Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / i2c / busses / i2c-rk3x.c
1 /*
2  * Driver for I2C adapter in Rockchip RK3xxx SoC
3  *
4  * Max Schwarz <max.schwarz@online.de>
5  * based on the patches by Rockchip Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/i2c.h>
15 #include <linux/interrupt.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/platform_device.h>
19 #include <linux/io.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/spinlock.h>
23 #include <linux/clk.h>
24 #include <linux/wait.h>
25 #include <linux/mfd/syscon.h>
26 #include <linux/regmap.h>
27 #include <linux/math64.h>
28
29
30 /* Register Map */
31 #define REG_CON        0x00 /* control register */
32 #define REG_CLKDIV     0x04 /* clock divisor register */
33 #define REG_MRXADDR    0x08 /* slave address for REGISTER_TX */
34 #define REG_MRXRADDR   0x0c /* slave register address for REGISTER_TX */
35 #define REG_MTXCNT     0x10 /* number of bytes to be transmitted */
36 #define REG_MRXCNT     0x14 /* number of bytes to be received */
37 #define REG_IEN        0x18 /* interrupt enable */
38 #define REG_IPD        0x1c /* interrupt pending */
39 #define REG_FCNT       0x20 /* finished count */
40
41 /* Data buffer offsets */
42 #define TXBUFFER_BASE 0x100
43 #define RXBUFFER_BASE 0x200
44
45 /* REG_CON bits */
46 #define REG_CON_EN        BIT(0)
47 enum {
48         REG_CON_MOD_TX = 0,      /* transmit data */
49         REG_CON_MOD_REGISTER_TX, /* select register and restart */
50         REG_CON_MOD_RX,          /* receive data */
51         REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
52                                   * register addr */
53 };
54 #define REG_CON_MOD(mod)  ((mod) << 1)
55 #define REG_CON_MOD_MASK  (BIT(1) | BIT(2))
56 #define REG_CON_START     BIT(3)
57 #define REG_CON_STOP      BIT(4)
58 #define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */
59 #define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */
60
61 /* REG_MRXADDR bits */
62 #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
63
64 /* REG_IEN/REG_IPD bits */
65 #define REG_INT_BTF       BIT(0) /* a byte was transmitted */
66 #define REG_INT_BRF       BIT(1) /* a byte was received */
67 #define REG_INT_MBTF      BIT(2) /* master data transmit finished */
68 #define REG_INT_MBRF      BIT(3) /* master data receive finished */
69 #define REG_INT_START     BIT(4) /* START condition generated */
70 #define REG_INT_STOP      BIT(5) /* STOP condition generated */
71 #define REG_INT_NAKRCV    BIT(6) /* NACK received */
72 #define REG_INT_ALL       0x7f
73
74 /* Constants */
75 #define WAIT_TIMEOUT      200 /* ms */
76 #define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */
77
78 enum rk3x_i2c_state {
79         STATE_IDLE,
80         STATE_START,
81         STATE_READ,
82         STATE_WRITE,
83         STATE_STOP
84 };
85
86 /**
87  * @grf_offset: offset inside the grf regmap for setting the i2c type
88  */
89 struct rk3x_i2c_soc_data {
90         int grf_offset;
91 };
92
93 struct rk3x_i2c {
94         struct i2c_adapter adap;
95         struct device *dev;
96         struct rk3x_i2c_soc_data *soc_data;
97
98         /* Hardware resources */
99         void __iomem *regs;
100         struct clk *clk;
101         struct notifier_block clk_rate_nb;
102
103         /* Settings */
104         unsigned int scl_frequency;
105         unsigned int scl_rise_ns;
106         unsigned int scl_fall_ns;
107         unsigned int sda_fall_ns;
108
109         /* Synchronization & notification */
110         spinlock_t lock;
111         wait_queue_head_t wait;
112         bool busy;
113
114         /* Current message */
115         struct i2c_msg *msg;
116         u8 addr;
117         unsigned int mode;
118         bool is_last_msg;
119
120         /* I2C state machine */
121         enum rk3x_i2c_state state;
122         unsigned int processed; /* sent/received bytes */
123         int error;
124 };
125
126 static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
127                               unsigned int offset)
128 {
129         writel(value, i2c->regs + offset);
130 }
131
132 static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
133 {
134         return readl(i2c->regs + offset);
135 }
136
137 /* Reset all interrupt pending bits */
138 static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
139 {
140         i2c_writel(i2c, REG_INT_ALL, REG_IPD);
141 }
142
143 /**
144  * Generate a START condition, which triggers a REG_INT_START interrupt.
