Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / gpu / drm / tegra / dc.c
1 /*
2  * Copyright (C) 2012 Avionic Design GmbH
3  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/reset.h>
14
15 #include <soc/tegra/pmc.h>
16
17 #include "dc.h"
18 #include "drm.h"
19 #include "gem.h"
20
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_helper.h>
23 #include <drm/drm_plane_helper.h>
24
25 struct tegra_dc_soc_info {
26         bool supports_border_color;
27         bool supports_interlacing;
28         bool supports_cursor;
29         bool supports_block_linear;
30         unsigned int pitch_align;
31         bool has_powergate;
32 };
33
34 struct tegra_plane {
35         struct drm_plane base;
36         unsigned int index;
37 };
38
39 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
40 {
41         return container_of(plane, struct tegra_plane, base);
42 }
43
44 struct tegra_dc_state {
45         struct drm_crtc_state base;
46
47         struct clk *clk;
48         unsigned long pclk;
49         unsigned int div;
50
51         u32 planes;
52 };
53
54 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
55 {
56         if (state)
57                 return container_of(state, struct tegra_dc_state, base);
58
59         return NULL;
60 }
61
62 struct tegra_plane_state {
63         struct drm_plane_state base;
64
65         struct tegra_bo_tiling tiling;
66         u32 format;
67         u32 swap;
68 };
69
70 static inline struct tegra_plane_state *
71 to_tegra_plane_state(struct drm_plane_state *state)
72 {
73         if (state)
74                 return container_of(state, struct tegra_plane_state, base);
75
76         return NULL;
77 }
78
79 /*
80  * Reads the active copy of a register. This takes the dc->lock spinlock to
81  * prevent races with the VBLANK processing which also needs access to the
82  * active copy of some registers.
83  */
84 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
85 {
86         unsigned long flags;
87         u32 value;
88
89         spin_lock_irqsave(&dc->lock, flags);
90
91         tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
92         value = tegra_dc_readl(dc, offset);
93         tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
94
95         spin_unlock_irqrestore(&dc->lock, flags);
96         return value;
97 }
98
99 /*
100  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
101  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
102  * Latching happens mmediately if the display controller is in STOP mode or
103  * on the next frame boundary otherwise.
104  *
105  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
106  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
107  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
108  * into the ACTIVE copy, either immediately if the display controller is in
109  * STOP mode, or at the next frame boundary otherwise.
110  */
111 void tegra_dc_commit(struct tegra_dc *dc)
112 {
113         tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
114         tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
115 }
116
117 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
118 {
119         /* assume no swapping of fetched data */
120         if (swap)
121                 *swap = BYTE_SWAP_NOSWAP;
122
123         switch (fourcc) {
124         case DRM_FORMAT_XBGR8888:
125                 *format = WIN_COLOR_DEPTH_R8G8B8A8;
126                 break;
127
128         case DRM_FORMAT_XRGB8888:
129                 *format = WIN_COLOR_DEPTH_B8G8R8A8;
130                 break;
131
132         case DRM_FORMAT_RGB565:
133                 *format = WIN_COLOR_DEPTH_B5G6R5;
134                 break;
135
136         case DRM_FORMAT_UYVY:
137                 *format = WIN_COLOR_DEPTH_YCbCr422;
138                 break;
139
140         case DRM_FORMAT_YUYV:
141                 if (swap)
142                         *swap = BYTE_SWAP_SWAP2;
143
144                 *format = WIN_COLOR_DEPTH_YCbCr422;
145                 break;
146
147         case DRM_FORMAT_YUV420:
148                 *format = WIN_COLOR_DEPTH_YCbCr420P;
149                 break;
150
151         case DRM_FORMAT_YUV422:
152                 *format = WIN_COLOR_DEPTH_YCbCr422P;
153                 break;
154
155         default:
156                 return -EINVAL;
157         }
158
159         return 0;
160 }
161
162 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
163 {
164         switch (format) {
165         case WIN_COLOR_DEPTH_YCbCr422:
166         case WIN_COLOR_DEPTH_YUV422:
167                 if (planar)
168                         *planar = false;
169
170                 return true;
171
172         case WIN_COLOR_DEPTH_YCbCr420P:
173         case WIN_COLOR_DEPTH_YUV420P:
174         case WIN_COLOR_DEPTH_YCbCr422P:
175         case WIN_COLOR_DEPTH_YUV422P:
176         case WIN_COLOR_DEPTH_YCbCr422R:
177         case WIN_COLOR_DEPTH_YUV422R:
178         case WIN_COLOR_DEPTH_YCbCr422RA:
179         case WIN_COLOR_DEPTH_YUV422RA:
180                 if (planar)
181                         *planar = true;
182
183                 return true;
184         }
185
186         if (planar)
187                 *planar = false;
188
189         return false;
190 }
191
192 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
193                                   unsigned int bpp)
194 {
195         fixed20_12 outf = dfixed_init(out);
196         fixed20_12 inf = dfixed_init(in);
197         u32 dda_inc;
198         int max;
199
200         if (v)
201                 max = 15;
202         else {
203                 switch (bpp) {
204                 case 2:
205                         max = 8;
206                         break;
207
208                 default:
209                         WARN_ON_ONCE(1);
210                         /* fallthrough */
211                 case 4:
212                         max = 4;
213                         break;
214                 }
215         }
216
217         outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
218         inf.full -= dfixed_const(1);
219
220         dda_inc = dfixed_div(inf, outf);
221         dda_inc = min_t(u32, dda_inc, dfixed_const(max));
222
223         return dda_inc;
224 }
225
226 static inline u32 compute_initial_dda(unsigned int in)
227 {
228         fixed20_12 inf = dfixed_init(in);
229         return dfixed_frac(inf);
230 }
231
232 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
233                                   const struct tegra_dc_window *window)
234 {
235         unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
236         unsigned long value, flags;
237         bool yuv, planar;
238
239         /*
240          * For YUV planar modes, the number of bytes per pixel takes into
241          * account only the luma component and therefore is 1.
242          */
243         yuv = tegra_dc_format_is_yuv(window->format, &planar);
244         if (!yuv)
245                 bpp = window->bits_per_pixel / 8;
246         else
247                 bpp = planar ? 1 : 2;
248
249         spin_lock_irqsave(&dc->lock, flags);
250
251         value = WINDOW_A_SELECT << index;
252         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
253
254         tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
255         tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
256
257         value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
258         tegra_dc_writel(dc, value, DC_WIN_POSITION);
259
260         value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
261         tegra_dc_writel(dc, value, DC_WIN_SIZE);
262
263         h_offset = window->src.x * bpp;
264         v_offset = window->src.y;
265         h_size = window->src.w * bpp;
266         v_size = window->src.h;
267
268         value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
269         tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
270
271         /*
272          * For DDA computations the number of bytes per pixel for YUV planar
273          * modes needs to take into account all Y, U and V components.
