These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / gpu / drm / nouveau / nvkm / subdev / clk / gk20a.c
1 /*
2  * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  *
22  * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
23  *
24  */
25 #define gk20a_clk(p) container_of((p), struct gk20a_clk, base)
26 #include "priv.h"
27
28 #include <core/tegra.h>
29 #include <subdev/timer.h>
30
31 #define MHZ (1000 * 1000)
32
33 #define MASK(w) ((1 << w) - 1)
34
35 #define SYS_GPCPLL_CFG_BASE                     0x00137000
36 #define GPC_BCASE_GPCPLL_CFG_BASE               0x00132800
37
38 #define GPCPLL_CFG              (SYS_GPCPLL_CFG_BASE + 0)
39 #define GPCPLL_CFG_ENABLE       BIT(0)
40 #define GPCPLL_CFG_IDDQ         BIT(1)
41 #define GPCPLL_CFG_LOCK_DET_OFF BIT(4)
42 #define GPCPLL_CFG_LOCK         BIT(17)
43
44 #define GPCPLL_COEFF            (SYS_GPCPLL_CFG_BASE + 4)
45 #define GPCPLL_COEFF_M_SHIFT    0
46 #define GPCPLL_COEFF_M_WIDTH    8
47 #define GPCPLL_COEFF_N_SHIFT    8
48 #define GPCPLL_COEFF_N_WIDTH    8
49 #define GPCPLL_COEFF_P_SHIFT    16
50 #define GPCPLL_COEFF_P_WIDTH    6
51
52 #define GPCPLL_CFG2                     (SYS_GPCPLL_CFG_BASE + 0xc)
53 #define GPCPLL_CFG2_SETUP2_SHIFT        16
54 #define GPCPLL_CFG2_PLL_STEPA_SHIFT     24
55
56 #define GPCPLL_CFG3                     (SYS_GPCPLL_CFG_BASE + 0x18)
57 #define GPCPLL_CFG3_PLL_STEPB_SHIFT     16
58
59 #define GPCPLL_NDIV_SLOWDOWN                    (SYS_GPCPLL_CFG_BASE + 0x1c)
60 #define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT      0
61 #define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT     8
62 #define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT     16
63 #define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT   22
64 #define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT   31
65
66 #define SEL_VCO                         (SYS_GPCPLL_CFG_BASE + 0x100)
67 #define SEL_VCO_GPC2CLK_OUT_SHIFT       0
68
69 #define GPC2CLK_OUT                     (SYS_GPCPLL_CFG_BASE + 0x250)
70 #define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH 1
71 #define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT 31
72 #define GPC2CLK_OUT_SDIV14_INDIV4_MODE  1
73 #define GPC2CLK_OUT_VCODIV_WIDTH        6
74 #define GPC2CLK_OUT_VCODIV_SHIFT        8
75 #define GPC2CLK_OUT_VCODIV1             0
76 #define GPC2CLK_OUT_VCODIV_MASK         (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \
77                                         GPC2CLK_OUT_VCODIV_SHIFT)
78 #define GPC2CLK_OUT_BYPDIV_WIDTH        6
79 #define GPC2CLK_OUT_BYPDIV_SHIFT        0
80 #define GPC2CLK_OUT_BYPDIV31            0x3c
81 #define GPC2CLK_OUT_INIT_MASK   ((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \
82                 GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\
83                 | (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\
84                 | (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT))
85 #define GPC2CLK_OUT_INIT_VAL    ((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \
86                 GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \
87                 | (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \
88                 | (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT))
89
90 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG   (GPC_BCASE_GPCPLL_CFG_BASE + 0xa0)
91 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT     24
92 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \
93             (0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT)
94
95 static const u8 pl_to_div[] = {
96 /* PL:   0, 1, 2, 3, 4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14 */
97 /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
98 };
99
100 /* All frequencies in Mhz */
101 struct gk20a_clk_pllg_params {
102         u32 min_vco, max_vco;
103         u32 min_u, max_u;
104         u32 min_m, max_m;
105         u32 min_n, max_n;
106         u32 min_pl, max_pl;
107 };
108
109 static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
110         .min_vco = 1000, .max_vco = 2064,
111         .min_u = 12, .max_u = 38,
112         .min_m = 1, .max_m = 255,
113         .min_n = 8, .max_n = 255,
114         .min_pl = 1, .max_pl = 32,
115 };
116
117 struct gk20a_clk {
118         struct nvkm_clk base;
119         const struct gk20a_clk_pllg_params *params;
120         u32 m, n, pl;
121         u32 parent_rate;
122 };
123
124 static void
125 gk20a_pllg_read_mnp(struct gk20a_clk *clk)
126 {
127         struct nvkm_device *device = clk->base.subdev.device;
128         u32 val;
129
130         val = nvkm_rd32(device, GPCPLL_COEFF);
131         clk->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