145  */
146 static void rk3x_i2c_start(struct rk3x_i2c *i2c)
147 {
148         u32 val;
149
150         rk3x_i2c_clean_ipd(i2c);
151         i2c_writel(i2c, REG_INT_START, REG_IEN);
152
153         /* enable adapter with correct mode, send START condition */
154         val = REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
155
156         /* if we want to react to NACK, set ACTACK bit */
157         if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
158                 val |= REG_CON_ACTACK;
159
160         i2c_writel(i2c, val, REG_CON);
161 }
162
163 /**
164  * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
165  *
166  * @error: Error code to return in rk3x_i2c_xfer
167  */
168 static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
169 {
170         unsigned int ctrl;
171
172         i2c->processed = 0;
173         i2c->msg = NULL;
174         i2c->error = error;
175
176         if (i2c->is_last_msg) {
177                 /* Enable stop interrupt */
178                 i2c_writel(i2c, REG_INT_STOP, REG_IEN);
179
180                 i2c->state = STATE_STOP;
181
182                 ctrl = i2c_readl(i2c, REG_CON);
183                 ctrl |= REG_CON_STOP;
184                 i2c_writel(i2c, ctrl, REG_CON);
185         } else {
186                 /* Signal rk3x_i2c_xfer to start the next message. */
187                 i2c->busy = false;
188                 i2c->state = STATE_IDLE;
189
190                 /*
191                  * The HW is actually not capable of REPEATED START. But we can
192                  * get the intended effect by resetting its internal state
193                  * and issuing an ordinary START.
194                  */
195                 i2c_writel(i2c, 0, REG_CON);
196
197                 /* signal that we are finished with the current msg */
198                 wake_up(&i2c->wait);
199         }
200 }
201
202 /**
203  * Setup a read according to i2c->msg
204  */
205 static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
206 {
207         unsigned int len = i2c->msg->len - i2c->processed;
208         u32 con;
209
210         con = i2c_readl(i2c, REG_CON);
211
212         /*
213          * The hw can read up to 32 bytes at a time. If we need more than one
214          * chunk, send an ACK after the last byte of the current chunk.
215          */
216         if (len > 32) {
217                 len = 32;
218                 con &= ~REG_CON_LASTACK;
219         } else {
220                 con |= REG_CON_LASTACK;
221         }
222
223         /* make sure we are in plain RX mode if we read a second chunk */
224         if (i2c->processed != 0) {
225                 con &= ~REG_CON_MOD_MASK;
226                 con |= REG_CON_MOD(REG_CON_MOD_RX);
227         }
228
229         i2c_writel(i2c, con, REG_CON);
230         i2c_writel(i2c, len, REG_MRXCNT);
231 }
232
233 /**
234  * Fill the transmit buffer with data from i2c->msg
235  */
236 static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
237 {
238         unsigned int i, j;
239         u32 cnt = 0;
240         u32 val;
241         u8 byte;
242
243         for (i = 0; i < 8; ++i) {
244                 val = 0;
245                 for (j = 0; j < 4; ++j) {
246                         if ((i2c->processed == i2c->msg->len) && (cnt != 0))
247                                 break;
248
249                         if (i2c->processed == 0 && cnt == 0)
250                                 byte = (i2c->addr & 0x7f) << 1;
251                         else
252                                 byte = i2c->msg->buf[i2c->processed++];
253
254                         val |= byte << (j * 8);
255                         cnt++;
256                 }
257
258                 i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);
259
260                 if (i2c->processed == i2c->msg->len)
261                         break;
262         }
263
264         i2c_writel(i2c, cnt, REG_MTXCNT);
265 }
266
267
268 /* IRQ handlers for individual states */
269
270 static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
271 {
272         if (!(ipd & REG_INT_START)) {
273                 rk3x_i2c_stop(i2c, -EIO);
274                 dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
275                 rk3x_i2c_clean_ipd(i2c);
276                 return;
277         }
278
279         /* ack interrupt */
280         i2c_writel(i2c, REG_INT_START, REG_IPD);
281
282         /* disable start bit */
283         i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);
284
285         /* enable appropriate interrupts and transition */
286         if (i2c->mode == REG_CON_MOD_TX) {
287                 i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
288                 i2c->state = STATE_WRITE;
289                 rk3x_i2c_fill_transmit_buf(i2c);
290         } else {
291                 /* in any other case, we are going to be reading. */
