Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / gpu / drm / nouveau / nvkm / subdev / clk / gk104.c
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include <subdev/clk.h>
25 #include "pll.h"
26
27 #include <core/device.h>
28 #include <subdev/timer.h>
29 #include <subdev/bios.h>
30 #include <subdev/bios/pll.h>
31
32 struct gk104_clk_info {
33         u32 freq;
34         u32 ssel;
35         u32 mdiv;
36         u32 dsrc;
37         u32 ddiv;
38         u32 coef;
39 };
40
41 struct gk104_clk_priv {
42         struct nvkm_clk base;
43         struct gk104_clk_info eng[16];
44 };
45
46 static u32 read_div(struct gk104_clk_priv *, int, u32, u32);
47 static u32 read_pll(struct gk104_clk_priv *, u32);
48
49 static u32
50 read_vco(struct gk104_clk_priv *priv, u32 dsrc)
51 {
52         u32 ssrc = nv_rd32(priv, dsrc);
53         if (!(ssrc & 0x00000100))
54                 return read_pll(priv, 0x00e800);
55         return read_pll(priv, 0x00e820);
56 }
57
58 static u32
59 read_pll(struct gk104_clk_priv *priv, u32 pll)
60 {
61         u32 ctrl = nv_rd32(priv, pll + 0x00);
62         u32 coef = nv_rd32(priv, pll + 0x04);
63         u32 P = (coef & 0x003f0000) >> 16;
64         u32 N = (coef & 0x0000ff00) >> 8;
65         u32 M = (coef & 0x000000ff) >> 0;
66         u32 sclk;
67         u16 fN = 0xf000;
68
69         if (!(ctrl & 0x00000001))
70                 return 0;
71
72         switch (pll) {
73         case 0x00e800:
74         case 0x00e820:
75                 sclk = nv_device(priv)->crystal;
76                 P = 1;
77                 break;
78         case 0x132000:
79                 sclk = read_pll(priv, 0x132020);
80                 P = (coef & 0x10000000) ? 2 : 1;
81                 break;
82         case 0x132020:
83                 sclk = read_div(priv, 0, 0x137320, 0x137330);
84                 fN   = nv_rd32(priv, pll + 0x10) >> 16;
85                 break;
86         case 0x137000:
87         case 0x137020:
88         case 0x137040:
89         case 0x1370e0:
90                 sclk = read_div(priv, (pll & 0xff) / 0x20, 0x137120, 0x137140);
91                 break;
92         default:
93                 return 0;
94         }
95
96         if (P == 0)
97                 P = 1;
98
99         sclk = (sclk * N) + (((u16)(fN + 4096) * sclk) >> 13);
100         return sclk / (M * P);
101 }
102
103 static u32
104 read_div(struct gk104_clk_priv *priv, int doff, u32 dsrc, u32 dctl)
105 {
106         u32 ssrc = nv_rd32(priv, dsrc + (doff * 4));
107         u32 sctl = nv_rd32(priv, dctl + (doff * 4));
108
109         switch (ssrc & 0x00000003) {
110         case 0:
111                 if ((ssrc & 0x00030000) != 0x00030000)
112                         return nv_device(priv)->crystal;
113                 return 108000;
114         case 2:
115                 return 100000;
116         case 3:
117                 if (sctl & 0x80000000) {
118                         u32 sclk = read_vco(priv, dsrc + (doff * 4));
119                         u32 sdiv = (sctl & 0x0000003f) + 2;
120                         return (sclk * 2) / sdiv;
121                 }
122
123                 return read_vco(priv, dsrc + (doff * 4));
124         default:
125                 return 0;
126         }
127 }
128
129 static u32
130 read_mem(struct gk104_clk_priv *priv)
131 {
132         switch (nv_rd32(priv, 0x1373f4) & 0x0000000f) {
133         case 1: return read_pll(priv, 0x132020);
134         case 2: return read_pll(priv, 0x132000);
135         default:
136                 return 0;
137         }
138 }
139
140 static u32
141 read_clk(struct gk104_clk_priv *priv, int clk)
142 {
143         u32 sctl = nv_rd32(priv, 0x137250 + (clk * 4));
144         u32 sclk, sdiv;
145
146         if (clk < 7) {
147                 u32 ssel = nv_rd32(priv, 0x137100);
148                 if (ssel & (1 << clk)) {
149                         sclk = read_pll(priv, 0x137000 + (clk * 0x20));
150                         sdiv = 1;
151                 } else {
152                         sclk = read_div(priv, clk, 0x137160, 0x1371d0);
153                         sdiv = 0;
154                 }
