These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / gpu / drm / nouveau / nvkm / subdev / clk / nv50.c
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "nv50.h"
25 #include "pll.h"
26 #include "seq.h"
27
28 #include <subdev/bios.h>
29 #include <subdev/bios/pll.h>
30
31 static u32
32 read_div(struct nv50_clk *clk)
33 {
34         struct nvkm_device *device = clk->base.subdev.device;
35         switch (device->chipset) {
36         case 0x50: /* it exists, but only has bit 31, not the dividers.. */
37         case 0x84:
38         case 0x86:
39         case 0x98:
40         case 0xa0:
41                 return nvkm_rd32(device, 0x004700);
42         case 0x92:
43         case 0x94:
44         case 0x96:
45                 return nvkm_rd32(device, 0x004800);
46         default:
47                 return 0x00000000;
48         }
49 }
50
51 static u32
52 read_pll_src(struct nv50_clk *clk, u32 base)
53 {
54         struct nvkm_subdev *subdev = &clk->base.subdev;
55         struct nvkm_device *device = subdev->device;
56         u32 coef, ref = nvkm_clk_read(&clk->base, nv_clk_src_crystal);
57         u32 rsel = nvkm_rd32(device, 0x00e18c);
58         int P, N, M, id;
59
60         switch (device->chipset) {
61         case 0x50:
62         case 0xa0:
63                 switch (base) {
64                 case 0x4020:
65                 case 0x4028: id = !!(rsel & 0x00000004); break;
66                 case 0x4008: id = !!(rsel & 0x00000008); break;
67                 case 0x4030: id = 0; break;
68                 default:
69                         nvkm_error(subdev, "ref: bad pll %06x\n", base);
70                         return 0;
71                 }
72
73                 coef = nvkm_rd32(device, 0x00e81c + (id * 0x0c));
74                 ref *=  (coef & 0x01000000) ? 2 : 4;
75                 P    =  (coef & 0x00070000) >> 16;
76                 N    = ((coef & 0x0000ff00) >> 8) + 1;
77                 M    = ((coef & 0x000000ff) >> 0) + 1;
78                 break;
79         case 0x84:
80         case 0x86:
81         case 0x92:
82                 coef = nvkm_rd32(device, 0x00e81c);
83                 P    = (coef & 0x00070000) >> 16;
84                 N    = (coef & 0x0000ff00) >> 8;
85                 M    = (coef & 0x000000ff) >> 0;
86                 break;
87         case 0x94:
88         case 0x96:
89         case 0x98:
90                 rsel = nvkm_rd32(device, 0x00c050);
91                 switch (base) {
92                 case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
93                 case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
94                 case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
95                 case 0x4030: rsel = 3; break;
96                 default:
97                         nvkm_error(subdev, "ref: bad pll %06x\n", base);
98                         return 0;
99                 }
100
101                 switch (rsel) {
102                 case 0: id = 1; break;
103                 case 1: return nvkm_clk_read(&clk->base, nv_clk_src_crystal);
104                 case 2: return nvkm_clk_read(&clk->base, nv_clk_src_href);
105                 case 3: id = 0; break;
106                 }
107
108                 coef =  nvkm_rd32(device, 0x00e81c + (id * 0x28));
109                 P    = (nvkm_rd32(device, 0x00e824 + (id * 0x28)) >> 16) & 7;
110                 P   += (coef & 0x00070000) >> 16;
111                 N    = (coef & 0x0000ff00) >> 8;
112                 M    = (coef & 0x000000ff) >> 0;
113                 break;
114         default:
115                 BUG_ON(1);
116         }
117
118         if (M)
119                 return (ref * N / M) >> P;
120
121         return 0;
122 }
123
124 static u32
125 read_pll_ref(struct nv50_clk *clk, u32 base)
126 {
127         struct nvkm_subdev *subdev = &clk->base.subdev;
128         struct nvkm_device *device = subdev->device;
129         u32 src, mast = nvkm_rd32(device, 0x00c040);
130
131         switch (base) {
132         case 0x004028:
133                 src = !!(mast & 0x00200000);
134                 break;
135         case 0x004020:
136                 src = !!(mast & 0x00400000);
137                 break;
138         case 0x004008:
139                 src = !!(mast & 0x00010000);
