Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / gpu / drm / nouveau / nvkm / subdev / clk / nv50.c
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "nv50.h"
25 #include "pll.h"
26 #include "seq.h"
27
28 #include <core/device.h>
29 #include <subdev/bios.h>
30 #include <subdev/bios/pll.h>
31
32 static u32
33 read_div(struct nv50_clk_priv *priv)
34 {
35         switch (nv_device(priv)->chipset) {
36         case 0x50: /* it exists, but only has bit 31, not the dividers.. */
37         case 0x84:
38         case 0x86:
39         case 0x98:
40         case 0xa0:
41                 return nv_rd32(priv, 0x004700);
42         case 0x92:
43         case 0x94:
44         case 0x96:
45                 return nv_rd32(priv, 0x004800);
46         default:
47                 return 0x00000000;
48         }
49 }
50
51 static u32
52 read_pll_src(struct nv50_clk_priv *priv, u32 base)
53 {
54         struct nvkm_clk *clk = &priv->base;
55         u32 coef, ref = clk->read(clk, nv_clk_src_crystal);
56         u32 rsel = nv_rd32(priv, 0x00e18c);
57         int P, N, M, id;
58
59         switch (nv_device(priv)->chipset) {
60         case 0x50:
61         case 0xa0:
62                 switch (base) {
63                 case 0x4020:
64                 case 0x4028: id = !!(rsel & 0x00000004); break;
65                 case 0x4008: id = !!(rsel & 0x00000008); break;
66                 case 0x4030: id = 0; break;
67                 default:
68                         nv_error(priv, "ref: bad pll 0x%06x\n", base);
69                         return 0;
70                 }
71
72                 coef = nv_rd32(priv, 0x00e81c + (id * 0x0c));
73                 ref *=  (coef & 0x01000000) ? 2 : 4;
74                 P    =  (coef & 0x00070000) >> 16;
75                 N    = ((coef & 0x0000ff00) >> 8) + 1;
76                 M    = ((coef & 0x000000ff) >> 0) + 1;
77                 break;
78         case 0x84:
79         case 0x86:
80         case 0x92:
81                 coef = nv_rd32(priv, 0x00e81c);
82                 P    = (coef & 0x00070000) >> 16;
83                 N    = (coef & 0x0000ff00) >> 8;
84                 M    = (coef & 0x000000ff) >> 0;
85                 break;
86         case 0x94:
87         case 0x96:
88         case 0x98:
89                 rsel = nv_rd32(priv, 0x00c050);
90                 switch (base) {
91                 case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
92                 case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
93                 case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
94                 case 0x4030: rsel = 3; break;
95                 default:
96                         nv_error(priv, "ref: bad pll 0x%06x\n", base);
97                         return 0;
98                 }
99
100                 switch (rsel) {
101                 case 0: id = 1; break;
102                 case 1: return clk->read(clk, nv_clk_src_crystal);
103                 case 2: return clk->read(clk, nv_clk_src_href);
104                 case 3: id = 0; break;
105                 }
106
107                 coef =  nv_rd32(priv, 0x00e81c + (id * 0x28));
108                 P    = (nv_rd32(priv, 0x00e824 + (id * 0x28)) >> 16) & 7;
109                 P   += (coef & 0x00070000) >> 16;
110                 N    = (coef & 0x0000ff00) >> 8;
111                 M    = (coef & 0x000000ff) >> 0;
112                 break;
113         default:
114                 BUG_ON(1);
115         }
116
117         if (M)
118                 return (ref * N / M) >> P;
119
120         return 0;
121 }
122
123 static u32
124 read_pll_ref(struct nv50_clk_priv *priv, u32 base)
125 {
126         struct nvkm_clk *clk = &priv->base;
127         u32 src, mast = nv_rd32(priv, 0x00c040);
128
129         switch (base) {
130         case 0x004028:
131                 src = !!(mast & 0x00200000);
132                 break;
133         case 0x004020:
134                 src = !!(mast & 0x00400000);
135                 break;
136         case 0x004008:
137                 src = !!(mast & 0x00010000);
138                 break;
139         case 0x004030:
140                 src = !!(mast & 0x02000000);
141                 break;
142         case 0x00e810:
143                 return clk->read(clk, nv_clk_src_crystal);
144         default:
145                 nv_error(priv, "bad pll 0x%06x\n", base);
146                 return 0;
147         }
148
149         if (src)
150                 return clk->read(clk, nv_clk_src_href);
151
152         return read_pll_src(priv, base);
153 }
154
155 static u32
156 read_pll(struct nv50_clk_priv *priv, u32 base)
157 {
158         struct nvkm_clk *clk = &priv->base;
159         u32 mast = nv_rd32(priv, 0x00c040);
160         u32 ctrl = nv_rd32(priv, base + 0);