274          */
275         if (yuv && planar)
276                 bpp = 2;
277
278         h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
279         v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
280
281         value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
282         tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
283
284         h_dda = compute_initial_dda(window->src.x);
285         v_dda = compute_initial_dda(window->src.y);
286
287         tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
288         tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
289
290         tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
291         tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
292
293         tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
294
295         if (yuv && planar) {
296                 tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
297                 tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
298                 value = window->stride[1] << 16 | window->stride[0];
299                 tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
300         } else {
301                 tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
302         }
303
304         if (window->bottom_up)
305                 v_offset += window->src.h - 1;
306
307         tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
308         tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
309
310         if (dc->soc->supports_block_linear) {
311                 unsigned long height = window->tiling.value;
312
313                 switch (window->tiling.mode) {
314                 case TEGRA_BO_TILING_MODE_PITCH:
315                         value = DC_WINBUF_SURFACE_KIND_PITCH;
316                         break;
317
318                 case TEGRA_BO_TILING_MODE_TILED:
319                         value = DC_WINBUF_SURFACE_KIND_TILED;
320                         break;
321
322                 case TEGRA_BO_TILING_MODE_BLOCK:
323                         value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
324                                 DC_WINBUF_SURFACE_KIND_BLOCK;
325                         break;
326                 }
327
328                 tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
329         } else {
330                 switch (window->tiling.mode) {
331                 case TEGRA_BO_TILING_MODE_PITCH:
332                         value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
333                                 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
334                         break;
335
336                 case TEGRA_BO_TILING_MODE_TILED:
337                         value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
338                                 DC_WIN_BUFFER_ADDR_MODE_TILE;
339                         break;
340
341                 case TEGRA_BO_TILING_MODE_BLOCK:
342                         /*
343                          * No need to handle this here because ->atomic_check
344                          * will already have filtered it out.
345                          */
346                         break;
347                 }
348
349                 tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
350         }
351
352         value = WIN_ENABLE;
353
354         if (yuv) {
355                 /* setup default colorspace conversion coefficients */
356                 tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
357                 tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
358                 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
359                 tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
360                 tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
361                 tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
362                 tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
363                 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
364
365                 value |= CSC_ENABLE;
366         } else if (window->bits_per_pixel < 24) {
367                 value |= COLOR_EXPAND;
368         }
369
370         if (window->bottom_up)
371                 value |= V_DIRECTION;
372
373         tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
374
375         /*
376          * Disable blending and assume Window A is the bottom-most window,
377          * Window C is the top-most window and Window B is in the middle.
378          */
379         tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
380         tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
381
382         switch (index) {
383         case 0:
384                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
385                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
386                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
387                 break;
388
389         case 1:
390                 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
391                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
392                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
393                 break;
394
395         case 2:
396                 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
397                 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
398                 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
399                 break;
400         }
401
402         spin_unlock_irqrestore(&dc->lock, flags);
403 }
404
405 static void tegra_plane_destroy(struct drm_plane *plane)
406 {
407         struct tegra_plane *p = to_tegra_plane(plane);
408
409         drm_plane_cleanup(plane);
410         kfree(p);
411 }
412
413 static const u32 tegra_primary_plane_formats[] = {
414         DRM_FORMAT_XBGR8888,
415         DRM_FORMAT_XRGB8888,
416         DRM_FORMAT_RGB565,
417 };
418
419 static void tegra_primary_plane_destroy(struct drm_plane *plane)
420 {
421         tegra_plane_destroy(plane);
422 }
423
424 static void tegra_plane_reset(struct drm_plane *plane)
425 {
426         struct tegra_plane_state *state;
427
428         if (plane->state)
429                 __drm_atomic_helper_plane_destroy_state(plane, plane->state);
430
431         kfree(plane->state);
432         plane->state = NULL;
433
434         state = kzalloc(sizeof(*state), GFP_KERNEL);
435         if (state) {
436                 plane->state = &state->base;
437                 plane->state->plane = plane;
438         }
439 }
440
441 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
442 {
443         struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
444         struct tegra_plane_state *copy;
445
446         copy = kmalloc(sizeof(*copy), GFP_KERNEL);
447         if (!copy)
448                 return NULL;
449
450         __drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
451         copy->tiling = state->tiling;
452         copy->format = state->format;
453         copy->swap = state->swap;
454
455         return &copy->base;
456 }
457
458 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
459                                              struct drm_plane_state *state)
460 {
461         __drm_atomic_helper_plane_destroy_state(plane, state);
462         kfree(state);
463 }
464
465 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
466         .update_plane = drm_atomic_helper_update_plane,
467         .disable_plane = drm_atomic_helper_disable_plane,
468         .destroy = tegra_primary_plane_destroy,
469         .reset = tegra_plane_reset,
470         .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
471         .atomic_destroy_state = tegra_plane_atomic_destroy_state,
472 };
473
474 static int tegra_plane_prepare_fb(struct drm_plane *plane,
475                                   struct drm_framebuffer *fb,
476                                   const struct drm_plane_state *new_state)
477 {
478         return 0;
479 }
480
481 static void tegra_plane_cleanup_fb(struct drm_plane *plane,
482                                    struct drm_framebuffer *fb,
483                                    const struct drm_plane_state *old_fb)
484 {
485 }
486
487 static int tegra_plane_state_add(struct tegra_plane *plane,
488                                  struct drm_plane_state *state)
489 {
490         struct drm_crtc_state *crtc_state;
491         struct tegra_dc_state *tegra;
492
493         /* Propagate errors from allocation or locking failures. */
494         crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
495         if (IS_ERR(crtc_state))
496                 return PTR_ERR(crtc_state);
497
498         tegra = to_dc_state(crtc_state);
499
500         tegra->planes |= WIN_A_ACT_REQ << plane->index;
501
502         return 0;
503 }
504
505 static int tegra_plane_atomic_check(struct drm_plane *plane,
506                                     struct drm_plane_state *state)
507 {
508         struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
509         struct tegra_bo_tiling *tiling = &plane_state->tiling;
510         struct tegra_plane *tegra = to_tegra_plane(plane);
511         struct tegra_dc *dc = to_tegra_dc(state->crtc);
512         int err;
513
514         /* no need for further checks if the plane is being disabled */
515         if (!state->crtc)
516                 return 0;
517
518         err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
519                               &plane_state->swap);
520         if (err < 0)
521                 return err;
522
523         err = tegra_fb_get_tiling(state->fb, tiling);
524         if (err < 0)
525                 return err;
526
527         if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
528             !dc->soc->supports_block_linear) {
529                 DRM_ERROR("hardware doesn't support block linear mode\n");
530                 return -EINVAL;
531         }
532
533         /*
534          * Tegra doesn't support different strides for U and V planes so we
535          * error out if the user tries to display a framebuffer with such a
536          * configuration.
