These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / gpu / drm / nouveau / nvkm / subdev / clk / gf100.c
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #define gf100_clk(p) container_of((p), struct gf100_clk, base)
25 #include "priv.h"
26 #include "pll.h"
27
28 #include <subdev/bios.h>
29 #include <subdev/bios/pll.h>
30 #include <subdev/timer.h>
31
32 struct gf100_clk_info {
33         u32 freq;
34         u32 ssel;
35         u32 mdiv;
36         u32 dsrc;
37         u32 ddiv;
38         u32 coef;
39 };
40
41 struct gf100_clk {
42         struct nvkm_clk base;
43         struct gf100_clk_info eng[16];
44 };
45
46 static u32 read_div(struct gf100_clk *, int, u32, u32);
47
48 static u32
49 read_vco(struct gf100_clk *clk, u32 dsrc)
50 {
51         struct nvkm_device *device = clk->base.subdev.device;
52         u32 ssrc = nvkm_rd32(device, dsrc);
53         if (!(ssrc & 0x00000100))
54                 return nvkm_clk_read(&clk->base, nv_clk_src_sppll0);
55         return nvkm_clk_read(&clk->base, nv_clk_src_sppll1);
56 }
57
58 static u32
59 read_pll(struct gf100_clk *clk, u32 pll)
60 {
61         struct nvkm_device *device = clk->base.subdev.device;
62         u32 ctrl = nvkm_rd32(device, pll + 0x00);
63         u32 coef = nvkm_rd32(device, pll + 0x04);
64         u32 P = (coef & 0x003f0000) >> 16;
65         u32 N = (coef & 0x0000ff00) >> 8;
66         u32 M = (coef & 0x000000ff) >> 0;
67         u32 sclk;
68
69         if (!(ctrl & 0x00000001))
70                 return 0;
71
72         switch (pll) {
73         case 0x00e800:
74         case 0x00e820:
75                 sclk = device->crystal;
76                 P = 1;
77                 break;
78         case 0x132000:
79                 sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrc);
80                 break;
81         case 0x132020:
82                 sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrcref);
83                 break;
84         case 0x137000:
85         case 0x137020:
86         case 0x137040:
87         case 0x1370e0:
88                 sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
89                 break;
90         default:
91                 return 0;
92         }
93
94         return sclk * N / M / P;
95 }
96
97 static u32
98 read_div(struct gf100_clk *clk, int doff, u32 dsrc, u32 dctl)
99 {
100         struct nvkm_device *device = clk->base.subdev.device;
101         u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4));
102         u32 sctl = nvkm_rd32(device, dctl + (doff * 4));
103
104         switch (ssrc & 0x00000003) {
105         case 0:
106                 if ((ssrc & 0x00030000) != 0x00030000)
107                         return device->crystal;
108                 return 108000;
109         case 2:
110                 return 100000;
111         case 3:
112                 if (sctl & 0x80000000) {
113                         u32 sclk = read_vco(clk, dsrc + (doff * 4));
114                         u32 sdiv = (sctl & 0x0000003f) + 2;
115                         return (sclk * 2) / sdiv;
116                 }
117
118                 return read_vco(clk, dsrc + (doff * 4));
119         default:
120                 return 0;
121         }
122 }
123
124 static u32
125 read_clk(struct gf100_clk *clk, int idx)
126 {
127         struct nvkm_device *device = clk->base.subdev.device;
128         u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4));
129         u32 ssel = nvkm_rd32(device, 0x137100);
130         u32 sclk, sdiv;
131
132         if (ssel & (1 << idx)) {
133                 if (idx < 7)
134                         sclk = read_pll(clk, 0x137000 + (idx * 0x20));
135                 else
136                         sclk = read_pll(clk, 0x1370e0);
137                 sdiv = ((sctl & 0x00003f00) >> 8) + 2;
138         } else {
139                 sclk = read_div(clk, idx, 0x137160, 0x1371d0);
140                 sdiv = ((sctl & 0x0000003f) >> 0) + 2;
141         }
142
143         if (sctl & 0x80000000)
144                 return (sclk * 2) / sdiv;
145
146         return sclk;
147 }
148
149 static int
150 gf100_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
151 {
152         struct gf100_clk *clk = gf100_clk(base);
153         struct nvkm_subdev *subdev = &clk->base.subdev;
154         struct nvkm_device *device = subdev->device;
155
156         switch (src) {
157         case nv_clk_src_crystal:
158                 return device->crystal;
159         case nv_clk_src_href:
160                 return 100000;
161         case nv_clk_src_sppll0:
162                 return read_pll(clk, 0x00e800);
163         case nv_clk_src_sppll1:
164                 return read_pll(clk, 0x00e820);
165
166         case nv_clk_src_mpllsrcref:
167                 return read_div(clk, 0, 0x137320, 0x137330);
168         case nv_clk_src_mpllsrc:
169                 return read_pll(clk, 0x132020);
170         case nv_clk_src_mpll:
171                 return read_pll(clk, 0x132000);
172         case nv_clk_src_mdiv:
173                 return read_div(clk, 0, 0x137300, 0x137310);
174         case nv_clk_src_mem:
175                 if (nvkm_rd32(device, 0x1373f0) & 0x00000002)
176                         return nvkm_clk_read(&clk->base, nv_clk_src_mpll);