292                 i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
293                 i2c->state = STATE_READ;
294                 rk3x_i2c_prepare_read(i2c);
295         }
296 }
297
298 static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
299 {
300         if (!(ipd & REG_INT_MBTF)) {
301                 rk3x_i2c_stop(i2c, -EIO);
302                 dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
303                 rk3x_i2c_clean_ipd(i2c);
304                 return;
305         }
306
307         /* ack interrupt */
308         i2c_writel(i2c, REG_INT_MBTF, REG_IPD);
309
310         /* are we finished? */
311         if (i2c->processed == i2c->msg->len)
312                 rk3x_i2c_stop(i2c, i2c->error);
313         else
314                 rk3x_i2c_fill_transmit_buf(i2c);
315 }
316
317 static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
318 {
319         unsigned int i;
320         unsigned int len = i2c->msg->len - i2c->processed;
321         u32 uninitialized_var(val);
322         u8 byte;
323
324         /* we only care for MBRF here. */
325         if (!(ipd & REG_INT_MBRF))
326                 return;
327
328         /* ack interrupt */
329         i2c_writel(i2c, REG_INT_MBRF, REG_IPD);
330
331         /* Can only handle a maximum of 32 bytes at a time */
332         if (len > 32)
333                 len = 32;
334
335         /* read the data from receive buffer */
336         for (i = 0; i < len; ++i) {
337                 if (i % 4 == 0)
338                         val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);
339
340                 byte = (val >> ((i % 4) * 8)) & 0xff;
341                 i2c->msg->buf[i2c->processed++] = byte;
342         }
343
344         /* are we finished? */
345         if (i2c->processed == i2c->msg->len)
346                 rk3x_i2c_stop(i2c, i2c->error);
347         else
348                 rk3x_i2c_prepare_read(i2c);
349 }
350
351 static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
352 {
353         unsigned int con;
354
355         if (!(ipd & REG_INT_STOP)) {
356                 rk3x_i2c_stop(i2c, -EIO);
357                 dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
358                 rk3x_i2c_clean_ipd(i2c);
359                 return;
360         }
361
362         /* ack interrupt */
363         i2c_writel(i2c, REG_INT_STOP, REG_IPD);
364
365         /* disable STOP bit */
366         con = i2c_readl(i2c, REG_CON);
367         con &= ~REG_CON_STOP;
368         i2c_writel(i2c, con, REG_CON);
369
370         i2c->busy = false;
371         i2c->state = STATE_IDLE;
372
373         /* signal rk3x_i2c_xfer that we are finished */
374         wake_up(&i2c->wait);
375 }
376
377 static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
378 {
379         struct rk3x_i2c *i2c = dev_id;
380         unsigned int ipd;
381
382         spin_lock(&i2c->lock);
383
384         ipd = i2c_readl(i2c, REG_IPD);
385         if (i2c->state == STATE_IDLE) {
386                 dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
387                 rk3x_i2c_clean_ipd(i2c);
388                 goto out;
389         }
390
391         dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);
392
393         /* Clean interrupt bits we don't care about */
394         ipd &= ~(REG_INT_BRF | REG_INT_BTF);
395
396         if (ipd & REG_INT_NAKRCV) {
397                 /*
398                  * We got a NACK in the last operation. Depending on whether
399                  * IGNORE_NAK is set, we have to stop the operation and report
400                  * an error.
401                  */
402                 i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);
403
404                 ipd &= ~REG_INT_NAKRCV;
405
406                 if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
407                         rk3x_i2c_stop(i2c, -ENXIO);
408         }
409
410         /* is there anything left to handle? */
411         if ((ipd & REG_INT_ALL) == 0)
412                 goto out;
413
414         switch (i2c->state) {
415         case STATE_START:
416                 rk3x_i2c_handle_start(i2c, ipd);
417                 break;
418         case STATE_WRITE:
419                 rk3x_i2c_handle_write(i2c, ipd);
420                 break;
421         case STATE_READ:
422                 rk3x_i2c_handle_read(i2c, ipd);
423                 break;
424         case STATE_STOP:
425                 rk3x_i2c_handle_stop(i2c, ipd);
426                 break;
427         case STATE_IDLE:
428                 break;
429         }
430
431 out:
432         spin_unlock(&i2c->lock);
433         return IRQ_HANDLED;
434 }
435
436 /**
437  * Calculate divider values for desired SCL frequency
438  *
439  * @clk_rate: I2C input clock rate
440  * @scl_rate: Desired SCL rate
441  * @scl_rise_ns: How many ns it takes for SCL to rise.