537          */
538         if (drm_format_num_planes(state->fb->pixel_format) > 2) {
539                 if (state->fb->pitches[2] != state->fb->pitches[1]) {
540                         DRM_ERROR("unsupported UV-plane configuration\n");
541                         return -EINVAL;
542                 }
543         }
544
545         err = tegra_plane_state_add(tegra, state);
546         if (err < 0)
547                 return err;
548
549         return 0;
550 }
551
552 static void tegra_plane_atomic_update(struct drm_plane *plane,
553                                       struct drm_plane_state *old_state)
554 {
555         struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
556         struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
557         struct drm_framebuffer *fb = plane->state->fb;
558         struct tegra_plane *p = to_tegra_plane(plane);
559         struct tegra_dc_window window;
560         unsigned int i;
561
562         /* rien ne va plus */
563         if (!plane->state->crtc || !plane->state->fb)
564                 return;
565
566         memset(&window, 0, sizeof(window));
567         window.src.x = plane->state->src_x >> 16;
568         window.src.y = plane->state->src_y >> 16;
569         window.src.w = plane->state->src_w >> 16;
570         window.src.h = plane->state->src_h >> 16;
571         window.dst.x = plane->state->crtc_x;
572         window.dst.y = plane->state->crtc_y;
573         window.dst.w = plane->state->crtc_w;
574         window.dst.h = plane->state->crtc_h;
575         window.bits_per_pixel = fb->bits_per_pixel;
576         window.bottom_up = tegra_fb_is_bottom_up(fb);
577
578         /* copy from state */
579         window.tiling = state->tiling;
580         window.format = state->format;
581         window.swap = state->swap;
582
583         for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
584                 struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
585
586                 window.base[i] = bo->paddr + fb->offsets[i];
587                 window.stride[i] = fb->pitches[i];
588         }
589
590         tegra_dc_setup_window(dc, p->index, &window);
591 }
592
593 static void tegra_plane_atomic_disable(struct drm_plane *plane,
594                                        struct drm_plane_state *old_state)
595 {
596         struct tegra_plane *p = to_tegra_plane(plane);
597         struct tegra_dc *dc;
598         unsigned long flags;
599         u32 value;
600
601         /* rien ne va plus */
602         if (!old_state || !old_state->crtc)
603                 return;
604
605         dc = to_tegra_dc(old_state->crtc);
606
607         spin_lock_irqsave(&dc->lock, flags);
608
609         value = WINDOW_A_SELECT << p->index;
610         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
611
612         value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
613         value &= ~WIN_ENABLE;
614         tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
615
616         spin_unlock_irqrestore(&dc->lock, flags);
617 }
618
619 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
620         .prepare_fb = tegra_plane_prepare_fb,
621         .cleanup_fb = tegra_plane_cleanup_fb,
622         .atomic_check = tegra_plane_atomic_check,
623         .atomic_update = tegra_plane_atomic_update,
624         .atomic_disable = tegra_plane_atomic_disable,
625 };
626
627 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
628                                                        struct tegra_dc *dc)
629 {
630         /*
631          * Ideally this would use drm_crtc_mask(), but that would require the
632          * CRTC to already be in the mode_config's list of CRTCs. However, it
633          * will only be added to that list in the drm_crtc_init_with_planes()
634          * (in tegra_dc_init()), which in turn requires registration of these
635          * planes. So we have ourselves a nice little chicken and egg problem
636          * here.
637          *
638          * We work around this by manually creating the mask from the number
639          * of CRTCs that have been registered, and should therefore always be
640          * the same as drm_crtc_index() after registration.
641          */
642         unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
643         struct tegra_plane *plane;
644         unsigned int num_formats;
645         const u32 *formats;
646         int err;
647
648         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
649         if (!plane)
650                 return ERR_PTR(-ENOMEM);
651
652         num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
653         formats = tegra_primary_plane_formats;
654
655         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
656                                        &tegra_primary_plane_funcs, formats,
657                                        num_formats, DRM_PLANE_TYPE_PRIMARY);
658         if (err < 0) {
659                 kfree(plane);
660                 return ERR_PTR(err);
661         }
662
663         drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
664
665         return &plane->base;
666 }
667
668 static const u32 tegra_cursor_plane_formats[] = {
669         DRM_FORMAT_RGBA8888,
670 };
671
672 static int tegra_cursor_atomic_check(struct drm_plane *plane,
673                                      struct drm_plane_state *state)
674 {
675         struct tegra_plane *tegra = to_tegra_plane(plane);
676         int err;
677
678         /* no need for further checks if the plane is being disabled */
679         if (!state->crtc)
680                 return 0;
681
682         /* scaling not supported for cursor */
683         if ((state->src_w >> 16 != state->crtc_w) ||
684             (state->src_h >> 16 != state->crtc_h))
685                 return -EINVAL;
686
687         /* only square cursors supported */
688         if (state->src_w != state->src_h)
689                 return -EINVAL;
690
691         if (state->crtc_w != 32 && state->crtc_w != 64 &&
692             state->crtc_w != 128 && state->crtc_w != 256)
693                 return -EINVAL;
694
695         err = tegra_plane_state_add(tegra, state);
696         if (err < 0)
697                 return err;
698
699         return 0;
700 }
701
702 static void tegra_cursor_atomic_update(struct drm_plane *plane,
703                                        struct drm_plane_state *old_state)
704 {
705         struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
706         struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
707         struct drm_plane_state *state = plane->state;
708         u32 value = CURSOR_CLIP_DISPLAY;
709
710         /* rien ne va plus */
711         if (!plane->state->crtc || !plane->state->fb)
712                 return;
713
714         switch (state->crtc_w) {
715         case 32:
716                 value |= CURSOR_SIZE_32x32;
717                 break;
718
719         case 64:
720                 value |= CURSOR_SIZE_64x64;
721                 break;
722
723         case 128:
724                 value |= CURSOR_SIZE_128x128;
725                 break;
726
727         case 256:
728                 value |= CURSOR_SIZE_256x256;
729                 break;
730
731         default:
732                 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
733                      state->crtc_h);
734                 return;
735         }
736
737         value |= (bo->paddr >> 10) & 0x3fffff;
738         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
739
740 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
741         value = (bo->paddr >> 32) & 0x3;
742         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
743 #endif
744
745         /* enable cursor and set blend mode */
746         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
747         value |= CURSOR_ENABLE;
748         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
749
750         value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
751         value &= ~CURSOR_DST_BLEND_MASK;
752         value &= ~CURSOR_SRC_BLEND_MASK;
753         value |= CURSOR_MODE_NORMAL;
754         value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
755         value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
756         value |= CURSOR_ALPHA;
757         tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
758
759         /* position the cursor */
760         value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
761         tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
762
763 }
764
765 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
766                                         struct drm_plane_state *old_state)
767 {
768         struct tegra_dc *dc;
769         u32 value;
770
771         /* rien ne va plus */
772         if (!old_state || !old_state->crtc)
773                 return;
774
775         dc = to_tegra_dc(old_state->crtc);
776
777         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
778         value &= ~CURSOR_ENABLE;
779         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
780 }
781
782 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
783         .update_plane = drm_atomic_helper_update_plane,
784         .disable_plane = drm_atomic_helper_disable_plane,
785         .destroy = tegra_plane_destroy,
786         .reset = tegra_plane_reset,
787         .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
788         .atomic_destroy_state = tegra_plane_atomic_destroy_state,
789 };
790
791 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
792         .prepare_fb = tegra_plane_prepare_fb,
793         .cleanup_fb = tegra_plane_cleanup_fb,
794         .atomic_check = tegra_cursor_atomic_check,
795         .atomic_update = tegra_cursor_atomic_update,
796         .atomic_disable = tegra_cursor_atomic_disable,
797 };
798
799 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
800                                                       struct tegra_dc *dc)
801 {
802         struct tegra_plane *plane;
803         unsigned int num_formats;
804         const u32 *formats;
805         int err;
806
807         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
808         if (!plane)
809                 return ERR_PTR(-ENOMEM);
810
811         /*
812          * We'll treat the cursor as an overlay plane with index 6 here so
813          * that the update and activation request bits in DC_CMD_STATE_CONTROL
814          * match up.
