These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / gpu / drm / nouveau / nvkm / subdev / fb / ramnv50.c
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #define nv50_ram(p) container_of((p), struct nv50_ram, base)
25 #include "ram.h"
26 #include "ramseq.h"
27 #include "nv50.h"
28
29 #include <core/option.h>
30 #include <subdev/bios.h>
31 #include <subdev/bios/perf.h>
32 #include <subdev/bios/pll.h>
33 #include <subdev/bios/rammap.h>
34 #include <subdev/bios/timing.h>
35 #include <subdev/clk/pll.h>
36 #include <subdev/gpio.h>
37
38 struct nv50_ramseq {
39         struct hwsq base;
40         struct hwsq_reg r_0x002504;
41         struct hwsq_reg r_0x004008;
42         struct hwsq_reg r_0x00400c;
43         struct hwsq_reg r_0x00c040;
44         struct hwsq_reg r_0x100200;
45         struct hwsq_reg r_0x100210;
46         struct hwsq_reg r_0x10021c;
47         struct hwsq_reg r_0x1002d0;
48         struct hwsq_reg r_0x1002d4;
49         struct hwsq_reg r_0x1002dc;
50         struct hwsq_reg r_0x10053c;
51         struct hwsq_reg r_0x1005a0;
52         struct hwsq_reg r_0x1005a4;
53         struct hwsq_reg r_0x100710;
54         struct hwsq_reg r_0x100714;
55         struct hwsq_reg r_0x100718;
56         struct hwsq_reg r_0x10071c;
57         struct hwsq_reg r_0x100da0;
58         struct hwsq_reg r_0x100e20;
59         struct hwsq_reg r_0x100e24;
60         struct hwsq_reg r_0x611200;
61         struct hwsq_reg r_timing[9];
62         struct hwsq_reg r_mr[4];
63         struct hwsq_reg r_gpio[4];
64 };
65
66 struct nv50_ram {
67         struct nvkm_ram base;
68         struct nv50_ramseq hwsq;
69 };
70
71 #define T(t) cfg->timing_10_##t
72 static int
73 nv50_ram_timing_calc(struct nv50_ram *ram, u32 *timing)
74 {
75         struct nvbios_ramcfg *cfg = &ram->base.target.bios;
76         struct nvkm_subdev *subdev = &ram->base.fb->subdev;
77         struct nvkm_device *device = subdev->device;
78         u32 cur2, cur4, cur7, cur8;
79         u8 unkt3b;
80
81         cur2 = nvkm_rd32(device, 0x100228);
82         cur4 = nvkm_rd32(device, 0x100230);
83         cur7 = nvkm_rd32(device, 0x10023c);
84         cur8 = nvkm_rd32(device, 0x100240);
85
86         switch ((!T(CWL)) * ram->base.type) {
87         case NVKM_RAM_TYPE_DDR2:
88                 T(CWL) = T(CL) - 1;
89                 break;
90         case NVKM_RAM_TYPE_GDDR3:
91                 T(CWL) = ((cur2 & 0xff000000) >> 24) + 1;
92                 break;
93         }
94
95         /* XXX: N=1 is not proper statistics */
96         if (device->chipset == 0xa0) {
97                 unkt3b = 0x19 + ram->base.next->bios.rammap_00_16_40;
98                 timing[6] = (0x2d + T(CL) - T(CWL) +
99                                 ram->base.next->bios.rammap_00_16_40) << 16 |
100                             T(CWL) << 8 |
101                             (0x2f + T(CL) - T(CWL));
102         } else {
103                 unkt3b = 0x16;
104                 timing[6] = (0x2b + T(CL) - T(CWL)) << 16 |
105                             max_t(s8, T(CWL) - 2, 1) << 8 |
106                             (0x2e + T(CL) - T(CWL));
107         }
108
109         timing[0] = (T(RP) << 24 | T(RAS) << 16 | T(RFC) << 8 | T(RC));
110         timing[1] = (T(WR) + 1 + T(CWL)) << 24 |
111                     max_t(u8, T(18), 1) << 16 |
112                     (T(WTR) + 1 + T(CWL)) << 8 |
113                     (3 + T(CL) - T(CWL));
114         timing[2] = (T(CWL) - 1) << 24 |
115                     (T(RRD) << 16) |
116                     (T(RCDWR) << 8) |
117                     T(RCDRD);
118         timing[3] = (unkt3b - 2 + T(CL)) << 24 |
119                     unkt3b << 16 |
120                     (T(CL) - 1) << 8 |
121                     (T(CL) - 1);
122         timing[4] = (cur4 & 0xffff0000) |
123                     T(13) << 8 |
124                     T(13);
125         timing[5] = T(RFC) << 24 |
126                     max_t(u8, T(RCDRD), T(RCDWR)) << 16 |
127                     T(RP);
