These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / hid / hid-rmi.c
1 /*
2  *  Copyright (c) 2013 Andrew Duggan <aduggan@synaptics.com>
3  *  Copyright (c) 2013 Synaptics Incorporated
4  *  Copyright (c) 2014 Benjamin Tissoires <benjamin.tissoires@gmail.com>
5  *  Copyright (c) 2014 Red Hat, Inc
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License as published by the Free
9  * Software Foundation; either version 2 of the License, or (at your option)
10  * any later version.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/hid.h>
15 #include <linux/input.h>
16 #include <linux/input/mt.h>
17 #include <linux/module.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/wait.h>
21 #include <linux/sched.h>
22 #include "hid-ids.h"
23
24 #define RMI_MOUSE_REPORT_ID             0x01 /* Mouse emulation Report */
25 #define RMI_WRITE_REPORT_ID             0x09 /* Output Report */
26 #define RMI_READ_ADDR_REPORT_ID         0x0a /* Output Report */
27 #define RMI_READ_DATA_REPORT_ID         0x0b /* Input Report */
28 #define RMI_ATTN_REPORT_ID              0x0c /* Input Report */
29 #define RMI_SET_RMI_MODE_REPORT_ID      0x0f /* Feature Report */
30
31 /* flags */
32 #define RMI_READ_REQUEST_PENDING        0
33 #define RMI_READ_DATA_PENDING           1
34 #define RMI_STARTED                     2
35
36 #define RMI_SLEEP_NORMAL                0x0
37 #define RMI_SLEEP_DEEP_SLEEP            0x1
38
39 /* device flags */
40 #define RMI_DEVICE                      BIT(0)
41 #define RMI_DEVICE_HAS_PHYS_BUTTONS     BIT(1)
42
43 /*
44  * retrieve the ctrl registers
45  * the ctrl register has a size of 20 but a fw bug split it into 16 + 4,
46  * and there is no way to know if the first 20 bytes are here or not.
47  * We use only the first 12 bytes, so get only them.
48  */
49 #define RMI_F11_CTRL_REG_COUNT          12
50
51 enum rmi_mode_type {
52         RMI_MODE_OFF                    = 0,
53         RMI_MODE_ATTN_REPORTS           = 1,
54         RMI_MODE_NO_PACKED_ATTN_REPORTS = 2,
55 };
56
57 struct rmi_function {
58         unsigned page;                  /* page of the function */
59         u16 query_base_addr;            /* base address for queries */
60         u16 command_base_addr;          /* base address for commands */
61         u16 control_base_addr;          /* base address for controls */
62         u16 data_base_addr;             /* base address for datas */
63         unsigned int interrupt_base;    /* cross-function interrupt number
64                                          * (uniq in the device)*/
65         unsigned int interrupt_count;   /* number of interrupts */
66         unsigned int report_size;       /* size of a report */
67         unsigned long irq_mask;         /* mask of the interrupts
68                                          * (to be applied against ATTN IRQ) */
69 };
70
71 /**
72  * struct rmi_data - stores information for hid communication
73  *
74  * @page_mutex: Locks current page to avoid changing pages in unexpected ways.
75  * @page: Keeps track of the current virtual page
76  *
77  * @wait: Used for waiting for read data
78  *
79  * @writeReport: output buffer when writing RMI registers
80  * @readReport: input buffer when reading RMI registers
81  *
82  * @input_report_size: size of an input report (advertised by HID)
83  * @output_report_size: size of an output report (advertised by HID)
84  *
85  * @flags: flags for the current device (started, reading, etc...)
86  *
87  * @f11: placeholder of internal RMI function F11 description
88  * @f30: placeholder of internal RMI function F30 description
89  *
90  * @max_fingers: maximum finger count reported by the device
91  * @max_x: maximum x value reported by the device
92  * @max_y: maximum y value reported by the device
93  *
94  * @gpio_led_count: count of GPIOs + LEDs reported by F30
95  * @button_count: actual physical buttons count
96  * @button_mask: button mask used to decode GPIO ATTN reports
97  * @button_state_mask: pull state of the buttons
98  *
99  * @input: pointer to the kernel input device
100  *
101  * @reset_work: worker which will be called in case of a mouse report
102  * @hdev: pointer to the struct hid_device
103  */
104 struct rmi_data {
105         struct mutex page_mutex;
106         int page;
107
108         wait_queue_head_t wait;
109
110         u8 *writeReport;
111         u8 *readReport;
112
113         int input_report_size;
114         int output_report_size;
115
116         unsigned long flags;
117
118         struct rmi_function f01;
119         struct rmi_function f11;
120         struct rmi_function f30;
121
122         unsigned int max_fingers;
123         unsigned int max_x;
124         unsigned int max_y;
125         unsigned int x_size_mm;
126         unsigned int y_size_mm;
127         bool read_f11_ctrl_regs;
128         u8 f11_ctrl_regs[RMI_F11_CTRL_REG_COUNT];
129
130         unsigned int gpio_led_count;
131         unsigned int button_count;
132         unsigned long button_mask;
133         unsigned long button_state_mask;
134
135         struct input_dev *input;
136
137         struct work_struct reset_work;
138         struct hid_device *hdev;
139
140         unsigned long device_flags;
141         unsigned long firmware_id;
142
143         u8 f01_ctrl0;
144         u8 interrupt_enable_mask;
145         bool restore_interrupt_mask;
146 };
147
148 #define RMI_PAGE(addr) (((addr) >> 8) & 0xff)
149
150 static int rmi_write_report(struct hid_device *hdev, u8 *report, int len);
151
152 /**
153  * rmi_set_page - Set RMI page
154  * @hdev: The pointer to the hid_device struct
155  * @page: The new page address.
156  *
157  * RMI devices have 16-bit addressing, but some of the physical
158  * implementations (like SMBus) only have 8-bit addressing. So RMI implements
159  * a page address at 0xff of every page so we can reliable page addresses
160  * every 256 registers.
161  *
162  * The page_mutex lock must be held when this function is entered.
163  *
164  * Returns zero on success, non-zero on failure.