140                 break;
141         case 0x004030:
142                 src = !!(mast & 0x02000000);
143                 break;
144         case 0x00e810:
145                 return nvkm_clk_read(&clk->base, nv_clk_src_crystal);
146         default:
147                 nvkm_error(subdev, "bad pll %06x\n", base);
148                 return 0;
149         }
150
151         if (src)
152                 return nvkm_clk_read(&clk->base, nv_clk_src_href);
153
154         return read_pll_src(clk, base);
155 }
156
157 static u32
158 read_pll(struct nv50_clk *clk, u32 base)
159 {
160         struct nvkm_device *device = clk->base.subdev.device;
161         u32 mast = nvkm_rd32(device, 0x00c040);
162         u32 ctrl = nvkm_rd32(device, base + 0);
163         u32 coef = nvkm_rd32(device, base + 4);
164         u32 ref = read_pll_ref(clk, base);
165         u32 freq = 0;
166         int N1, N2, M1, M2;
167
168         if (base == 0x004028 && (mast & 0x00100000)) {
169                 /* wtf, appears to only disable post-divider on gt200 */
170                 if (device->chipset != 0xa0)
171                         return nvkm_clk_read(&clk->base, nv_clk_src_dom6);
172         }
173
174         N2 = (coef & 0xff000000) >> 24;
175         M2 = (coef & 0x00ff0000) >> 16;
176         N1 = (coef & 0x0000ff00) >> 8;
177         M1 = (coef & 0x000000ff);
178         if ((ctrl & 0x80000000) && M1) {
179                 freq = ref * N1 / M1;
180                 if ((ctrl & 0x40000100) == 0x40000000) {
181                         if (M2)
182                                 freq = freq * N2 / M2;
183                         else
184                                 freq = 0;
185                 }
186         }
187
188         return freq;
189 }
190
191 int
192 nv50_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
193 {
194         struct nv50_clk *clk = nv50_clk(base);
195         struct nvkm_subdev *subdev = &clk->base.subdev;
196         struct nvkm_device *device = subdev->device;
197         u32 mast = nvkm_rd32(device, 0x00c040);
198         u32 P = 0;
199
200         switch (src) {
201         case nv_clk_src_crystal:
202                 return device->crystal;
203         case nv_clk_src_href:
204                 return 100000; /* PCIE reference clock */
205         case nv_clk_src_hclk:
206                 return div_u64((u64)nvkm_clk_read(&clk->base, nv_clk_src_href) * 27778, 10000);
207         case nv_clk_src_hclkm3:
208                 return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3;
209         case nv_clk_src_hclkm3d2:
210                 return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3 / 2;
211         case nv_clk_src_host:
212                 switch (mast & 0x30000000) {
213                 case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
214                 case 0x10000000: break;
215                 case 0x20000000: /* !0x50 */
216                 case 0x30000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk);
217                 }
218                 break;
219         case nv_clk_src_core:
220                 if (!(mast & 0x00100000))
221                         P = (nvkm_rd32(device, 0x004028) & 0x00070000) >> 16;
222                 switch (mast & 0x00000003) {
223                 case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
224                 case 0x00000001: return nvkm_clk_read(&clk->base, nv_clk_src_dom6);
225                 case 0x00000002: return read_pll(clk, 0x004020) >> P;
226                 case 0x00000003: return read_pll(clk, 0x004028) >> P;
227                 }
228                 break;
229         case nv_clk_src_shader:
230                 P = (nvkm_rd32(device, 0x004020) & 0x00070000) >> 16;
231                 switch (mast & 0x00000030) {
232                 case 0x00000000:
233                         if (mast & 0x00000080)
234                                 return nvkm_clk_read(&clk->base, nv_clk_src_host) >> P;
235                         return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
236                 case 0x00000010: break;
237                 case 0x00000020: return read_pll(clk, 0x004028) >> P;
238                 case 0x00000030: return read_pll(clk, 0x004020) >> P;
239                 }
240                 break;