132         clk->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
133         clk->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
134 }
135
136 static u32
137 gk20a_pllg_calc_rate(struct gk20a_clk *clk)
138 {
139         u32 rate;
140         u32 divider;
141
142         rate = clk->parent_rate * clk->n;
143         divider = clk->m * pl_to_div[clk->pl];
144         do_div(rate, divider);
145
146         return rate / 2;
147 }
148
149 static int
150 gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate)
151 {
152         struct nvkm_subdev *subdev = &clk->base.subdev;
153         u32 target_clk_f, ref_clk_f, target_freq;
154         u32 min_vco_f, max_vco_f;
155         u32 low_pl, high_pl, best_pl;
156         u32 target_vco_f, vco_f;
157         u32 best_m, best_n;
158         u32 u_f;
159         u32 m, n, n2;
160         u32 delta, lwv, best_delta = ~0;
161         u32 pl;
162
163         target_clk_f = rate * 2 / MHZ;
164         ref_clk_f = clk->parent_rate / MHZ;
165
166         max_vco_f = clk->params->max_vco;
167         min_vco_f = clk->params->min_vco;
168         best_m = clk->params->max_m;
169         best_n = clk->params->min_n;
170         best_pl = clk->params->min_pl;
171
172         target_vco_f = target_clk_f + target_clk_f / 50;
173         if (max_vco_f < target_vco_f)
174                 max_vco_f = target_vco_f;
175
176         /* min_pl <= high_pl <= max_pl */
177         high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
178         high_pl = min(high_pl, clk->params->max_pl);
179         high_pl = max(high_pl, clk->params->min_pl);
180
181         /* min_pl <= low_pl <= max_pl */
182         low_pl = min_vco_f / target_vco_f;
183         low_pl = min(low_pl, clk->params->max_pl);
184         low_pl = max(low_pl, clk->params->min_pl);
185
186         /* Find Indices of high_pl and low_pl */
187         for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
188                 if (pl_to_div[pl] >= low_pl) {
189                         low_pl = pl;
190                         break;
191                 }
192         }
193         for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
194                 if (pl_to_div[pl] >= high_pl) {
195                         high_pl = pl;
196                         break;
197                 }
198         }
199
200         nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
201                    pl_to_div[low_pl], high_pl, pl_to_div[high_pl]);
202
203         /* Select lowest possible VCO */
204         for (pl = low_pl; pl <= high_pl; pl++) {
205                 target_vco_f = target_clk_f * pl_to_div[pl];
206                 for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
207                         u_f = ref_clk_f / m;
208
209                         if (u_f < clk->params->min_u)
210                                 break;
211                         if (u_f > clk->params->max_u)
212                                 continue;
213
214                         n = (target_vco_f * m) / ref_clk_f;
215                         n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
216
217                         if (n > clk->params->max_n)
218                                 break;
219
220                         for (; n <= n2; n++) {
221                                 if (n < clk->params->min_n)
222                                         continue;
223                                 if (n > clk->params->max_n)
224                                         break;
225
226                                 vco_f = ref_clk_f * n / m;
227
228                                 if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
229                                         lwv = (vco_f + (pl_to_div[pl] / 2))
230                                                 / pl_to_div[pl];
231                                         delta = abs(lwv - target_clk_f);
232
233                                         if (delta < best_delta) {
234                                                 best_delta = delta;
235                                                 best_m = m;
236                                                 best_n = n;
237                                                 best_pl = pl;
238
239                                                 if (best_delta == 0)
240                                                         goto found_match;
241                                         }
242                                 }
243                         }
244                 }
245         }
246
247 found_match:
248         WARN_ON(best_delta == ~0);
249
250         if (best_delta != 0)
251                 nvkm_debug(subdev,
252                            "no best match for target @ %dMHz on gpc_pll",
