Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39         struct drm_device *dev = ring->dev;
40
41         if (!dev)
42                 return false;
43
44         if (i915.enable_execlists) {
45                 struct intel_context *dctx = ring->default_context;
46                 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48                 return ringbuf->obj;
49         } else
50                 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55         int space = head - tail;
56         if (space <= 0)
57                 space += size;
58         return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63         if (ringbuf->last_retired_head != -1) {
64                 ringbuf->head = ringbuf->last_retired_head;
65                 ringbuf->last_retired_head = -1;
66         }
67
68         ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69                                             ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74         intel_ring_update_space(ringbuf);
75         return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80         struct drm_i915_private *dev_priv = ring->dev->dev_private;
81         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86         struct intel_ringbuffer *ringbuf = ring->buffer;
87         ringbuf->tail &= ringbuf->size - 1;
88         if (intel_ring_stopped(ring))
89                 return;
90         ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct intel_engine_cs *ring,
95                        u32      invalidate_domains,
96                        u32      flush_domains)
97 {
98         u32 cmd;
99         int ret;
100
101         cmd = MI_FLUSH;
102         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
103                 cmd |= MI_NO_WRITE_FLUSH;
104
105         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
106                 cmd |= MI_READ_FLUSH;
107
108         ret = intel_ring_begin(ring, 2);
109         if (ret)
110                 return ret;
111
112         intel_ring_emit(ring, cmd);
113         intel_ring_emit(ring, MI_NOOP);
114         intel_ring_advance(ring);
115
116         return 0;
117 }
118
119 static int
120 gen4_render_ring_flush(struct intel_engine_cs *ring,
121                        u32      invalidate_domains,
122                        u32      flush_domains)
123 {
124         struct drm_device *dev = ring->dev;
125         u32 cmd;
126         int ret;
127
128         /*
129          * read/write caches:
130          *
131          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
132          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
133          * also flushed at 2d versus 3d pipeline switches.
134          *
135          * read-only caches:
136          *
137          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
138          * MI_READ_FLUSH is set, and is always flushed on 965.
139          *
140          * I915_GEM_DOMAIN_COMMAND may not exist?
141          *
142          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
143          * invalidated when MI_EXE_FLUSH is set.
144          *
145          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
146          * invalidated with every MI_FLUSH.
147          *
148          * TLBs:
149          *
150          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
151          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
152          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
153          * are flushed at any MI_FLUSH.
154          */
155
156         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
157         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
158                 cmd &= ~MI_NO_WRITE_FLUSH;
159         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
160                 cmd |= MI_EXE_FLUSH;
161
162         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
163             (IS_G4X(dev) || IS_GEN5(dev)))
164                 cmd |= MI_INVALIDATE_ISP;
165
166         ret = intel_ring_begin(ring, 2);
167         if (ret)
168                 return ret;
169
170         intel_ring_emit(ring, cmd);
171         intel_ring_emit(ring, MI_NOOP);
172         intel_ring_advance(ring);
173
174         return 0;
175 }
176
177 /**
178  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
179  * implementing two workarounds on gen6.  From section 1.4.7.1
180  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
181  *
182  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
183  * produced by non-pipelined state commands), software needs to first
184  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
185  * 0.
186  *
187  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
188  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
189  *
190  * And the workaround for these two requires this workaround first:
191  *
192  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
193  * BEFORE the pipe-control with a post-sync op and no write-cache
194  * flushes.
195  *
196  * And this last workaround is tricky because of the requirements on
197  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
198  * volume 2 part 1:
199  *
200  *     "1 of the following must also be set:
201  *      - Render Target Cache Flush Enable ([12] of DW1)
202  *      - Depth Cache Flush Enable ([0] of DW1)
203  *      - Stall at Pixel Scoreboard ([1] of DW1)
204  *      - Depth Stall ([13] of DW1)
205  *      - Post-Sync Operation ([13] of DW1)
206  *      - Notify Enable ([8] of DW1)"
207  *
208  * The cache flushes require the workaround flush that triggered this
209  * one, so we can't use it.  Depth stall would trigger the same.
210  * Post-sync nonzero is what triggered this second workaround, so we
211  * can't use that one either.  Notify enable is IRQs, which aren't
212  * really our business.  That leaves only stall at scoreboard.
