Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / gpu / drm / msm / dsi / dsi_phy.c
1 /*
2  * Copyright (c) 2015, The Linux Foundation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 and
6  * only version 2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13
14 #include "dsi.h"
15 #include "dsi.xml.h"
16
17 #define dsi_phy_read(offset) msm_readl((offset))
18 #define dsi_phy_write(offset, data) msm_writel((data), (offset))
19
20 struct dsi_dphy_timing {
21         u32 clk_pre;
22         u32 clk_post;
23         u32 clk_zero;
24         u32 clk_trail;
25         u32 clk_prepare;
26         u32 hs_exit;
27         u32 hs_zero;
28         u32 hs_prepare;
29         u32 hs_trail;
30         u32 hs_rqst;
31         u32 ta_go;
32         u32 ta_sure;
33         u32 ta_get;
34 };
35
36 struct msm_dsi_phy {
37         void __iomem *base;
38         void __iomem *reg_base;
39         int id;
40         struct dsi_dphy_timing timing;
41         int (*enable)(struct msm_dsi_phy *phy, bool is_dual_panel,
42                 const unsigned long bit_rate, const unsigned long esc_rate);
43         int (*disable)(struct msm_dsi_phy *phy);
44 };
45
46 #define S_DIV_ROUND_UP(n, d)    \
47         (((n) >= 0) ? (((n) + (d) - 1) / (d)) : (((n) - (d) + 1) / (d)))
48
49 static inline s32 linear_inter(s32 tmax, s32 tmin, s32 percent,
50                                 s32 min_result, bool even)
51 {
52         s32 v;
53         v = (tmax - tmin) * percent;
54         v = S_DIV_ROUND_UP(v, 100) + tmin;
55         if (even && (v & 0x1))
56                 return max_t(s32, min_result, v - 1);
57         else
58                 return max_t(s32, min_result, v);
59 }
60
61 static void dsi_dphy_timing_calc_clk_zero(struct dsi_dphy_timing *timing,
62                                         s32 ui, s32 coeff, s32 pcnt)
63 {
64         s32 tmax, tmin, clk_z;
65         s32 temp;
66
67         /* reset */
68         temp = 300 * coeff - ((timing->clk_prepare >> 1) + 1) * 2 * ui;
69         tmin = S_DIV_ROUND_UP(temp, ui) - 2;
70         if (tmin > 255) {
71                 tmax = 511;
72                 clk_z = linear_inter(2 * tmin, tmin, pcnt, 0, true);
73         } else {
74                 tmax = 255;
75                 clk_z = linear_inter(tmax, tmin, pcnt, 0, true);
76         }
77
78         /* adjust */
79         temp = (timing->hs_rqst + timing->clk_prepare + clk_z) & 0x7;
80         timing->clk_zero = clk_z + 8 - temp;
81 }
82
83 static int dsi_dphy_timing_calc(struct dsi_dphy_timing *timing,
84         const unsigned long bit_rate, const unsigned long esc_rate)
85 {
86         s32 ui, lpx;
87         s32 tmax, tmin;
88         s32 pcnt0 = 10;
89         s32 pcnt1 = (bit_rate > 1200000000) ? 15 : 10;
90         s32 pcnt2 = 10;
91         s32 pcnt3 = (bit_rate > 180000000) ? 10 : 40;
92         s32 coeff = 1000; /* Precision, should avoid overflow */
93         s32 temp;
94
95         if (!bit_rate || !esc_rate)
96                 return -EINVAL;
97
98         ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000);
99         lpx = mult_frac(NSEC_PER_MSEC, coeff, esc_rate / 1000);
100
101         tmax = S_DIV_ROUND_UP(95 * coeff, ui) - 2;
102         tmin = S_DIV_ROUND_UP(38 * coeff, ui) - 2;
103         timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, true);
104
105         temp = lpx / ui;
106         if (temp & 0x1)
107                 timing->hs_rqst = temp;
108         else
109                 timing->hs_rqst = max_t(s32, 0, temp - 2);
110
111         /* Calculate clk_zero after clk_prepare and hs_rqst */
112         dsi_dphy_timing_calc_clk_zero(timing, ui, coeff, pcnt2);
113
114         temp = 105 * coeff + 12 * ui - 20 * coeff;
115         tmax = S_DIV_ROUND_UP(temp, ui) - 2;
116         tmin = S_DIV_ROUND_UP(60 * coeff, ui) - 2;
117         timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, true);
118
119         temp = 85 * coeff + 6 * ui;
120         tmax = S_DIV_ROUND_UP(temp, ui) - 2;
121         temp = 40 * coeff + 4 * ui;
122         tmin = S_DIV_ROUND_UP(temp, ui) - 2;
123         timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, true);
124
125         tmax = 255;
126         temp = ((timing->hs_prepare >> 1) + 1) * 2 * ui + 2 * ui;
127         temp = 145 * coeff + 10 * ui - temp;
128         tmin = S_DIV_ROUND_UP(temp, ui) - 2;
129         timing->hs_zero = linear_inter(tmax, tmin, pcnt2, 24, true);
130
131         temp = 105 * coeff + 12 * ui - 20 * coeff;
132         tmax = S_DIV_ROUND_UP(temp, ui) - 2;
133         temp = 60 * coeff + 4 * ui;
134         tmin = DIV_ROUND_UP(temp, ui) - 2;
135         timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, true);
136
137         tmax = 255;