165  */
166 static int rmi_set_page(struct hid_device *hdev, u8 page)
167 {
168         struct rmi_data *data = hid_get_drvdata(hdev);
169         int retval;
170
171         data->writeReport[0] = RMI_WRITE_REPORT_ID;
172         data->writeReport[1] = 1;
173         data->writeReport[2] = 0xFF;
174         data->writeReport[4] = page;
175
176         retval = rmi_write_report(hdev, data->writeReport,
177                         data->output_report_size);
178         if (retval != data->output_report_size) {
179                 dev_err(&hdev->dev,
180                         "%s: set page failed: %d.", __func__, retval);
181                 return retval;
182         }
183
184         data->page = page;
185         return 0;
186 }
187
188 static int rmi_set_mode(struct hid_device *hdev, u8 mode)
189 {
190         int ret;
191         u8 txbuf[2] = {RMI_SET_RMI_MODE_REPORT_ID, mode};
192
193         ret = hid_hw_raw_request(hdev, RMI_SET_RMI_MODE_REPORT_ID, txbuf,
194                         sizeof(txbuf), HID_FEATURE_REPORT, HID_REQ_SET_REPORT);
195         if (ret < 0) {
196                 dev_err(&hdev->dev, "unable to set rmi mode to %d (%d)\n", mode,
197                         ret);
198                 return ret;
199         }
200
201         return 0;
202 }
203
204 static int rmi_write_report(struct hid_device *hdev, u8 *report, int len)
205 {
206         int ret;
207
208         ret = hid_hw_output_report(hdev, (void *)report, len);
209         if (ret < 0) {
210                 dev_err(&hdev->dev, "failed to write hid report (%d)\n", ret);
211                 return ret;
212         }
213
214         return ret;
215 }
216
217 static int rmi_read_block(struct hid_device *hdev, u16 addr, void *buf,
218                 const int len)
219 {
220         struct rmi_data *data = hid_get_drvdata(hdev);
221         int ret;
222         int bytes_read;
223         int bytes_needed;
224         int retries;
225         int read_input_count;
226
227         mutex_lock(&data->page_mutex);
228
229         if (RMI_PAGE(addr) != data->page) {
230                 ret = rmi_set_page(hdev, RMI_PAGE(addr));
231                 if (ret < 0)
232                         goto exit;
233         }
234
235         for (retries = 5; retries > 0; retries--) {
236                 data->writeReport[0] = RMI_READ_ADDR_REPORT_ID;
237                 data->writeReport[1] = 0; /* old 1 byte read count */
238                 data->writeReport[2] = addr & 0xFF;
239                 data->writeReport[3] = (addr >> 8) & 0xFF;
240                 data->writeReport[4] = len  & 0xFF;
241                 data->writeReport[5] = (len >> 8) & 0xFF;
242
243                 set_bit(RMI_READ_REQUEST_PENDING, &data->flags);
244
245                 ret = rmi_write_report(hdev, data->writeReport,
246                                                 data->output_report_size);
247                 if (ret != data->output_report_size) {
248                         clear_bit(RMI_READ_REQUEST_PENDING, &data->flags);
249                         dev_err(&hdev->dev,
250                                 "failed to write request output report (%d)\n",
251                                 ret);
252                         goto exit;
253                 }
254
255                 bytes_read = 0;
256                 bytes_needed = len;
257                 while (bytes_read < len) {
258                         if (!wait_event_timeout(data->wait,
259                                 test_bit(RMI_READ_DATA_PENDING, &data->flags),
260                                         msecs_to_jiffies(1000))) {
261                                 hid_warn(hdev, "%s: timeout elapsed\n",
262                                          __func__);
263                                 ret = -EAGAIN;
264                                 break;
265                         }
266
267                         read_input_count = data->readReport[1];
268                         memcpy(buf + bytes_read, &data->readReport[2],
269                                 read_input_count < bytes_needed ?
270                                         read_input_count : bytes_needed);
271
272                         bytes_read += read_input_count;
273                         bytes_needed -= read_input_count;
274                         clear_bit(RMI_READ_DATA_PENDING, &data->flags);
275                 }
276
277                 if (ret >= 0) {
278                         ret = 0;
279                         break;
280                 }
281         }
282
283 exit:
284         clear_bit(RMI_READ_REQUEST_PENDING, &data->flags);
285         mutex_unlock(&data->page_mutex);
286         return ret;
287 }
288
289 static inline int rmi_read(struct hid_device *hdev, u16 addr, void *buf)
290 {
291         return rmi_read_block(hdev, addr, buf, 1);
292 }
293
294 static int rmi_write_block(struct hid_device *hdev, u16 addr, void *buf,
295                 const int len)
296 {
297         struct rmi_data *data = hid_get_drvdata(hdev);
298         int ret;
299
300         mutex_lock(&data->page_mutex);
301
302         if (RMI_PAGE(addr) != data->page) {
303                 ret = rmi_set_page(hdev, RMI_PAGE(addr));
304                 if (ret < 0)
305                         goto exit;
306         }
307
308         data->writeReport[0] = RMI_WRITE_REPORT_ID;
309         data->writeReport[1] = len;
310         data->writeReport[2] = addr & 0xFF;
311         data->writeReport[3] = (addr >> 8) & 0xFF;
312         memcpy(&data->writeReport[4], buf, len);
313
314         ret = rmi_write_report(hdev, data->writeReport,
315                                         data->output_report_size);
316         if (ret < 0) {
317                 dev_err(&hdev->dev,
318                         "failed to write request output report (%d)\n",
319                         ret);
320                 goto exit;
321         }
322         ret = 0;
323
324 exit:
325         mutex_unlock(&data->page_mutex);
326         return ret;
327 }
328
329 static inline int rmi_write(struct hid_device *hdev, u16 addr, void *buf)
330 {
331         return rmi_write_block(hdev, addr, buf, 1);
332 }
333
334 static void rmi_f11_process_touch(struct rmi_data *hdata, int slot,
335                 u8 finger_state, u8 *touch_data)
336 {
337         int x, y, wx, wy;
338         int wide, major, minor;
339         int z;
340
341         input_mt_slot(hdata->input, slot);
342         input_mt_report_slot_state(hdata->input, MT_TOOL_FINGER,
343                         finger_state == 0x01);
344         if (finger_state == 0x01) {
345                 x = (touch_data[0] << 4) | (touch_data[2] & 0x0F);
346                 y = (touch_data[1] << 4) | (touch_data[2] >> 4);
347                 wx = touch_data[3] & 0x0F;
348                 wy = touch_data[3] >> 4;