128         /* Timing 6 is already done above */
129         timing[7] = (cur7 & 0xff00ffff) | (T(CL) - 1) << 16;
130         timing[8] = (cur8 & 0xffffff00);
131
132         /* XXX: P.version == 1 only has DDR2 and GDDR3? */
133         if (ram->base.type == NVKM_RAM_TYPE_DDR2) {
134                 timing[5] |= (T(CL) + 3) << 8;
135                 timing[8] |= (T(CL) - 4);
136         } else
137         if (ram->base.type == NVKM_RAM_TYPE_GDDR3) {
138                 timing[5] |= (T(CL) + 2) << 8;
139                 timing[8] |= (T(CL) - 2);
140         }
141
142         nvkm_debug(subdev, " 220: %08x %08x %08x %08x\n",
143                    timing[0], timing[1], timing[2], timing[3]);
144         nvkm_debug(subdev, " 230: %08x %08x %08x %08x\n",
145                    timing[4], timing[5], timing[6], timing[7]);
146         nvkm_debug(subdev, " 240: %08x\n", timing[8]);
147         return 0;
148 }
149
150 static int
151 nv50_ram_timing_read(struct nv50_ram *ram, u32 *timing)
152 {
153         unsigned int i;
154         struct nvbios_ramcfg *cfg = &ram->base.target.bios;
155         struct nvkm_subdev *subdev = &ram->base.fb->subdev;
156         struct nvkm_device *device = subdev->device;
157
158         for (i = 0; i <= 8; i++)
159                 timing[i] = nvkm_rd32(device, 0x100220 + (i * 4));
160
161         /* Derive the bare minimum for the MR calculation to succeed */
162         cfg->timing_ver = 0x10;
163         T(CL) = (timing[3] & 0xff) + 1;
164
165         switch (ram->base.type) {
166         case NVKM_RAM_TYPE_DDR2:
167                 T(CWL) = T(CL) - 1;
168                 break;
169         case NVKM_RAM_TYPE_GDDR3:
170                 T(CWL) = ((timing[2] & 0xff000000) >> 24) + 1;
171                 break;
172         default:
173                 return -ENOSYS;
174                 break;
175         }
176
177         T(WR) = ((timing[1] >> 24) & 0xff) - 1 - T(CWL);
178
179         return 0;
180 }
181 #undef T
182
183 static void
184 nvkm_sddr2_dll_reset(struct nv50_ramseq *hwsq)
185 {
186         ram_mask(hwsq, mr[0], 0x100, 0x100);
187         ram_mask(hwsq, mr[0], 0x100, 0x000);
188         ram_nsec(hwsq, 24000);
189 }
190
191 static void
192 nv50_ram_gpio(struct nv50_ramseq *hwsq, u8 tag, u32 val)
193 {
194         struct nvkm_gpio *gpio = hwsq->base.subdev->device->gpio;
195         struct dcb_gpio_func func;
196         u32 reg, sh, gpio_val;
197         int ret;
198
199         if (nvkm_gpio_get(gpio, 0, tag, DCB_GPIO_UNUSED) != val) {
200                 ret = nvkm_gpio_find(gpio, 0, tag, DCB_GPIO_UNUSED, &func);
201                 if (ret)
202                         return;
203
204                 reg = func.line >> 3;
205                 sh = (func.line & 0x7) << 2;
206                 gpio_val = ram_rd32(hwsq, gpio[reg]);
207
208                 if (gpio_val & (8 << sh))
209                         val = !val;
210                 if (!(func.log[1] & 1))
211                         val = !val;
212
213                 ram_mask(hwsq, gpio[reg], (0x3 << sh), ((val | 0x2) << sh));
214                 ram_nsec(hwsq, 20000);
215         }
216 }
217
218 static int
219 nv50_ram_calc(struct nvkm_ram *base, u32 freq)
220 {
221         struct nv50_ram *ram = nv50_ram(base);
222         struct nv50_ramseq *hwsq = &ram->hwsq;
223         struct nvkm_subdev *subdev = &ram->base.fb->subdev;
224         struct nvkm_bios *bios = subdev->device->bios;
225         struct nvbios_perfE perfE;
226         struct nvbios_pll mpll;
227         struct nvkm_ram_data *next;
228         u8  ver, hdr, cnt, len, strap, size;
229         u32 data;
230         u32 r100da0, r004008, unk710, unk714, unk718, unk71c;
231         int N1, M1, N2, M2, P;
232         int ret, i;
233         u32 timing[9];
234
235         next = &ram->base.target;
236         next->freq = freq;
237         ram->base.next = next;
238
239         /* lookup closest matching performance table entry for frequency */
240         i = 0;
241         do {
