These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / gpu / drm / nouveau / nvkm / subdev / instmem / gk20a.c
1 /*
2  * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  */
22
23 /*
24  * GK20A does not have dedicated video memory, and to accurately represent this
25  * fact Nouveau will not create a RAM device for it. Therefore its instmem
26  * implementation must be done directly on top of system memory, while
27  * preserving coherency for read and write operations.
28  *
29  * Instmem can be allocated through two means:
30  * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory
31  *    pages contiguous to the GPU. This is the preferred way.
32  * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically
33  *    contiguous memory.
34  *
35  * In both cases CPU read and writes are performed by creating a write-combined
36  * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To
37  * be conservative we do this every time we acquire or release an instobj, but
38  * ideally L2 management should be handled at a higher level.
39  *
40  * To improve performance, CPU mappings are not removed upon instobj release.
41  * Instead they are placed into a LRU list to be recycled when the mapped space
42  * goes beyond a certain threshold. At the moment this limit is 1MB.
43  */
44 #include "priv.h"
45
46 #include <core/memory.h>
47 #include <core/mm.h>
48 #include <core/tegra.h>
49 #include <subdev/fb.h>
50 #include <subdev/ltc.h>
51
52 struct gk20a_instobj {
53         struct nvkm_memory memory;
54         struct nvkm_mem mem;
55         struct gk20a_instmem *imem;
56
57         /* CPU mapping */
58         u32 *vaddr;
59         struct list_head vaddr_node;
60 };
61 #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)
62
63 /*
64  * Used for objects allocated using the DMA API
65  */
66 struct gk20a_instobj_dma {
67         struct gk20a_instobj base;
68
69         u32 *cpuaddr;
70         dma_addr_t handle;
71         struct nvkm_mm_node r;
72 };
73 #define gk20a_instobj_dma(p) \
74         container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base)
75
76 /*
77  * Used for objects flattened using the IOMMU API
78  */
79 struct gk20a_instobj_iommu {
80         struct gk20a_instobj base;
81
82         /* will point to the higher half of pages */
83         dma_addr_t *dma_addrs;
84         /* array of base.mem->size pages (+ dma_addr_ts) */
85         struct page *pages[];
86 };
87 #define gk20a_instobj_iommu(p) \
88         container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base)
89
90 struct gk20a_instmem {
91         struct nvkm_instmem base;
92
93         /* protects vaddr_* and gk20a_instobj::vaddr* */
94         spinlock_t lock;
95
96         /* CPU mappings LRU */
97         unsigned int vaddr_use;
98         unsigned int vaddr_max;
99         struct list_head vaddr_lru;
100
101         /* Only used if IOMMU if present */
102         struct mutex *mm_mutex;
103         struct nvkm_mm *mm;
104         struct iommu_domain *domain;
105         unsigned long iommu_pgshift;
106         u16 iommu_bit;
107
108         /* Only used by DMA API */
109         struct dma_attrs attrs;
110
111         void __iomem * (*cpu_map)(struct nvkm_memory *);
112 };
113 #define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base)
114
115 static enum nvkm_memory_target
116 gk20a_instobj_target(struct nvkm_memory *memory)
117 {
118         return NVKM_MEM_TARGET_HOST;
119 }
120
121 static u64
122 gk20a_instobj_addr(struct nvkm_memory *memory)
123 {
124         return gk20a_instobj(memory)->mem.offset;
125 }
126
127 static u64
128 gk20a_instobj_size(struct nvkm_memory *memory)
129 {
130         return (u64)gk20a_instobj(memory)->mem.size << 12;
131 }
132
133 static void __iomem *
134 gk20a_instobj_cpu_map_dma(struct nvkm_memory *memory)
135 {
136 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
137         struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory);
138         struct device *dev = node->base.imem->base.subdev.device->dev;
139         int npages = nvkm_memory_size(memory) >> 12;
140         struct page *pages[npages];
141         int i;
142
143         /* we shouldn't see a gk20a on anything but arm/arm64 anyways */
144         /* phys_to_page does not exist on all platforms... */
145         pages[0] = pfn_to_page(dma_to_phys(dev, node->handle) >> PAGE_SHIFT);