349                 wide = (wx > wy);
350                 major = max(wx, wy);
351                 minor = min(wx, wy);
352                 z = touch_data[4];
353
354                 /* y is inverted */
355                 y = hdata->max_y - y;
356
357                 input_event(hdata->input, EV_ABS, ABS_MT_POSITION_X, x);
358                 input_event(hdata->input, EV_ABS, ABS_MT_POSITION_Y, y);
359                 input_event(hdata->input, EV_ABS, ABS_MT_ORIENTATION, wide);
360                 input_event(hdata->input, EV_ABS, ABS_MT_PRESSURE, z);
361                 input_event(hdata->input, EV_ABS, ABS_MT_TOUCH_MAJOR, major);
362                 input_event(hdata->input, EV_ABS, ABS_MT_TOUCH_MINOR, minor);
363         }
364 }
365
366 static int rmi_reset_attn_mode(struct hid_device *hdev)
367 {
368         struct rmi_data *data = hid_get_drvdata(hdev);
369         int ret;
370
371         ret = rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS);
372         if (ret)
373                 return ret;
374
375         if (data->restore_interrupt_mask) {
376                 ret = rmi_write(hdev, data->f01.control_base_addr + 1,
377                                 &data->interrupt_enable_mask);
378                 if (ret) {
379                         hid_err(hdev, "can not write F01 control register\n");
380                         return ret;
381                 }
382         }
383
384         return 0;
385 }
386
387 static void rmi_reset_work(struct work_struct *work)
388 {
389         struct rmi_data *hdata = container_of(work, struct rmi_data,
390                                                 reset_work);
391
392         /* switch the device to RMI if we receive a generic mouse report */
393         rmi_reset_attn_mode(hdata->hdev);
394 }
395
396 static inline int rmi_schedule_reset(struct hid_device *hdev)
397 {
398         struct rmi_data *hdata = hid_get_drvdata(hdev);
399         return schedule_work(&hdata->reset_work);
400 }
401
402 static int rmi_f11_input_event(struct hid_device *hdev, u8 irq, u8 *data,
403                 int size)
404 {
405         struct rmi_data *hdata = hid_get_drvdata(hdev);
406         int offset;
407         int i;
408
409         if (!(irq & hdata->f11.irq_mask) || size <= 0)
410                 return 0;
411
412         offset = (hdata->max_fingers >> 2) + 1;
413         for (i = 0; i < hdata->max_fingers; i++) {
414                 int fs_byte_position = i >> 2;
415                 int fs_bit_position = (i & 0x3) << 1;
416                 int finger_state = (data[fs_byte_position] >> fs_bit_position) &
417                                         0x03;
418                 int position = offset + 5 * i;
419
420                 if (position + 5 > size) {
421                         /* partial report, go on with what we received */
422                         printk_once(KERN_WARNING
423                                 "%s %s: Detected incomplete finger report. Finger reports may occasionally get dropped on this platform.\n",
424                                  dev_driver_string(&hdev->dev),
425                                  dev_name(&hdev->dev));
426                         hid_dbg(hdev, "Incomplete finger report\n");
427                         break;
428                 }
429
430                 rmi_f11_process_touch(hdata, i, finger_state, &data[position]);
431         }
432         input_mt_sync_frame(hdata->input);
433         input_sync(hdata->input);
434         return hdata->f11.report_size;
435 }
436
437 static int rmi_f30_input_event(struct hid_device *hdev, u8 irq, u8 *data,
438                 int size)
439 {
440         struct rmi_data *hdata = hid_get_drvdata(hdev);
441         int i;
442         int button = 0;
443         bool value;
444
445         if (!(irq & hdata->f30.irq_mask))
446                 return 0;
447
448         if (size < (int)hdata->f30.report_size) {
449                 hid_warn(hdev, "Click Button pressed, but the click data is missing\n");
450                 return 0;
451         }
452
453         for (i = 0; i < hdata->gpio_led_count; i++) {
454                 if (test_bit(i, &hdata->button_mask)) {
455                         value = (data[i / 8] >> (i & 0x07)) & BIT(0);
456                         if (test_bit(i, &hdata->button_state_mask))
457                                 value = !value;
458                         input_event(hdata->input, EV_KEY, BTN_LEFT + button++,
459                                         value);
460                 }
461         }
462         return hdata->f30.report_size;
463 }
464
465 static int rmi_input_event(struct hid_device *hdev, u8 *data, int size)
466 {
467         struct rmi_data *hdata = hid_get_drvdata(hdev);
468         unsigned long irq_mask = 0;
469         unsigned index = 2;
470
471         if (!(test_bit(RMI_STARTED, &hdata->flags)))
472                 return 0;
473
474         irq_mask |= hdata->f11.irq_mask;
475         irq_mask |= hdata->f30.irq_mask;
476
477         if (data[1] & ~irq_mask)
478                 hid_dbg(hdev, "unknown intr source:%02lx %s:%d\n",
479                         data[1] & ~irq_mask, __FILE__, __LINE__);
480
481         if (hdata->f11.interrupt_base < hdata->f30.interrupt_base) {
482                 index += rmi_f11_input_event(hdev, data[1], &data[index],
483                                 size - index);
484                 index += rmi_f30_input_event(hdev, data[1], &data[index],
485                                 size - index);
486         } else {
487                 index += rmi_f30_input_event(hdev, data[1], &data[index],
488                                 size - index);
489                 index += rmi_f11_input_event(hdev, data[1], &data[index],
490                                 size - index);
491         }
492
493         return 1;
494 }
495
496 static int rmi_read_data_event(struct hid_device *hdev, u8 *data, int size)
497 {
498         struct rmi_data *hdata = hid_get_drvdata(hdev);
499
500         if (!test_bit(RMI_READ_REQUEST_PENDING, &hdata->flags)) {
501                 hid_dbg(hdev, "no read request pending\n");
502                 return 0;
503         }
504
505         memcpy(hdata->readReport, data, size < hdata->input_report_size ?
506                         size : hdata->input_report_size);
507         set_bit(RMI_READ_DATA_PENDING, &hdata->flags);
508         wake_up(&hdata->wait);
509
510         return 1;
511 }
512
513 static int rmi_check_sanity(struct hid_device *hdev, u8 *data, int size)
514 {
515         int valid_size = size;
516         /*
517          * On the Dell XPS 13 9333, the bus sometimes get confused and fills
518          * the report with a sentinel value "ff". Synaptics told us that such
519          * behavior does not comes from the touchpad itself, so we filter out
520          * such reports here.