815          */
816         plane->index = 6;
817
818         num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
819         formats = tegra_cursor_plane_formats;
820
821         err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
822                                        &tegra_cursor_plane_funcs, formats,
823                                        num_formats, DRM_PLANE_TYPE_CURSOR);
824         if (err < 0) {
825                 kfree(plane);
826                 return ERR_PTR(err);
827         }
828
829         drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
830
831         return &plane->base;
832 }
833
834 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
835 {
836         tegra_plane_destroy(plane);
837 }
838
839 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
840         .update_plane = drm_atomic_helper_update_plane,
841         .disable_plane = drm_atomic_helper_disable_plane,
842         .destroy = tegra_overlay_plane_destroy,
843         .reset = tegra_plane_reset,
844         .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
845         .atomic_destroy_state = tegra_plane_atomic_destroy_state,
846 };
847
848 static const uint32_t tegra_overlay_plane_formats[] = {
849         DRM_FORMAT_XBGR8888,
850         DRM_FORMAT_XRGB8888,
851         DRM_FORMAT_RGB565,
852         DRM_FORMAT_UYVY,
853         DRM_FORMAT_YUYV,
854         DRM_FORMAT_YUV420,
855         DRM_FORMAT_YUV422,
856 };
857
858 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
859         .prepare_fb = tegra_plane_prepare_fb,
860         .cleanup_fb = tegra_plane_cleanup_fb,
861         .atomic_check = tegra_plane_atomic_check,
862         .atomic_update = tegra_plane_atomic_update,
863         .atomic_disable = tegra_plane_atomic_disable,
864 };
865
866 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
867                                                        struct tegra_dc *dc,
868                                                        unsigned int index)
869 {
870         struct tegra_plane *plane;
871         unsigned int num_formats;
872         const u32 *formats;
873         int err;
874
875         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
876         if (!plane)
877                 return ERR_PTR(-ENOMEM);
878
879         plane->index = index;
880
881         num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
882         formats = tegra_overlay_plane_formats;
883
884         err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
885                                        &tegra_overlay_plane_funcs, formats,
886                                        num_formats, DRM_PLANE_TYPE_OVERLAY);
887         if (err < 0) {
888                 kfree(plane);
889                 return ERR_PTR(err);
890         }
891
892         drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
893
894         return &plane->base;
895 }
896
897 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
898 {
899         struct drm_plane *plane;
900         unsigned int i;
901
902         for (i = 0; i < 2; i++) {
903                 plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
904                 if (IS_ERR(plane))
905                         return PTR_ERR(plane);
906         }
907
908         return 0;
909 }
910
911 u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
912 {
913         if (dc->syncpt)
914                 return host1x_syncpt_read(dc->syncpt);
915
916         /* fallback to software emulated VBLANK counter */
917         return drm_crtc_vblank_count(&dc->base);
918 }
919
920 void tegra_dc_enable_vblank(struct tegra_dc *dc)
921 {
922         unsigned long value, flags;
923
924         spin_lock_irqsave(&dc->lock, flags);
925
926         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
927         value |= VBLANK_INT;
928         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
929
930         spin_unlock_irqrestore(&dc->lock, flags);
931 }
932
933 void tegra_dc_disable_vblank(struct tegra_dc *dc)
934 {
935         unsigned long value, flags;
936
937         spin_lock_irqsave(&dc->lock, flags);
938
939         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
940         value &= ~VBLANK_INT;
941         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
942
943         spin_unlock_irqrestore(&dc->lock, flags);
944 }
945
946 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
947 {
948         struct drm_device *drm = dc->base.dev;
949         struct drm_crtc *crtc = &dc->base;
950         unsigned long flags, base;
951         struct tegra_bo *bo;
952
953         spin_lock_irqsave(&drm->event_lock, flags);
954
955         if (!dc->event) {
956                 spin_unlock_irqrestore(&drm->event_lock, flags);
957                 return;
958         }
959
960         bo = tegra_fb_get_plane(crtc->primary->fb, 0);
961
962         spin_lock(&dc->lock);
963
964         /* check if new start address has been latched */
965         tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
966         tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
967         base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
968         tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
969
970         spin_unlock(&dc->lock);
971
972         if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
973                 drm_crtc_send_vblank_event(crtc, dc->event);
974                 drm_crtc_vblank_put(crtc);
975                 dc->event = NULL;
976         }
977
978         spin_unlock_irqrestore(&drm->event_lock, flags);
979 }
980
981 void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
982 {
983         struct tegra_dc *dc = to_tegra_dc(crtc);
984         struct drm_device *drm = crtc->dev;
985         unsigned long flags;
986
987         spin_lock_irqsave(&drm->event_lock, flags);
988
989         if (dc->event && dc->event->base.file_priv == file) {
990                 dc->event->base.destroy(&dc->event->base);
991                 drm_crtc_vblank_put(crtc);
992                 dc->event = NULL;
993         }
994
995         spin_unlock_irqrestore(&drm->event_lock, flags);
996 }
997
998 static void tegra_dc_destroy(struct drm_crtc *crtc)
999 {
1000         drm_crtc_cleanup(crtc);
1001 }
1002
1003 static void tegra_crtc_reset(struct drm_crtc *crtc)
1004 {
1005         struct tegra_dc_state *state;
1006
1007         if (crtc->state)
1008                 __drm_atomic_helper_crtc_destroy_state(crtc, crtc->state);
1009
1010         kfree(crtc->state);
1011         crtc->state = NULL;
1012
1013         state = kzalloc(sizeof(*state), GFP_KERNEL);
1014         if (state) {
1015                 crtc->state = &state->base;
1016                 crtc->state->crtc = crtc;
1017         }
1018 }
1019
1020 static struct drm_crtc_state *
1021 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1022 {
1023         struct tegra_dc_state *state = to_dc_state(crtc->state);
1024         struct tegra_dc_state *copy;
1025
1026         copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1027         if (!copy)
1028                 return NULL;
1029
1030         __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1031         copy->clk = state->clk;
1032         copy->pclk = state->pclk;
1033         copy->div = state->div;
1034         copy->planes = state->planes;
1035
1036         return &copy->base;
1037 }
1038
1039 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1040                                             struct drm_crtc_state *state)
1041 {
1042         __drm_atomic_helper_crtc_destroy_state(crtc, state);
1043         kfree(state);
1044 }
1045
1046 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1047         .page_flip = drm_atomic_helper_page_flip,
1048         .set_config = drm_atomic_helper_set_config,
1049         .destroy = tegra_dc_destroy,
1050         .reset = tegra_crtc_reset,
1051         .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1052         .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1053 };
1054
1055 static void tegra_dc_stop(struct tegra_dc *dc)
1056 {
1057         u32 value;
1058
1059         /* stop the display controller */
1060         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1061         value &= ~DISP_CTRL_MODE_MASK;
1062         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1063
1064         tegra_dc_commit(dc);
1065 }
1066
1067 static bool tegra_dc_idle(struct tegra_dc *dc)
1068 {
1069         u32 value;
1070
1071         value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1072
1073         return (value & DISP_CTRL_MODE_MASK) == 0;
1074 }
1075
1076 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1077 {
1078         timeout = jiffies + msecs_to_jiffies(timeout);
1079
1080         while (time_before(jiffies, timeout)) {
1081                 if (tegra_dc_idle(dc))
1082                         return 0;
1083
1084                 usleep_range(1000, 2000);
1085         }
1086
1087         dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1088         return -ETIMEDOUT;
1089 }
1090
1091 static void tegra_crtc_disable(struct drm_crtc *crtc)
1092 {
1093         struct tegra_dc *dc = to_tegra_dc(crtc);
1094         u32 value;
1095
1096         if (!tegra_dc_idle(dc)) {
1097                 tegra_dc_stop(dc);
1098
1099                 /*
1100                  * Ignore the return value, there isn't anything useful to do
1101                  * in case this fails.