242                 data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt,
243                                      &size, &perfE);
244                 if (!data || (ver < 0x25 || ver >= 0x40) ||
245                     (size < 2)) {
246                         nvkm_error(subdev, "invalid/missing perftab entry\n");
247                         return -EINVAL;
248                 }
249         } while (perfE.memory < freq);
250
251         nvbios_rammapEp_from_perf(bios, data, hdr, &next->bios);
252
253         /* locate specific data set for the attached memory */
254         strap = nvbios_ramcfg_index(subdev);
255         if (strap >= cnt) {
256                 nvkm_error(subdev, "invalid ramcfg strap\n");
257                 return -EINVAL;
258         }
259
260         data = nvbios_rammapSp_from_perf(bios, data + hdr, size, strap,
261                         &next->bios);
262         if (!data) {
263                 nvkm_error(subdev, "invalid/missing rammap entry ");
264                 return -EINVAL;
265         }
266
267         /* lookup memory timings, if bios says they're present */
268         if (next->bios.ramcfg_timing != 0xff) {
269                 data = nvbios_timingEp(bios, next->bios.ramcfg_timing,
270                                         &ver, &hdr, &cnt, &len, &next->bios);
271                 if (!data || ver != 0x10 || hdr < 0x12) {
272                         nvkm_error(subdev, "invalid/missing timing entry "
273                                  "%02x %04x %02x %02x\n",
274                                  strap, data, ver, hdr);
275                         return -EINVAL;
276                 }
277                 nv50_ram_timing_calc(ram, timing);
278         } else {
279                 nv50_ram_timing_read(ram, timing);
280         }
281
282         ret = ram_init(hwsq, subdev);
283         if (ret)
284                 return ret;
285
286         /* Determine ram-specific MR values */
287         ram->base.mr[0] = ram_rd32(hwsq, mr[0]);
288         ram->base.mr[1] = ram_rd32(hwsq, mr[1]);
289         ram->base.mr[2] = ram_rd32(hwsq, mr[2]);
290
291         switch (ram->base.type) {
292         case NVKM_RAM_TYPE_GDDR3:
293                 ret = nvkm_gddr3_calc(&ram->base);
294                 break;
295         default:
296                 ret = -ENOSYS;
297                 break;
298         }
299
300         if (ret) {
301                 nvkm_error(subdev, "Could not calculate MR\n");
302                 return ret;
303         }
304
305         if (subdev->device->chipset <= 0x96 && !next->bios.ramcfg_00_03_02)
306                 ram_mask(hwsq, 0x100710, 0x00000200, 0x00000000);
307
308         /* Always disable this bit during reclock */
309         ram_mask(hwsq, 0x100200, 0x00000800, 0x00000000);
310
311         ram_wait_vblank(hwsq);
312         ram_wr32(hwsq, 0x611200, 0x00003300);
313         ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */
314         ram_nsec(hwsq, 8000);
315         ram_setf(hwsq, 0x10, 0x00); /* disable fb */
316         ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
317         ram_nsec(hwsq, 2000);
318
319         if (next->bios.timing_10_ODT)
320                 nv50_ram_gpio(hwsq, 0x2e, 1);
321
322         ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */
323         ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
324         ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
325         ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */
326         ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */
327
328         ret = nvbios_pll_parse(bios, 0x004008, &mpll);
329         mpll.vco2.max_freq = 0;
330         if (ret >= 0) {
331                 ret = nv04_pll_calc(subdev, &mpll, freq,
332                                     &N1, &M1, &N2, &M2, &P);
333                 if (ret <= 0)
334                         ret = -EINVAL;
335         }
336
337         if (ret < 0)
338                 return ret;
339