521          */
522
523         while ((data[valid_size - 1] == 0xff) && valid_size > 0)
524                 valid_size--;
525
526         return valid_size;
527 }
528
529 static int rmi_raw_event(struct hid_device *hdev,
530                 struct hid_report *report, u8 *data, int size)
531 {
532         size = rmi_check_sanity(hdev, data, size);
533         if (size < 2)
534                 return 0;
535
536         switch (data[0]) {
537         case RMI_READ_DATA_REPORT_ID:
538                 return rmi_read_data_event(hdev, data, size);
539         case RMI_ATTN_REPORT_ID:
540                 return rmi_input_event(hdev, data, size);
541         default:
542                 return 1;
543         }
544
545         return 0;
546 }
547
548 static int rmi_event(struct hid_device *hdev, struct hid_field *field,
549                         struct hid_usage *usage, __s32 value)
550 {
551         struct rmi_data *data = hid_get_drvdata(hdev);
552
553         if ((data->device_flags & RMI_DEVICE) &&
554             (field->application == HID_GD_POINTER ||
555             field->application == HID_GD_MOUSE)) {
556                 if (data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS) {
557                         if ((usage->hid & HID_USAGE_PAGE) == HID_UP_BUTTON)
558                                 return 0;
559
560                         if ((usage->hid == HID_GD_X || usage->hid == HID_GD_Y)
561                             && !value)
562                                 return 1;
563                 }
564
565                 rmi_schedule_reset(hdev);
566                 return 1;
567         }
568
569         return 0;
570 }
571
572 #ifdef CONFIG_PM
573 static int rmi_set_sleep_mode(struct hid_device *hdev, int sleep_mode)
574 {
575         struct rmi_data *data = hid_get_drvdata(hdev);
576         int ret;
577         u8 f01_ctrl0;
578
579         f01_ctrl0 = (data->f01_ctrl0 & ~0x3) | sleep_mode;
580
581         ret = rmi_write(hdev, data->f01.control_base_addr,
582                         &f01_ctrl0);
583         if (ret) {
584                 hid_err(hdev, "can not write sleep mode\n");
585                 return ret;
586         }
587
588         return 0;
589 }
590
591 static int rmi_suspend(struct hid_device *hdev, pm_message_t message)
592 {
593         struct rmi_data *data = hid_get_drvdata(hdev);
594         int ret;
595         u8 buf[RMI_F11_CTRL_REG_COUNT];
596
597         ret = rmi_read_block(hdev, data->f11.control_base_addr, buf,
598                                 RMI_F11_CTRL_REG_COUNT);
599         if (ret)
600                 hid_warn(hdev, "can not read F11 control registers\n");
601         else
602                 memcpy(data->f11_ctrl_regs, buf, RMI_F11_CTRL_REG_COUNT);
603
604
605         if (!device_may_wakeup(hdev->dev.parent))
606                 return rmi_set_sleep_mode(hdev, RMI_SLEEP_DEEP_SLEEP);
607
608         return 0;
609 }
610
611 static int rmi_post_reset(struct hid_device *hdev)
612 {
613         struct rmi_data *data = hid_get_drvdata(hdev);
614         int ret;
615
616         ret = rmi_reset_attn_mode(hdev);
617         if (ret) {
618                 hid_err(hdev, "can not set rmi mode\n");
619                 return ret;
620         }
621
622         if (data->read_f11_ctrl_regs) {
623                 ret = rmi_write_block(hdev, data->f11.control_base_addr,
624                                 data->f11_ctrl_regs, RMI_F11_CTRL_REG_COUNT);
625                 if (ret)
626                         hid_warn(hdev,
627                                 "can not write F11 control registers after reset\n");
628         }
629
630         if (!device_may_wakeup(hdev->dev.parent)) {
631                 ret = rmi_set_sleep_mode(hdev, RMI_SLEEP_NORMAL);
632                 if (ret) {
633                         hid_err(hdev, "can not write sleep mode\n");
634                         return ret;
635                 }
636         }
637
638         return ret;
639 }
640
641 static int rmi_post_resume(struct hid_device *hdev)
642 {
643         return rmi_reset_attn_mode(hdev);
644 }
645 #endif /* CONFIG_PM */
646
647 #define RMI4_MAX_PAGE 0xff
648 #define RMI4_PAGE_SIZE 0x0100
649
650 #define PDT_START_SCAN_LOCATION 0x00e9
651 #define PDT_END_SCAN_LOCATION   0x0005
652 #define RMI4_END_OF_PDT(id) ((id) == 0x00 || (id) == 0xff)
653
654 struct pdt_entry {
655         u8 query_base_addr:8;
656         u8 command_base_addr:8;
657         u8 control_base_addr:8;
658         u8 data_base_addr:8;
659         u8 interrupt_source_count:3;
660         u8 bits3and4:2;
661         u8 function_version:2;
662         u8 bit7:1;
663         u8 function_number:8;
664 } __attribute__((__packed__));
665
666 static inline unsigned long rmi_gen_mask(unsigned irq_base, unsigned irq_count)
667 {
668         return GENMASK(irq_count + irq_base - 1, irq_base);
669 }
670
671 static void rmi_register_function(struct rmi_data *data,
672         struct pdt_entry *pdt_entry, int page, unsigned interrupt_count)
673 {
674         struct rmi_function *f = NULL;
675         u16 page_base = page << 8;
676
677         switch (pdt_entry->function_number) {
678         case 0x01:
679                 f = &data->f01;
680                 break;
681         case 0x11:
682                 f = &data->f11;
683                 break;
684         case 0x30:
685                 f = &data->f30;
686                 break;
687         }
688
689         if (f) {
690                 f->page = page;
691                 f->query_base_addr = page_base | pdt_entry->query_base_addr;
692                 f->command_base_addr = page_base | pdt_entry->command_base_addr;
693                 f->control_base_addr = page_base | pdt_entry->control_base_addr;
694                 f->data_base_addr = page_base | pdt_entry->data_base_addr;
695                 f->interrupt_base = interrupt_count;
696                 f->interrupt_count = pdt_entry->interrupt_source_count;
697                 f->irq_mask = rmi_gen_mask(f->interrupt_base,
698                                                 f->interrupt_count);
699                 data->interrupt_enable_mask |= f->irq_mask;
700         }
701 }
702
703 static int rmi_scan_pdt(struct hid_device *hdev)
704 {
705         struct rmi_data *data = hid_get_drvdata(hdev);
706         struct pdt_entry entry;
707         int page;
708         bool page_has_function;
709         int i;
710         int retval;
711         int interrupt = 0;
712         u16 page_start, pdt_start , pdt_end;
713
714         hid_info(hdev, "Scanning PDT...\n");
715
716         for (page = 0; (page <= RMI4_MAX_PAGE); page++) {
717                 page_start = RMI4_PAGE_SIZE * page;
718                 pdt_start = page_start + PDT_START_SCAN_LOCATION;
719                 pdt_end = page_start + PDT_END_SCAN_LOCATION;
720
721                 page_has_function = false;
722                 for (i = pdt_start; i >= pdt_end; i -= sizeof(entry)) {
723                         retval = rmi_read_block(hdev, i, &entry, sizeof(entry));
724                         if (retval) {
725                                 hid_err(hdev,
726                                         "Read of PDT entry at %#06x failed.\n",
727                                         i);
728                                 goto error_exit;
729                         }
730
731                         if (RMI4_END_OF_PDT(entry.function_number))
732                                 break;
733
734                         page_has_function = true;