1102                  */
1103                 tegra_dc_wait_idle(dc, 100);
1104         }
1105
1106         /*
1107          * This should really be part of the RGB encoder driver, but clearing
1108          * these bits has the side-effect of stopping the display controller.
1109          * When that happens no VBLANK interrupts will be raised. At the same
1110          * time the encoder is disabled before the display controller, so the
1111          * above code is always going to timeout waiting for the controller
1112          * to go idle.
1113          *
1114          * Given the close coupling between the RGB encoder and the display
1115          * controller doing it here is still kind of okay. None of the other
1116          * encoder drivers require these bits to be cleared.
1117          *
1118          * XXX: Perhaps given that the display controller is switched off at
1119          * this point anyway maybe clearing these bits isn't even useful for
1120          * the RGB encoder?
1121          */
1122         if (dc->rgb) {
1123                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1124                 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1125                            PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1126                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1127         }
1128
1129         drm_crtc_vblank_off(crtc);
1130 }
1131
1132 static bool tegra_crtc_mode_fixup(struct drm_crtc *crtc,
1133                                   const struct drm_display_mode *mode,
1134                                   struct drm_display_mode *adjusted)
1135 {
1136         return true;
1137 }
1138
1139 static int tegra_dc_set_timings(struct tegra_dc *dc,
1140                                 struct drm_display_mode *mode)
1141 {
1142         unsigned int h_ref_to_sync = 1;
1143         unsigned int v_ref_to_sync = 1;
1144         unsigned long value;
1145
1146         tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1147
1148         value = (v_ref_to_sync << 16) | h_ref_to_sync;
1149         tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1150
1151         value = ((mode->vsync_end - mode->vsync_start) << 16) |
1152                 ((mode->hsync_end - mode->hsync_start) <<  0);
1153         tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1154
1155         value = ((mode->vtotal - mode->vsync_end) << 16) |
1156                 ((mode->htotal - mode->hsync_end) <<  0);
1157         tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1158
1159         value = ((mode->vsync_start - mode->vdisplay) << 16) |
1160                 ((mode->hsync_start - mode->hdisplay) <<  0);
1161         tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1162
1163         value = (mode->vdisplay << 16) | mode->hdisplay;
1164         tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1165
1166         return 0;
1167 }
1168
1169 /**
1170  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1171  *     state
1172  * @dc: display controller
1173  * @crtc_state: CRTC atomic state
1174  * @clk: parent clock for display controller
1175  * @pclk: pixel clock
1176  * @div: shift clock divider
1177  *
1178  * Returns:
1179  * 0 on success or a negative error-code on failure.
1180  */
1181 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1182                                struct drm_crtc_state *crtc_state,
1183                                struct clk *clk, unsigned long pclk,
1184                                unsigned int div)
1185 {
1186         struct tegra_dc_state *state = to_dc_state(crtc_state);
1187
1188         if (!clk_has_parent(dc->clk, clk))
1189                 return -EINVAL;
1190
1191         state->clk = clk;
1192         state->pclk = pclk;
1193         state->div = div;
1194
1195         return 0;
1196 }
1197
1198 static void tegra_dc_commit_state(struct tegra_dc *dc,
1199                                   struct tegra_dc_state *state)
1200 {
1201         u32 value;
1202         int err;
1203
1204         err = clk_set_parent(dc->clk, state->clk);
1205         if (err < 0)
1206                 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1207
1208         /*
1209          * Outputs may not want to change the parent clock rate. This is only
1210          * relevant to Tegra20 where only a single display PLL is available.
1211          * Since that PLL would typically be used for HDMI, an internal LVDS
1212          * panel would need to be driven by some other clock such as PLL_P
1213          * which is shared with other peripherals. Changing the clock rate
1214          * should therefore be avoided.