177                 return nvkm_clk_read(&clk->base, nv_clk_src_mdiv);
178
179         case nv_clk_src_gpc:
180                 return read_clk(clk, 0x00);
181         case nv_clk_src_rop:
182                 return read_clk(clk, 0x01);
183         case nv_clk_src_hubk07:
184                 return read_clk(clk, 0x02);
185         case nv_clk_src_hubk06:
186                 return read_clk(clk, 0x07);
187         case nv_clk_src_hubk01:
188                 return read_clk(clk, 0x08);
189         case nv_clk_src_copy:
190                 return read_clk(clk, 0x09);
191         case nv_clk_src_daemon:
192                 return read_clk(clk, 0x0c);
193         case nv_clk_src_vdec:
194                 return read_clk(clk, 0x0e);
195         default:
196                 nvkm_error(subdev, "invalid clock source %d\n", src);
197                 return -EINVAL;
198         }
199 }
200
201 static u32
202 calc_div(struct gf100_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
203 {
204         u32 div = min((ref * 2) / freq, (u32)65);
205         if (div < 2)
206                 div = 2;
207
208         *ddiv = div - 2;
209         return (ref * 2) / div;
210 }
211
212 static u32
213 calc_src(struct gf100_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
214 {
215         u32 sclk;
216
217         /* use one of the fixed frequencies if possible */
218         *ddiv = 0x00000000;
219         switch (freq) {
220         case  27000:
221         case 108000:
222                 *dsrc = 0x00000000;
223                 if (freq == 108000)
224                         *dsrc |= 0x00030000;
225                 return freq;
226         case 100000:
227                 *dsrc = 0x00000002;
228                 return freq;
229         default:
230                 *dsrc = 0x00000003;
231                 break;
232         }
233
234         /* otherwise, calculate the closest divider */
235         sclk = read_vco(clk, 0x137160 + (idx * 4));
236         if (idx < 7)
237                 sclk = calc_div(clk, idx, sclk, freq, ddiv);
238         return sclk;
239 }
240
241 static u32
242 calc_pll(struct gf100_clk *clk, int idx, u32 freq, u32 *coef)
243 {
244         struct nvkm_subdev *subdev = &clk->base.subdev;
245         struct nvkm_bios *bios = subdev->device->bios;
246         struct nvbios_pll limits;
247         int N, M, P, ret;
248
249         ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
250         if (ret)
251                 return 0;
252
253         limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
254         if (!limits.refclk)
255                 return 0;
256
257         ret = gt215_pll_calc(subdev, &limits, freq, &N, NULL, &M, &P);
258         if (ret <= 0)
259                 return 0;
260
261         *coef = (P << 16) | (N << 8) | M;
262         return ret;
263 }
264
265 static int
266 calc_clk(struct gf100_clk *clk, struct nvkm_cstate *cstate, int idx, int dom)
267 {
268         struct gf100_clk_info *info = &clk->eng[idx];
269         u32 freq = cstate->domain[dom];
270         u32 src0, div0, div1D, div1P = 0;
271         u32 clk0, clk1 = 0;
272
273         /* invalid clock domain */
274         if (!freq)
275                 return 0;
276
277         /* first possible path, using only dividers */
278         clk0 = calc_src(clk, idx, freq, &src0, &div0);
279         clk0 = calc_div(clk, idx, clk0, freq, &div1D);
280
281         /* see if we can get any closer using PLLs */
282         if (clk0 != freq && (0x00004387 & (1 << idx))) {
283                 if (idx <= 7)
284                         clk1 = calc_pll(clk, idx, freq, &info->coef);
285                 else
286                         clk1 = cstate->domain[nv_clk_src_hubk06];
287                 clk1 = calc_div(clk, idx, clk1, freq, &div1P);
288         }
289
290         /* select the method which gets closest to target freq */
291         if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
292                 info->dsrc = src0;
293                 if (div0) {
294                         info->ddiv |= 0x80000000;
295                         info->ddiv |= div0 << 8;
296                         info->ddiv |= div0;
297                 }
298                 if (div1D) {
299                         info->mdiv |= 0x80000000;
300                         info->mdiv |= div1D;
301                 }
302                 info->ssel = info->coef = 0;
303                 info->freq = clk0;
304         } else {
305                 if (div1P) {
306                         info->mdiv |= 0x80000000;
307                         info->mdiv |= div1P << 8;
308                 }
309                 info->ssel = (1 << idx);
310                 info->freq = clk1;
311         }
312
313         return 0;
314 }
315
316 static int
317 gf100_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
318 {
319         struct gf100_clk *clk = gf100_clk(base);
320         int ret;
321
322         if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
323             (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
324             (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
325             (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
326             (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
