Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / gpu / drm / nouveau / nvkm / subdev / clk / gt215.c
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  *          Roy Spliet
24  */
25 #include "gt215.h"
26 #include "pll.h"
27
28 #include <core/device.h>
29 #include <engine/fifo.h>
30 #include <subdev/bios.h>
31 #include <subdev/bios/pll.h>
32 #include <subdev/timer.h>
33
34 struct gt215_clk_priv {
35         struct nvkm_clk base;
36         struct gt215_clk_info eng[nv_clk_src_max];
37 };
38
39 static u32 read_clk(struct gt215_clk_priv *, int, bool);
40 static u32 read_pll(struct gt215_clk_priv *, int, u32);
41
42 static u32
43 read_vco(struct gt215_clk_priv *priv, int clk)
44 {
45         u32 sctl = nv_rd32(priv, 0x4120 + (clk * 4));
46
47         switch (sctl & 0x00000030) {
48         case 0x00000000:
49                 return nv_device(priv)->crystal;
50         case 0x00000020:
51                 return read_pll(priv, 0x41, 0x00e820);
52         case 0x00000030:
53                 return read_pll(priv, 0x42, 0x00e8a0);
54         default:
55                 return 0;
56         }
57 }
58
59 static u32
60 read_clk(struct gt215_clk_priv *priv, int clk, bool ignore_en)
61 {
62         u32 sctl, sdiv, sclk;
63
64         /* refclk for the 0xe8xx plls is a fixed frequency */
65         if (clk >= 0x40) {
66                 if (nv_device(priv)->chipset == 0xaf) {
67                         /* no joke.. seriously.. sigh.. */
68                         return nv_rd32(priv, 0x00471c) * 1000;
69                 }
70
71                 return nv_device(priv)->crystal;
72         }
73
74         sctl = nv_rd32(priv, 0x4120 + (clk * 4));
75         if (!ignore_en && !(sctl & 0x00000100))
76                 return 0;
77
78         /* out_alt */
79         if (sctl & 0x00000400)
80                 return 108000;
81
82         /* vco_out */
83         switch (sctl & 0x00003000) {
84         case 0x00000000:
85                 if (!(sctl & 0x00000200))
86                         return nv_device(priv)->crystal;
87                 return 0;
88         case 0x00002000:
89                 if (sctl & 0x00000040)
90                         return 108000;
91                 return 100000;
92         case 0x00003000:
93                 /* vco_enable */
94                 if (!(sctl & 0x00000001))
95                         return 0;
96
97                 sclk = read_vco(priv, clk);
98                 sdiv = ((sctl & 0x003f0000) >> 16) + 2;
99                 return (sclk * 2) / sdiv;
100         default:
101                 return 0;
102         }
103 }
104
105 static u32
106 read_pll(struct gt215_clk_priv *priv, int clk, u32 pll)
107 {
108         u32 ctrl = nv_rd32(priv, pll + 0);
109         u32 sclk = 0, P = 1, N = 1, M = 1;
110
111         if (!(ctrl & 0x00000008)) {
112                 if (ctrl & 0x00000001) {
113                         u32 coef = nv_rd32(priv, pll + 4);
114                         M = (coef & 0x000000ff) >> 0;
115                         N = (coef & 0x0000ff00) >> 8;
116                         P = (coef & 0x003f0000) >> 16;
117
118                         /* no post-divider on these..