340         /* XXX: 750MHz seems rather arbitrary */
341         if (freq <= 750000) {
342                 r100da0 = 0x00000010;
343                 r004008 = 0x90000000;
344         } else {
345                 r100da0 = 0x00000000;
346                 r004008 = 0x80000000;
347         }
348
349         r004008 |= (mpll.bias_p << 19) | (P << 22) | (P << 16);
350
351         ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000);
352         /* XXX: Is rammap_00_16_40 the DLL bit we've seen in GT215? Why does
353          * it have a different rammap bit from DLLoff? */
354         ram_mask(hwsq, 0x004008, 0x00004200, 0x00000200 |
355                         next->bios.rammap_00_16_40 << 14);
356         ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1);
357         ram_mask(hwsq, 0x004008, 0x91ff0000, r004008);
358
359         /* XXX: GDDR3 only? */
360         if (subdev->device->chipset >= 0x92)
361                 ram_wr32(hwsq, 0x100da0, r100da0);
362
363         nv50_ram_gpio(hwsq, 0x18, !next->bios.ramcfg_FBVDDQ);
364         ram_nsec(hwsq, 64000); /*XXX*/
365         ram_nsec(hwsq, 32000); /*XXX*/
366
367         ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000);
368
369         ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */
370         ram_wr32(hwsq, 0x1002d4, 0x00000001); /* disable self-refresh */
371         ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */
372
373         ram_nsec(hwsq, 12000);
374
375         switch (ram->base.type) {
376         case NVKM_RAM_TYPE_DDR2:
377                 ram_nuke(hwsq, mr[0]); /* force update */
378                 ram_mask(hwsq, mr[0], 0x000, 0x000);
379                 break;
380         case NVKM_RAM_TYPE_GDDR3:
381                 ram_nuke(hwsq, mr[1]); /* force update */
382                 ram_wr32(hwsq, mr[1], ram->base.mr[1]);
383                 ram_nuke(hwsq, mr[0]); /* force update */
384                 ram_wr32(hwsq, mr[0], ram->base.mr[0]);
385                 break;
386         default:
387                 break;
388         }
389
390         ram_mask(hwsq, timing[3], 0xffffffff, timing[3]);
391         ram_mask(hwsq, timing[1], 0xffffffff, timing[1]);
392         ram_mask(hwsq, timing[6], 0xffffffff, timing[6]);
393         ram_mask(hwsq, timing[7], 0xffffffff, timing[7]);
394         ram_mask(hwsq, timing[8], 0xffffffff, timing[8]);
395         ram_mask(hwsq, timing[0], 0xffffffff, timing[0]);
396         ram_mask(hwsq, timing[2], 0xffffffff, timing[2]);
397         ram_mask(hwsq, timing[4], 0xffffffff, timing[4]);
398         ram_mask(hwsq, timing[5], 0xffffffff, timing[5]);
399
400         if (!next->bios.ramcfg_00_03_02)
401                 ram_mask(hwsq, 0x10021c, 0x00010000, 0x00000000);
402         ram_mask(hwsq, 0x100200, 0x00001000, !next->bios.ramcfg_00_04_02 << 12);
403
404         /* XXX: A lot of this could be "chipset"/"ram type" specific stuff */
405         unk710  = ram_rd32(hwsq, 0x100710) & ~0x00000100;
406         unk714  = ram_rd32(hwsq, 0x100714) & ~0xf0000020;
407         unk718  = ram_rd32(hwsq, 0x100718) & ~0x00000100;
408         unk71c  = ram_rd32(hwsq, 0x10071c) & ~0x00000100;
409         if (subdev->device->chipset <= 0x96) {
410                 unk710 &= ~0x0000006e;
411                 unk714 &= ~0x00000100;
412
413                 if (!next->bios.ramcfg_00_03_08)
414                         unk710 |= 0x00000060;
415                 if (!next->bios.ramcfg_FBVDDQ)
416                         unk714 |= 0x00000100;
417                 if ( next->bios.ramcfg_00_04_04)
418                         unk710 |= 0x0000000e;
419         } else {
420                 unk710 &= ~0x00000001;
421
422                 if (!next->bios.ramcfg_00_03_08)
423                         unk710 |= 0x00000001;
424         }
425
426         if ( next->bios.ramcfg_00_03_01)
427                 unk71c |= 0x00000100;
428         if ( next->bios.ramcfg_00_03_02)
429                 unk710 |= 0x00000100;
430         if (!next->bios.ramcfg_00_03_08)