138         tmin = S_DIV_ROUND_UP(100 * coeff, ui) - 2;
139         timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, true);
140
141         tmax = 63;
142         temp = ((timing->hs_exit >> 1) + 1) * 2 * ui;
143         temp = 60 * coeff + 52 * ui - 24 * ui - temp;
144         tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1;
145         timing->clk_post = linear_inter(tmax, tmin, pcnt2, 0, false);
146
147         tmax = 63;
148         temp = ((timing->clk_prepare >> 1) + 1) * 2 * ui;
149         temp += ((timing->clk_zero >> 1) + 1) * 2 * ui;
150         temp += 8 * ui + lpx;
151         tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1;
152         if (tmin > tmax) {
153                 temp = linear_inter(2 * tmax, tmin, pcnt2, 0, false) >> 1;
154                 timing->clk_pre = temp >> 1;
155                 temp = (2 * tmax - tmin) * pcnt2;
156         } else {
157                 timing->clk_pre = linear_inter(tmax, tmin, pcnt2, 0, false);
158         }
159
160         timing->ta_go = 3;
161         timing->ta_sure = 0;
162         timing->ta_get = 4;
163
164         DBG("PHY timings: %d, %d, %d, %d, %d, %d, %d, %d, %d, %d",
165                 timing->clk_pre, timing->clk_post, timing->clk_zero,
166                 timing->clk_trail, timing->clk_prepare, timing->hs_exit,
167                 timing->hs_zero, timing->hs_prepare, timing->hs_trail,
168                 timing->hs_rqst);
169
170         return 0;
171 }
172
173 static void dsi_28nm_phy_regulator_ctrl(struct msm_dsi_phy *phy, bool enable)
174 {
175         void __iomem *base = phy->reg_base;
176
177         if (!enable) {
178                 dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CAL_PWR_CFG, 0);
179                 return;
180         }
181
182         dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_0, 0x0);
183         dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CAL_PWR_CFG, 1);
184         dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_5, 0);
185         dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_3, 0);
186         dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_2, 0x3);
187         dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_1, 0x9);
188         dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_0, 0x7);
189         dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_4, 0x20);
190 }
191
192 static int dsi_28nm_phy_enable(struct msm_dsi_phy *phy, bool is_dual_panel,
193                 const unsigned long bit_rate, const unsigned long esc_rate)
194 {
195         struct dsi_dphy_timing *timing = &phy->timing;
196         int i;
197         void __iomem *base = phy->base;
198
199         DBG("");
200
201         if (dsi_dphy_timing_calc(timing, bit_rate, esc_rate)) {
202                 pr_err("%s: D-PHY timing calculation failed\n", __func__);
203                 return -EINVAL;
204         }
205
206         dsi_phy_write(base + REG_DSI_28nm_PHY_STRENGTH_0, 0xff);
207
208         dsi_28nm_phy_regulator_ctrl(phy, true);
209
210         dsi_phy_write(base + REG_DSI_28nm_PHY_LDO_CNTRL, 0x00);
211
212         dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_0,
213                 DSI_28nm_PHY_TIMING_CTRL_0_CLK_ZERO(timing->clk_zero));
214         dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_1,
215                 DSI_28nm_PHY_TIMING_CTRL_1_CLK_TRAIL(timing->clk_trail));
216         dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_2,
217                 DSI_28nm_PHY_TIMING_CTRL_2_CLK_PREPARE(timing->clk_prepare));
218         if (timing->clk_zero & BIT(8))
219                 dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_3,
220                         DSI_28nm_PHY_TIMING_CTRL_3_CLK_ZERO_8);
221         dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_4,
222                 DSI_28nm_PHY_TIMING_CTRL_4_HS_EXIT(timing->hs_exit));
223         dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_5,
224                 DSI_28nm_PHY_TIMING_CTRL_5_HS_ZERO(timing->hs_zero));
225         dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_6,
226                 DSI_28nm_PHY_TIMING_CTRL_6_HS_PREPARE(timing->hs_prepare));
227         dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_7,
228                 DSI_28nm_PHY_TIMING_CTRL_7_HS_TRAIL(timing->hs_trail));
229         dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_8,
230                 DSI_28nm_PHY_TIMING_CTRL_8_HS_RQST(timing->hs_rqst));
231         dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_9,
232                 DSI_28nm_PHY_TIMING_CTRL_9_TA_GO(timing->ta_go) |
233                 DSI_28nm_PHY_TIMING_CTRL_9_TA_SURE(timing->ta_sure));
234         dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_10,