253                            target_clk_f);
254
255         clk->m = best_m;
256         clk->n = best_n;
257         clk->pl = best_pl;
258
259         target_freq = gk20a_pllg_calc_rate(clk) / MHZ;
260
261         nvkm_debug(subdev,
262                    "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
263                    target_freq, clk->m, clk->n, clk->pl, pl_to_div[clk->pl]);
264         return 0;
265 }
266
267 static int
268 gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
269 {
270         struct nvkm_subdev *subdev = &clk->base.subdev;
271         struct nvkm_device *device = subdev->device;
272         u32 val;
273         int ramp_timeout;
274
275         /* get old coefficients */
276         val = nvkm_rd32(device, GPCPLL_COEFF);
277         /* do nothing if NDIV is the same */
278         if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH)))
279                 return 0;
280
281         /* setup */
282         nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
283                 0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT);
284         nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
285                 0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT);
286
287         /* pll slowdown mode */
288         nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
289                 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
290                 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
291
292         /* new ndiv ready for ramp */
293         val = nvkm_rd32(device, GPCPLL_COEFF);
294         val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
295         val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
296         udelay(1);
297         nvkm_wr32(device, GPCPLL_COEFF, val);
298
299         /* dynamic ramp to new ndiv */
300         val = nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
301         val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
302         udelay(1);
303         nvkm_wr32(device, GPCPLL_NDIV_SLOWDOWN, val);
304
305         for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
306                 udelay(1);
307                 val = nvkm_rd32(device, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
308                 if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
309                         break;
310         }
311
312         /* exit slowdown mode */
313         nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
314                 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
315                 BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
316         nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
317
318         if (ramp_timeout <= 0) {
319                 nvkm_error(subdev, "gpcpll dynamic ramp timeout\n");
320                 return -ETIMEDOUT;
321         }
322
323         return 0;
324 }
325
326 static void
327 _gk20a_pllg_enable(struct gk20a_clk *clk)
328 {
329         struct nvkm_device *device = clk->base.subdev.device;
330         nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
331         nvkm_rd32(device, GPCPLL_CFG);
332 }
333
334 static void
335 _gk20a_pllg_disable(struct gk20a_clk *clk)
336 {
337         struct nvkm_device *device = clk->base.subdev.device;
338         nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
339         nvkm_rd32(device, GPCPLL_CFG);
340 }
341
342 static int
343 _gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide)
344 {
345         struct nvkm_subdev *subdev = &clk->base.subdev;
346         struct nvkm_device *device = subdev->device;
347         u32 val, cfg;
348         u32 m_old, pl_old, n_lo;
349
350         /* get old coefficients */
351         val = nvkm_rd32(device, GPCPLL_COEFF);
352         m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
353         pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
354
355         /* do NDIV slide if there is no change in M and PL */
356         cfg = nvkm_rd32(device, GPCPLL_CFG);
357         if (allow_slide && clk->m == m_old && clk->pl == pl_old &&
358             (cfg & GPCPLL_CFG_ENABLE)) {
359                 return gk20a_pllg_slide(clk, clk->n);
360         }
361
362         /* slide down to NDIV_LO */
363         n_lo = DIV_ROUND_UP(m_old * clk->params->min_vco,
364                             clk->parent_rate / MHZ);
365         if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
366                 int ret = gk20a_pllg_slide(clk, n_lo);
367
368                 if (ret)
369                         return ret;
370         }
371
372         /* split FO-to-bypass jump in halfs by setting out divider 1:2 */
373         nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