146         for (i = 1; i < npages; i++)
147                 pages[i] = pages[0] + i;
148
149         return vmap(pages, npages, VM_MAP, pgprot_writecombine(PAGE_KERNEL));
150 #else
151         BUG();
152         return NULL;
153 #endif
154 }
155
156 static void __iomem *
157 gk20a_instobj_cpu_map_iommu(struct nvkm_memory *memory)
158 {
159         struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
160         int npages = nvkm_memory_size(memory) >> 12;
161
162         return vmap(node->pages, npages, VM_MAP,
163                     pgprot_writecombine(PAGE_KERNEL));
164 }
165
166 /*
167  * Must be called while holding gk20a_instmem_lock
168  */
169 static void
170 gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size)
171 {
172         while (imem->vaddr_use + size > imem->vaddr_max) {
173                 struct gk20a_instobj *obj;
174
175                 /* no candidate that can be unmapped, abort... */
176                 if (list_empty(&imem->vaddr_lru))
177                         break;
178
179                 obj = list_first_entry(&imem->vaddr_lru, struct gk20a_instobj,
180                                        vaddr_node);
181                 list_del(&obj->vaddr_node);
182                 vunmap(obj->vaddr);
183                 obj->vaddr = NULL;
184                 imem->vaddr_use -= nvkm_memory_size(&obj->memory);
185                 nvkm_debug(&imem->base.subdev, "(GC) vaddr used: %x/%x\n",
186                            imem->vaddr_use, imem->vaddr_max);
187
188         }
189 }
190
191 static void __iomem *
192 gk20a_instobj_acquire(struct nvkm_memory *memory)
193 {
194         struct gk20a_instobj *node = gk20a_instobj(memory);
195         struct gk20a_instmem *imem = node->imem;
196         struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
197         const u64 size = nvkm_memory_size(memory);
198         unsigned long flags;
199
200         nvkm_ltc_flush(ltc);
201
202         spin_lock_irqsave(&imem->lock, flags);
203
204         if (node->vaddr) {
205                 /* remove us from the LRU list since we cannot be unmapped */
206                 list_del(&node->vaddr_node);
207
208                 goto out;
209         }
210
211         /* try to free some address space if we reached the limit */
212         gk20a_instmem_vaddr_gc(imem, size);
213
214         node->vaddr = imem->cpu_map(memory);
215
216         if (!node->vaddr) {
217                 nvkm_error(&imem->base.subdev, "cannot map instobj - "
218                            "this is not going to end well...\n");
219                 goto out;
220         }
221
222         imem->vaddr_use += size;
223         nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n",
224                    imem->vaddr_use, imem->vaddr_max);
225
226 out:
227         spin_unlock_irqrestore(&imem->lock, flags);
228
229         return node->vaddr;
230 }
231
232 static void
233 gk20a_instobj_release(struct nvkm_memory *memory)
234 {
235         struct gk20a_instobj *node = gk20a_instobj(memory);
236         struct gk20a_instmem *imem = node->imem;
237         struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
238         unsigned long flags;
239
240         spin_lock_irqsave(&imem->lock, flags);
241
242         /* add ourselves to the LRU list so our CPU mapping can be freed */
243         list_add_tail(&node->vaddr_node, &imem->vaddr_lru);
244
245         spin_unlock_irqrestore(&imem->lock, flags);
246
247         wmb();
248         nvkm_ltc_invalidate(ltc);
249 }
250
251 static u32
252 gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset)
253 {
254         struct gk20a_instobj *node = gk20a_instobj(memory);
255
256         return node->vaddr[offset / 4];
257 }
258
259 static void
260 gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data)
261 {
262         struct gk20a_instobj *node = gk20a_instobj(memory);
263
264         node->vaddr[offset / 4] = data;
265 }
266
267 static void
268 gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset)
269 {
270         struct gk20a_instobj *node = gk20a_instobj(memory);
271
272         nvkm_vm_map_at(vma, offset, &node->mem);
273 }
274
275 /*
276  * Clear the CPU mapping of an instobj if it exists
277  */
278 static void
279 gk20a_instobj_dtor(struct gk20a_instobj *node)
280 {
281         struct gk20a_instmem *imem = node->imem;