213  */
214 static int
215 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
216 {
217         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
218         int ret;
219
220
221         ret = intel_ring_begin(ring, 6);
222         if (ret)
223                 return ret;
224
225         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
226         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
227                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
228         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
229         intel_ring_emit(ring, 0); /* low dword */
230         intel_ring_emit(ring, 0); /* high dword */
231         intel_ring_emit(ring, MI_NOOP);
232         intel_ring_advance(ring);
233
234         ret = intel_ring_begin(ring, 6);
235         if (ret)
236                 return ret;
237
238         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
239         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
240         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
241         intel_ring_emit(ring, 0);
242         intel_ring_emit(ring, 0);
243         intel_ring_emit(ring, MI_NOOP);
244         intel_ring_advance(ring);
245
246         return 0;
247 }
248
249 static int
250 gen6_render_ring_flush(struct intel_engine_cs *ring,
251                          u32 invalidate_domains, u32 flush_domains)
252 {
253         u32 flags = 0;
254         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
255         int ret;
256
257         /* Force SNB workarounds for PIPE_CONTROL flushes */
258         ret = intel_emit_post_sync_nonzero_flush(ring);
259         if (ret)
260                 return ret;
261
262         /* Just flush everything.  Experiments have shown that reducing the
263          * number of bits based on the write domains has little performance
264          * impact.
265          */
266         if (flush_domains) {
267                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
268                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
269                 /*
270                  * Ensure that any following seqno writes only happen
271                  * when the render cache is indeed flushed.
272                  */
273                 flags |= PIPE_CONTROL_CS_STALL;
274         }
275         if (invalidate_domains) {
276                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
277                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
278                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
279                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
280                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
281                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
282                 /*
283                  * TLB invalidate requires a post-sync write.
284                  */
285                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
286         }
287
288         ret = intel_ring_begin(ring, 4);
289         if (ret)
290                 return ret;
291
292         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
293         intel_ring_emit(ring, flags);
294         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
295         intel_ring_emit(ring, 0);
296         intel_ring_advance(ring);
297
298         return 0;
299 }
300
301 static int
302 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
303 {
304         int ret;
305
306         ret = intel_ring_begin(ring, 4);
307         if (ret)
308                 return ret;
309
310         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
311         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
312                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
313         intel_ring_emit(ring, 0);
314         intel_ring_emit(ring, 0);
315         intel_ring_advance(ring);
316
317         return 0;
318 }
319
320 static int
321 gen7_render_ring_flush(struct intel_engine_cs *ring,
322                        u32 invalidate_domains, u32 flush_domains)
323 {
324         u32 flags = 0;
325         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
326         int ret;
327
328         /*
329          * Ensure that any following seqno writes only happen when the render
330          * cache is indeed flushed.
331          *
332          * Workaround: 4th PIPE_CONTROL command (except the ones with only
333          * read-cache invalidate bits set) must have the CS_STALL bit set. We
334          * don't try to be clever and just set it unconditionally.
335          */
336         flags |= PIPE_CONTROL_CS_STALL;
337
338         /* Just flush everything.  Experiments have shown that reducing the
339          * number of bits based on the write domains has little performance
340          * impact.
341          */
342         if (flush_domains) {
343                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
344                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
345         }
346         if (invalidate_domains) {
347                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
348                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
349                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
350                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
351                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
352                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
353                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
354                 /*
355                  * TLB invalidate requires a post-sync write.