327             (ret = calc_clk(clk, cstate, 0x09, nv_clk_src_copy)) ||
328             (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_daemon)) ||
329             (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
330                 return ret;
331
332         return 0;
333 }
334
335 static void
336 gf100_clk_prog_0(struct gf100_clk *clk, int idx)
337 {
338         struct gf100_clk_info *info = &clk->eng[idx];
339         struct nvkm_device *device = clk->base.subdev.device;
340         if (idx < 7 && !info->ssel) {
341                 nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x80003f3f, info->ddiv);
342                 nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc);
343         }
344 }
345
346 static void
347 gf100_clk_prog_1(struct gf100_clk *clk, int idx)
348 {
349         struct nvkm_device *device = clk->base.subdev.device;
350         nvkm_mask(device, 0x137100, (1 << idx), 0x00000000);
351         nvkm_msec(device, 2000,
352                 if (!(nvkm_rd32(device, 0x137100) & (1 << idx)))
353                         break;
354         );
355 }
356
357 static void
358 gf100_clk_prog_2(struct gf100_clk *clk, int idx)
359 {
360         struct gf100_clk_info *info = &clk->eng[idx];
361         struct nvkm_device *device = clk->base.subdev.device;
362         const u32 addr = 0x137000 + (idx * 0x20);
363         if (idx <= 7) {
364                 nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000);
365                 nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000);
366                 if (info->coef) {
367                         nvkm_wr32(device, addr + 0x04, info->coef);
368                         nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001);
369                         nvkm_msec(device, 2000,
370                                 if (nvkm_rd32(device, addr + 0x00) & 0x00020000)
371                                         break;
372                         );
373                         nvkm_mask(device, addr + 0x00, 0x00020004, 0x00000004);
374                 }
375         }
376 }
377
378 static void
379 gf100_clk_prog_3(struct gf100_clk *clk, int idx)
380 {
381         struct gf100_clk_info *info = &clk->eng[idx];
382         struct nvkm_device *device = clk->base.subdev.device;
383         if (info->ssel) {
384                 nvkm_mask(device, 0x137100, (1 << idx), info->ssel);
385                 nvkm_msec(device, 2000,
386                         u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx);
387                         if (tmp == info->ssel)
388                                 break;
389                 );
390         }
391 }
392
393 static void
394 gf100_clk_prog_4(struct gf100_clk *clk, int idx)
395 {
396         struct gf100_clk_info *info = &clk->eng[idx];
397         struct nvkm_device *device = clk->base.subdev.device;
398         nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f3f, info->mdiv);
399 }
400
401 static int
402 gf100_clk_prog(struct nvkm_clk *base)
403 {
404         struct gf100_clk *clk = gf100_clk(base);
405         struct {
406                 void (*exec)(struct gf100_clk *, int);
407         } stage[] = {
408                 { gf100_clk_prog_0 }, /* div programming */
409                 { gf100_clk_prog_1 }, /* select div mode */
410                 { gf100_clk_prog_2 }, /* (maybe) program pll */
411                 { gf100_clk_prog_3 }, /* (maybe) select pll mode */
412                 { gf100_clk_prog_4 }, /* final divider */
413         };
414         int i, j;
415
416         for (i = 0; i < ARRAY_SIZE(stage); i++) {
417                 for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
418                         if (!clk->eng[j].freq)
419                                 continue;
420                         stage[i].exec(clk, j);
421                 }
422         }
423
424         return 0;
425 }
426
427 static void
428 gf100_clk_tidy(struct nvkm_clk *base)
429 {
430         struct gf100_clk *clk = gf100_clk(base);
431         memset(clk->eng, 0x00, sizeof(clk->eng));
432 }
433
434 static const struct nvkm_clk_func
435 gf100_clk = {
436         .read = gf100_clk_read,
437         .calc = gf100_clk_calc,
438         .prog = gf100_clk_prog,
439         .tidy = gf100_clk_tidy,
440         .domains = {
441                 { nv_clk_src_crystal, 0xff },
442                 { nv_clk_src_href   , 0xff },
443                 { nv_clk_src_hubk06 , 0x00 },
444                 { nv_clk_src_hubk01 , 0x01 },
445                 { nv_clk_src_copy   , 0x02 },
446                 { nv_clk_src_gpc    , 0x03, 0, "core", 2000 },
447                 { nv_clk_src_rop    , 0x04 },
448                 { nv_clk_src_mem    , 0x05, 0, "memory", 1000 },
449                 { nv_clk_src_vdec   , 0x06 },
450                 { nv_clk_src_daemon , 0x0a },
451                 { nv_clk_src_hubk07 , 0x0b },
452                 { nv_clk_src_max }
453         }
454 };
455
456 int
457 gf100_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
458 {
459         struct gf100_clk *clk;
460
461         if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
462                 return -ENOMEM;
463         *pclk = &clk->base;
464
465         return nvkm_clk_ctor(&gf100_clk, device, index, false, &clk->base);
466 }