431                 unk714 |= 0x00000020;
432         if ( next->bios.ramcfg_00_04_04)
433                 unk714 |= 0x70000000;
434         if ( next->bios.ramcfg_00_04_20)
435                 unk718 |= 0x00000100;
436
437         ram_mask(hwsq, 0x100714, 0xffffffff, unk714);
438         ram_mask(hwsq, 0x10071c, 0xffffffff, unk71c);
439         ram_mask(hwsq, 0x100718, 0xffffffff, unk718);
440         ram_mask(hwsq, 0x100710, 0xffffffff, unk710);
441
442         /* XXX: G94 does not even test these regs in trace. Harmless we do it,
443          * but why is it omitted? */
444         if (next->bios.rammap_00_16_20) {
445                 ram_wr32(hwsq, 0x1005a0, next->bios.ramcfg_00_07 << 16 |
446                                          next->bios.ramcfg_00_06 << 8 |
447                                          next->bios.ramcfg_00_05);
448                 ram_wr32(hwsq, 0x1005a4, next->bios.ramcfg_00_09 << 8 |
449                                          next->bios.ramcfg_00_08);
450                 ram_mask(hwsq, 0x10053c, 0x00001000, 0x00000000);
451         } else {
452                 ram_mask(hwsq, 0x10053c, 0x00001000, 0x00001000);
453         }
454         ram_mask(hwsq, mr[1], 0xffffffff, ram->base.mr[1]);
455
456         if (!next->bios.timing_10_ODT)
457                 nv50_ram_gpio(hwsq, 0x2e, 0);
458
459         /* Reset DLL */
460         if (!next->bios.ramcfg_DLLoff)
461                 nvkm_sddr2_dll_reset(hwsq);
462
463         ram_setf(hwsq, 0x10, 0x01); /* enable fb */
464         ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
465         ram_wr32(hwsq, 0x611200, 0x00003330);
466         ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */
467
468         if (next->bios.rammap_00_17_02)
469                 ram_mask(hwsq, 0x100200, 0x00000800, 0x00000800);
470         if (!next->bios.rammap_00_16_40)
471                 ram_mask(hwsq, 0x004008, 0x00004000, 0x00000000);
472         if (next->bios.ramcfg_00_03_02)
473                 ram_mask(hwsq, 0x10021c, 0x00010000, 0x00010000);
474         if (subdev->device->chipset <= 0x96 && next->bios.ramcfg_00_03_02)
475                 ram_mask(hwsq, 0x100710, 0x00000200, 0x00000200);
476
477         return 0;
478 }
479
480 static int
481 nv50_ram_prog(struct nvkm_ram *base)
482 {
483         struct nv50_ram *ram = nv50_ram(base);
484         struct nvkm_device *device = ram->base.fb->subdev.device;
485         ram_exec(&ram->hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
486         return 0;
487 }
488
489 static void
490 nv50_ram_tidy(struct nvkm_ram *base)
491 {
492         struct nv50_ram *ram = nv50_ram(base);
493         ram_exec(&ram->hwsq, false);
494 }
495
496 void
497 __nv50_ram_put(struct nvkm_ram *ram, struct nvkm_mem *mem)
498 {
499         struct nvkm_mm_node *this;
500
501         while (!list_empty(&mem->regions)) {
502                 this = list_first_entry(&mem->regions, typeof(*this), rl_entry);
503
504                 list_del(&this->rl_entry);
505                 nvkm_mm_free(&ram->vram, &this);
506         }
507
508         nvkm_mm_free(&ram->tags, &mem->tag);
509 }
510
511 void
512 nv50_ram_put(struct nvkm_ram *ram, struct nvkm_mem **pmem)
513 {
514         struct nvkm_mem *mem = *pmem;
515
516         *pmem = NULL;
517         if (unlikely(mem == NULL))
518                 return;
519
520         mutex_lock(&ram->fb->subdev.mutex);
521         __nv50_ram_put(ram, mem);
522         mutex_unlock(&ram->fb->subdev.mutex);
523
524         kfree(mem);
525 }
526
527 int
528 nv50_ram_get(struct nvkm_ram *ram, u64 size, u32 align, u32 ncmin,
529              u32 memtype, struct nvkm_mem **pmem)
530 {
531         struct nvkm_mm *heap = &ram->vram;
532         struct nvkm_mm *tags = &ram->tags;
533         struct nvkm_mm_node *r;
534         struct nvkm_mem *mem;
535         int comp = (memtype & 0x300) >> 8;
536         int type = (memtype & 0x07f);
537         int back = (memtype & 0x800);
538         int min, max, ret;
539
540         max = (size >> NVKM_RAM_MM_SHIFT);
