Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / gpu / drm / nouveau / nouveau_chan.c
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24
25 #include <nvif/os.h>
26 #include <nvif/class.h>
27
28 /*XXX*/
29 #include <core/client.h>
30
31 #include "nouveau_drm.h"
32 #include "nouveau_dma.h"
33 #include "nouveau_bo.h"
34 #include "nouveau_chan.h"
35 #include "nouveau_fence.h"
36 #include "nouveau_abi16.h"
37
38 MODULE_PARM_DESC(vram_pushbuf, "Create DMA push buffers in VRAM");
39 int nouveau_vram_pushbuf;
40 module_param_named(vram_pushbuf, nouveau_vram_pushbuf, int, 0400);
41
42 int
43 nouveau_channel_idle(struct nouveau_channel *chan)
44 {
45         struct nouveau_cli *cli = (void *)nvif_client(chan->object);
46         struct nouveau_fence *fence = NULL;
47         int ret;
48
49         ret = nouveau_fence_new(chan, false, &fence);
50         if (!ret) {
51                 ret = nouveau_fence_wait(fence, false, false);
52                 nouveau_fence_unref(&fence);
53         }
54
55         if (ret)
56                 NV_PRINTK(error, cli, "failed to idle channel 0x%08x [%s]\n",
57                           chan->object->handle, nvxx_client(&cli->base)->name);
58         return ret;
59 }
60
61 void
62 nouveau_channel_del(struct nouveau_channel **pchan)
63 {
64         struct nouveau_channel *chan = *pchan;
65         if (chan) {
66                 if (chan->fence) {
67                         nouveau_channel_idle(chan);
68                         nouveau_fence(chan->drm)->context_del(chan);
69                 }
70                 nvif_object_fini(&chan->nvsw);
71                 nvif_object_fini(&chan->gart);
72                 nvif_object_fini(&chan->vram);
73                 nvif_object_ref(NULL, &chan->object);
74                 nvif_object_fini(&chan->push.ctxdma);
75                 nouveau_bo_vma_del(chan->push.buffer, &chan->push.vma);
76                 nouveau_bo_unmap(chan->push.buffer);
77                 if (chan->push.buffer && chan->push.buffer->pin_refcnt)
78                         nouveau_bo_unpin(chan->push.buffer);
79                 nouveau_bo_ref(NULL, &chan->push.buffer);
80                 nvif_device_ref(NULL, &chan->device);
81                 kfree(chan);
82         }
83         *pchan = NULL;
84 }
85
86 static int
87 nouveau_channel_prep(struct nouveau_drm *drm, struct nvif_device *device,
88                      u32 handle, u32 size, struct nouveau_channel **pchan)
89 {
90         struct nouveau_cli *cli = (void *)nvif_client(&device->base);
91         struct nvkm_mmu *mmu = nvxx_mmu(device);
92         struct nv_dma_v0 args = {};
93         struct nouveau_channel *chan;
94         u32 target;
95         int ret;
96
97         chan = *pchan = kzalloc(sizeof(*chan), GFP_KERNEL);
98         if (!chan)
99                 return -ENOMEM;
100
101         nvif_device_ref(device, &chan->device);
102         chan->drm = drm;
103
104         /* allocate memory for dma push buffer */
105         target = TTM_PL_FLAG_TT | TTM_PL_FLAG_UNCACHED;
106         if (nouveau_vram_pushbuf)
107                 target = TTM_PL_FLAG_VRAM;
108
109         ret = nouveau_bo_new(drm->dev, size, 0, target, 0, 0, NULL, NULL,
110                             &chan->push.buffer);
111         if (ret == 0) {
112                 ret = nouveau_bo_pin(chan->push.buffer, target, false);
113                 if (ret == 0)
114                         ret = nouveau_bo_map(chan->push.buffer);
115         }
116
117         if (ret) {
118                 nouveau_channel_del(pchan);
119                 return ret;
120         }
121
122         /* create dma object covering the *entire* memory space that the
123          * pushbuf lives in, this is because the GEM code requires that
124          * we be able to call out to other (indirect) push buffers
125          */
126         chan->push.vma.offset = chan->push.buffer->bo.offset;
127
128         if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
129                 ret = nouveau_bo_vma_add(chan->push.buffer, cli->vm,
130                                         &chan->push.vma);
131                 if (ret) {
132                         nouveau_channel_del(pchan);
133                         return ret;
134                 }
135
136                 args.target = NV_DMA_V0_TARGET_VM;
137                 args.access = NV_DMA_V0_ACCESS_VM;
138                 args.start = 0;
139                 args.limit = cli->vm->mmu->limit - 1;
140         } else
141         if (chan->push.buffer->bo.mem.mem_type == TTM_PL_VRAM) {
142                 if (device->info.family == NV_DEVICE_INFO_V0_TNT) {
143                         /* nv04 vram pushbuf hack, retarget to its location in
144                          * the framebuffer bar rather than direct vram access..