374                 0x2 << GPC2CLK_OUT_VCODIV_SHIFT);
375
376         /* put PLL in bypass before programming it */
377         val = nvkm_rd32(device, SEL_VCO);
378         val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
379         udelay(2);
380         nvkm_wr32(device, SEL_VCO, val);
381
382         /* get out from IDDQ */
383         val = nvkm_rd32(device, GPCPLL_CFG);
384         if (val & GPCPLL_CFG_IDDQ) {
385                 val &= ~GPCPLL_CFG_IDDQ;
386                 nvkm_wr32(device, GPCPLL_CFG, val);
387                 nvkm_rd32(device, GPCPLL_CFG);
388                 udelay(2);
389         }
390
391         _gk20a_pllg_disable(clk);
392
393         nvkm_debug(subdev, "%s: m=%d n=%d pl=%d\n", __func__,
394                    clk->m, clk->n, clk->pl);
395
396         n_lo = DIV_ROUND_UP(clk->m * clk->params->min_vco,
397                             clk->parent_rate / MHZ);
398         val = clk->m << GPCPLL_COEFF_M_SHIFT;
399         val |= (allow_slide ? n_lo : clk->n) << GPCPLL_COEFF_N_SHIFT;
400         val |= clk->pl << GPCPLL_COEFF_P_SHIFT;
401         nvkm_wr32(device, GPCPLL_COEFF, val);
402
403         _gk20a_pllg_enable(clk);
404
405         val = nvkm_rd32(device, GPCPLL_CFG);
406         if (val & GPCPLL_CFG_LOCK_DET_OFF) {
407                 val &= ~GPCPLL_CFG_LOCK_DET_OFF;
408                 nvkm_wr32(device, GPCPLL_CFG, val);
409         }
410
411         if (nvkm_usec(device, 300,
412                 if (nvkm_rd32(device, GPCPLL_CFG) & GPCPLL_CFG_LOCK)
413                         break;
414         ) < 0)
415                 return -ETIMEDOUT;
416
417         /* switch to VCO mode */
418         nvkm_mask(device, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
419
420         /* restore out divider 1:1 */
421         val = nvkm_rd32(device, GPC2CLK_OUT);
422         val &= ~GPC2CLK_OUT_VCODIV_MASK;
423         udelay(2);
424         nvkm_wr32(device, GPC2CLK_OUT, val);
425
426         /* slide up to new NDIV */
427         return allow_slide ? gk20a_pllg_slide(clk, clk->n) : 0;
428 }
429
430 static int
431 gk20a_pllg_program_mnp(struct gk20a_clk *clk)
432 {
433         int err;
434
435         err = _gk20a_pllg_program_mnp(clk, true);
436         if (err)
437                 err = _gk20a_pllg_program_mnp(clk, false);
438
439         return err;
440 }
441
442 static void
443 gk20a_pllg_disable(struct gk20a_clk *clk)
444 {
445         struct nvkm_device *device = clk->base.subdev.device;
446         u32 val;
447
448         /* slide to VCO min */
449         val = nvkm_rd32(device, GPCPLL_CFG);
450         if (val & GPCPLL_CFG_ENABLE) {
451                 u32 coeff, m, n_lo;
452
453                 coeff = nvkm_rd32(device, GPCPLL_COEFF);
454                 m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
455                 n_lo = DIV_ROUND_UP(m * clk->params->min_vco,
456                                     clk->parent_rate / MHZ);
457                 gk20a_pllg_slide(clk, n_lo);
458         }
459
460         /* put PLL in bypass before disabling it */
461         nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
462
463         _gk20a_pllg_disable(clk);
464 }
465
466 #define GK20A_CLK_GPC_MDIV 1000
467
468 static struct nvkm_pstate
469 gk20a_pstates[] = {
470         {
471                 .base = {
472                         .domain[nv_clk_src_gpc] = 72000,
473                         .voltage = 0,
474                 },
475         },
476         {
477                 .base = {
478                         .domain[nv_clk_src_gpc] = 108000,
479                         .voltage = 1,
480                 },
481         },
482         {
483                 .base = {
484                         .domain[nv_clk_src_gpc] = 180000,
485                         .voltage = 2,
486                 },
487         },
488         {
489                 .base = {
490                         .domain[nv_clk_src_gpc] = 252000,
491                         .voltage = 3,
492                 },
493         },
494         {
495                 .base = {
496                         .domain[nv_clk_src_gpc] = 324000,
497                         .voltage = 4,
498                 },
499         },
500         {
501                 .base = {
502                         .domain[nv_clk_src_gpc] = 396000,
503                         .voltage = 5,
504                 },
505         },
506         {
507                 .base = {
508                         .domain[nv_clk_src_gpc] = 468000,
509                         .voltage = 6,
510                 },
511         },
512         {
513                 .base = {
514                         .domain[nv_clk_src_gpc] = 540000,
515                         .voltage = 7,
516                 },
517         },