161         u32 coef = nv_rd32(priv, base + 4);
162         u32 ref = read_pll_ref(priv, base);
163         u32 freq = 0;
164         int N1, N2, M1, M2;
165
166         if (base == 0x004028 && (mast & 0x00100000)) {
167                 /* wtf, appears to only disable post-divider on gt200 */
168                 if (nv_device(priv)->chipset != 0xa0)
169                         return clk->read(clk, nv_clk_src_dom6);
170         }
171
172         N2 = (coef & 0xff000000) >> 24;
173         M2 = (coef & 0x00ff0000) >> 16;
174         N1 = (coef & 0x0000ff00) >> 8;
175         M1 = (coef & 0x000000ff);
176         if ((ctrl & 0x80000000) && M1) {
177                 freq = ref * N1 / M1;
178                 if ((ctrl & 0x40000100) == 0x40000000) {
179                         if (M2)
180                                 freq = freq * N2 / M2;
181                         else
182                                 freq = 0;
183                 }
184         }
185
186         return freq;
187 }
188
189 static int
190 nv50_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
191 {
192         struct nv50_clk_priv *priv = (void *)clk;
193         u32 mast = nv_rd32(priv, 0x00c040);
194         u32 P = 0;
195
196         switch (src) {
197         case nv_clk_src_crystal:
198                 return nv_device(priv)->crystal;
199         case nv_clk_src_href:
200                 return 100000; /* PCIE reference clock */
201         case nv_clk_src_hclk:
202                 return div_u64((u64)clk->read(clk, nv_clk_src_href) * 27778, 10000);
203         case nv_clk_src_hclkm3:
204                 return clk->read(clk, nv_clk_src_hclk) * 3;
205         case nv_clk_src_hclkm3d2:
206                 return clk->read(clk, nv_clk_src_hclk) * 3 / 2;
207         case nv_clk_src_host:
208                 switch (mast & 0x30000000) {
209                 case 0x00000000: return clk->read(clk, nv_clk_src_href);
210                 case 0x10000000: break;
211                 case 0x20000000: /* !0x50 */
212                 case 0x30000000: return clk->read(clk, nv_clk_src_hclk);
213                 }
214                 break;
215         case nv_clk_src_core:
216                 if (!(mast & 0x00100000))
217                         P = (nv_rd32(priv, 0x004028) & 0x00070000) >> 16;
218                 switch (mast & 0x00000003) {
219                 case 0x00000000: return clk->read(clk, nv_clk_src_crystal) >> P;
220                 case 0x00000001: return clk->read(clk, nv_clk_src_dom6);
221                 case 0x00000002: return read_pll(priv, 0x004020) >> P;
222                 case 0x00000003: return read_pll(priv, 0x004028) >> P;
223                 }
224                 break;
225         case nv_clk_src_shader:
226                 P = (nv_rd32(priv, 0x004020) & 0x00070000) >> 16;
227                 switch (mast & 0x00000030) {
228                 case 0x00000000:
229                         if (mast & 0x00000080)
230                                 return clk->read(clk, nv_clk_src_host) >> P;
231                         return clk->read(clk, nv_clk_src_crystal) >> P;
232                 case 0x00000010: break;
233                 case 0x00000020: return read_pll(priv, 0x004028) >> P;
234                 case 0x00000030: return read_pll(priv, 0x004020) >> P;
235                 }
236                 break;
237         case nv_clk_src_mem:
238                 P = (nv_rd32(priv, 0x004008) & 0x00070000) >> 16;
239                 if (nv_rd32(priv, 0x004008) & 0x00000200) {
240                         switch (mast & 0x0000c000) {
241                         case 0x00000000:
242                                 return clk->read(clk, nv_clk_src_crystal) >> P;
243                         case 0x00008000:
244                         case 0x0000c000:
245                                 return clk->read(clk, nv_clk_src_href) >> P;
246                         }
247                 } else {
248                         return read_pll(priv, 0x004008) >> P;
249                 }
250                 break;
251         case nv_clk_src_vdec:
252                 P = (read_div(priv) & 0x00000700) >> 8;
253                 switch (nv_device(priv)->chipset) {
254                 case 0x84:
255                 case 0x86:
256                 case 0x92:
257                 case 0x94:
258                 case 0x96:
259                 case 0xa0:
260                         switch (mast & 0x00000c00) {
261                         case 0x00000000:
262                                 if (nv_device(priv)->chipset == 0xa0) /* wtf?? */
263                                         return clk->read(clk, nv_clk_src_core) >> P;
264                                 return clk->read(clk, nv_clk_src_crystal) >> P;