282         struct gk20a_instobj *obj;
283         unsigned long flags;
284
285         spin_lock_irqsave(&imem->lock, flags);
286
287         if (!node->vaddr)
288                 goto out;
289
290         list_for_each_entry(obj, &imem->vaddr_lru, vaddr_node) {
291                 if (obj == node) {
292                         list_del(&obj->vaddr_node);
293                         break;
294                 }
295         }
296         vunmap(node->vaddr);
297         node->vaddr = NULL;
298         imem->vaddr_use -= nvkm_memory_size(&node->memory);
299         nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n",
300                    imem->vaddr_use, imem->vaddr_max);
301
302 out:
303         spin_unlock_irqrestore(&imem->lock, flags);
304 }
305
306 static void *
307 gk20a_instobj_dtor_dma(struct nvkm_memory *memory)
308 {
309         struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory);
310         struct gk20a_instmem *imem = node->base.imem;
311         struct device *dev = imem->base.subdev.device->dev;
312
313         gk20a_instobj_dtor(&node->base);
314
315         if (unlikely(!node->cpuaddr))
316                 goto out;
317
318         dma_free_attrs(dev, node->base.mem.size << PAGE_SHIFT, node->cpuaddr,
319                        node->handle, &imem->attrs);
320
321 out:
322         return node;
323 }
324
325 static void *
326 gk20a_instobj_dtor_iommu(struct nvkm_memory *memory)
327 {
328         struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
329         struct gk20a_instmem *imem = node->base.imem;
330         struct device *dev = imem->base.subdev.device->dev;
331         struct nvkm_mm_node *r;
332         int i;
333
334         gk20a_instobj_dtor(&node->base);
335
336         if (unlikely(list_empty(&node->base.mem.regions)))
337                 goto out;
338
339         r = list_first_entry(&node->base.mem.regions, struct nvkm_mm_node,
340                              rl_entry);
341
342         /* clear IOMMU bit to unmap pages */
343         r->offset &= ~BIT(imem->iommu_bit - imem->iommu_pgshift);
344
345         /* Unmap pages from GPU address space and free them */
346         for (i = 0; i < node->base.mem.size; i++) {
347                 iommu_unmap(imem->domain,
348                             (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE);
349                 dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE,
350                                DMA_BIDIRECTIONAL);
351                 __free_page(node->pages[i]);
352         }
353
354         /* Release area from GPU address space */
355         mutex_lock(imem->mm_mutex);
356         nvkm_mm_free(imem->mm, &r);
357         mutex_unlock(imem->mm_mutex);
358
359 out:
360         return node;
361 }
362
363 static const struct nvkm_memory_func
364 gk20a_instobj_func_dma = {
365         .dtor = gk20a_instobj_dtor_dma,
366         .target = gk20a_instobj_target,
367         .addr = gk20a_instobj_addr,
368         .size = gk20a_instobj_size,
369         .acquire = gk20a_instobj_acquire,
370         .release = gk20a_instobj_release,
371         .rd32 = gk20a_instobj_rd32,
372         .wr32 = gk20a_instobj_wr32,
373         .map = gk20a_instobj_map,
374 };
375
376 static const struct nvkm_memory_func
377 gk20a_instobj_func_iommu = {
378         .dtor = gk20a_instobj_dtor_iommu,
379         .target = gk20a_instobj_target,
380         .addr = gk20a_instobj_addr,
381         .size = gk20a_instobj_size,
382         .acquire = gk20a_instobj_acquire,
383         .release = gk20a_instobj_release,
384         .rd32 = gk20a_instobj_rd32,
385         .wr32 = gk20a_instobj_wr32,
386         .map = gk20a_instobj_map,
387 };
388
389 static int
390 gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align,
391                        struct gk20a_instobj **_node)
392 {
393         struct gk20a_instobj_dma *node;
394         struct nvkm_subdev *subdev = &imem->base.subdev;
395         struct device *dev = subdev->device->dev;
396
397         if (!(node = kzalloc(sizeof(*node), GFP_KERNEL)))
398                 return -ENOMEM;
399         *_node = &node->base;
400
401         nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.memory);
402
403         node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT,
404                                         &node->handle, GFP_KERNEL,