442  * @scl_fall_ns: How many ns it takes for SCL to fall.
443  * @sda_fall_ns: How many ns it takes for SDA to fall.
444  * @div_low: Divider output for low
445  * @div_high: Divider output for high
446  *
447  * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
448  * a best-effort divider value is returned in divs. If the target rate is
449  * too high, we silently use the highest possible rate.
450  */
451 static int rk3x_i2c_calc_divs(unsigned long clk_rate, unsigned long scl_rate,
452                               unsigned long scl_rise_ns,
453                               unsigned long scl_fall_ns,
454                               unsigned long sda_fall_ns,
455                               unsigned long *div_low, unsigned long *div_high)
456 {
457         unsigned long spec_min_low_ns, spec_min_high_ns;
458         unsigned long spec_setup_start, spec_max_data_hold_ns;
459         unsigned long data_hold_buffer_ns;
460
461         unsigned long min_low_ns, min_high_ns;
462         unsigned long max_low_ns, min_total_ns;
463
464         unsigned long clk_rate_khz, scl_rate_khz;
465
466         unsigned long min_low_div, min_high_div;
467         unsigned long max_low_div;
468
469         unsigned long min_div_for_hold, min_total_div;
470         unsigned long extra_div, extra_low_div, ideal_low_div;
471
472         int ret = 0;
473
474         /* Only support standard-mode and fast-mode */
475         if (WARN_ON(scl_rate > 400000))
476                 scl_rate = 400000;
477
478         /* prevent scl_rate_khz from becoming 0 */
479         if (WARN_ON(scl_rate < 1000))
480                 scl_rate = 1000;
481
482         /*
483          * min_low_ns:  The minimum number of ns we need to hold low to
484          *              meet I2C specification, should include fall time.
485          * min_high_ns: The minimum number of ns we need to hold high to
486          *              meet I2C specification, should include rise time.
487          * max_low_ns:  The maximum number of ns we can hold low to meet
488          *              I2C specification.
489          *
490          * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
491          *       This is because the i2c host on Rockchip holds the data line
492          *       for half the low time.
493          */
494         if (scl_rate <= 100000) {
495                 /* Standard-mode */
496                 spec_min_low_ns = 4700;
497                 spec_setup_start = 4700;
498                 spec_min_high_ns = 4000;
499                 spec_max_data_hold_ns = 3450;
500                 data_hold_buffer_ns = 50;
501         } else {
502                 /* Fast-mode */
503                 spec_min_low_ns = 1300;
504                 spec_setup_start = 600;
505                 spec_min_high_ns = 600;
506                 spec_max_data_hold_ns = 900;
507                 data_hold_buffer_ns = 50;
508         }
509         min_high_ns = scl_rise_ns + spec_min_high_ns;
510
511         /*
512          * Timings for repeated start:
513          * - controller appears to drop SDA at .875x (7/8) programmed clk high.
514          * - controller appears to keep SCL high for 2x programmed clk high.
515          *
516          * We need to account for those rules in picking our "high" time so
517          * we meet tSU;STA and tHD;STA times.
518          */
519         min_high_ns = max(min_high_ns,
520                 DIV_ROUND_UP((scl_rise_ns + spec_setup_start) * 1000, 875));
521         min_high_ns = max(min_high_ns,
522                 DIV_ROUND_UP((scl_rise_ns + spec_setup_start +
523                               sda_fall_ns + spec_min_high_ns), 2));
524
525         min_low_ns = scl_fall_ns + spec_min_low_ns;
526         max_low_ns = spec_max_data_hold_ns * 2 - data_hold_buffer_ns;
527         min_total_ns = min_low_ns + min_high_ns;
528
529         /* Adjust to avoid overflow */
530         clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
531         scl_rate_khz = scl_rate / 1000;
532
533         /*
534          * We need the total div to be >= this number
535          * so we don't clock too fast.
