 goto err_poweroff;
739         }
740
741         return 0;
742
743 err_poweroff:
744         bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
745         return ret;
746 }
747
748 static int bmc150_magn_reset_intr(struct bmc150_magn_data *data)
749 {
750         int tmp;
751
752         /*
753          * Data Ready (DRDY) is always cleared after
754          * readout of data registers ends.
755          */
756         return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp);
757 }
758
759 static int bmc150_magn_trig_try_reen(struct iio_trigger *trig)
760 {
761         struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
762         struct bmc150_magn_data *data = iio_priv(indio_dev);
763         int ret;
764
765         if (!data->dready_trigger_on)
766                 return 0;
767
768         mutex_lock(&data->mutex);
769         ret = bmc150_magn_reset_intr(data);
770         mutex_unlock(&data->mutex);
771
772         return ret;
773 }
774
775 static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig,
776                                                   bool state)
777 {
778         struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
779         struct bmc150_magn_data *data = iio_priv(indio_dev);
780         int ret = 0;
781
782         mutex_lock(&data->mutex);
783         if (state == data->dready_trigger_on)
784                 goto err_unlock;
785
786         ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY,
787                                  BMC150_MAGN_MASK_DRDY_EN,
788                                  state << BMC150_MAGN_SHIFT_DRDY_EN);
789         if (ret < 0)
790                 goto err_unlock;
791
792         data->dready_trigger_on = state;
793
794         if (state) {
795                 ret = bmc150_magn_reset_intr(data);
796                 if (ret < 0)
797                         goto err_unlock;
798         }
799         mutex_unlock(&data->mutex);
800
801         return 0;
802
803 err_unlock:
804         mutex_unlock(&data->mutex);
805         return ret;
806 }
807
808 static const struct iio_trigger_ops bmc150_magn_trigger_ops = {
809         .set_trigger_state = bmc150_magn_data_rdy_trigger_set_state,
810         .try_reenable = bmc150_magn_trig_try_reen,
811         .owner = THIS_MODULE,
812 };
813
814 static int bmc150_magn_buffer_preenable(struct iio_dev *indio_dev)
815 {
816         struct bmc150_magn_data *data = iio_priv(indio_dev);
817
818         return bmc150_magn_set_power_state(data, true);
819 }
820
821 static int bmc150_magn_buffer_postdisable(struct iio_dev *indio_dev)
822 {
823         struct bmc150_magn_data *data = iio_priv(indio_dev);
824
825         return bmc150_magn_set_power_state(data, false);
826 }
827
828 static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops = {
829         .preenable = bmc150_magn_buffer_preenable,
830         .postenable = iio_triggered_buffer_postenable,
831         .predisable = iio_triggered_buffer_predisable,
832         .postdisable = bmc150_magn_buffer_postdisable,
833 };
834
835 static const char *bmc150_magn_match_acpi_device(struct device *dev)
836 {
837         const struct acpi_device_id *id;
838
839         id = acpi_match_device(dev->driver->acpi_match_table, dev);
840         if (!id)
841                 return NULL;
842
843         return dev_name(dev);
844 }
845
846 static int bmc150_magn_probe(struct i2c_client *client,
847                              const struct i2c_device_id *id)
848 {
849         struct bmc150_magn_data *data;
850         struct iio_dev *indio_dev;
851         const char *name = NULL;
852         int ret;
853
854         indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
855         if (!indio_dev)
856                 return -ENOMEM;
857
858         data = iio_priv(indio_dev);
859         i2c_set_clientdata(client, indio_dev);
860         data->client = client;
861
862         if (id)
863                 name = id->name;
864         else if (ACPI_HANDLE(&client->dev))
865                 name = bmc150_magn_match_acpi_device(&client->dev);
866         else
867                 return -ENOSYS;
868
869         mutex_init(&data->mutex);
870         data->regmap = devm_regmap_init_i2c(client, &bmc150_magn_regmap_config);
871         if (IS_ERR(data->regmap)) {
872                 dev_err(&client->dev, "Failed to allocate register map\n");
873                 return PTR_ERR(data->regmap);
874         }
875
876         ret = bmc150_magn_init(data);
877         if (ret < 0)
878                 return ret;
879
880         indio_dev->dev.parent = &client->dev;
881         indio_dev->channels = bmc150_magn_channels;
882         indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels);
883         indio_dev->available_scan_masks = bmc150_magn_scan_masks;
884         indio_dev->name = name;
885         indio_dev->modes = INDIO_DIRECT_MODE;
886         indio_dev->info = &bmc150_magn_info;
887
888         if (client->irq > 0) {
889                 data->dready_trig = devm_iio_trigger_alloc(&client->dev,
890                                                            "%s-dev%d",
891                                                            indio_dev->name,
892                                                            indio_dev->id);
893                 if (!data->dready_trig) {
894                         ret = -ENOMEM;
895                         dev_err(&client->dev, "iio trigger alloc failed\n");
896                         goto err_poweroff;
897                 }
898
899                 data->dready_trig->dev.parent = &client->dev;
900                 data->dready_trig->ops = &bmc150_magn_trigger_ops;
901                 iio_trigger_set_drvdata(data->dready_trig, indio_dev);
902                 ret = iio_trigger_register(data->dready_trig);
903                 if (ret) {
904                         dev_err(&client->dev, "iio trigger register failed\n");
905                         goto err_poweroff;
906                 }
907
908                 ret = request_threaded_irq(client->irq,
909                                            iio_trigger_generic_data_rdy_poll,
910                                            NULL,
911                                            IRQF_TRIGGER_RISING | IRQF_ONESHOT,