1215          */
1216         if (state->pclk > 0) {
1217                 err = clk_set_rate(state->clk, state->pclk);
1218                 if (err < 0)
1219                         dev_err(dc->dev,
1220                                 "failed to set clock rate to %lu Hz\n",
1221                                 state->pclk);
1222         }
1223
1224         DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1225                       state->div);
1226         DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1227
1228         value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1229         tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1230 }
1231
1232 static void tegra_crtc_mode_set_nofb(struct drm_crtc *crtc)
1233 {
1234         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1235         struct tegra_dc_state *state = to_dc_state(crtc->state);
1236         struct tegra_dc *dc = to_tegra_dc(crtc);
1237         u32 value;
1238
1239         tegra_dc_commit_state(dc, state);
1240
1241         /* program display mode */
1242         tegra_dc_set_timings(dc, mode);
1243
1244         /* interlacing isn't supported yet, so disable it */
1245         if (dc->soc->supports_interlacing) {
1246                 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1247                 value &= ~INTERLACE_ENABLE;
1248                 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1249         }
1250
1251         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1252         value &= ~DISP_CTRL_MODE_MASK;
1253         value |= DISP_CTRL_MODE_C_DISPLAY;
1254         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1255
1256         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1257         value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1258                  PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1259         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1260
1261         tegra_dc_commit(dc);
1262 }
1263
1264 static void tegra_crtc_prepare(struct drm_crtc *crtc)
1265 {
1266         drm_crtc_vblank_off(crtc);
1267 }
1268
1269 static void tegra_crtc_commit(struct drm_crtc *crtc)
1270 {
1271         drm_crtc_vblank_on(crtc);
1272 }
1273
1274 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1275                                    struct drm_crtc_state *state)
1276 {
1277         return 0;
1278 }
1279
1280 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc)
1281 {
1282         struct tegra_dc *dc = to_tegra_dc(crtc);
1283
1284         if (crtc->state->event) {
1285                 crtc->state->event->pipe = drm_crtc_index(crtc);
1286
1287                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1288
1289                 dc->event = crtc->state->event;
1290                 crtc->state->event = NULL;
1291         }
1292 }
1293
1294 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc)
1295 {
1296         struct tegra_dc_state *state = to_dc_state(crtc->state);
1297         struct tegra_dc *dc = to_tegra_dc(crtc);
1298
1299         tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1300         tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1301 }
1302
1303 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1304         .disable = tegra_crtc_disable,
1305         .mode_fixup = tegra_crtc_mode_fixup,
1306         .mode_set_nofb = tegra_crtc_mode_set_nofb,
1307         .prepare = tegra_crtc_prepare,
1308         .commit = tegra_crtc_commit,
1309         .atomic_check = tegra_crtc_atomic_check,
1310         .atomic_begin = tegra_crtc_atomic_begin,
1311         .atomic_flush = tegra_crtc_atomic_flush,
1312 };
1313
1314 static irqreturn_t tegra_dc_irq(int irq, void *data)
1315 {
1316         struct tegra_dc *dc = data;
1317         unsigned long status;
1318
1319         status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1320         tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1321
1322         if (status & FRAME_END_INT) {
1323                 /*
1324                 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1325                 */
1326         }
1327
1328         if (status & VBLANK_INT) {
1329                 /*
1330                 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1331                 */
1332                 drm_crtc_handle_vblank(&dc->base);
1333                 tegra_dc_finish_page_flip(dc);
1334         }
1335
1336         if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1337                 /*
1338                 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1339                 */
1340         }
1341
1342         return IRQ_HANDLED;
1343 }
1344
1345 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1346 {
1347         struct drm_info_node *node = s->private;
1348         struct tegra_dc *dc = node->info_ent->data;
1349
1350 #define DUMP_REG(name)                                          \
1351         seq_printf(s, "%-40s %#05x %08x\n", #name, name,        \
1352                    tegra_dc_readl(dc, name))
1353
1354         DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1355         DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1356         DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1357         DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1358         DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1359         DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1360         DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1361         DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1362         DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1363         DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1364         DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1365         DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1366         DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1367         DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1368         DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1369         DUMP_REG(DC_CMD_SIGNAL_RAISE);
1370         DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1371         DUMP_REG(DC_CMD_INT_STATUS);
1372         DUMP_REG(DC_CMD_INT_MASK);
1373         DUMP_REG(DC_CMD_INT_ENABLE);
1374         DUMP_REG(DC_CMD_INT_TYPE);
1375         DUMP_REG(DC_CMD_INT_POLARITY);
1376         DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1377         DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1378         DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1379         DUMP_REG(DC_CMD_STATE_ACCESS);
1380         DUMP_REG(DC_CMD_STATE_CONTROL);
1381         DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1382         DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1383         DUMP_REG(DC_COM_CRC_CONTROL);
1384         DUMP_REG(DC_COM_CRC_CHECKSUM);
1385         DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1386         DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1387         DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1388         DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1389         DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1390         DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1391         DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1392         DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1393         DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1394         DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1395         DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1396         DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1397         DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1398         DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1399         DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1400         DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1401         DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1402         DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1403         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1404         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1405         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1406         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1407         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1408         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1409         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1410         DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1411         DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1412         DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1413         DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1414         DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1415         DUMP_REG(DC_COM_SPI_CONTROL);
1416         DUMP_REG(DC_COM_SPI_START_BYTE);
1417         DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1418         DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1419         DUMP_REG(DC_COM_HSPI_CS_DC);
1420         DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1421         DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1422         DUMP_REG(DC_COM_GPIO_CTRL);
1423         DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1424         DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1425         DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1426         DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1427         DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1428         DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1429         DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1430         DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1431         DUMP_REG(DC_DISP_REF_TO_SYNC);
1432         DUMP_REG(DC_DISP_SYNC_WIDTH);
1433         DUMP_REG(DC_DISP_BACK_PORCH);
1434         DUMP_REG(DC_DISP_ACTIVE);
1435         DUMP_REG(DC_DISP_FRONT_PORCH);
1436         DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1437         DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1438         DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1439         DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1440         DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1441         DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1442         DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1443         DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1444         DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1445         DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1446         DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1447         DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1448         DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1449         DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1450         DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1451         DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1452         DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1453         DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1454         DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1455         DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1456         DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1457         DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1458         DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1459         DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1460         DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1461         DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1462         DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1463         DUMP_REG(DC_DISP_M0_CONTROL);