518         {
519                 .base = {
520                         .domain[nv_clk_src_gpc] = 612000,
521                         .voltage = 8,
522                 },
523         },
524         {
525                 .base = {
526                         .domain[nv_clk_src_gpc] = 648000,
527                         .voltage = 9,
528                 },
529         },
530         {
531                 .base = {
532                         .domain[nv_clk_src_gpc] = 684000,
533                         .voltage = 10,
534                 },
535         },
536         {
537                 .base = {
538                         .domain[nv_clk_src_gpc] = 708000,
539                         .voltage = 11,
540                 },
541         },
542         {
543                 .base = {
544                         .domain[nv_clk_src_gpc] = 756000,
545                         .voltage = 12,
546                 },
547         },
548         {
549                 .base = {
550                         .domain[nv_clk_src_gpc] = 804000,
551                         .voltage = 13,
552                 },
553         },
554         {
555                 .base = {
556                         .domain[nv_clk_src_gpc] = 852000,
557                         .voltage = 14,
558                 },
559         },
560 };
561
562 static int
563 gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
564 {
565         struct gk20a_clk *clk = gk20a_clk(base);
566         struct nvkm_subdev *subdev = &clk->base.subdev;
567         struct nvkm_device *device = subdev->device;
568
569         switch (src) {
570         case nv_clk_src_crystal:
571                 return device->crystal;
572         case nv_clk_src_gpc:
573                 gk20a_pllg_read_mnp(clk);
574                 return gk20a_pllg_calc_rate(clk) / GK20A_CLK_GPC_MDIV;
575         default:
576                 nvkm_error(subdev, "invalid clock source %d\n", src);
577                 return -EINVAL;
578         }
579 }
580
581 static int
582 gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
583 {
584         struct gk20a_clk *clk = gk20a_clk(base);
585
586         return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
587                                          GK20A_CLK_GPC_MDIV);
588 }
589
590 static int
591 gk20a_clk_prog(struct nvkm_clk *base)
592 {
593         struct gk20a_clk *clk = gk20a_clk(base);
594
595         return gk20a_pllg_program_mnp(clk);
596 }
597
598 static void
599 gk20a_clk_tidy(struct nvkm_clk *base)
600 {
601 }
602
603 static void
604 gk20a_clk_fini(struct nvkm_clk *base)
605 {
606         struct gk20a_clk *clk = gk20a_clk(base);
607         gk20a_pllg_disable(clk);
608 }
609
610 static int
611 gk20a_clk_init(struct nvkm_clk *base)
612 {
613         struct gk20a_clk *clk = gk20a_clk(base);
614         struct nvkm_subdev *subdev = &clk->base.subdev;
615         struct nvkm_device *device = subdev->device;
616         int ret;
617
618         nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL);
619
620         ret = gk20a_clk_prog(&clk->base);
621         if (ret) {
622                 nvkm_error(subdev, "cannot initialize clock\n");
623                 return ret;
624         }
625
626         return 0;
627 }
628
629 static const struct nvkm_clk_func
630 gk20a_clk = {
631         .init = gk20a_clk_init,
632         .fini = gk20a_clk_fini,
633         .read = gk20a_clk_read,
634         .calc = gk20a_clk_calc,
635         .prog = gk20a_clk_prog,
636         .tidy = gk20a_clk_tidy,
637         .pstates = gk20a_pstates,
638         .nr_pstates = ARRAY_SIZE(gk20a_pstates),
639         .domains = {
640                 { nv_clk_src_crystal, 0xff },
641                 { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
642                 { nv_clk_src_max }
643         }
644 };
645
646 int
647 gk20a_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
648 {
649         struct nvkm_device_tegra *tdev = device->func->tegra(device);
650         struct gk20a_clk *clk;
651         int ret, i;
652
653         if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
654                 return -ENOMEM;
655         *pclk = &clk->base;
656
657         /* Finish initializing the pstates */
658         for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) {
659                 INIT_LIST_HEAD(&gk20a_pstates[i].list);
660                 gk20a_pstates[i].pstate = i + 1;
661         }
662
663         clk->params = &gk20a_pllg_params;
664         clk->parent_rate = clk_get_rate(tdev->clk);
665
666         ret = nvkm_clk_ctor(&gk20a_clk, device, index, true, &clk->base);
667         nvkm_info(&clk->base.subdev, "parent clock rate: %d Mhz\n",
668                   clk->parent_rate / MHZ);
669         return ret;
670 }