265                         case 0x00000400:
266                                 return 0;
267                         case 0x00000800:
268                                 if (mast & 0x01000000)
269                                         return read_pll(priv, 0x004028) >> P;
270                                 return read_pll(priv, 0x004030) >> P;
271                         case 0x00000c00:
272                                 return clk->read(clk, nv_clk_src_core) >> P;
273                         }
274                         break;
275                 case 0x98:
276                         switch (mast & 0x00000c00) {
277                         case 0x00000000:
278                                 return clk->read(clk, nv_clk_src_core) >> P;
279                         case 0x00000400:
280                                 return 0;
281                         case 0x00000800:
282                                 return clk->read(clk, nv_clk_src_hclkm3d2) >> P;
283                         case 0x00000c00:
284                                 return clk->read(clk, nv_clk_src_mem) >> P;
285                         }
286                         break;
287                 }
288                 break;
289         case nv_clk_src_dom6:
290                 switch (nv_device(priv)->chipset) {
291                 case 0x50:
292                 case 0xa0:
293                         return read_pll(priv, 0x00e810) >> 2;
294                 case 0x84:
295                 case 0x86:
296                 case 0x92:
297                 case 0x94:
298                 case 0x96:
299                 case 0x98:
300                         P = (read_div(priv) & 0x00000007) >> 0;
301                         switch (mast & 0x0c000000) {
302                         case 0x00000000: return clk->read(clk, nv_clk_src_href);
303                         case 0x04000000: break;
304                         case 0x08000000: return clk->read(clk, nv_clk_src_hclk);
305                         case 0x0c000000:
306                                 return clk->read(clk, nv_clk_src_hclkm3) >> P;
307                         }
308                         break;
309                 default:
310                         break;
311                 }
312         default:
313                 break;
314         }
315
316         nv_debug(priv, "unknown clock source %d 0x%08x\n", src, mast);
317         return -EINVAL;
318 }
319
320 static u32
321 calc_pll(struct nv50_clk_priv *priv, u32 reg, u32 clk, int *N, int *M, int *P)
322 {
323         struct nvkm_bios *bios = nvkm_bios(priv);
324         struct nvbios_pll pll;
325         int ret;
326
327         ret = nvbios_pll_parse(bios, reg, &pll);
328         if (ret)
329                 return 0;
330
331         pll.vco2.max_freq = 0;
332         pll.refclk = read_pll_ref(priv, reg);
333         if (!pll.refclk)
334                 return 0;
335
336         return nv04_pll_calc(nv_subdev(priv), &pll, clk, N, M, NULL, NULL, P);
337 }
338
339 static inline u32
340 calc_div(u32 src, u32 target, int *div)
341 {
342         u32 clk0 = src, clk1 = src;
343         for (*div = 0; *div <= 7; (*div)++) {
344                 if (clk0 <= target) {
345                         clk1 = clk0 << (*div ? 1 : 0);
346                         break;
347                 }
348                 clk0 >>= 1;
349         }
350
351         if (target - clk0 <= clk1 - target)
352                 return clk0;
353         (*div)--;
354         return clk1;
355 }
356
357 static inline u32
358 clk_same(u32 a, u32 b)
359 {
360         return ((a / 1000) == (b / 1000));
361 }
362
363 static int
364 nv50_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
365 {
366         struct nv50_clk_priv *priv = (void *)clk;
367         struct nv50_clk_hwsq *hwsq = &priv->hwsq;
368         const int shader = cstate->domain[nv_clk_src_shader];
369         const int core = cstate->domain[nv_clk_src_core];
370         const int vdec = cstate->domain[nv_clk_src_vdec];
371         const int dom6 = cstate->domain[nv_clk_src_dom6];
372         u32 mastm = 0, mastv = 0;
373         u32 divsm = 0, divsv = 0;
374         int N, M, P1, P2;
375         int freq, out;
376
377         /* prepare a hwsq script from which we'll perform the reclock */
378         out = clk_init(hwsq, nv_subdev(clk));
379         if (out)
380                 return out;
381
382         clk_wr32(hwsq, fifo, 0x00000001); /* block fifo */
383         clk_nsec(hwsq, 8000);
384         clk_setf(hwsq, 0x10, 0x00); /* disable fb */
385         clk_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
386
387         /* vdec: avoid modifying xpll until we know exactly how the other
388          * clock domains work, i suspect at least some of them can also be
389          * tied to xpll...