155         } else {
156                 u32 ssrc = nv_rd32(priv, 0x137160 + (clk * 0x04));
157                 if ((ssrc & 0x00000003) == 0x00000003) {
158                         sclk = read_div(priv, clk, 0x137160, 0x1371d0);
159                         if (ssrc & 0x00000100) {
160                                 if (ssrc & 0x40000000)
161                                         sclk = read_pll(priv, 0x1370e0);
162                                 sdiv = 1;
163                         } else {
164                                 sdiv = 0;
165                         }
166                 } else {
167                         sclk = read_div(priv, clk, 0x137160, 0x1371d0);
168                         sdiv = 0;
169                 }
170         }
171
172         if (sctl & 0x80000000) {
173                 if (sdiv)
174                         sdiv = ((sctl & 0x00003f00) >> 8) + 2;
175                 else
176                         sdiv = ((sctl & 0x0000003f) >> 0) + 2;
177                 return (sclk * 2) / sdiv;
178         }
179
180         return sclk;
181 }
182
183 static int
184 gk104_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
185 {
186         struct nvkm_device *device = nv_device(clk);
187         struct gk104_clk_priv *priv = (void *)clk;
188
189         switch (src) {
190         case nv_clk_src_crystal:
191                 return device->crystal;
192         case nv_clk_src_href:
193                 return 100000;
194         case nv_clk_src_mem:
195                 return read_mem(priv);
196         case nv_clk_src_gpc:
197                 return read_clk(priv, 0x00);
198         case nv_clk_src_rop:
199                 return read_clk(priv, 0x01);
200         case nv_clk_src_hubk07:
201                 return read_clk(priv, 0x02);
202         case nv_clk_src_hubk06:
203                 return read_clk(priv, 0x07);
204         case nv_clk_src_hubk01:
205                 return read_clk(priv, 0x08);
206         case nv_clk_src_daemon:
207                 return read_clk(priv, 0x0c);
208         case nv_clk_src_vdec:
209                 return read_clk(priv, 0x0e);
210         default:
211                 nv_error(clk, "invalid clock source %d\n", src);
212                 return -EINVAL;
213         }
214 }
215
216 static u32
217 calc_div(struct gk104_clk_priv *priv, int clk, u32 ref, u32 freq, u32 *ddiv)
218 {
219         u32 div = min((ref * 2) / freq, (u32)65);
220         if (div < 2)
221                 div = 2;
222
223         *ddiv = div - 2;
224         return (ref * 2) / div;
225 }
226
227 static u32
228 calc_src(struct gk104_clk_priv *priv, int clk, u32 freq, u32 *dsrc, u32 *ddiv)
229 {
230         u32 sclk;
231
232         /* use one of the fixed frequencies if possible */
233         *ddiv = 0x00000000;
234         switch (freq) {
235         case  27000:
236         case 108000:
237                 *dsrc = 0x00000000;
238                 if (freq == 108000)
239                         *dsrc |= 0x00030000;
240                 return freq;
241         case 100000:
242                 *dsrc = 0x00000002;
243                 return freq;
244         default:
245                 *dsrc = 0x00000003;
246                 break;
247         }
248
249         /* otherwise, calculate the closest divider */
250         sclk = read_vco(priv, 0x137160 + (clk * 4));
251         if (clk < 7)
252                 sclk = calc_div(priv, clk, sclk, freq, ddiv);
253         return sclk;
254 }
255
256 static u32
257 calc_pll(struct gk104_clk_priv *priv, int clk, u32 freq, u32 *coef)
258 {
259         struct nvkm_bios *bios = nvkm_bios(priv);
260         struct nvbios_pll limits;
261         int N, M, P, ret;
262
263         ret = nvbios_pll_parse(bios, 0x137000 + (clk * 0x20), &limits);
264         if (ret)
265                 return 0;
266
267         limits.refclk = read_div(priv, clk, 0x137120, 0x137140);
268         if (!limits.refclk)
269                 return 0;
270
271         ret = gt215_pll_calc(nv_subdev(priv), &limits, freq, &N, NULL, &M, &P);
272         if (ret <= 0)
273                 return 0;
274
275         *coef = (P << 16) | (N << 8) | M;