541         min = ncmin ? (ncmin >> NVKM_RAM_MM_SHIFT) : max;
542         align >>= NVKM_RAM_MM_SHIFT;
543
544         mem = kzalloc(sizeof(*mem), GFP_KERNEL);
545         if (!mem)
546                 return -ENOMEM;
547
548         mutex_lock(&ram->fb->subdev.mutex);
549         if (comp) {
550                 if (align == (1 << (16 - NVKM_RAM_MM_SHIFT))) {
551                         int n = (max >> 4) * comp;
552
553                         ret = nvkm_mm_head(tags, 0, 1, n, n, 1, &mem->tag);
554                         if (ret)
555                                 mem->tag = NULL;
556                 }
557
558                 if (unlikely(!mem->tag))
559                         comp = 0;
560         }
561
562         INIT_LIST_HEAD(&mem->regions);
563         mem->memtype = (comp << 7) | type;
564         mem->size = max;
565
566         type = nv50_fb_memtype[type];
567         do {
568                 if (back)
569                         ret = nvkm_mm_tail(heap, 0, type, max, min, align, &r);
570                 else
571                         ret = nvkm_mm_head(heap, 0, type, max, min, align, &r);
572                 if (ret) {
573                         mutex_unlock(&ram->fb->subdev.mutex);
574                         ram->func->put(ram, &mem);
575                         return ret;
576                 }
577
578                 list_add_tail(&r->rl_entry, &mem->regions);
579                 max -= r->length;
580         } while (max);
581         mutex_unlock(&ram->fb->subdev.mutex);
582
583         r = list_first_entry(&mem->regions, struct nvkm_mm_node, rl_entry);
584         mem->offset = (u64)r->offset << NVKM_RAM_MM_SHIFT;
585         *pmem = mem;
586         return 0;
587 }
588
589 static const struct nvkm_ram_func
590 nv50_ram_func = {
591         .get = nv50_ram_get,
592         .put = nv50_ram_put,
593         .calc = nv50_ram_calc,
594         .prog = nv50_ram_prog,
595         .tidy = nv50_ram_tidy,
596 };
597
598 static u32
599 nv50_fb_vram_rblock(struct nvkm_ram *ram)
600 {
601         struct nvkm_subdev *subdev = &ram->fb->subdev;
602         struct nvkm_device *device = subdev->device;
603         int colbits, rowbitsa, rowbitsb, banks;
604         u64 rowsize, predicted;
605         u32 r0, r4, rt, rblock_size;
606
607         r0 = nvkm_rd32(device, 0x100200);
608         r4 = nvkm_rd32(device, 0x100204);
609         rt = nvkm_rd32(device, 0x100250);
610         nvkm_debug(subdev, "memcfg %08x %08x %08x %08x\n",
611                    r0, r4, rt, nvkm_rd32(device, 0x001540));
612
613         colbits  =  (r4 & 0x0000f000) >> 12;
614         rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
615         rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
616         banks    = 1 << (((r4 & 0x03000000) >> 24) + 2);
617
618         rowsize = ram->parts * banks * (1 << colbits) * 8;
619         predicted = rowsize << rowbitsa;
620         if (r0 & 0x00000004)
621                 predicted += rowsize << rowbitsb;
622
623         if (predicted != ram->size) {
624                 nvkm_warn(subdev, "memory controller reports %d MiB VRAM\n",
625                           (u32)(ram->size >> 20));
626         }
627
628         rblock_size = rowsize;
629         if (rt & 1)
630                 rblock_size *= 3;
631
632         nvkm_debug(subdev, "rblock %d bytes\n", rblock_size);
633         return rblock_size;
634 }
635
636 int
637 nv50_ram_ctor(const struct nvkm_ram_func *func,
638               struct nvkm_fb *fb, struct nvkm_ram *ram)
639 {
640         struct nvkm_device *device = fb->subdev.device;
641         struct nvkm_bios *bios = device->bios;
642         const u32 rsvd_head = ( 256 * 1024); /* vga memory */
643         const u32 rsvd_tail = (1024 * 1024); /* vbios etc */
644         u64 size = nvkm_rd32(device, 0x10020c);
645         u32 tags = nvkm_rd32(device, 0x100320);
646         enum nvkm_ram_type type = NVKM_RAM_TYPE_UNKNOWN;
647         int ret;
648