145                          * nfi why this exists, it came from the -nv ddx.
146                          */
147                         args.target = NV_DMA_V0_TARGET_PCI;
148                         args.access = NV_DMA_V0_ACCESS_RDWR;
149                         args.start = nv_device_resource_start(nvxx_device(device), 1);
150                         args.limit = args.start + device->info.ram_user - 1;
151                 } else {
152                         args.target = NV_DMA_V0_TARGET_VRAM;
153                         args.access = NV_DMA_V0_ACCESS_RDWR;
154                         args.start = 0;
155                         args.limit = device->info.ram_user - 1;
156                 }
157         } else {
158                 if (chan->drm->agp.stat == ENABLED) {
159                         args.target = NV_DMA_V0_TARGET_AGP;
160                         args.access = NV_DMA_V0_ACCESS_RDWR;
161                         args.start = chan->drm->agp.base;
162                         args.limit = chan->drm->agp.base +
163                                      chan->drm->agp.size - 1;
164                 } else {
165                         args.target = NV_DMA_V0_TARGET_VM;
166                         args.access = NV_DMA_V0_ACCESS_RDWR;
167                         args.start = 0;
168                         args.limit = mmu->limit - 1;
169                 }
170         }
171
172         ret = nvif_object_init(nvif_object(device), NULL, NVDRM_PUSH |
173                                (handle & 0xffff), NV_DMA_FROM_MEMORY,
174                                &args, sizeof(args), &chan->push.ctxdma);
175         if (ret) {
176                 nouveau_channel_del(pchan);
177                 return ret;
178         }
179
180         return 0;
181 }
182
183 static int
184 nouveau_channel_ind(struct nouveau_drm *drm, struct nvif_device *device,
185                     u32 handle, u32 engine, struct nouveau_channel **pchan)
186 {
187         static const u16 oclasses[] = { MAXWELL_CHANNEL_GPFIFO_A,
188                                         KEPLER_CHANNEL_GPFIFO_A,
189                                         FERMI_CHANNEL_GPFIFO,
190                                         G82_CHANNEL_GPFIFO,
191                                         NV50_CHANNEL_GPFIFO,
192                                         0 };
193         const u16 *oclass = oclasses;
194         union {
195                 struct nv50_channel_gpfifo_v0 nv50;
196                 struct kepler_channel_gpfifo_a_v0 kepler;
197         } args, *retn;
198         struct nouveau_channel *chan;
199         u32 size;
200         int ret;
201
202         /* allocate dma push buffer */
203         ret = nouveau_channel_prep(drm, device, handle, 0x12000, &chan);
204         *pchan = chan;
205         if (ret)
206                 return ret;
207
208         /* create channel object */
209         do {
210                 if (oclass[0] >= KEPLER_CHANNEL_GPFIFO_A) {
211                         args.kepler.version = 0;
212                         args.kepler.engine  = engine;
213                         args.kepler.pushbuf = chan->push.ctxdma.handle;
214                         args.kepler.ilength = 0x02000;
215                         args.kepler.ioffset = 0x10000 + chan->push.vma.offset;
216                         size = sizeof(args.kepler);
217                 } else {
218                         args.nv50.version = 0;
219                         args.nv50.pushbuf = chan->push.ctxdma.handle;
220                         args.nv50.ilength = 0x02000;
221                         args.nv50.ioffset = 0x10000 + chan->push.vma.offset;
222                         size = sizeof(args.nv50);
223                 }
224
225                 ret = nvif_object_new(nvif_object(device), handle, *oclass++,
226                                       &args, size, &chan->object);
227                 if (ret == 0) {
228                         retn = chan->object->data;