276         return ret;
277 }
278
279 static int
280 calc_clk(struct gk104_clk_priv *priv,
281          struct nvkm_cstate *cstate, int clk, int dom)
282 {
283         struct gk104_clk_info *info = &priv->eng[clk];
284         u32 freq = cstate->domain[dom];
285         u32 src0, div0, div1D, div1P = 0;
286         u32 clk0, clk1 = 0;
287
288         /* invalid clock domain */
289         if (!freq)
290                 return 0;
291
292         /* first possible path, using only dividers */
293         clk0 = calc_src(priv, clk, freq, &src0, &div0);
294         clk0 = calc_div(priv, clk, clk0, freq, &div1D);
295
296         /* see if we can get any closer using PLLs */
297         if (clk0 != freq && (0x0000ff87 & (1 << clk))) {
298                 if (clk <= 7)
299                         clk1 = calc_pll(priv, clk, freq, &info->coef);
300                 else
301                         clk1 = cstate->domain[nv_clk_src_hubk06];
302                 clk1 = calc_div(priv, clk, clk1, freq, &div1P);
303         }
304
305         /* select the method which gets closest to target freq */
306         if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
307                 info->dsrc = src0;
308                 if (div0) {
309                         info->ddiv |= 0x80000000;
310                         info->ddiv |= div0;
311                 }
312                 if (div1D) {
313                         info->mdiv |= 0x80000000;
314                         info->mdiv |= div1D;
315                 }
316                 info->ssel = 0;
317                 info->freq = clk0;
318         } else {
319                 if (div1P) {
320                         info->mdiv |= 0x80000000;
321                         info->mdiv |= div1P << 8;
322                 }
323                 info->ssel = (1 << clk);
324                 info->dsrc = 0x40000100;
325                 info->freq = clk1;
326         }
327
328         return 0;
329 }
330
331 static int
332 gk104_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
333 {
334         struct gk104_clk_priv *priv = (void *)clk;
335         int ret;
336
337         if ((ret = calc_clk(priv, cstate, 0x00, nv_clk_src_gpc)) ||
338             (ret = calc_clk(priv, cstate, 0x01, nv_clk_src_rop)) ||
339             (ret = calc_clk(priv, cstate, 0x02, nv_clk_src_hubk07)) ||
340             (ret = calc_clk(priv, cstate, 0x07, nv_clk_src_hubk06)) ||
341             (ret = calc_clk(priv, cstate, 0x08, nv_clk_src_hubk01)) ||
342             (ret = calc_clk(priv, cstate, 0x0c, nv_clk_src_daemon)) ||
343             (ret = calc_clk(priv, cstate, 0x0e, nv_clk_src_vdec)))
344                 return ret;
345
346         return 0;
347 }
348
349 static void
350 gk104_clk_prog_0(struct gk104_clk_priv *priv, int clk)
351 {
352         struct gk104_clk_info *info = &priv->eng[clk];
353         if (!info->ssel) {
354                 nv_mask(priv, 0x1371d0 + (clk * 0x04), 0x8000003f, info->ddiv);
355                 nv_wr32(priv, 0x137160 + (clk * 0x04), info->dsrc);
356         }
357 }
358
359 static void
360 gk104_clk_prog_1_0(struct gk104_clk_priv *priv, int clk)
361 {
362         nv_mask(priv, 0x137100, (1 << clk), 0x00000000);
363         nv_wait(priv, 0x137100, (1 << clk), 0x00000000);
364 }
365
366 static void
367 gk104_clk_prog_1_1(struct gk104_clk_priv *priv, int clk)
368 {
369         nv_mask(priv, 0x137160 + (clk * 0x04), 0x00000100, 0x00000000);
370 }
371
372 static void
373 gk104_clk_prog_2(struct gk104_clk_priv *priv, int clk)
374 {
375         struct gk104_clk_info *info = &priv->eng[clk];
376         const u32 addr = 0x137000 + (clk * 0x20);
377         nv_mask(priv, addr + 0x00, 0x00000004, 0x00000000);
378         nv_mask(priv, addr + 0x00, 0x00000001, 0x00000000);
379         if (info->coef) {
380                 nv_wr32(priv, addr + 0x04, info->coef);
381                 nv_mask(priv, addr + 0x00, 0x00000001, 0x00000001);
382                 nv_wait(priv, addr + 0x00, 0x00020000, 0x00020000);
383                 nv_mask(priv, addr + 0x00, 0x00020004, 0x00000004);
384         }
385 }
386
387 static void