1464         DUMP_REG(DC_DISP_M1_CONTROL);
1465         DUMP_REG(DC_DISP_DI_CONTROL);
1466         DUMP_REG(DC_DISP_PP_CONTROL);
1467         DUMP_REG(DC_DISP_PP_SELECT_A);
1468         DUMP_REG(DC_DISP_PP_SELECT_B);
1469         DUMP_REG(DC_DISP_PP_SELECT_C);
1470         DUMP_REG(DC_DISP_PP_SELECT_D);
1471         DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1472         DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1473         DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1474         DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1475         DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1476         DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1477         DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1478         DUMP_REG(DC_DISP_BORDER_COLOR);
1479         DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1480         DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1481         DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1482         DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1483         DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1484         DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1485         DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1486         DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1487         DUMP_REG(DC_DISP_CURSOR_POSITION);
1488         DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1489         DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1490         DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1491         DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1492         DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1493         DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1494         DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1495         DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1496         DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1497         DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1498         DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1499         DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1500         DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1501         DUMP_REG(DC_DISP_SD_CONTROL);
1502         DUMP_REG(DC_DISP_SD_CSC_COEFF);
1503         DUMP_REG(DC_DISP_SD_LUT(0));
1504         DUMP_REG(DC_DISP_SD_LUT(1));
1505         DUMP_REG(DC_DISP_SD_LUT(2));
1506         DUMP_REG(DC_DISP_SD_LUT(3));
1507         DUMP_REG(DC_DISP_SD_LUT(4));
1508         DUMP_REG(DC_DISP_SD_LUT(5));
1509         DUMP_REG(DC_DISP_SD_LUT(6));
1510         DUMP_REG(DC_DISP_SD_LUT(7));
1511         DUMP_REG(DC_DISP_SD_LUT(8));
1512         DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1513         DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1514         DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1515         DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1516         DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1517         DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1518         DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1519         DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1520         DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1521         DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1522         DUMP_REG(DC_DISP_SD_BL_TF(0));
1523         DUMP_REG(DC_DISP_SD_BL_TF(1));
1524         DUMP_REG(DC_DISP_SD_BL_TF(2));
1525         DUMP_REG(DC_DISP_SD_BL_TF(3));
1526         DUMP_REG(DC_DISP_SD_BL_CONTROL);
1527         DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1528         DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1529         DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1530         DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1531         DUMP_REG(DC_WIN_WIN_OPTIONS);
1532         DUMP_REG(DC_WIN_BYTE_SWAP);
1533         DUMP_REG(DC_WIN_BUFFER_CONTROL);
1534         DUMP_REG(DC_WIN_COLOR_DEPTH);
1535         DUMP_REG(DC_WIN_POSITION);
1536         DUMP_REG(DC_WIN_SIZE);
1537         DUMP_REG(DC_WIN_PRESCALED_SIZE);
1538         DUMP_REG(DC_WIN_H_INITIAL_DDA);
1539         DUMP_REG(DC_WIN_V_INITIAL_DDA);
1540         DUMP_REG(DC_WIN_DDA_INC);
1541         DUMP_REG(DC_WIN_LINE_STRIDE);
1542         DUMP_REG(DC_WIN_BUF_STRIDE);
1543         DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1544         DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1545         DUMP_REG(DC_WIN_DV_CONTROL);
1546         DUMP_REG(DC_WIN_BLEND_NOKEY);
1547         DUMP_REG(DC_WIN_BLEND_1WIN);
1548         DUMP_REG(DC_WIN_BLEND_2WIN_X);
1549         DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1550         DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1551         DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1552         DUMP_REG(DC_WINBUF_START_ADDR);
1553         DUMP_REG(DC_WINBUF_START_ADDR_NS);
1554         DUMP_REG(DC_WINBUF_START_ADDR_U);
1555         DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1556         DUMP_REG(DC_WINBUF_START_ADDR_V);
1557         DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1558         DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1559         DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1560         DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1561         DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1562         DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1563         DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1564         DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1565         DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1566
1567 #undef DUMP_REG
1568
1569         return 0;
1570 }
1571
1572 static struct drm_info_list debugfs_files[] = {
1573         { "regs", tegra_dc_show_regs, 0, NULL },
1574 };
1575
1576 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1577 {
1578         unsigned int i;
1579         char *name;
1580         int err;
1581
1582         name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1583         dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1584         kfree(name);
1585
1586         if (!dc->debugfs)
1587                 return -ENOMEM;
1588
1589         dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1590                                     GFP_KERNEL);
1591         if (!dc->debugfs_files) {
1592                 err = -ENOMEM;
1593                 goto remove;
1594         }
1595
1596         for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1597                 dc->debugfs_files[i].data = dc;
1598
1599         err = drm_debugfs_create_files(dc->debugfs_files,
1600                                        ARRAY_SIZE(debugfs_files),
1601                                        dc->debugfs, minor);
1602         if (err < 0)
1603                 goto free;
1604
1605         dc->minor = minor;
1606
1607         return 0;
1608
1609 free:
1610         kfree(dc->debugfs_files);
1611         dc->debugfs_files = NULL;
1612 remove:
1613         debugfs_remove(dc->debugfs);
1614         dc->debugfs = NULL;
1615
1616         return err;
1617 }
1618
1619 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1620 {
1621         drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1622                                  dc->minor);
1623         dc->minor = NULL;
1624
1625         kfree(dc->debugfs_files);
1626         dc->debugfs_files = NULL;
1627
1628         debugfs_remove(dc->debugfs);
1629         dc->debugfs = NULL;
1630
1631         return 0;
1632 }
1633
1634 static int tegra_dc_init(struct host1x_client *client)
1635 {
1636         struct drm_device *drm = dev_get_drvdata(client->parent);
1637         struct tegra_dc *dc = host1x_client_to_dc(client);
1638         struct tegra_drm *tegra = drm->dev_private;
1639         struct drm_plane *primary = NULL;
1640         struct drm_plane *cursor = NULL;
1641         u32 value;
1642         int err;
1643
1644         if (tegra->domain) {
1645                 err = iommu_attach_device(tegra->domain, dc->dev);
1646                 if (err < 0) {
1647                         dev_err(dc->dev, "failed to attach to domain: %d\n",
1648                                 err);
1649                         return err;
1650                 }
1651
1652                 dc->domain = tegra->domain;
1653         }
1654
1655         primary = tegra_dc_primary_plane_create(drm, dc);
1656         if (IS_ERR(primary)) {
1657                 err = PTR_ERR(primary);
1658                 goto cleanup;
1659         }
1660
1661         if (dc->soc->supports_cursor) {
1662                 cursor = tegra_dc_cursor_plane_create(drm, dc);
1663                 if (IS_ERR(cursor)) {
1664                         err = PTR_ERR(cursor);
1665                         goto cleanup;
1666                 }
1667         }
1668
1669         err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1670                                         &tegra_crtc_funcs);
1671         if (err < 0)
1672                 goto cleanup;
1673
1674         drm_mode_crtc_set_gamma_size(&dc->base, 256);
1675         drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1676
1677         /*
1678          * Keep track of the minimum pitch alignment across all display
1679          * controllers.
1680          */
1681         if (dc->soc->pitch_align > tegra->pitch_align)
1682                 tegra->pitch_align = dc->soc->pitch_align;
1683
1684         err = tegra_dc_rgb_init(drm, dc);
1685         if (err < 0 && err != -ENODEV) {
1686                 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1687                 goto cleanup;
1688         }
1689
1690         err = tegra_dc_add_planes(drm, dc);
1691         if (err < 0)
1692                 goto cleanup;
1693
1694         if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1695                 err = tegra_dc_debugfs_init(dc, drm->primary);
1696                 if (err < 0)
1697                         dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1698         }
1699
1700         err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1701                                dev_name(dc->dev), dc);
1702         if (err < 0) {
1703                 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1704                         err);
1705                 goto cleanup;
1706         }
1707
1708         /* initialize display controller */
1709         if (dc->syncpt) {
1710                 u32 syncpt = host1x_syncpt_id(dc->syncpt);
1711