229                         if (chan->object->oclass >= KEPLER_CHANNEL_GPFIFO_A)
230                                 chan->chid = retn->kepler.chid;
231                         else
232                                 chan->chid = retn->nv50.chid;
233                         return ret;
234                 }
235         } while (*oclass);
236
237         nouveau_channel_del(pchan);
238         return ret;
239 }
240
241 static int
242 nouveau_channel_dma(struct nouveau_drm *drm, struct nvif_device *device,
243                     u32 handle, struct nouveau_channel **pchan)
244 {
245         static const u16 oclasses[] = { NV40_CHANNEL_DMA,
246                                         NV17_CHANNEL_DMA,
247                                         NV10_CHANNEL_DMA,
248                                         NV03_CHANNEL_DMA,
249                                         0 };
250         const u16 *oclass = oclasses;
251         struct nv03_channel_dma_v0 args, *retn;
252         struct nouveau_channel *chan;
253         int ret;
254
255         /* allocate dma push buffer */
256         ret = nouveau_channel_prep(drm, device, handle, 0x10000, &chan);
257         *pchan = chan;
258         if (ret)
259                 return ret;
260
261         /* create channel object */
262         args.version = 0;
263         args.pushbuf = chan->push.ctxdma.handle;
264         args.offset = chan->push.vma.offset;
265
266         do {
267                 ret = nvif_object_new(nvif_object(device), handle, *oclass++,
268                                       &args, sizeof(args), &chan->object);
269                 if (ret == 0) {
270                         retn = chan->object->data;
271                         chan->chid = retn->chid;
272                         return ret;
273                 }
274         } while (ret && *oclass);
275
276         nouveau_channel_del(pchan);
277         return ret;
278 }
279
280 static int
281 nouveau_channel_init(struct nouveau_channel *chan, u32 vram, u32 gart)
282 {
283         struct nvif_device *device = chan->device;
284         struct nouveau_cli *cli = (void *)nvif_client(&device->base);
285         struct nvkm_mmu *mmu = nvxx_mmu(device);
286         struct nvkm_sw_chan *swch;
287         struct nv_dma_v0 args = {};
288         int ret, i;
289
290         nvif_object_map(chan->object);
291
292         /* allocate dma objects to cover all allowed vram, and gart */
293         if (device->info.family < NV_DEVICE_INFO_V0_FERMI) {
294                 if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
295                         args.target = NV_DMA_V0_TARGET_VM;
296                         args.access = NV_DMA_V0_ACCESS_VM;
297                         args.start = 0;
298                         args.limit = cli->vm->mmu->limit - 1;
299                 } else {
300                         args.target = NV_DMA_V0_TARGET_VRAM;
301                         args.access = NV_DMA_V0_ACCESS_RDWR;
302                         args.start = 0;
303                         args.limit = device->info.ram_user - 1;
304                 }
305
306                 ret = nvif_object_init(chan->object, NULL, vram,
307                                        NV_DMA_IN_MEMORY, &args,
308                                        sizeof(args), &chan->vram);
309                 if (ret)
310                         return ret;
311
312                 if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
313                         args.target = NV_DMA_V0_TARGET_VM;
314                         args.access = NV_DMA_V0_ACCESS_VM;
315                         args.start = 0;
316                         args.limit = cli->vm->mmu->limit - 1;
317                 } else
318                 if (chan->drm->agp.stat == ENABLED) {
319                         args.target = NV_DMA_V0_TARGET_AGP;
320                         args.access = NV_DMA_V0_ACCESS_RDWR;
321                         args.start = chan->drm->agp.base;
322                         args.limit = chan->drm->agp.base +