388 gk104_clk_prog_3(struct gk104_clk_priv *priv, int clk)
389 {
390         struct gk104_clk_info *info = &priv->eng[clk];
391         if (info->ssel)
392                 nv_mask(priv, 0x137250 + (clk * 0x04), 0x00003f00, info->mdiv);
393         else
394                 nv_mask(priv, 0x137250 + (clk * 0x04), 0x0000003f, info->mdiv);
395 }
396
397 static void
398 gk104_clk_prog_4_0(struct gk104_clk_priv *priv, int clk)
399 {
400         struct gk104_clk_info *info = &priv->eng[clk];
401         if (info->ssel) {
402                 nv_mask(priv, 0x137100, (1 << clk), info->ssel);
403                 nv_wait(priv, 0x137100, (1 << clk), info->ssel);
404         }
405 }
406
407 static void
408 gk104_clk_prog_4_1(struct gk104_clk_priv *priv, int clk)
409 {
410         struct gk104_clk_info *info = &priv->eng[clk];
411         if (info->ssel) {
412                 nv_mask(priv, 0x137160 + (clk * 0x04), 0x40000000, 0x40000000);
413                 nv_mask(priv, 0x137160 + (clk * 0x04), 0x00000100, 0x00000100);
414         }
415 }
416
417 static int
418 gk104_clk_prog(struct nvkm_clk *clk)
419 {
420         struct gk104_clk_priv *priv = (void *)clk;
421         struct {
422                 u32 mask;
423                 void (*exec)(struct gk104_clk_priv *, int);
424         } stage[] = {
425                 { 0x007f, gk104_clk_prog_0   }, /* div programming */
426                 { 0x007f, gk104_clk_prog_1_0 }, /* select div mode */
427                 { 0xff80, gk104_clk_prog_1_1 },
428                 { 0x00ff, gk104_clk_prog_2   }, /* (maybe) program pll */
429                 { 0xff80, gk104_clk_prog_3   }, /* final divider */
430                 { 0x007f, gk104_clk_prog_4_0 }, /* (maybe) select pll mode */
431                 { 0xff80, gk104_clk_prog_4_1 },
432         };
433         int i, j;
434
435         for (i = 0; i < ARRAY_SIZE(stage); i++) {
436                 for (j = 0; j < ARRAY_SIZE(priv->eng); j++) {
437                         if (!(stage[i].mask & (1 << j)))
438                                 continue;
439                         if (!priv->eng[j].freq)
440                                 continue;
441                         stage[i].exec(priv, j);
442                 }
443         }
444
445         return 0;
446 }
447
448 static void
449 gk104_clk_tidy(struct nvkm_clk *clk)
450 {
451         struct gk104_clk_priv *priv = (void *)clk;
452         memset(priv->eng, 0x00, sizeof(priv->eng));
453 }
454
455 static struct nvkm_domain
456 gk104_domain[] = {
457         { nv_clk_src_crystal, 0xff },
458         { nv_clk_src_href   , 0xff },
459         { nv_clk_src_gpc    , 0x00, NVKM_CLK_DOM_FLAG_CORE, "core", 2000 },
460         { nv_clk_src_hubk07 , 0x01, NVKM_CLK_DOM_FLAG_CORE },
461         { nv_clk_src_rop    , 0x02, NVKM_CLK_DOM_FLAG_CORE },
462         { nv_clk_src_mem    , 0x03, 0, "memory", 500 },
463         { nv_clk_src_hubk06 , 0x04, NVKM_CLK_DOM_FLAG_CORE },
464         { nv_clk_src_hubk01 , 0x05 },
465         { nv_clk_src_vdec   , 0x06 },
466         { nv_clk_src_daemon , 0x07 },
467         { nv_clk_src_max }
468 };
469
470 static int
471 gk104_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
472                struct nvkm_oclass *oclass, void *data, u32 size,
473                struct nvkm_object **pobject)
474 {
475         struct gk104_clk_priv *priv;
476         int ret;
477
478         ret = nvkm_clk_create(parent, engine, oclass, gk104_domain,
479                               NULL, 0, true, &priv);
480         *pobject = nv_object(priv);
481         if (ret)
482                 return ret;
483
484         priv->base.read = gk104_clk_read;
485         priv->base.calc = gk104_clk_calc;
486         priv->base.prog = gk104_clk_prog;
487         priv->base.tidy = gk104_clk_tidy;
488         return 0;
489 }
490
491 struct nvkm_oclass
492 gk104_clk_oclass = {
493         .handle = NV_SUBDEV(CLK, 0xe0),
494         .ofuncs = &(struct nvkm_ofuncs) {
495                 .ctor = gk104_clk_ctor,
496                 .dtor = _nvkm_clk_dtor,
497                 .init = _nvkm_clk_init,
498                 .fini = _nvkm_clk_fini,
499         },
500 };