735
736                         hid_info(hdev, "Found F%02X on page %#04x\n",
737                                         entry.function_number, page);
738
739                         rmi_register_function(data, &entry, page, interrupt);
740                         interrupt += entry.interrupt_source_count;
741                 }
742
743                 if (!page_has_function)
744                         break;
745         }
746
747         hid_info(hdev, "%s: Done with PDT scan.\n", __func__);
748         retval = 0;
749
750 error_exit:
751         return retval;
752 }
753
754 #define RMI_DEVICE_F01_BASIC_QUERY_LEN  11
755
756 static int rmi_populate_f01(struct hid_device *hdev)
757 {
758         struct rmi_data *data = hid_get_drvdata(hdev);
759         u8 basic_queries[RMI_DEVICE_F01_BASIC_QUERY_LEN];
760         u8 info[3];
761         int ret;
762         bool has_query42;
763         bool has_lts;
764         bool has_sensor_id;
765         bool has_ds4_queries = false;
766         bool has_build_id_query = false;
767         bool has_package_id_query = false;
768         u16 query_offset = data->f01.query_base_addr;
769         u16 prod_info_addr;
770         u8 ds4_query_len;
771
772         ret = rmi_read_block(hdev, query_offset, basic_queries,
773                                 RMI_DEVICE_F01_BASIC_QUERY_LEN);
774         if (ret) {
775                 hid_err(hdev, "Can not read basic queries from Function 0x1.\n");
776                 return ret;
777         }
778
779         has_lts = !!(basic_queries[0] & BIT(2));
780         has_sensor_id = !!(basic_queries[1] & BIT(3));
781         has_query42 = !!(basic_queries[1] & BIT(7));
782
783         query_offset += 11;
784         prod_info_addr = query_offset + 6;
785         query_offset += 10;
786
787         if (has_lts)
788                 query_offset += 20;
789
790         if (has_sensor_id)
791                 query_offset++;
792
793         if (has_query42) {
794                 ret = rmi_read(hdev, query_offset, info);
795                 if (ret) {
796                         hid_err(hdev, "Can not read query42.\n");
797                         return ret;
798                 }
799                 has_ds4_queries = !!(info[0] & BIT(0));
800                 query_offset++;
801         }
802
803         if (has_ds4_queries) {
804                 ret = rmi_read(hdev, query_offset, &ds4_query_len);
805                 if (ret) {
806                         hid_err(hdev, "Can not read DS4 Query length.\n");
807                         return ret;
808                 }
809                 query_offset++;
810
811                 if (ds4_query_len > 0) {
812                         ret = rmi_read(hdev, query_offset, info);
813                         if (ret) {
814                                 hid_err(hdev, "Can not read DS4 query.\n");
815                                 return ret;
816                         }
817
818                         has_package_id_query = !!(info[0] & BIT(0));
819                         has_build_id_query = !!(info[0] & BIT(1));
820                 }
821         }
822
823         if (has_package_id_query)
824                 prod_info_addr++;
825
826         if (has_build_id_query) {
827                 ret = rmi_read_block(hdev, prod_info_addr, info, 3);
828                 if (ret) {
829                         hid_err(hdev, "Can not read product info.\n");
830                         return ret;
831                 }
832
833                 data->firmware_id = info[1] << 8 | info[0];
834                 data->firmware_id += info[2] * 65536;
835         }
836
837         ret = rmi_read_block(hdev, data->f01.control_base_addr, info,
838                                 2);
839
840         if (ret) {
841                 hid_err(hdev, "can not read f01 ctrl registers\n");
842                 return ret;
843         }
844
845         data->f01_ctrl0 = info[0];
846
847         if (!info[1]) {
848                 /*
849                  * Do to a firmware bug in some touchpads the F01 interrupt
850                  * enable control register will be cleared on reset.
851                  * This will stop the touchpad from reporting data, so
852                  * if F01 CTRL1 is 0 then we need to explicitly enable
853                  * interrupts for the functions we want data for.
854                  */
855                 data->restore_interrupt_mask = true;
856
857                 ret = rmi_write(hdev, data->f01.control_base_addr + 1,
858                                 &data->interrupt_enable_mask);
859                 if (ret) {
860                         hid_err(hdev, "can not write to control reg 1: %d.\n",
861                                 ret);
862                         return ret;
863                 }
864         }
865
866         return 0;
867 }
868
869 static int rmi_populate_f11(struct hid_device *hdev)
870 {
871         struct rmi_data *data = hid_get_drvdata(hdev);
872         u8 buf[20];
873         int ret;
874         bool has_query9;
875         bool has_query10 = false;
876         bool has_query11;
877         bool has_query12;
878         bool has_query27;
879         bool has_query28;
880         bool has_query36 = false;
881         bool has_physical_props;
882         bool has_gestures;
883         bool has_rel;
884         bool has_data40 = false;
885         bool has_dribble = false;
886         bool has_palm_detect = false;
887         unsigned x_size, y_size;
888         u16 query_offset;
889
890         if (!data->f11.query_base_addr) {
891                 hid_err(hdev, "No 2D sensor found, giving up.\n");
892                 return -ENODEV;
893         }
894
895         /* query 0 contains some useful information */
896         ret = rmi_read(hdev, data->f11.query_base_addr, buf);
897         if (ret) {
898                 hid_err(hdev, "can not get query 0: %d.\n", ret);
899                 return ret;
900         }
901         has_query9 = !!(buf[0] & BIT(3));
902         has_query11 = !!(buf[0] & BIT(4));
903         has_query12 = !!(buf[0] & BIT(5));
904         has_query27 = !!(buf[0] & BIT(6));
905         has_query28 = !!(buf[0] & BIT(7));
906
907         /* query 1 to get the max number of fingers */
908         ret = rmi_read(hdev, data->f11.query_base_addr + 1, buf);
909         if (ret) {
910                 hid_err(hdev, "can not get NumberOfFingers: %d.\n", ret);
911                 return ret;
912         }
913         data->max_fingers = (buf[0] & 0x07) + 1;
914         if (data->max_fingers > 5)
915                 data->max_fingers = 10;
916
917         data->f11.report_size = data->max_fingers * 5 +
918                                 DIV_ROUND_UP(data->max_fingers, 4);
919
920         if (!(buf[0] & BIT(4))) {
921                 hid_err(hdev, "No absolute events, giving up.\n");
922                 return -ENODEV;
923         }
924
925         has_rel = !!(buf[0] & BIT(3));
926         has_gestures = !!(buf[0] & BIT(5));
927
928         ret = rmi_read(hdev, data->f11.query_base_addr + 5, buf);
929         if (ret) {
930                 hid_err(hdev, "can not get absolute data sources: %d.\n", ret);
931                 return ret;
932         }
933
934         has_dribble = !!(buf[0] & BIT(4));
935
936         /*
937          * At least 4 queries are guaranteed to be present in F11
938          * +1 for query 5 which is present since absolute events are
939          * reported and +1 for query 12.