405                                         &imem->attrs);
406         if (!node->cpuaddr) {
407                 nvkm_error(subdev, "cannot allocate DMA memory\n");
408                 return -ENOMEM;
409         }
410
411         /* alignment check */
412         if (unlikely(node->handle & (align - 1)))
413                 nvkm_warn(subdev,
414                           "memory not aligned as requested: %pad (0x%x)\n",
415                           &node->handle, align);
416
417         /* present memory for being mapped using small pages */
418         node->r.type = 12;
419         node->r.offset = node->handle >> 12;
420         node->r.length = (npages << PAGE_SHIFT) >> 12;
421
422         node->base.mem.offset = node->handle;
423
424         INIT_LIST_HEAD(&node->base.mem.regions);
425         list_add_tail(&node->r.rl_entry, &node->base.mem.regions);
426
427         return 0;
428 }
429
430 static int
431 gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align,
432                          struct gk20a_instobj **_node)
433 {
434         struct gk20a_instobj_iommu *node;
435         struct nvkm_subdev *subdev = &imem->base.subdev;
436         struct device *dev = subdev->device->dev;
437         struct nvkm_mm_node *r;
438         int ret;
439         int i;
440
441         /*
442          * despite their variable size, instmem allocations are small enough
443          * (< 1 page) to be handled by kzalloc
444          */
445         if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) +
446                              sizeof(*node->dma_addrs)) * npages), GFP_KERNEL)))
447                 return -ENOMEM;
448         *_node = &node->base;
449         node->dma_addrs = (void *)(node->pages + npages);
450
451         nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.memory);
452
453         /* Allocate backing memory */
454         for (i = 0; i < npages; i++) {
455                 struct page *p = alloc_page(GFP_KERNEL);
456                 dma_addr_t dma_adr;
457
458                 if (p == NULL) {
459                         ret = -ENOMEM;
460                         goto free_pages;
461                 }
462                 node->pages[i] = p;
463                 dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
464                 if (dma_mapping_error(dev, dma_adr)) {
465                         nvkm_error(subdev, "DMA mapping error!\n");
466                         ret = -ENOMEM;
467                         goto free_pages;
468                 }
469                 node->dma_addrs[i] = dma_adr;
470         }
471
472         mutex_lock(imem->mm_mutex);
473         /* Reserve area from GPU address space */
474         ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages,
475                            align >> imem->iommu_pgshift, &r);
476         mutex_unlock(imem->mm_mutex);
477         if (ret) {
478                 nvkm_error(subdev, "IOMMU space is full!\n");
479                 goto free_pages;
480         }
481
482         /* Map into GPU address space */
483         for (i = 0; i < npages; i++) {
484                 u32 offset = (r->offset + i) << imem->iommu_pgshift;
485
486                 ret = iommu_map(imem->domain, offset, node->dma_addrs[i],
487                                 PAGE_SIZE, IOMMU_READ | IOMMU_WRITE);
488                 if (ret < 0) {
489                         nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret);
490
491                         while (i-- > 0) {
492                                 offset -= PAGE_SIZE;
493                                 iommu_unmap(imem->domain, offset, PAGE_SIZE);
494                         }
495                         goto release_area;
496                 }
497         }
498
499         /* IOMMU bit tells that an address is to be resolved through the IOMMU */
500         r->offset |= BIT(imem->iommu_bit - imem->iommu_pgshift);
501
502         node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift;
503
504         INIT_LIST_HEAD(&node->base.mem.regions);
505         list_add_tail(&r->rl_entry, &node->base.mem.regions);
506
507         return 0;
508
509 release_area:
510         mutex_lock(imem->mm_mutex);
511         nvkm_mm_free(imem->mm, &r);
512         mutex_unlock(imem->mm_mutex);
513
514 free_pages:
515         for (i = 0; i < npages && node->pages[i] != NULL; i++) {