235                 DSI_28nm_PHY_TIMING_CTRL_10_TA_GET(timing->ta_get));
236         dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_11,
237                 DSI_28nm_PHY_TIMING_CTRL_11_TRIG3_CMD(0));
238
239         dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_1, 0x00);
240         dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_0, 0x5f);
241
242         dsi_phy_write(base + REG_DSI_28nm_PHY_STRENGTH_1, 0x6);
243
244         for (i = 0; i < 4; i++) {
245                 dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_0(i), 0);
246                 dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_1(i), 0);
247                 dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_2(i), 0);
248                 dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_3(i), 0);
249                 dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_DATAPATH(i), 0);
250                 dsi_phy_write(base + REG_DSI_28nm_PHY_LN_DEBUG_SEL(i), 0);
251                 dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_STR_0(i), 0x1);
252                 dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_STR_1(i), 0x97);
253         }
254         dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_4(0), 0);
255         dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_4(1), 0x5);
256         dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_4(2), 0xa);
257         dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_4(3), 0xf);
258
259         dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_CFG_1, 0xc0);
260         dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_TEST_STR0, 0x1);
261         dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_TEST_STR1, 0xbb);
262
263         dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_0, 0x5f);
264
265         if (is_dual_panel && (phy->id != DSI_CLOCK_MASTER))
266                 dsi_phy_write(base + REG_DSI_28nm_PHY_GLBL_TEST_CTRL, 0x00);
267         else
268                 dsi_phy_write(base + REG_DSI_28nm_PHY_GLBL_TEST_CTRL, 0x01);
269
270         return 0;
271 }
272
273 static int dsi_28nm_phy_disable(struct msm_dsi_phy *phy)
274 {
275         dsi_phy_write(phy->base + REG_DSI_28nm_PHY_CTRL_0, 0);
276         dsi_28nm_phy_regulator_ctrl(phy, false);
277
278         /*
279          * Wait for the registers writes to complete in order to
280          * ensure that the phy is completely disabled
281          */
282         wmb();
283
284         return 0;
285 }
286
287 #define dsi_phy_func_init(name) \
288         do {    \
289                 phy->enable = dsi_##name##_phy_enable;  \
290                 phy->disable = dsi_##name##_phy_disable;        \
291         } while (0)
292
293 struct msm_dsi_phy *msm_dsi_phy_init(struct platform_device *pdev,
294                         enum msm_dsi_phy_type type, int id)
295 {
296         struct msm_dsi_phy *phy;
297
298         phy = devm_kzalloc(&pdev->dev, sizeof(*phy), GFP_KERNEL);
299         if (!phy)
300                 return NULL;
301
302         phy->base = msm_ioremap(pdev, "dsi_phy", "DSI_PHY");
303         if (IS_ERR_OR_NULL(phy->base)) {
304                 pr_err("%s: failed to map phy base\n", __func__);
305                 return NULL;
306         }
307         phy->reg_base = msm_ioremap(pdev, "dsi_phy_regulator", "DSI_PHY_REG");
308         if (IS_ERR_OR_NULL(phy->reg_base)) {
309                 pr_err("%s: failed to map phy regulator base\n", __func__);
310                 return NULL;
311         }
312
313         switch (type) {
314         case MSM_DSI_PHY_28NM:
315                 dsi_phy_func_init(28nm);
316                 break;
317         default:
318                 pr_err("%s: unsupported type, %d\n", __func__, type);
319                 return NULL;
320         }
321
322         phy->id = id;
323
324         return phy;
325 }
326
327 int msm_dsi_phy_enable(struct msm_dsi_phy *phy, bool is_dual_panel,
328         const unsigned long bit_rate, const unsigned long esc_rate)
329 {
330         if (!phy || !phy->enable)
331                 return -EINVAL;
332         return phy->enable(phy, is_dual_panel, bit_rate, esc_rate);
333 }
334
335 int msm_dsi_phy_disable(struct msm_dsi_phy *phy)
336 {
337         if (!phy || !phy->disable)
338                 return -EINVAL;
339         return phy->disable(phy);
340 }
341
342 void msm_dsi_phy_get_clk_pre_post(struct msm_dsi_phy *phy,
343         u32 *clk_pre, u32 *clk_post)
344 {
345         if (!phy)
346                 return;
347         if (clk_pre)
348                 *clk_pre = phy->timing.clk_pre;
349         if (clk_post)
350                 *clk_post = phy->timing.clk_post;
351 }
352