649         switch (nvkm_rd32(device, 0x100714) & 0x00000007) {
650         case 0: type = NVKM_RAM_TYPE_DDR1; break;
651         case 1:
652                 if (nvkm_fb_bios_memtype(bios) == NVKM_RAM_TYPE_DDR3)
653                         type = NVKM_RAM_TYPE_DDR3;
654                 else
655                         type = NVKM_RAM_TYPE_DDR2;
656                 break;
657         case 2: type = NVKM_RAM_TYPE_GDDR3; break;
658         case 3: type = NVKM_RAM_TYPE_GDDR4; break;
659         case 4: type = NVKM_RAM_TYPE_GDDR5; break;
660         default:
661                 break;
662         }
663
664         size = (size & 0x000000ff) << 32 | (size & 0xffffff00);
665
666         ret = nvkm_ram_ctor(func, fb, type, size, tags, ram);
667         if (ret)
668                 return ret;
669
670         ram->part_mask = (nvkm_rd32(device, 0x001540) & 0x00ff0000) >> 16;
671         ram->parts = hweight8(ram->part_mask);
672         ram->ranks = (nvkm_rd32(device, 0x100200) & 0x4) ? 2 : 1;
673         nvkm_mm_fini(&ram->vram);
674
675         return nvkm_mm_init(&ram->vram, rsvd_head >> NVKM_RAM_MM_SHIFT,
676                             (size - rsvd_head - rsvd_tail) >> NVKM_RAM_MM_SHIFT,
677                             nv50_fb_vram_rblock(ram) >> NVKM_RAM_MM_SHIFT);
678 }
679
680 int
681 nv50_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
682 {
683         struct nv50_ram *ram;
684         int ret, i;
685
686         if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
687                 return -ENOMEM;
688         *pram = &ram->base;
689
690         ret = nv50_ram_ctor(&nv50_ram_func, fb, &ram->base);
691         if (ret)
692                 return ret;
693
694         ram->hwsq.r_0x002504 = hwsq_reg(0x002504);
695         ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040);
696         ram->hwsq.r_0x004008 = hwsq_reg(0x004008);
697         ram->hwsq.r_0x00400c = hwsq_reg(0x00400c);
698         ram->hwsq.r_0x100200 = hwsq_reg(0x100200);
699         ram->hwsq.r_0x100210 = hwsq_reg(0x100210);
700         ram->hwsq.r_0x10021c = hwsq_reg(0x10021c);
701         ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0);
702         ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4);
703         ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc);
704         ram->hwsq.r_0x10053c = hwsq_reg(0x10053c);
705         ram->hwsq.r_0x1005a0 = hwsq_reg(0x1005a0);
706         ram->hwsq.r_0x1005a4 = hwsq_reg(0x1005a4);
707         ram->hwsq.r_0x100710 = hwsq_reg(0x100710);
708         ram->hwsq.r_0x100714 = hwsq_reg(0x100714);
709         ram->hwsq.r_0x100718 = hwsq_reg(0x100718);
710         ram->hwsq.r_0x10071c = hwsq_reg(0x10071c);
711         ram->hwsq.r_0x100da0 = hwsq_stride(0x100da0, 4, ram->base.part_mask);
712         ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20);
713         ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24);
714         ram->hwsq.r_0x611200 = hwsq_reg(0x611200);
715
716         for (i = 0; i < 9; i++)
717                 ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04));
718
719         if (ram->base.ranks > 1) {
720                 ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8);
721                 ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc);
722                 ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8);
723                 ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec);
724         } else {
725                 ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0);
726                 ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4);
727                 ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0);
728                 ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4);
729         }
730
731         ram->hwsq.r_gpio[0] = hwsq_reg(0x00e104);
732         ram->hwsq.r_gpio[1] = hwsq_reg(0x00e108);
733         ram->hwsq.r_gpio[2] = hwsq_reg(0x00e120);
734         ram->hwsq.r_gpio[3] = hwsq_reg(0x00e124);
735
736         return 0;
737 }