241         case nv_clk_src_mem:
242                 P = (nvkm_rd32(device, 0x004008) & 0x00070000) >> 16;
243                 if (nvkm_rd32(device, 0x004008) & 0x00000200) {
244                         switch (mast & 0x0000c000) {
245                         case 0x00000000:
246                                 return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
247                         case 0x00008000:
248                         case 0x0000c000:
249                                 return nvkm_clk_read(&clk->base, nv_clk_src_href) >> P;
250                         }
251                 } else {
252                         return read_pll(clk, 0x004008) >> P;
253                 }
254                 break;
255         case nv_clk_src_vdec:
256                 P = (read_div(clk) & 0x00000700) >> 8;
257                 switch (device->chipset) {
258                 case 0x84:
259                 case 0x86:
260                 case 0x92:
261                 case 0x94:
262                 case 0x96:
263                 case 0xa0:
264                         switch (mast & 0x00000c00) {
265                         case 0x00000000:
266                                 if (device->chipset == 0xa0) /* wtf?? */
267                                         return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
268                                 return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
269                         case 0x00000400:
270                                 return 0;
271                         case 0x00000800:
272                                 if (mast & 0x01000000)
273                                         return read_pll(clk, 0x004028) >> P;
274                                 return read_pll(clk, 0x004030) >> P;
275                         case 0x00000c00:
276                                 return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
277                         }
278                         break;
279                 case 0x98:
280                         switch (mast & 0x00000c00) {
281                         case 0x00000000:
282                                 return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
283                         case 0x00000400:
284                                 return 0;
285                         case 0x00000800:
286                                 return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2) >> P;
287                         case 0x00000c00:
288                                 return nvkm_clk_read(&clk->base, nv_clk_src_mem) >> P;
289                         }
290                         break;
291                 }
292                 break;
293         case nv_clk_src_dom6:
294                 switch (device->chipset) {
295                 case 0x50:
296                 case 0xa0:
297                         return read_pll(clk, 0x00e810) >> 2;
298                 case 0x84:
299                 case 0x86:
300                 case 0x92:
301                 case 0x94:
302                 case 0x96:
303                 case 0x98:
304                         P = (read_div(clk) & 0x00000007) >> 0;
305                         switch (mast & 0x0c000000) {
306                         case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
307                         case 0x04000000: break;
308                         case 0x08000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk);
309                         case 0x0c000000:
310                                 return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3) >> P;
311                         }
312                         break;
313                 default:
314                         break;
315                 }
316         default:
317                 break;
318         }
319
320         nvkm_debug(subdev, "unknown clock source %d %08x\n", src, mast);
321         return -EINVAL;
322 }
323
324 static u32
325 calc_pll(struct nv50_clk *clk, u32 reg, u32 idx, int *N, int *M, int *P)
326 {
327         struct nvkm_subdev *subdev = &clk->base.subdev;
328         struct nvbios_pll pll;
329         int ret;
330
331         ret = nvbios_pll_parse(subdev->device->bios, reg, &pll);
332         if (ret)
333                 return 0;
334