912                                            BMC150_MAGN_IRQ_NAME,
913                                            data->dready_trig);
914                 if (ret < 0) {
915                         dev_err(&client->dev, "request irq %d failed\n",
916                                 client->irq);
917                         goto err_trigger_unregister;
918                 }
919         }
920
921         ret = iio_triggered_buffer_setup(indio_dev,
922                                          iio_pollfunc_store_time,
923                                          bmc150_magn_trigger_handler,
924                                          &bmc150_magn_buffer_setup_ops);
925         if (ret < 0) {
926                 dev_err(&client->dev,
927                         "iio triggered buffer setup failed\n");
928                 goto err_free_irq;
929         }
930
931         ret = iio_device_register(indio_dev);
932         if (ret < 0) {
933                 dev_err(&client->dev, "unable to register iio device\n");
934                 goto err_buffer_cleanup;
935         }
936
937         ret = pm_runtime_set_active(&client->dev);
938         if (ret)
939                 goto err_iio_unregister;
940
941         pm_runtime_enable(&client->dev);
942         pm_runtime_set_autosuspend_delay(&client->dev,
943                                          BMC150_MAGN_AUTO_SUSPEND_DELAY_MS);
944         pm_runtime_use_autosuspend(&client->dev);
945
946         dev_dbg(&indio_dev->dev, "Registered device %s\n", name);
947
948         return 0;
949
950 err_iio_unregister:
951         iio_device_unregister(indio_dev);
952 err_buffer_cleanup:
953         iio_triggered_buffer_cleanup(indio_dev);
954 err_free_irq:
955         if (client->irq > 0)
956                 free_irq(client->irq, data->dready_trig);
957 err_trigger_unregister:
958         if (data->dready_trig)
959                 iio_trigger_unregister(data->dready_trig);
960 err_poweroff:
961         bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
962         return ret;
963 }
964
965 static int bmc150_magn_remove(struct i2c_client *client)
966 {
967         struct iio_dev *indio_dev = i2c_get_clientdata(client);
968         struct bmc150_magn_data *data = iio_priv(indio_dev);
969
970         pm_runtime_disable(&client->dev);
971         pm_runtime_set_suspended(&client->dev);
972         pm_runtime_put_noidle(&client->dev);
973
974         iio_device_unregister(indio_dev);
975         iio_triggered_buffer_cleanup(indio_dev);
976
977         if (client->irq > 0)
978                 free_irq(data->client->irq, data->dready_trig);
979
980         if (data->dready_trig)
981                 iio_trigger_unregister(data->dready_trig);
982
983         mutex_lock(&data->mutex);
984         bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
985         mutex_unlock(&data->mutex);
986
987         return 0;
988 }
989
990 #ifdef CONFIG_PM
991 static int bmc150_magn_runtime_suspend(struct device *dev)
992 {
993         struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
994         struct bmc150_magn_data *data = iio_priv(indio_dev);
995         int ret;
996
997         mutex_lock(&data->mutex);
998         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
999                                          true);
1000         mutex_unlock(&data->mutex);
1001         if (ret < 0) {
1002                 dev_err(&data->client->dev, "powering off device failed\n");
1003                 return ret;
1004         }
1005         return 0;
1006 }
1007
1008 /*
1009  * Should be called with data->mutex held.
1010  */
1011 static int bmc150_magn_runtime_resume(struct device *dev)
1012 {
1013         struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1014         struct bmc150_magn_data *data = iio_priv(indio_dev);
1015
1016         return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1017                                           true);
1018 }
1019 #endif
1020
1021 #ifdef CONFIG_PM_SLEEP
1022 static int bmc150_magn_suspend(struct device *dev)
1023 {
1024         struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1025         struct bmc150_magn_data *data = iio_priv(indio_dev);
1026         int ret;
1027
1028         mutex_lock(&data->mutex);
1029         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1030                                          true);
1031         mutex_unlock(&data->mutex);
1032
1033         return ret;
1034 }
1035
1036 static int bmc150_magn_resume(struct device *dev)
1037 {
1038         struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1039         struct bmc150_magn_data *data = iio_priv(indio_dev);
1040         int ret;
1041
1042         mutex_lock(&data->mutex);
1043         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1044                                          true);
1045         mutex_unlock(&data->mutex);
1046
1047         return ret;
1048 }
1049 #endif
1050
1051 static const struct dev_pm_ops bmc150_magn_pm_ops = {
1052         SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume)
1053         SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend,
1054                            bmc150_magn_runtime_resume, NULL)
1055 };
1056
1057 static const struct acpi_device_id bmc150_magn_acpi_match[] = {
1058         {"BMC150B", 0},
1059         {"BMC156B", 0},
1060         {},
1061 };
1062 MODULE_DEVICE_TABLE(acpi, bmc150_magn_acpi_match);
1063
1064 static const struct i2c_device_id bmc150_magn_id[] = {
1065         {"bmc150_magn", 0},
1066         {"bmc156_magn", 0},
1067         {},
1068 };
1069 MODULE_DEVICE_TABLE(i2c, bmc150_magn_id);
1070
1071 static struct i2c_driver bmc150_magn_driver = {
1072         .driver = {
1073                    .name = BMC150_MAGN_DRV_NAME,
1074                    .acpi_match_table = ACPI_PTR(bmc150_magn_acpi_match),
1075                    .pm = &bmc150_magn_pm_ops,
1076                    },
1077         .probe = bmc150_magn_probe,
1078         .remove = bmc150_magn_remove,
1079         .id_table = bmc150_magn_id,
1080 };
1081 module_i2c_driver(bmc150_magn_driver);
1082
1083 MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>");
1084 MODULE_LICENSE("GPL v2");
1085 MODULE_DESCRIPTION("BMC150 magnetometer driver");