390          */
391         if (vdec) {
392                 /* see how close we can get using nvclk as a source */
393                 freq = calc_div(core, vdec, &P1);
394
395                 /* see how close we can get using xpll/hclk as a source */
396                 if (nv_device(priv)->chipset != 0x98)
397                         out = read_pll(priv, 0x004030);
398                 else
399                         out = clk->read(clk, nv_clk_src_hclkm3d2);
400                 out = calc_div(out, vdec, &P2);
401
402                 /* select whichever gets us closest */
403                 if (abs(vdec - freq) <= abs(vdec - out)) {
404                         if (nv_device(priv)->chipset != 0x98)
405                                 mastv |= 0x00000c00;
406                         divsv |= P1 << 8;
407                 } else {
408                         mastv |= 0x00000800;
409                         divsv |= P2 << 8;
410                 }
411
412                 mastm |= 0x00000c00;
413                 divsm |= 0x00000700;
414         }
415
416         /* dom6: nfi what this is, but we're limited to various combinations
417          * of the host clock frequency
418          */
419         if (dom6) {
420                 if (clk_same(dom6, clk->read(clk, nv_clk_src_href))) {
421                         mastv |= 0x00000000;
422                 } else
423                 if (clk_same(dom6, clk->read(clk, nv_clk_src_hclk))) {
424                         mastv |= 0x08000000;
425                 } else {
426                         freq = clk->read(clk, nv_clk_src_hclk) * 3;
427                         freq = calc_div(freq, dom6, &P1);
428
429                         mastv |= 0x0c000000;
430                         divsv |= P1;
431                 }
432
433                 mastm |= 0x0c000000;
434                 divsm |= 0x00000007;
435         }
436
437         /* vdec/dom6: switch to "safe" clocks temporarily, update dividers
438          * and then switch to target clocks
439          */
440         clk_mask(hwsq, mast, mastm, 0x00000000);
441         clk_mask(hwsq, divs, divsm, divsv);
442         clk_mask(hwsq, mast, mastm, mastv);
443
444         /* core/shader: disconnect nvclk/sclk from their PLLs (nvclk to dom6,
445          * sclk to hclk) before reprogramming
446          */
447         if (nv_device(priv)->chipset < 0x92)
448                 clk_mask(hwsq, mast, 0x001000b0, 0x00100080);
449         else
450                 clk_mask(hwsq, mast, 0x000000b3, 0x00000081);
451
452         /* core: for the moment at least, always use nvpll */
453         freq = calc_pll(priv, 0x4028, core, &N, &M, &P1);
454         if (freq == 0)
455                 return -ERANGE;
456
457         clk_mask(hwsq, nvpll[0], 0xc03f0100,
458                                  0x80000000 | (P1 << 19) | (P1 << 16));
459         clk_mask(hwsq, nvpll[1], 0x0000ffff, (N << 8) | M);
460
461         /* shader: tie to nvclk if possible, otherwise use spll.  have to be
462          * very careful that the shader clock is at least twice the core, or
463          * some chipsets will be very unhappy.  i expect most or all of these
464          * cases will be handled by tying to nvclk, but it's possible there's
465          * corners
466          */
467         if (P1-- && shader == (core << 1)) {
468                 clk_mask(hwsq, spll[0], 0xc03f0100, (P1 << 19) | (P1 << 16));