119                          * XXX: it looks more like two post-"dividers" that
120                          * cross each other out in the default RPLL config */
121                         if ((pll & 0x00ff00) == 0x00e800)
122                                 P = 1;
123
124                         sclk = read_clk(priv, 0x00 + clk, false);
125                 }
126         } else {
127                 sclk = read_clk(priv, 0x10 + clk, false);
128         }
129
130         if (M * P)
131                 return sclk * N / (M * P);
132
133         return 0;
134 }
135
136 static int
137 gt215_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
138 {
139         struct gt215_clk_priv *priv = (void *)clk;
140         u32 hsrc;
141
142         switch (src) {
143         case nv_clk_src_crystal:
144                 return nv_device(priv)->crystal;
145         case nv_clk_src_core:
146         case nv_clk_src_core_intm:
147                 return read_pll(priv, 0x00, 0x4200);
148         case nv_clk_src_shader:
149                 return read_pll(priv, 0x01, 0x4220);
150         case nv_clk_src_mem:
151                 return read_pll(priv, 0x02, 0x4000);
152         case nv_clk_src_disp:
153                 return read_clk(priv, 0x20, false);
154         case nv_clk_src_vdec:
155                 return read_clk(priv, 0x21, false);
156         case nv_clk_src_daemon:
157                 return read_clk(priv, 0x25, false);
158         case nv_clk_src_host:
159                 hsrc = (nv_rd32(priv, 0xc040) & 0x30000000) >> 28;
160                 switch (hsrc) {
161                 case 0:
162                         return read_clk(priv, 0x1d, false);
163                 case 2:
164                 case 3:
165                         return 277000;
166                 default:
167                         nv_error(clk, "unknown HOST clock source %d\n", hsrc);
168                         return -EINVAL;
169                 }
170         default:
171                 nv_error(clk, "invalid clock source %d\n", src);
172                 return -EINVAL;
173         }
174
175         return 0;
176 }
177
178 int
179 gt215_clk_info(struct nvkm_clk *clock, int clk, u32 khz,
180                struct gt215_clk_info *info)
181 {
182         struct gt215_clk_priv *priv = (void *)clock;
183         u32 oclk, sclk, sdiv, diff;
184
185         info->clk = 0;
186
187         switch (khz) {
188         case 27000:
189                 info->clk = 0x00000100;
190                 return khz;
191         case 100000:
192                 info->clk = 0x00002100;
193                 return khz;
194         case 108000:
195                 info->clk = 0x00002140;
196                 return khz;
197         default:
198                 sclk = read_vco(priv, clk);
199                 sdiv = min((sclk * 2) / khz, (u32)65);
200                 oclk = (sclk * 2) / sdiv;
201                 diff = ((khz + 3000) - oclk);
202
203                 /* When imprecise, play it safe and aim for a clock lower than
204                  * desired rather than higher */
205                 if (diff < 0) {
206                         sdiv++;
207                         oclk = (sclk * 2) / sdiv;
208                 }
209
210                 /* divider can go as low as 2, limited here because NVIDIA
211                  * and the VBIOS on my NVA8 seem to prefer using the PLL
212                  * for 810MHz - is there a good reason?
213                  * XXX: PLLs with refclk 810MHz?  */
214                 if (sdiv > 4) {
215                         info->clk = (((sdiv - 2) << 16) | 0x00003100);
216                         return oclk;
217                 }
218
219                 break;
220         }
221
222         return -ERANGE;
223 }
224
225 int
226 gt215_pll_info(struct nvkm_clk *clock, int clk, u32 pll, u32 khz,
227                struct gt215_clk_info *info)
228 {
229         struct nvkm_bios *bios = nvkm_bios(clock);
230         struct gt215_clk_priv *priv = (void *)clock;
231         struct nvbios_pll limits;
232         int P, N, M, diff;
233         int ret;
234
235         info->pll = 0;
236
237         /* If we can get a within [-2, 3) MHz of a divider, we'll disable the
238          * PLL and use the divider instead. */
239         ret = gt215_clk_info(clock, clk, khz, info);
240         diff = khz - ret;
241         if (!pll || (diff >= -2000 && diff < 3000)) {
242                 goto out;
243         }
244
245         /* Try with PLL */
246         ret = nvbios_pll_parse(bios, pll, &limits);
247         if (ret)
248                 return ret;
249
250         ret = gt215_clk_info(clock, clk - 0x10, limits.refclk, info);
251         if (ret != limits.refclk)
252                 return -EINVAL;
253
254         ret = gt215_pll_calc(nv_subdev(priv), &limits, khz, &N, NULL, &M, &P);