940          */
941         query_offset = 6;
942
943         if (has_rel)
944                 ++query_offset; /* query 6 is present */
945
946         if (has_gestures) {
947                 /* query 8 to find out if query 10 exists */
948                 ret = rmi_read(hdev,
949                         data->f11.query_base_addr + query_offset + 1, buf);
950                 if (ret) {
951                         hid_err(hdev, "can not read gesture information: %d.\n",
952                                 ret);
953                         return ret;
954                 }
955                 has_palm_detect = !!(buf[0] & BIT(0));
956                 has_query10 = !!(buf[0] & BIT(2));
957
958                 query_offset += 2; /* query 7 and 8 are present */
959         }
960
961         if (has_query9)
962                 ++query_offset;
963
964         if (has_query10)
965                 ++query_offset;
966
967         if (has_query11)
968                 ++query_offset;
969
970         /* query 12 to know if the physical properties are reported */
971         if (has_query12) {
972                 ret = rmi_read(hdev, data->f11.query_base_addr
973                                 + query_offset, buf);
974                 if (ret) {
975                         hid_err(hdev, "can not get query 12: %d.\n", ret);
976                         return ret;
977                 }
978                 has_physical_props = !!(buf[0] & BIT(5));
979
980                 if (has_physical_props) {
981                         query_offset += 1;
982                         ret = rmi_read_block(hdev,
983                                         data->f11.query_base_addr
984                                                 + query_offset, buf, 4);
985                         if (ret) {
986                                 hid_err(hdev, "can not read query 15-18: %d.\n",
987                                         ret);
988                                 return ret;
989                         }
990
991                         x_size = buf[0] | (buf[1] << 8);
992                         y_size = buf[2] | (buf[3] << 8);
993
994                         data->x_size_mm = DIV_ROUND_CLOSEST(x_size, 10);
995                         data->y_size_mm = DIV_ROUND_CLOSEST(y_size, 10);
996
997                         hid_info(hdev, "%s: size in mm: %d x %d\n",
998                                  __func__, data->x_size_mm, data->y_size_mm);
999
1000                         /*
1001                          * query 15 - 18 contain the size of the sensor
1002                          * and query 19 - 26 contain bezel dimensions
1003                          */
1004                         query_offset += 12;
1005                 }
1006         }
1007
1008         if (has_query27)
1009                 ++query_offset;
1010
1011         if (has_query28) {
1012                 ret = rmi_read(hdev, data->f11.query_base_addr
1013                                 + query_offset, buf);
1014                 if (ret) {
1015                         hid_err(hdev, "can not get query 28: %d.\n", ret);
1016                         return ret;
1017                 }
1018
1019                 has_query36 = !!(buf[0] & BIT(6));
1020         }
1021
1022         if (has_query36) {
1023                 query_offset += 2;
1024                 ret = rmi_read(hdev, data->f11.query_base_addr
1025                                 + query_offset, buf);
1026                 if (ret) {
1027                         hid_err(hdev, "can not get query 36: %d.\n", ret);
1028                         return ret;
1029                 }
1030
1031                 has_data40 = !!(buf[0] & BIT(5));
1032         }
1033
1034
1035         if (has_data40)
1036                 data->f11.report_size += data->max_fingers * 2;
1037
1038         ret = rmi_read_block(hdev, data->f11.control_base_addr,
1039                         data->f11_ctrl_regs, RMI_F11_CTRL_REG_COUNT);
1040         if (ret) {
1041                 hid_err(hdev, "can not read ctrl block of size 11: %d.\n", ret);
1042                 return ret;
1043         }
1044
1045         /* data->f11_ctrl_regs now contains valid register data */
1046         data->read_f11_ctrl_regs = true;
1047
1048         data->max_x = data->f11_ctrl_regs[6] | (data->f11_ctrl_regs[7] << 8);
1049         data->max_y = data->f11_ctrl_regs[8] | (data->f11_ctrl_regs[9] << 8);
1050
1051         if (has_dribble) {
1052                 data->f11_ctrl_regs[0] = data->f11_ctrl_regs[0] & ~BIT(6);
1053                 ret = rmi_write(hdev, data->f11.control_base_addr,
1054                                 data->f11_ctrl_regs);
1055                 if (ret) {
1056                         hid_err(hdev, "can not write to control reg 0: %d.\n",
1057                                 ret);
1058                         return ret;
1059                 }
1060         }
1061
1062         if (has_palm_detect) {
1063                 data->f11_ctrl_regs[11] = data->f11_ctrl_regs[11] & ~BIT(0);
1064                 ret = rmi_write(hdev, data->f11.control_base_addr + 11,
1065                                 &data->f11_ctrl_regs[11]);
1066                 if (ret) {
1067                         hid_err(hdev, "can not write to control reg 11: %d.\n",
1068                                 ret);
1069                         return ret;
1070                 }
1071         }
1072
1073         return 0;
1074 }
1075
1076 static int rmi_populate_f30(struct hid_device *hdev)
1077 {
1078         struct rmi_data *data = hid_get_drvdata(hdev);
1079         u8 buf[20];
1080         int ret;
1081         bool has_gpio, has_led;
1082         unsigned bytes_per_ctrl;
1083         u8 ctrl2_addr;
1084         int ctrl2_3_length;
1085         int i;
1086
1087         /* function F30 is for physical buttons */
1088         if (!data->f30.query_base_addr) {
1089                 hid_err(hdev, "No GPIO/LEDs found, giving up.\n");
1090                 return -ENODEV;
1091         }
1092
1093         ret = rmi_read_block(hdev, data->f30.query_base_addr, buf, 2);
1094         if (ret) {