469                 clk_mask(hwsq, mast, 0x00100033, 0x00000023);
470         } else {
471                 freq = calc_pll(priv, 0x4020, shader, &N, &M, &P1);
472                 if (freq == 0)
473                         return -ERANGE;
474
475                 clk_mask(hwsq, spll[0], 0xc03f0100,
476                                         0x80000000 | (P1 << 19) | (P1 << 16));
477                 clk_mask(hwsq, spll[1], 0x0000ffff, (N << 8) | M);
478                 clk_mask(hwsq, mast, 0x00100033, 0x00000033);
479         }
480
481         /* restore normal operation */
482         clk_setf(hwsq, 0x10, 0x01); /* enable fb */
483         clk_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
484         clk_wr32(hwsq, fifo, 0x00000000); /* un-block fifo */
485         return 0;
486 }
487
488 static int
489 nv50_clk_prog(struct nvkm_clk *clk)
490 {
491         struct nv50_clk_priv *priv = (void *)clk;
492         return clk_exec(&priv->hwsq, true);
493 }
494
495 static void
496 nv50_clk_tidy(struct nvkm_clk *clk)
497 {
498         struct nv50_clk_priv *priv = (void *)clk;
499         clk_exec(&priv->hwsq, false);
500 }
501
502 int
503 nv50_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
504               struct nvkm_oclass *oclass, void *data, u32 size,
505               struct nvkm_object **pobject)
506 {
507         struct nv50_clk_oclass *pclass = (void *)oclass;
508         struct nv50_clk_priv *priv;
509         int ret;
510
511         ret = nvkm_clk_create(parent, engine, oclass, pclass->domains,
512                               NULL, 0, false, &priv);
513         *pobject = nv_object(priv);
514         if (ret)
515                 return ret;
516
517         priv->hwsq.r_fifo = hwsq_reg(0x002504);
518         priv->hwsq.r_spll[0] = hwsq_reg(0x004020);
519         priv->hwsq.r_spll[1] = hwsq_reg(0x004024);
520         priv->hwsq.r_nvpll[0] = hwsq_reg(0x004028);
521         priv->hwsq.r_nvpll[1] = hwsq_reg(0x00402c);
522         switch (nv_device(priv)->chipset) {
523         case 0x92:
524         case 0x94:
525         case 0x96:
526                 priv->hwsq.r_divs = hwsq_reg(0x004800);
527                 break;
528         default:
529                 priv->hwsq.r_divs = hwsq_reg(0x004700);
530                 break;
531         }
532         priv->hwsq.r_mast = hwsq_reg(0x00c040);
533
534         priv->base.read = nv50_clk_read;
535         priv->base.calc = nv50_clk_calc;
536         priv->base.prog = nv50_clk_prog;
537         priv->base.tidy = nv50_clk_tidy;
538         return 0;
539 }
540
541 static struct nvkm_domain
542 nv50_domains[] = {
543         { nv_clk_src_crystal, 0xff },
544         { nv_clk_src_href   , 0xff },
545         { nv_clk_src_core   , 0xff, 0, "core", 1000 },
546         { nv_clk_src_shader , 0xff, 0, "shader", 1000 },
547         { nv_clk_src_mem    , 0xff, 0, "memory", 1000 },
548         { nv_clk_src_max }
549 };
550
551 struct nvkm_oclass *
552 nv50_clk_oclass = &(struct nv50_clk_oclass) {
553         .base.handle = NV_SUBDEV(CLK, 0x50),
554         .base.ofuncs = &(struct nvkm_ofuncs) {
555                 .ctor = nv50_clk_ctor,
556                 .dtor = _nvkm_clk_dtor,
557                 .init = _nvkm_clk_init,
558                 .fini = _nvkm_clk_fini,
559         },
560         .domains = nv50_domains,
561 }.base;