335         pll.vco2.max_freq = 0;
336         pll.refclk = read_pll_ref(clk, reg);
337         if (!pll.refclk)
338                 return 0;
339
340         return nv04_pll_calc(subdev, &pll, idx, N, M, NULL, NULL, P);
341 }
342
343 static inline u32
344 calc_div(u32 src, u32 target, int *div)
345 {
346         u32 clk0 = src, clk1 = src;
347         for (*div = 0; *div <= 7; (*div)++) {
348                 if (clk0 <= target) {
349                         clk1 = clk0 << (*div ? 1 : 0);
350                         break;
351                 }
352                 clk0 >>= 1;
353         }
354
355         if (target - clk0 <= clk1 - target)
356                 return clk0;
357         (*div)--;
358         return clk1;
359 }
360
361 static inline u32
362 clk_same(u32 a, u32 b)
363 {
364         return ((a / 1000) == (b / 1000));
365 }
366
367 int
368 nv50_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
369 {
370         struct nv50_clk *clk = nv50_clk(base);
371         struct nv50_clk_hwsq *hwsq = &clk->hwsq;
372         struct nvkm_subdev *subdev = &clk->base.subdev;
373         struct nvkm_device *device = subdev->device;
374         const int shader = cstate->domain[nv_clk_src_shader];
375         const int core = cstate->domain[nv_clk_src_core];
376         const int vdec = cstate->domain[nv_clk_src_vdec];
377         const int dom6 = cstate->domain[nv_clk_src_dom6];
378         u32 mastm = 0, mastv = 0;
379         u32 divsm = 0, divsv = 0;
380         int N, M, P1, P2;
381         int freq, out;
382
383         /* prepare a hwsq script from which we'll perform the reclock */
384         out = clk_init(hwsq, subdev);
385         if (out)
386                 return out;
387
388         clk_wr32(hwsq, fifo, 0x00000001); /* block fifo */
389         clk_nsec(hwsq, 8000);
390         clk_setf(hwsq, 0x10, 0x00); /* disable fb */
391         clk_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
392
393         /* vdec: avoid modifying xpll until we know exactly how the other
394          * clock domains work, i suspect at least some of them can also be
395          * tied to xpll...
396          */
397         if (vdec) {
398                 /* see how close we can get using nvclk as a source */
399                 freq = calc_div(core, vdec, &P1);
400
401                 /* see how close we can get using xpll/hclk as a source */
402                 if (device->chipset != 0x98)
403                         out = read_pll(clk, 0x004030);
404                 else
405                         out = nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2);
406                 out = calc_div(out, vdec, &P2);
407
408                 /* select whichever gets us closest */
409                 if (abs(vdec - freq) <= abs(vdec - out)) {
410                         if (device->chipset != 0x98)
411                                 mastv |= 0x00000c00;
412                         divsv |= P1 << 8;
413                 } else {
414                         mastv |= 0x00000800;
415                         divsv |= P2 << 8;
416                 }
417
418                 mastm |= 0x00000c00;
419                 divsm |= 0x00000700;
420         }
421
422         /* dom6: nfi what this is, but we're limited to various combinations
423          * of the host clock frequency
424          */
425         if (dom6) {
426                 if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_href))) {
427                         mastv |= 0x00000000;
428                 } else
429                 if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_hclk))) {
430                         mastv |= 0x08000000;
431                 } else {
432                         freq = nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3;
433                         calc_div(freq, dom6, &P1);
434
435                         mastv |= 0x0c000000;
436                         divsv |= P1;
437                 }
438
439                 mastm |= 0x0c000000;
440                 divsm |= 0x00000007;
441         }
442
443         /* vdec/dom6: switch to "safe" clocks temporarily, update dividers
444          * and then switch to target clocks
445          */
446         clk_mask(hwsq, mast, mastm, 0x00000000);
447         clk_mask(hwsq, divs, divsm, divsv);