536          */
537         min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
538
539         /* These are the min dividers needed for min hold times. */
540         min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
541         min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
542         min_div_for_hold = (min_low_div + min_high_div);
543
544         /*
545          * This is the maximum divider so we don't go over the maximum.
546          * We don't round up here (we round down) since this is a maximum.
547          */
548         max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
549
550         if (min_low_div > max_low_div) {
551                 WARN_ONCE(true,
552                           "Conflicting, min_low_div %lu, max_low_div %lu\n",
553                           min_low_div, max_low_div);
554                 max_low_div = min_low_div;
555         }
556
557         if (min_div_for_hold > min_total_div) {
558                 /*
559                  * Time needed to meet hold requirements is important.
560                  * Just use that.
561                  */
562                 *div_low = min_low_div;
563                 *div_high = min_high_div;
564         } else {
565                 /*
566                  * We've got to distribute some time among the low and high
567                  * so we don't run too fast.
568                  */
569                 extra_div = min_total_div - min_div_for_hold;
570
571                 /*
572                  * We'll try to split things up perfectly evenly,
573                  * biasing slightly towards having a higher div
574                  * for low (spend more time low).
575                  */
576                 ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
577                                              scl_rate_khz * 8 * min_total_ns);
578
579                 /* Don't allow it to go over the maximum */
580                 if (ideal_low_div > max_low_div)
581                         ideal_low_div = max_low_div;
582
583                 /*
584                  * Handle when the ideal low div is going to take up
585                  * more than we have.
586                  */
587                 if (ideal_low_div > min_low_div + extra_div)
588                         ideal_low_div = min_low_div + extra_div;
589
590                 /* Give low the "ideal" and give high whatever extra is left */
591                 extra_low_div = ideal_low_div - min_low_div;
592                 *div_low = ideal_low_div;
593                 *div_high = min_high_div + (extra_div - extra_low_div);
594         }
595
596         /*
597          * Adjust to the fact that the hardware has an implicit "+1".
598          * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
599          */
600         *div_low = *div_low - 1;
601         *div_high = *div_high - 1;
602
603         /* Maximum divider supported by hw is 0xffff */
604         if (*div_low > 0xffff) {
605                 *div_low = 0xffff;
606                 ret = -EINVAL;
607         }
608
609         if (*div_high > 0xffff) {
610                 *div_high = 0xffff;
611                 ret = -EINVAL;
612         }
613
614         return ret;
615 }
616
617 static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
618 {
619         unsigned long div_low, div_high;
620         u64 t_low_ns, t_high_ns;
621         int ret;
622
623         ret = rk3x_i2c_calc_divs(clk_rate, i2c->scl_frequency, i2c->scl_rise_ns,
624                                  i2c->scl_fall_ns, i2c->sda_fall_ns,
625                                  &div_low, &div_high);
626         WARN_ONCE(ret != 0, "Could not reach SCL freq %u", i2c->scl_frequency);
627
628         clk_enable(i2c->clk);
629         i2c_writel(i2c, (div_high << 16) | (div_low & 0xffff), REG_CLKDIV);
630         clk_disable(i2c->clk);
631
632         t_low_ns = div_u64(((u64)div_low + 1) * 8 * 1000000000, clk_rate);
633         t_high_ns = div_u64(((u64)div_high + 1) * 8 * 1000000000, clk_rate);
634         dev_dbg(i2c->dev,
635                 "CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
636                 clk_rate / 1000,
637                 1000000000 / i2c->scl_frequency,
638                 t_low_ns, t_high_ns);
639 }
640
641 /**
642  * rk3x_i2c_clk_notifier_cb - Clock rate change callback
643  * @nb:         Pointer to notifier block
644  * @event:      Notification reason
645  * @data:       Pointer to notification data object
646  *
647  * The callback checks whether a valid bus frequency can be generated after the
648  * change. If so, the change is acknowledged, otherwise the change is aborted.
649  * New dividers are written to the HW in the pre- or post change notification
650  * depending on the scaling direction.
651  *
652  * Code adapted from i2c-cadence.c.
653  *
654  * Return:      NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
655  *              to acknowedge the change, NOTIFY_DONE if the notification is
656  *              considered irrelevant.