1095                 hid_err(hdev, "can not get F30 query registers: %d.\n", ret);
1096                 return ret;
1097         }
1098
1099         has_gpio = !!(buf[0] & BIT(3));
1100         has_led = !!(buf[0] & BIT(2));
1101         data->gpio_led_count = buf[1] & 0x1f;
1102
1103         /* retrieve ctrl 2 & 3 registers */
1104         bytes_per_ctrl = (data->gpio_led_count + 7) / 8;
1105         /* Ctrl0 is present only if both has_gpio and has_led are set*/
1106         ctrl2_addr = (has_gpio && has_led) ? bytes_per_ctrl : 0;
1107         /* Ctrl1 is always be present */
1108         ctrl2_addr += bytes_per_ctrl;
1109         ctrl2_3_length = 2 * bytes_per_ctrl;
1110
1111         data->f30.report_size = bytes_per_ctrl;
1112
1113         ret = rmi_read_block(hdev, data->f30.control_base_addr + ctrl2_addr,
1114                                 buf, ctrl2_3_length);
1115         if (ret) {
1116                 hid_err(hdev, "can not read ctrl 2&3 block of size %d: %d.\n",
1117                         ctrl2_3_length, ret);
1118                 return ret;
1119         }
1120
1121         for (i = 0; i < data->gpio_led_count; i++) {
1122                 int byte_position = i >> 3;
1123                 int bit_position = i & 0x07;
1124                 u8 dir_byte = buf[byte_position];
1125                 u8 data_byte = buf[byte_position + bytes_per_ctrl];
1126                 bool dir = (dir_byte >> bit_position) & BIT(0);
1127                 bool dat = (data_byte >> bit_position) & BIT(0);
1128
1129                 if (dir == 0) {
1130                         /* input mode */
1131                         if (dat) {
1132                                 /* actual buttons have pull up resistor */
1133                                 data->button_count++;
1134                                 set_bit(i, &data->button_mask);
1135                                 set_bit(i, &data->button_state_mask);
1136                         }
1137                 }
1138
1139         }
1140
1141         return 0;
1142 }
1143
1144 static int rmi_populate(struct hid_device *hdev)
1145 {
1146         struct rmi_data *data = hid_get_drvdata(hdev);
1147         int ret;
1148
1149         ret = rmi_scan_pdt(hdev);
1150         if (ret) {
1151                 hid_err(hdev, "PDT scan failed with code %d.\n", ret);
1152                 return ret;
1153         }
1154
1155         ret = rmi_populate_f01(hdev);
1156         if (ret) {
1157                 hid_err(hdev, "Error while initializing F01 (%d).\n", ret);
1158                 return ret;
1159         }
1160
1161         ret = rmi_populate_f11(hdev);
1162         if (ret) {
1163                 hid_err(hdev, "Error while initializing F11 (%d).\n", ret);
1164                 return ret;
1165         }
1166
1167         if (!(data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS)) {
1168                 ret = rmi_populate_f30(hdev);
1169                 if (ret)
1170                         hid_warn(hdev, "Error while initializing F30 (%d).\n", ret);
1171         }
1172
1173         return 0;
1174 }
1175
1176 static int rmi_input_configured(struct hid_device *hdev, struct hid_input *hi)
1177 {
1178         struct rmi_data *data = hid_get_drvdata(hdev);
1179         struct input_dev *input = hi->input;
1180         int ret;
1181         int res_x, res_y, i;
1182
1183         data->input = input;
1184
1185         hid_dbg(hdev, "Opening low level driver\n");
1186         ret = hid_hw_open(hdev);
1187         if (ret)
1188                 return ret;
1189
1190         if (!(data->device_flags & RMI_DEVICE))
1191                 return 0;
1192
1193         /* Allow incoming hid reports */
1194         hid_device_io_start(hdev);
1195
1196         ret = rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS);
1197         if (ret < 0) {
1198                 dev_err(&hdev->dev, "failed to set rmi mode\n");
1199                 goto exit;
1200         }
1201
1202         ret = rmi_set_page(hdev, 0);
1203         if (ret < 0) {
1204                 dev_err(&hdev->dev, "failed to set page select to 0.\n");
1205                 goto exit;
1206         }
1207
1208         ret = rmi_populate(hdev);
1209         if (ret)
1210                 goto exit;
1211
1212         hid_info(hdev, "firmware id: %ld\n", data->firmware_id);
1213
1214         __set_bit(EV_ABS, input->evbit);
1215         input_set_abs_params(input, ABS_MT_POSITION_X, 1, data->max_x, 0, 0);
1216         input_set_abs_params(input, ABS_MT_POSITION_Y, 1, data->max_y, 0, 0);
1217
1218         if (data->x_size_mm && data->y_size_mm) {
1219                 res_x = (data->max_x - 1) / data->x_size_mm;
1220                 res_y = (data->max_y - 1) / data->y_size_mm;
1221
1222                 input_abs_set_res(input, ABS_MT_POSITION_X, res_x);
1223                 input_abs_set_res(input, ABS_MT_POSITION_Y, res_y);
1224         }
1225
1226         input_set_abs_params(input, ABS_MT_ORIENTATION, 0, 1, 0, 0);
1227         input_set_abs_params(input, ABS_MT_PRESSURE, 0, 0xff, 0, 0);
1228         input_set_abs_params(input, ABS_MT_TOUCH_MAJOR, 0, 0x0f, 0, 0);
1229         input_set_abs_params(input, ABS_MT_TOUCH_MINOR, 0, 0x0f, 0, 0);
1230
1231         ret = input_mt_init_slots(input, data->max_fingers, INPUT_MT_POINTER);
1232         if (ret < 0)
1233                 goto exit;
1234
1235         if (data->button_count) {
1236                 __set_bit(EV_KEY, input->evbit);
1237                 for (i = 0; i < data->button_count; i++)
1238                         __set_bit(BTN_LEFT + i, input->keybit);
1239
1240                 if (data->button_count == 1)
1241                         __set_bit(INPUT_PROP_BUTTONPAD, input->propbit);
1242         }
1243
1244         set_bit(RMI_STARTED, &data->flags);
1245
1246 exit:
1247         hid_device_io_stop(hdev);
1248         hid_hw_close(hdev);
1249         return ret;
1250 }
1251
1252 static int rmi_input_mapping(struct hid_device *hdev,
1253                 struct hid_input *hi, struct hid_field *field,
1254                 struct hid_usage *usage, unsigned long **bit, int *max)