448         clk_mask(hwsq, mast, mastm, mastv);
449
450         /* core/shader: disconnect nvclk/sclk from their PLLs (nvclk to dom6,
451          * sclk to hclk) before reprogramming
452          */
453         if (device->chipset < 0x92)
454                 clk_mask(hwsq, mast, 0x001000b0, 0x00100080);
455         else
456                 clk_mask(hwsq, mast, 0x000000b3, 0x00000081);
457
458         /* core: for the moment at least, always use nvpll */
459         freq = calc_pll(clk, 0x4028, core, &N, &M, &P1);
460         if (freq == 0)
461                 return -ERANGE;
462
463         clk_mask(hwsq, nvpll[0], 0xc03f0100,
464                                  0x80000000 | (P1 << 19) | (P1 << 16));
465         clk_mask(hwsq, nvpll[1], 0x0000ffff, (N << 8) | M);
466
467         /* shader: tie to nvclk if possible, otherwise use spll.  have to be
468          * very careful that the shader clock is at least twice the core, or
469          * some chipsets will be very unhappy.  i expect most or all of these
470          * cases will be handled by tying to nvclk, but it's possible there's
471          * corners
472          */
473         if (P1-- && shader == (core << 1)) {
474                 clk_mask(hwsq, spll[0], 0xc03f0100, (P1 << 19) | (P1 << 16));
475                 clk_mask(hwsq, mast, 0x00100033, 0x00000023);
476         } else {
477                 freq = calc_pll(clk, 0x4020, shader, &N, &M, &P1);
478                 if (freq == 0)
479                         return -ERANGE;
480
481                 clk_mask(hwsq, spll[0], 0xc03f0100,
482                                         0x80000000 | (P1 << 19) | (P1 << 16));
483                 clk_mask(hwsq, spll[1], 0x0000ffff, (N << 8) | M);
484                 clk_mask(hwsq, mast, 0x00100033, 0x00000033);
485         }
486
487         /* restore normal operation */
488         clk_setf(hwsq, 0x10, 0x01); /* enable fb */
489         clk_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
490         clk_wr32(hwsq, fifo, 0x00000000); /* un-block fifo */
491         return 0;
492 }
493
494 int
495 nv50_clk_prog(struct nvkm_clk *base)
496 {
497         struct nv50_clk *clk = nv50_clk(base);
498         return clk_exec(&clk->hwsq, true);
499 }
500
501 void
502 nv50_clk_tidy(struct nvkm_clk *base)
503 {
504         struct nv50_clk *clk = nv50_clk(base);
505         clk_exec(&clk->hwsq, false);
506 }
507
508 int
509 nv50_clk_new_(const struct nvkm_clk_func *func, struct nvkm_device *device,
510               int index, bool allow_reclock, struct nvkm_clk **pclk)
511 {
512         struct nv50_clk *clk;
513         int ret;
514
515         if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
516                 return -ENOMEM;
517         ret = nvkm_clk_ctor(func, device, index, allow_reclock, &clk->base);
518         *pclk = &clk->base;
519         if (ret)
520                 return ret;
521
522         clk->hwsq.r_fifo = hwsq_reg(0x002504);
523         clk->hwsq.r_spll[0] = hwsq_reg(0x004020);
524         clk->hwsq.r_spll[1] = hwsq_reg(0x004024);
525         clk->hwsq.r_nvpll[0] = hwsq_reg(0x004028);
526         clk->hwsq.r_nvpll[1] = hwsq_reg(0x00402c);
527         switch (device->chipset) {
528         case 0x92:
529         case 0x94:
530         case 0x96:
531                 clk->hwsq.r_divs = hwsq_reg(0x004800);
532                 break;
533         default:
534                 clk->hwsq.r_divs = hwsq_reg(0x004700);
535                 break;
536         }
537         clk->hwsq.r_mast = hwsq_reg(0x00c040);
538         return 0;
539 }
540
541 static const struct nvkm_clk_func
542 nv50_clk = {
543         .read = nv50_clk_read,
544         .calc = nv50_clk_calc,
545         .prog = nv50_clk_prog,
546         .tidy = nv50_clk_tidy,
547         .domains = {
548                 { nv_clk_src_crystal, 0xff },
549                 { nv_clk_src_href   , 0xff },
550                 { nv_clk_src_core   , 0xff, 0, "core", 1000 },
551                 { nv_clk_src_shader , 0xff, 0, "shader", 1000 },
552                 { nv_clk_src_mem    , 0xff, 0, "memory", 1000 },
553                 { nv_clk_src_max }
554         }
555 };
556
557 int
558 nv50_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
559 {
560         return nv50_clk_new_(&nv50_clk, device, index, false, pclk);
561 }