657  */
658 static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
659                                     event, void *data)
660 {
661         struct clk_notifier_data *ndata = data;
662         struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
663         unsigned long div_low, div_high;
664
665         switch (event) {
666         case PRE_RATE_CHANGE:
667                 if (rk3x_i2c_calc_divs(ndata->new_rate, i2c->scl_frequency,
668                                        i2c->scl_rise_ns, i2c->scl_fall_ns,
669                                        i2c->sda_fall_ns,
670                                        &div_low, &div_high) != 0)
671                         return NOTIFY_STOP;
672
673                 /* scale up */
674                 if (ndata->new_rate > ndata->old_rate)
675                         rk3x_i2c_adapt_div(i2c, ndata->new_rate);
676
677                 return NOTIFY_OK;
678         case POST_RATE_CHANGE:
679                 /* scale down */
680                 if (ndata->new_rate < ndata->old_rate)
681                         rk3x_i2c_adapt_div(i2c, ndata->new_rate);
682                 return NOTIFY_OK;
683         case ABORT_RATE_CHANGE:
684                 /* scale up */
685                 if (ndata->new_rate > ndata->old_rate)
686                         rk3x_i2c_adapt_div(i2c, ndata->old_rate);
687                 return NOTIFY_OK;
688         default:
689                 return NOTIFY_DONE;
690         }
691 }
692
693 /**
694  * Setup I2C registers for an I2C operation specified by msgs, num.
695  *
696  * Must be called with i2c->lock held.
697  *
698  * @msgs: I2C msgs to process
699  * @num: Number of msgs
700  *
701  * returns: Number of I2C msgs processed or negative in case of error
702  */
703 static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
704 {
705         u32 addr = (msgs[0].addr & 0x7f) << 1;
706         int ret = 0;
707
708         /*
709          * The I2C adapter can issue a small (len < 4) write packet before
710          * reading. This speeds up SMBus-style register reads.
711          * The MRXADDR/MRXRADDR hold the slave address and the slave register
712          * address in this case.
713          */
714
715         if (num >= 2 && msgs[0].len < 4 &&
716             !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
717                 u32 reg_addr = 0;
718                 int i;
719
720                 dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
721                         addr >> 1);
722
723                 /* Fill MRXRADDR with the register address(es) */
724                 for (i = 0; i < msgs[0].len; ++i) {
725                         reg_addr |= msgs[0].buf[i] << (i * 8);
726                         reg_addr |= REG_MRXADDR_VALID(i);
727                 }
728
729                 /* msgs[0] is handled by hw. */
730                 i2c->msg = &msgs[1];
731
732                 i2c->mode = REG_CON_MOD_REGISTER_TX;
733
734                 i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
735                 i2c_writel(i2c, reg_addr, REG_MRXRADDR);
736
737                 ret = 2;
738         } else {
739                 /*
740                  * We'll have to do it the boring way and process the msgs
741                  * one-by-one.
742                  */
743
744                 if (msgs[0].flags & I2C_M_RD) {
745                         addr |= 1; /* set read bit */
746
747                         /*
748                          * We have to transmit the slave addr first. Use
749                          * MOD_REGISTER_TX for that purpose.
750                          */
751                         i2c->mode = REG_CON_MOD_REGISTER_TX;
752                         i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
753                                    REG_MRXADDR);
754                         i2c_writel(i2c, 0, REG_MRXRADDR);
755                 } else {
756                         i2c->mode = REG_CON_MOD_TX;
757                 }
758
759                 i2c->msg = &msgs[0];
760
761                 ret = 1;
762         }
763
764         i2c->addr = msgs[0].addr;
765         i2c->busy = true;
766         i2c->state = STATE_START;
767         i2c->processed = 0;
768         i2c->error = 0;
769
770         rk3x_i2c_clean_ipd(i2c);
771
772         return ret;
773 }
774
775 static int rk3x_i2c_xfer(struct i2c_adapter *adap,
776                          struct i2c_msg *msgs, int num)
777 {
778         struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
779         unsigned long timeout, flags;
780         int ret = 0;
781         int i;
782
783         spin_lock_irqsave(&i2c->lock, flags);
784
785         clk_enable(i2c->clk);
786
787         i2c->is_last_msg = false;
788
789         /*
790          * Process msgs. We can handle more than one message at once (see
791          * rk3x_i2c_setup()).