323                                      chan->drm->agp.size - 1;
324                 } else {
325                         args.target = NV_DMA_V0_TARGET_VM;
326                         args.access = NV_DMA_V0_ACCESS_RDWR;
327                         args.start = 0;
328                         args.limit = mmu->limit - 1;
329                 }
330
331                 ret = nvif_object_init(chan->object, NULL, gart,
332                                        NV_DMA_IN_MEMORY, &args,
333                                        sizeof(args), &chan->gart);
334                 if (ret)
335                         return ret;
336         }
337
338         /* initialise dma tracking parameters */
339         switch (chan->object->oclass & 0x00ff) {
340         case 0x006b:
341         case 0x006e:
342                 chan->user_put = 0x40;
343                 chan->user_get = 0x44;
344                 chan->dma.max = (0x10000 / 4) - 2;
345                 break;
346         default:
347                 chan->user_put = 0x40;
348                 chan->user_get = 0x44;
349                 chan->user_get_hi = 0x60;
350                 chan->dma.ib_base =  0x10000 / 4;
351                 chan->dma.ib_max  = (0x02000 / 8) - 1;
352                 chan->dma.ib_put  = 0;
353                 chan->dma.ib_free = chan->dma.ib_max - chan->dma.ib_put;
354                 chan->dma.max = chan->dma.ib_base;
355                 break;
356         }
357
358         chan->dma.put = 0;
359         chan->dma.cur = chan->dma.put;
360         chan->dma.free = chan->dma.max - chan->dma.cur;
361
362         ret = RING_SPACE(chan, NOUVEAU_DMA_SKIPS);
363         if (ret)
364                 return ret;
365
366         for (i = 0; i < NOUVEAU_DMA_SKIPS; i++)
367                 OUT_RING(chan, 0x00000000);
368
369         /* allocate software object class (used for fences on <= nv05) */
370         if (device->info.family < NV_DEVICE_INFO_V0_CELSIUS) {
371                 ret = nvif_object_init(chan->object, NULL, 0x006e, 0x006e,
372                                        NULL, 0, &chan->nvsw);
373                 if (ret)
374                         return ret;
375
376                 swch = (void *)nvxx_object(&chan->nvsw)->parent;
377                 swch->flip = nouveau_flip_complete;
378                 swch->flip_data = chan;
379
380                 ret = RING_SPACE(chan, 2);
381                 if (ret)
382                         return ret;
383
384                 BEGIN_NV04(chan, NvSubSw, 0x0000, 1);
385                 OUT_RING  (chan, chan->nvsw.handle);
386                 FIRE_RING (chan);
387         }
388
389         /* initialise synchronisation */
390         return nouveau_fence(chan->drm)->context_new(chan);
391 }
392
393 int
394 nouveau_channel_new(struct nouveau_drm *drm, struct nvif_device *device,
395                     u32 handle, u32 arg0, u32 arg1,
396                     struct nouveau_channel **pchan)
397 {
398         struct nouveau_cli *cli = (void *)nvif_client(&device->base);
399         bool super;
400         int ret;
401
402         /* hack until fencenv50 is fixed, and agp access relaxed */
403         super = cli->base.super;
404         cli->base.super = true;
405
406         ret = nouveau_channel_ind(drm, device, handle, arg0, pchan);
407         if (ret) {
408                 NV_PRINTK(debug, cli, "ib channel create, %d\n", ret);
409                 ret = nouveau_channel_dma(drm, device, handle, pchan);
410                 if (ret) {
411                         NV_PRINTK(debug, cli, "dma channel create, %d\n", ret);
412                         goto done;
413                 }
414         }
415
416         ret = nouveau_channel_init(*pchan, arg0, arg1);
417         if (ret) {
418                 NV_PRINTK(error, cli, "channel failed to initialise, %d\n", ret);
419                 nouveau_channel_del(pchan);
420         }
421
422 done:
423         cli->base.super = super;
424         return ret;
425 }