1255 {
1256         struct rmi_data *data = hid_get_drvdata(hdev);
1257
1258         /*
1259          * we want to make HID ignore the advertised HID collection
1260          * for RMI deivces
1261          */
1262         if (data->device_flags & RMI_DEVICE) {
1263                 if ((data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS) &&
1264                     ((usage->hid & HID_USAGE_PAGE) == HID_UP_BUTTON))
1265                         return 0;
1266
1267                 return -1;
1268         }
1269
1270         return 0;
1271 }
1272
1273 static int rmi_check_valid_report_id(struct hid_device *hdev, unsigned type,
1274                 unsigned id, struct hid_report **report)
1275 {
1276         int i;
1277
1278         *report = hdev->report_enum[type].report_id_hash[id];
1279         if (*report) {
1280                 for (i = 0; i < (*report)->maxfield; i++) {
1281                         unsigned app = (*report)->field[i]->application;
1282                         if ((app & HID_USAGE_PAGE) >= HID_UP_MSVENDOR)
1283                                 return 1;
1284                 }
1285         }
1286
1287         return 0;
1288 }
1289
1290 static int rmi_probe(struct hid_device *hdev, const struct hid_device_id *id)
1291 {
1292         struct rmi_data *data = NULL;
1293         int ret;
1294         size_t alloc_size;
1295         struct hid_report *input_report;
1296         struct hid_report *output_report;
1297         struct hid_report *feature_report;
1298
1299         data = devm_kzalloc(&hdev->dev, sizeof(struct rmi_data), GFP_KERNEL);
1300         if (!data)
1301                 return -ENOMEM;
1302
1303         INIT_WORK(&data->reset_work, rmi_reset_work);
1304         data->hdev = hdev;
1305
1306         hid_set_drvdata(hdev, data);
1307
1308         hdev->quirks |= HID_QUIRK_NO_INIT_REPORTS;
1309
1310         ret = hid_parse(hdev);
1311         if (ret) {
1312                 hid_err(hdev, "parse failed\n");
1313                 return ret;
1314         }
1315
1316         if (id->driver_data)
1317                 data->device_flags = id->driver_data;
1318
1319         /*
1320          * Check for the RMI specific report ids. If they are misisng
1321          * simply return and let the events be processed by hid-input
1322          */
1323         if (!rmi_check_valid_report_id(hdev, HID_FEATURE_REPORT,
1324             RMI_SET_RMI_MODE_REPORT_ID, &feature_report)) {
1325                 hid_dbg(hdev, "device does not have set mode feature report\n");
1326                 goto start;
1327         }
1328
1329         if (!rmi_check_valid_report_id(hdev, HID_INPUT_REPORT,
1330             RMI_ATTN_REPORT_ID, &input_report)) {
1331                 hid_dbg(hdev, "device does not have attention input report\n");
1332                 goto start;
1333         }
1334
1335         data->input_report_size = hid_report_len(input_report);
1336
1337         if (!rmi_check_valid_report_id(hdev, HID_OUTPUT_REPORT,
1338             RMI_WRITE_REPORT_ID, &output_report)) {
1339                 hid_dbg(hdev,
1340                         "device does not have rmi write output report\n");
1341                 goto start;
1342         }
1343
1344         data->output_report_size = hid_report_len(output_report);
1345
1346         data->device_flags |= RMI_DEVICE;
1347         alloc_size = data->output_report_size + data->input_report_size;
1348
1349         data->writeReport = devm_kzalloc(&hdev->dev, alloc_size, GFP_KERNEL);
1350         if (!data->writeReport) {
1351                 ret = -ENOMEM;
1352                 return ret;
1353         }
1354
1355         data->readReport = data->writeReport + data->output_report_size;
1356
1357         init_waitqueue_head(&data->wait);
1358
1359         mutex_init(&data->page_mutex);
1360
1361 start:
1362         ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
1363         if (ret) {
1364                 hid_err(hdev, "hw start failed\n");
1365                 return ret;
1366         }
1367
1368         if ((data->device_flags & RMI_DEVICE) &&
1369             !test_bit(RMI_STARTED, &data->flags))
1370                 /*
1371                  * The device maybe in the bootloader if rmi_input_configured
1372                  * failed to find F11 in the PDT. Print an error, but don't
1373                  * return an error from rmi_probe so that hidraw will be
1374                  * accessible from userspace. That way a userspace tool
1375                  * can be used to reload working firmware on the touchpad.
1376                  */
1377                 hid_err(hdev, "Device failed to be properly configured\n");
1378
1379         return 0;
1380 }
1381
1382 static void rmi_remove(struct hid_device *hdev)
1383 {
1384         struct rmi_data *hdata = hid_get_drvdata(hdev);
1385
1386         clear_bit(RMI_STARTED, &hdata->flags);
1387
1388         hid_hw_stop(hdev);
1389 }
1390
1391 static const struct hid_device_id rmi_id[] = {
1392         { HID_USB_DEVICE(USB_VENDOR_ID_RAZER, USB_DEVICE_ID_RAZER_BLADE_14),
1393                 .driver_data = RMI_DEVICE_HAS_PHYS_BUTTONS },
1394         { HID_DEVICE(HID_BUS_ANY, HID_GROUP_RMI, HID_ANY_ID, HID_ANY_ID) },
1395         { }
1396 };
1397 MODULE_DEVICE_TABLE(hid, rmi_id);
1398
1399 static struct hid_driver rmi_driver = {
1400         .name = "hid-rmi",
1401         .id_table               = rmi_id,
1402         .probe                  = rmi_probe,
1403         .remove                 = rmi_remove,
1404         .event                  = rmi_event,
1405         .raw_event              = rmi_raw_event,
1406         .input_mapping          = rmi_input_mapping,
1407         .input_configured       = rmi_input_configured,
1408 #ifdef CONFIG_PM
1409         .suspend                = rmi_suspend,
1410         .resume                 = rmi_post_resume,
1411         .reset_resume           = rmi_post_reset,
1412 #endif
1413 };
1414
1415 module_hid_driver(rmi_driver);
1416
1417 MODULE_AUTHOR("Andrew Duggan <aduggan@synaptics.com>");
1418 MODULE_DESCRIPTION("RMI HID driver");
1419 MODULE_LICENSE("GPL");