792          */
793         for (i = 0; i < num; i += ret) {
794                 ret = rk3x_i2c_setup(i2c, msgs + i, num - i);
795
796                 if (ret < 0) {
797                         dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
798                         break;
799                 }
800
801                 if (i + ret >= num)
802                         i2c->is_last_msg = true;
803
804                 spin_unlock_irqrestore(&i2c->lock, flags);
805
806                 rk3x_i2c_start(i2c);
807
808                 timeout = wait_event_timeout(i2c->wait, !i2c->busy,
809                                              msecs_to_jiffies(WAIT_TIMEOUT));
810
811                 spin_lock_irqsave(&i2c->lock, flags);
812
813                 if (timeout == 0) {
814                         dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
815                                 i2c_readl(i2c, REG_IPD), i2c->state);
816
817                         /* Force a STOP condition without interrupt */
818                         i2c_writel(i2c, 0, REG_IEN);
819                         i2c_writel(i2c, REG_CON_EN | REG_CON_STOP, REG_CON);
820
821                         i2c->state = STATE_IDLE;
822
823                         ret = -ETIMEDOUT;
824                         break;
825                 }
826
827                 if (i2c->error) {
828                         ret = i2c->error;
829                         break;
830                 }
831         }
832
833         clk_disable(i2c->clk);
834         spin_unlock_irqrestore(&i2c->lock, flags);
835
836         return ret < 0 ? ret : num;
837 }
838
839 static u32 rk3x_i2c_func(struct i2c_adapter *adap)
840 {
841         return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
842 }
843
844 static const struct i2c_algorithm rk3x_i2c_algorithm = {
845         .master_xfer            = rk3x_i2c_xfer,
846         .functionality          = rk3x_i2c_func,
847 };
848
849 static struct rk3x_i2c_soc_data soc_data[3] = {
850         { .grf_offset = 0x154 }, /* rk3066 */
851         { .grf_offset = 0x0a4 }, /* rk3188 */
852         { .grf_offset = -1 },    /* no I2C switching needed */
853 };
854
855 static const struct of_device_id rk3x_i2c_match[] = {
856         { .compatible = "rockchip,rk3066-i2c", .data = (void *)&soc_data[0] },
857         { .compatible = "rockchip,rk3188-i2c", .data = (void *)&soc_data[1] },
858         { .compatible = "rockchip,rk3288-i2c", .data = (void *)&soc_data[2] },
859         {},
860 };
861
862 static int rk3x_i2c_probe(struct platform_device *pdev)
863 {
864         struct device_node *np = pdev->dev.of_node;
865         const struct of_device_id *match;
866         struct rk3x_i2c *i2c;
867         struct resource *mem;
868         int ret = 0;
869         int bus_nr;
870         u32 value;
871         int irq;
872         unsigned long clk_rate;
873
874         i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
875         if (!i2c)
876                 return -ENOMEM;
877
878         match = of_match_node(rk3x_i2c_match, np);
879         i2c->soc_data = (struct rk3x_i2c_soc_data *)match->data;
880
881         if (of_property_read_u32(pdev->dev.of_node, "clock-frequency",
882                                  &i2c->scl_frequency)) {
883                 dev_info(&pdev->dev, "using default SCL frequency: %d\n",
884                          DEFAULT_SCL_RATE);
885                 i2c->scl_frequency = DEFAULT_SCL_RATE;
886         }
887
888         if (i2c->scl_frequency == 0 || i2c->scl_frequency > 400 * 1000) {
889                 dev_warn(&pdev->dev, "invalid SCL frequency specified.\n");
890                 dev_warn(&pdev->dev, "using default SCL frequency: %d\n",
891                          DEFAULT_SCL_RATE);
892                 i2c->scl_frequency = DEFAULT_SCL_RATE;
893         }
894
895         /*
896          * Read rise and fall time from device tree. If not available use
897          * the default maximum timing from the specification.