1712                 value = SYNCPT_CNTRL_NO_STALL;
1713                 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1714
1715                 value = SYNCPT_VSYNC_ENABLE | syncpt;
1716                 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1717         }
1718
1719         value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | WIN_A_OF_INT;
1720         tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1721
1722         value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1723                 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1724         tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1725
1726         /* initialize timer */
1727         value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1728                 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1729         tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1730
1731         value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1732                 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1733         tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1734
1735         value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
1736         tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1737
1738         value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
1739         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1740
1741         if (dc->soc->supports_border_color)
1742                 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1743
1744         return 0;
1745
1746 cleanup:
1747         if (cursor)
1748                 drm_plane_cleanup(cursor);
1749
1750         if (primary)
1751                 drm_plane_cleanup(primary);
1752
1753         if (tegra->domain) {
1754                 iommu_detach_device(tegra->domain, dc->dev);
1755                 dc->domain = NULL;
1756         }
1757
1758         return err;
1759 }
1760
1761 static int tegra_dc_exit(struct host1x_client *client)
1762 {
1763         struct tegra_dc *dc = host1x_client_to_dc(client);
1764         int err;
1765
1766         devm_free_irq(dc->dev, dc->irq, dc);
1767
1768         if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1769                 err = tegra_dc_debugfs_exit(dc);
1770                 if (err < 0)
1771                         dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1772         }
1773
1774         err = tegra_dc_rgb_exit(dc);
1775         if (err) {
1776                 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1777                 return err;
1778         }
1779
1780         if (dc->domain) {
1781                 iommu_detach_device(dc->domain, dc->dev);
1782                 dc->domain = NULL;
1783         }
1784
1785         return 0;
1786 }
1787
1788 static const struct host1x_client_ops dc_client_ops = {
1789         .init = tegra_dc_init,
1790         .exit = tegra_dc_exit,
1791 };
1792
1793 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1794         .supports_border_color = true,
1795         .supports_interlacing = false,
1796         .supports_cursor = false,
1797         .supports_block_linear = false,
1798         .pitch_align = 8,
1799         .has_powergate = false,
1800 };
1801
1802 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1803         .supports_border_color = true,
1804         .supports_interlacing = false,
1805         .supports_cursor = false,
1806         .supports_block_linear = false,
1807         .pitch_align = 8,
1808         .has_powergate = false,
1809 };
1810
1811 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1812         .supports_border_color = true,
1813         .supports_interlacing = false,
1814         .supports_cursor = false,
1815         .supports_block_linear = false,
1816         .pitch_align = 64,
1817         .has_powergate = true,
1818 };
1819
1820 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1821         .supports_border_color = false,
1822         .supports_interlacing = true,
1823         .supports_cursor = true,
1824         .supports_block_linear = true,
1825         .pitch_align = 64,
1826         .has_powergate = true,
1827 };
1828
1829 static const struct of_device_id tegra_dc_of_match[] = {
1830         {
1831                 .compatible = "nvidia,tegra124-dc",
1832                 .data = &tegra124_dc_soc_info,
1833         }, {
1834                 .compatible = "nvidia,tegra114-dc",
1835                 .data = &tegra114_dc_soc_info,
1836         }, {
1837                 .compatible = "nvidia,tegra30-dc",
1838                 .data = &tegra30_dc_soc_info,
1839         }, {
1840                 .compatible = "nvidia,tegra20-dc",
1841                 .data = &tegra20_dc_soc_info,
1842         }, {
1843                 /* sentinel */
1844         }
1845 };
1846 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1847
1848 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1849 {
1850         struct device_node *np;
1851         u32 value = 0;
1852         int err;
1853
1854         err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1855         if (err < 0) {
1856                 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1857
1858                 /*
1859                  * If the nvidia,head property isn't present, try to find the
1860                  * correct head number by looking up the position of this
1861                  * display controller's node within the device tree. Assuming
1862                  * that the nodes are ordered properly in the DTS file and
1863                  * that the translation into a flattened device tree blob
1864                  * preserves that ordering this will actually yield the right
1865                  * head number.
1866                  *
1867                  * If those assumptions don't hold, this will still work for
1868                  * cases where only a single display controller is used.
1869                  */
1870                 for_each_matching_node(np, tegra_dc_of_match) {
1871                         if (np == dc->dev->of_node)
1872                                 break;
1873
1874                         value++;
1875                 }
1876         }
1877
1878         dc->pipe = value;
1879
1880         return 0;
1881 }
1882
1883 static int tegra_dc_probe(struct platform_device *pdev)
1884 {
1885         unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1886         const struct of_device_id *id;
1887         struct resource *regs;
1888         struct tegra_dc *dc;
1889         int err;
1890
1891         dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1892         if (!dc)
1893                 return -ENOMEM;
1894
1895         id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1896         if (!id)
1897                 return -ENODEV;
1898
1899         spin_lock_init(&dc->lock);
1900         INIT_LIST_HEAD(&dc->list);
1901         dc->dev = &pdev->dev;
1902         dc->soc = id->data;
1903
1904         err = tegra_dc_parse_dt(dc);
1905         if (err < 0)
1906                 return err;
1907
1908         dc->clk = devm_clk_get(&pdev->dev, NULL);
1909         if (IS_ERR(dc->clk)) {
1910                 dev_err(&pdev->dev, "failed to get clock\n");
1911                 return PTR_ERR(dc->clk);
1912         }
1913
1914         dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1915         if (IS_ERR(dc->rst)) {
1916                 dev_err(&pdev->dev, "failed to get reset\n");
1917                 return PTR_ERR(dc->rst);
1918         }
1919
1920         if (dc->soc->has_powergate) {
1921                 if (dc->pipe == 0)
1922                         dc->powergate = TEGRA_POWERGATE_DIS;
1923                 else
1924                         dc->powergate = TEGRA_POWERGATE_DISB;
1925
1926                 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
1927                                                         dc->rst);
1928                 if (err < 0) {
1929                         dev_err(&pdev->dev, "failed to power partition: %d\n",
1930                                 err);
1931                         return err;
1932                 }
1933         } else {
1934                 err = clk_prepare_enable(dc->clk);
1935                 if (err < 0) {
1936                         dev_err(&pdev->dev, "failed to enable clock: %d\n",
1937                                 err);
1938                         return err;
1939                 }
1940
1941                 err = reset_control_deassert(dc->rst);
1942                 if (err < 0) {
1943                         dev_err(&pdev->dev, "failed to deassert reset: %d\n",
1944                                 err);
1945                         return err;
1946                 }
1947         }
1948
1949         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1950         dc->regs = devm_ioremap_resource(&pdev->dev, regs);
1951         if (IS_ERR(dc->regs))
1952                 return PTR_ERR(dc->regs);
1953
1954         dc->irq = platform_get_irq(pdev, 0);
1955         if (dc->irq < 0) {
1956                 dev_err(&pdev->dev, "failed to get IRQ\n");
1957                 return -ENXIO;
1958         }
1959
1960         INIT_LIST_HEAD(&dc->client.list);
1961         dc->client.ops = &dc_client_ops;
1962         dc->client.dev = &pdev->dev;
1963
1964         err = tegra_dc_rgb_probe(dc);
1965         if (err < 0 && err != -ENODEV) {
1966                 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
1967                 return err;
1968         }
1969
1970         err = host1x_client_register(&dc->client);
1971         if (err < 0) {
1972                 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
1973                         err);
1974                 return err;
1975         }
1976
1977         dc->syncpt = host1x_syncpt_request(&pdev->dev, flags);
1978         if (!dc->syncpt)
1979                 dev_warn(&pdev->dev, "failed to allocate syncpoint\n");
1980
1981         platform_set_drvdata(pdev, dc);
1982
1983         return 0;
1984 }
1985
1986 static int tegra_dc_remove(struct platform_device *pdev)
1987 {
1988         struct tegra_dc *dc = platform_get_drvdata(pdev);
1989         int err;
1990
1991         host1x_syncpt_free(dc->syncpt);
1992
1993         err = host1x_client_unregister(&dc->client);
1994         if (err < 0) {
1995                 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
1996                         err);
1997                 return err;
1998         }
1999
2000         err = tegra_dc_rgb_remove(dc);
2001         if (err < 0) {
2002                 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2003                 return err;
2004         }
2005
2006         reset_control_assert(dc->rst);
2007
2008         if (dc->soc->has_powergate)
2009                 tegra_powergate_power_off(dc->powergate);
2010
2011         clk_disable_unprepare(dc->clk);
2012
2013         return 0;
2014 }
2015
2016 struct platform_driver tegra_dc_driver = {
2017         .driver = {
2018                 .name = "tegra-dc",
2019                 .owner = THIS_MODULE,
2020                 .of_match_table = tegra_dc_of_match,
2021         },
2022         .probe = tegra_dc_probe,
2023         .remove = tegra_dc_remove,
2024 };