516                 dma_addr_t dma_addr = node->dma_addrs[i];
517                 if (dma_addr)
518                         dma_unmap_page(dev, dma_addr, PAGE_SIZE,
519                                        DMA_BIDIRECTIONAL);
520                 __free_page(node->pages[i]);
521         }
522
523         return ret;
524 }
525
526 static int
527 gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero,
528                   struct nvkm_memory **pmemory)
529 {
530         struct gk20a_instmem *imem = gk20a_instmem(base);
531         struct nvkm_subdev *subdev = &imem->base.subdev;
532         struct gk20a_instobj *node = NULL;
533         int ret;
534
535         nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__,
536                    imem->domain ? "IOMMU" : "DMA", size, align);
537
538         /* Round size and align to page bounds */
539         size = max(roundup(size, PAGE_SIZE), PAGE_SIZE);
540         align = max(roundup(align, PAGE_SIZE), PAGE_SIZE);
541
542         if (imem->domain)
543                 ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT,
544                                                align, &node);
545         else
546                 ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT,
547                                              align, &node);
548         *pmemory = node ? &node->memory : NULL;
549         if (ret)
550                 return ret;
551
552         node->imem = imem;
553
554         /* present memory for being mapped using small pages */
555         node->mem.size = size >> 12;
556         node->mem.memtype = 0;
557         node->mem.page_shift = 12;
558
559         nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n",
560                    size, align, node->mem.offset);
561
562         return 0;
563 }
564
565 static void *
566 gk20a_instmem_dtor(struct nvkm_instmem *base)
567 {
568         struct gk20a_instmem *imem = gk20a_instmem(base);
569
570         /* perform some sanity checks... */
571         if (!list_empty(&imem->vaddr_lru))
572                 nvkm_warn(&base->subdev, "instobj LRU not empty!\n");
573
574         if (imem->vaddr_use != 0)
575                 nvkm_warn(&base->subdev, "instobj vmap area not empty! "
576                           "0x%x bytes still mapped\n", imem->vaddr_use);
577
578         return imem;
579 }
580
581 static const struct nvkm_instmem_func
582 gk20a_instmem = {
583         .dtor = gk20a_instmem_dtor,
584         .memory_new = gk20a_instobj_new,
585         .persistent = true,
586         .zero = false,
587 };
588
589 int
590 gk20a_instmem_new(struct nvkm_device *device, int index,
591                   struct nvkm_instmem **pimem)
592 {
593         struct nvkm_device_tegra *tdev = device->func->tegra(device);
594         struct gk20a_instmem *imem;
595
596         if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL)))
597                 return -ENOMEM;
598         nvkm_instmem_ctor(&gk20a_instmem, device, index, &imem->base);
599         spin_lock_init(&imem->lock);
600         *pimem = &imem->base;
601
602         /* do not allow more than 1MB of CPU-mapped instmem */
603         imem->vaddr_use = 0;
604         imem->vaddr_max = 0x100000;
605         INIT_LIST_HEAD(&imem->vaddr_lru);
606
607         if (tdev->iommu.domain) {
608                 imem->mm_mutex = &tdev->iommu.mutex;
609                 imem->mm = &tdev->iommu.mm;
610                 imem->domain = tdev->iommu.domain;
611                 imem->iommu_pgshift = tdev->iommu.pgshift;
612                 imem->cpu_map = gk20a_instobj_cpu_map_iommu;
613                 imem->iommu_bit = tdev->func->iommu_bit;
614
615                 nvkm_info(&imem->base.subdev, "using IOMMU\n");
616         } else {
617                 init_dma_attrs(&imem->attrs);
618                 /* We will access the memory through our own mapping */
619                 dma_set_attr(DMA_ATTR_NON_CONSISTENT, &imem->attrs);
620                 dma_set_attr(DMA_ATTR_WEAK_ORDERING, &imem->attrs);
621                 dma_set_attr(DMA_ATTR_WRITE_COMBINE, &imem->attrs);
622                 dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &imem->attrs);
623                 imem->cpu_map = gk20a_instobj_cpu_map_dma;
624
625                 nvkm_info(&imem->base.subdev, "using DMA API\n");
626         }
627
628         return 0;
629 }