898          */
899         if (of_property_read_u32(pdev->dev.of_node, "i2c-scl-rising-time-ns",
900                                  &i2c->scl_rise_ns)) {
901                 if (i2c->scl_frequency <= 100000)
902                         i2c->scl_rise_ns = 1000;
903                 else
904                         i2c->scl_rise_ns = 300;
905         }
906         if (of_property_read_u32(pdev->dev.of_node, "i2c-scl-falling-time-ns",
907                                  &i2c->scl_fall_ns))
908                 i2c->scl_fall_ns = 300;
909         if (of_property_read_u32(pdev->dev.of_node, "i2c-sda-falling-time-ns",
910                                  &i2c->scl_fall_ns))
911                 i2c->sda_fall_ns = i2c->scl_fall_ns;
912
913         strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
914         i2c->adap.owner = THIS_MODULE;
915         i2c->adap.algo = &rk3x_i2c_algorithm;
916         i2c->adap.retries = 3;
917         i2c->adap.dev.of_node = np;
918         i2c->adap.algo_data = i2c;
919         i2c->adap.dev.parent = &pdev->dev;
920
921         i2c->dev = &pdev->dev;
922
923         spin_lock_init(&i2c->lock);
924         init_waitqueue_head(&i2c->wait);
925
926         i2c->clk = devm_clk_get(&pdev->dev, NULL);
927         if (IS_ERR(i2c->clk)) {
928                 dev_err(&pdev->dev, "cannot get clock\n");
929                 return PTR_ERR(i2c->clk);
930         }
931
932         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
933         i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
934         if (IS_ERR(i2c->regs))
935                 return PTR_ERR(i2c->regs);
936
937         /* Try to set the I2C adapter number from dt */
938         bus_nr = of_alias_get_id(np, "i2c");
939
940         /*
941          * Switch to new interface if the SoC also offers the old one.
942          * The control bit is located in the GRF register space.
943          */
944         if (i2c->soc_data->grf_offset >= 0) {
945                 struct regmap *grf;
946
947                 grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
948                 if (IS_ERR(grf)) {
949                         dev_err(&pdev->dev,
950                                 "rk3x-i2c needs 'rockchip,grf' property\n");
951                         return PTR_ERR(grf);
952                 }
953
954                 if (bus_nr < 0) {
955                         dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
956                         return -EINVAL;
957                 }
958
959                 /* 27+i: write mask, 11+i: value */
960                 value = BIT(27 + bus_nr) | BIT(11 + bus_nr);
961
962                 ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
963                 if (ret != 0) {
964                         dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
965                         return ret;
966                 }
967         }
968
969         /* IRQ setup */
970         irq = platform_get_irq(pdev, 0);
971         if (irq < 0) {
972                 dev_err(&pdev->dev, "cannot find rk3x IRQ\n");
973                 return irq;
974         }
975
976         ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
977                                0, dev_name(&pdev->dev), i2c);
978         if (ret < 0) {
979                 dev_err(&pdev->dev, "cannot request IRQ\n");
980                 return ret;
981         }
982
983         platform_set_drvdata(pdev, i2c);
984
985         ret = clk_prepare(i2c->clk);
986         if (ret < 0) {
987                 dev_err(&pdev->dev, "Could not prepare clock\n");
988                 return ret;
989         }
990
991         i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
992         ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
993         if (ret != 0) {
994                 dev_err(&pdev->dev, "Unable to register clock notifier\n");
995                 goto err_clk;
996         }
997
998         clk_rate = clk_get_rate(i2c->clk);
999         rk3x_i2c_adapt_div(i2c, clk_rate);
1000
1001         ret = i2c_add_adapter(&i2c->adap);
1002         if (ret < 0) {
1003                 dev_err(&pdev->dev, "Could not register adapter\n");
1004                 goto err_clk_notifier;
1005         }
1006
1007         dev_info(&pdev->dev, "Initialized RK3xxx I2C bus at %p\n", i2c->regs);
1008
1009         return 0;
1010
1011 err_clk_notifier:
1012         clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1013 err_clk:
1014         clk_unprepare(i2c->clk);
1015         return ret;
1016 }
1017
1018 static int rk3x_i2c_remove(struct platform_device *pdev)
1019 {
1020         struct rk3x_i2c *i2c = platform_get_drvdata(pdev);
1021
1022         i2c_del_adapter(&i2c->adap);
1023
1024         clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1025         clk_unprepare(i2c->clk);
1026
1027         return 0;
1028 }
1029
1030 static struct platform_driver rk3x_i2c_driver = {
1031         .probe   = rk3x_i2c_probe,
1032         .remove  = rk3x_i2c_remove,
1033         .driver  = {
1034                 .name  = "rk3x-i2c",
1035                 .of_match_table = rk3x_i2c_match,
1036         },
1037 };
1038
1039 module_platform_driver(rk3x_i2c_driver);
1040
1041 MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
1042 MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
1043 MODULE_LICENSE("GPL v2");