255         if (ret >= 0) {
256                 info->pll = (P << 16) | (N << 8) | M;
257         }
258
259 out:
260         info->fb_delay = max(((khz + 7566) / 15133), (u32) 18);
261         return ret ? ret : -ERANGE;
262 }
263
264 static int
265 calc_clk(struct gt215_clk_priv *priv, struct nvkm_cstate *cstate,
266          int clk, u32 pll, int idx)
267 {
268         int ret = gt215_pll_info(&priv->base, clk, pll, cstate->domain[idx],
269                                  &priv->eng[idx]);
270         if (ret >= 0)
271                 return 0;
272         return ret;
273 }
274
275 static int
276 calc_host(struct gt215_clk_priv *priv, struct nvkm_cstate *cstate)
277 {
278         int ret = 0;
279         u32 kHz = cstate->domain[nv_clk_src_host];
280         struct gt215_clk_info *info = &priv->eng[nv_clk_src_host];
281
282         if (kHz == 277000) {
283                 info->clk = 0;
284                 info->host_out = NVA3_HOST_277;
285                 return 0;
286         }
287
288         info->host_out = NVA3_HOST_CLK;
289
290         ret = gt215_clk_info(&priv->base, 0x1d, kHz, info);
291         if (ret >= 0)
292                 return 0;
293
294         return ret;
295 }
296
297 int
298 gt215_clk_pre(struct nvkm_clk *clk, unsigned long *flags)
299 {
300         struct nvkm_fifo *pfifo = nvkm_fifo(clk);
301
302         /* halt and idle execution engines */
303         nv_mask(clk, 0x020060, 0x00070000, 0x00000000);
304         nv_mask(clk, 0x002504, 0x00000001, 0x00000001);
305         /* Wait until the interrupt handler is finished */
306         if (!nv_wait(clk, 0x000100, 0xffffffff, 0x00000000))
307                 return -EBUSY;
308
309         if (pfifo)
310                 pfifo->pause(pfifo, flags);
311
312         if (!nv_wait(clk, 0x002504, 0x00000010, 0x00000010))
313                 return -EIO;
314         if (!nv_wait(clk, 0x00251c, 0x0000003f, 0x0000003f))
315                 return -EIO;
316
317         return 0;
318 }
319
320 void
321 gt215_clk_post(struct nvkm_clk *clk, unsigned long *flags)
322 {
323         struct nvkm_fifo *pfifo = nvkm_fifo(clk);
324
325         if (pfifo && flags)
326                 pfifo->start(pfifo, flags);
327
328         nv_mask(clk, 0x002504, 0x00000001, 0x00000000);
329         nv_mask(clk, 0x020060, 0x00070000, 0x00040000);
330 }
331
332 static void
333 disable_clk_src(struct gt215_clk_priv *priv, u32 src)
334 {
335         nv_mask(priv, src, 0x00000100, 0x00000000);
336         nv_mask(priv, src, 0x00000001, 0x00000000);
337 }
338
339 static void
340 prog_pll(struct gt215_clk_priv *priv, int clk, u32 pll, int idx)
341 {
342         struct gt215_clk_info *info = &priv->eng[idx];
343         const u32 src0 = 0x004120 + (clk * 4);
344         const u32 src1 = 0x004160 + (clk * 4);
345         const u32 ctrl = pll + 0;
346         const u32 coef = pll + 4;
347         u32 bypass;
348
349         if (info->pll) {
350                 /* Always start from a non-PLL clock */
351                 bypass = nv_rd32(priv, ctrl)  & 0x00000008;
352                 if (!bypass) {
353                         nv_mask(priv, src1, 0x00000101, 0x00000101);
354                         nv_mask(priv, ctrl, 0x00000008, 0x00000008);
355                         udelay(20);
356                 }
357
358                 nv_mask(priv, src0, 0x003f3141, 0x00000101 | info->clk);
359                 nv_wr32(priv, coef, info->pll);
360                 nv_mask(priv, ctrl, 0x00000015, 0x00000015);
361                 nv_mask(priv, ctrl, 0x00000010, 0x00000000);
362                 if (!nv_wait(priv, ctrl, 0x00020000, 0x00020000)) {
363                         nv_mask(priv, ctrl, 0x00000010, 0x00000010);
364                         nv_mask(priv, src0, 0x00000101, 0x00000000);
365                         return;
366                 }
367                 nv_mask(priv, ctrl, 0x00000010, 0x00000010);
368                 nv_mask(priv, ctrl, 0x00000008, 0x00000000);
369                 disable_clk_src(priv, src1);
370         } else {
371                 nv_mask(priv, src1, 0x003f3141, 0x00000101 | info->clk);
372                 nv_mask(priv, ctrl, 0x00000018, 0x00000018);
373                 udelay(20);
374                 nv_mask(priv, ctrl, 0x00000001, 0x00000000);
375                 disable_clk_src(priv, src0);
376         }
377 }
378
379 static void
380 prog_clk(struct gt215_clk_priv *priv, int clk, int idx)
381 {
382         struct gt215_clk_info *info = &priv->eng[idx];
383         nv_mask(priv, 0x004120 + (clk * 4), 0x003f3141, 0x00000101 | info->clk);
384 }
385
386 static void
387 prog_host(struct gt215_clk_priv *priv)
388 {
389         struct gt215_clk_info *info = &priv->eng[nv_clk_src_host];
390         u32 hsrc = (nv_rd32(priv, 0xc040));
391
392         switch (info->host_out) {
393         case NVA3_HOST_277:
394                 if ((hsrc & 0x30000000) == 0) {
395                         nv_wr32(priv, 0xc040, hsrc | 0x20000000);
396                         disable_clk_src(priv, 0x4194);
397                 }
398                 break;
399         case NVA3_HOST_CLK:
400                 prog_clk(priv, 0x1d, nv_clk_src_host);
401                 if ((hsrc & 0x30000000) >= 0x20000000) {
402                         nv_wr32(priv, 0xc040, hsrc & ~0x30000000);
403                 }
404                 break;
405         default:
406                 break;
407         }
408
409         /* This seems to be a clock gating factor on idle, always set to 64 */
410         nv_wr32(priv, 0xc044, 0x3e);
411 }
412
413 static void
414 prog_core(struct gt215_clk_priv *priv, int idx)
415 {
416         struct gt215_clk_info *info = &priv->eng[idx];
417         u32 fb_delay = nv_rd32(priv, 0x10002c);
418
419         if (fb_delay < info->fb_delay)
420                 nv_wr32(priv, 0x10002c, info->fb_delay);
421
422         prog_pll(priv, 0x00, 0x004200, idx);
423
424         if (fb_delay > info->fb_delay)
425                 nv_wr32(priv, 0x10002c, info->fb_delay);
426 }
427
428 static int
429 gt215_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
430 {
431         struct gt215_clk_priv *priv = (void *)clk;
432         struct gt215_clk_info *core = &priv->eng[nv_clk_src_core];
433         int ret;
434
435         if ((ret = calc_clk(priv, cstate, 0x10, 0x4200, nv_clk_src_core)) ||
436             (ret = calc_clk(priv, cstate, 0x11, 0x4220, nv_clk_src_shader)) ||
437             (ret = calc_clk(priv, cstate, 0x20, 0x0000, nv_clk_src_disp)) ||
438             (ret = calc_clk(priv, cstate, 0x21, 0x0000, nv_clk_src_vdec)) ||
439             (ret = calc_host(priv, cstate)))
440                 return ret;
441
442         /* XXX: Should be reading the highest bit in the VBIOS clock to decide
443          * whether to use a PLL or not... but using a PLL defeats the purpose */
444         if (core->pll) {
445                 ret = gt215_clk_info(clk, 0x10,
446                                      cstate->domain[nv_clk_src_core_intm],
447                                      &priv->eng[nv_clk_src_core_intm]);
448                 if (ret < 0)
449                         return ret;
450         }
451
452         return 0;
453 }
454
455 static int
456 gt215_clk_prog(struct nvkm_clk *clk)
457 {
458         struct gt215_clk_priv *priv = (void *)clk;
459         struct gt215_clk_info *core = &priv->eng[nv_clk_src_core];
460         int ret = 0;
461         unsigned long flags;
462         unsigned long *f = &flags;
463
464         ret = gt215_clk_pre(clk, f);
465         if (ret)
466                 goto out;
467
468         if (core->pll)
469                 prog_core(priv, nv_clk_src_core_intm);
470
471         prog_core(priv,  nv_clk_src_core);
472         prog_pll(priv, 0x01, 0x004220, nv_clk_src_shader);
473         prog_clk(priv, 0x20, nv_clk_src_disp);
474         prog_clk(priv, 0x21, nv_clk_src_vdec);
475         prog_host(priv);
476
477 out:
478         if (ret == -EBUSY)
479                 f = NULL;
480
481         gt215_clk_post(clk, f);
482         return ret;
483 }
484
485 static void
486 gt215_clk_tidy(struct nvkm_clk *clk)
487 {
488 }
489
490 static struct nvkm_domain
491 gt215_domain[] = {
492         { nv_clk_src_crystal  , 0xff },
493         { nv_clk_src_core     , 0x00, 0, "core", 1000 },
494         { nv_clk_src_shader   , 0x01, 0, "shader", 1000 },
495         { nv_clk_src_mem      , 0x02, 0, "memory", 1000 },
496         { nv_clk_src_vdec     , 0x03 },
497         { nv_clk_src_disp     , 0x04 },
498         { nv_clk_src_host     , 0x05 },
499         { nv_clk_src_core_intm, 0x06 },
500         { nv_clk_src_max }
501 };
502
503 static int
504 gt215_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
505                struct nvkm_oclass *oclass, void *data, u32 size,
506                struct nvkm_object **pobject)
507 {
508         struct gt215_clk_priv *priv;
509         int ret;
510
511         ret = nvkm_clk_create(parent, engine, oclass, gt215_domain,
512                               NULL, 0, true, &priv);
513         *pobject = nv_object(priv);
514         if (ret)
515                 return ret;
516
517         priv->base.read = gt215_clk_read;
518         priv->base.calc = gt215_clk_calc;
519         priv->base.prog = gt215_clk_prog;
520         priv->base.tidy = gt215_clk_tidy;
521         return 0;
522 }
523
524 struct nvkm_oclass
525 gt215_clk_oclass = {
526         .handle = NV_SUBDEV(CLK, 0xa3),
527         .ofuncs = &(struct nvkm_ofuncs) {
528                 .ctor = gt215_clk_ctor,
529                 .dtor = _nvkm_clk_dtor,
530                 .init = _nvkm_clk_init,
531                 .fini = _nvkm_clk_fini,
532         },
533 };