356                  */
357                 flags |= PIPE_CONTROL_QW_WRITE;
358                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
359
360                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
361
362                 /* Workaround: we must issue a pipe_control with CS-stall bit
363                  * set before a pipe_control command that has the state cache
364                  * invalidate bit set. */
365                 gen7_render_ring_cs_stall_wa(ring);
366         }
367
368         ret = intel_ring_begin(ring, 4);
369         if (ret)
370                 return ret;
371
372         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
373         intel_ring_emit(ring, flags);
374         intel_ring_emit(ring, scratch_addr);
375         intel_ring_emit(ring, 0);
376         intel_ring_advance(ring);
377
378         return 0;
379 }
380
381 static int
382 gen8_emit_pipe_control(struct intel_engine_cs *ring,
383                        u32 flags, u32 scratch_addr)
384 {
385         int ret;
386
387         ret = intel_ring_begin(ring, 6);
388         if (ret)
389                 return ret;
390
391         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
392         intel_ring_emit(ring, flags);
393         intel_ring_emit(ring, scratch_addr);
394         intel_ring_emit(ring, 0);
395         intel_ring_emit(ring, 0);
396         intel_ring_emit(ring, 0);
397         intel_ring_advance(ring);
398
399         return 0;
400 }
401
402 static int
403 gen8_render_ring_flush(struct intel_engine_cs *ring,
404                        u32 invalidate_domains, u32 flush_domains)
405 {
406         u32 flags = 0;
407         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
408         int ret;
409
410         flags |= PIPE_CONTROL_CS_STALL;
411
412         if (flush_domains) {
413                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
414                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
415         }
416         if (invalidate_domains) {
417                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
418                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
419                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
420                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
421                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
422                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
423                 flags |= PIPE_CONTROL_QW_WRITE;
424                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
425
426                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
427                 ret = gen8_emit_pipe_control(ring,
428                                              PIPE_CONTROL_CS_STALL |
429                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
430                                              0);
431                 if (ret)
432                         return ret;
433         }
434
435         return gen8_emit_pipe_control(ring, flags, scratch_addr);
436 }
437
438 static void ring_write_tail(struct intel_engine_cs *ring,
439                             u32 value)
440 {
441         struct drm_i915_private *dev_priv = ring->dev->dev_private;
442         I915_WRITE_TAIL(ring, value);
443 }
444
445 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
446 {
447         struct drm_i915_private *dev_priv = ring->dev->dev_private;
448         u64 acthd;
449
450         if (INTEL_INFO(ring->dev)->gen >= 8)
451                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
452                                          RING_ACTHD_UDW(ring->mmio_base));
453         else if (INTEL_INFO(ring->dev)->gen >= 4)
454                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
455         else
456                 acthd = I915_READ(ACTHD);
457
458         return acthd;
459 }
460
461 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
462 {
463         struct drm_i915_private *dev_priv = ring->dev->dev_private;
464         u32 addr;
465
466         addr = dev_priv->status_page_dmah->busaddr;
467         if (INTEL_INFO(ring->dev)->gen >= 4)
468                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
469         I915_WRITE(HWS_PGA, addr);
470 }
471
472 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
473 {
474         struct drm_device *dev = ring->dev;
475         struct drm_i915_private *dev_priv = ring->dev->dev_private;
476         u32 mmio = 0;
477
478         /* The ring status page addresses are no longer next to the rest of
479          * the ring registers as of gen7.
480          */
481         if (IS_GEN7(dev)) {
482                 switch (ring->id) {
483                 case RCS:
484                         mmio = RENDER_HWS_PGA_GEN7;
485                         break;
486                 case BCS:
487                         mmio = BLT_HWS_PGA_GEN7;
488                         break;
489                 /*
490                  * VCS2 actually doesn't exist on Gen7. Only shut up
491                  * gcc switch check warning
492                  */
493                 case VCS2:
494                 case VCS:
495                         mmio = BSD_HWS_PGA_GEN7;
496                         break;
497                 case VECS:
498                         mmio = VEBOX_HWS_PGA_GEN7;
499                         break;
500                 }
501         } else if (IS_GEN6(ring->dev)) {
502                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
503         } else {
504                 /* XXX: gen8 returns to sanity */
505                 mmio = RING_HWS_PGA(ring->mmio_base);
506         }
507
508         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
509         POSTING_READ(mmio);
510
511         /*
512          * Flush the TLB for this page
513          *
514          * FIXME: These two bits have disappeared on gen8, so a question
515          * arises: do we still need this and if so how should we go about
516          * invalidating the TLB?
517          */
518         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
519                 u32 reg = RING_INSTPM(ring->mmio_base);
520
521                 /* ring should be idle before issuing a sync flush*/
522                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
523
524                 I915_WRITE(reg,
525                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
526                                               INSTPM_SYNC_FLUSH));
527                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
528                              1000))
529                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
530                                   ring->name);
531         }
532 }
533
534 static bool stop_ring(struct intel_engine_cs *ring)
535 {
536         struct drm_i915_private *dev_priv = to_i915(ring->dev);
537
538         if (!IS_GEN2(ring->dev)) {
539                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
540                 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
541                         DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
542                         /* Sometimes we observe that the idle flag is not
543                          * set even though the ring is empty. So double
544                          * check before giving up.
545                          */
546                         if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
547                                 return false;
548                 }
549         }
550
551         I915_WRITE_CTL(ring, 0);
552         I915_WRITE_HEAD(ring, 0);
553         ring->write_tail(ring, 0);
554
555         if (!IS_GEN2(ring->dev)) {
556                 (void)I915_READ_CTL(ring);
557                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
558         }
559
560         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
561 }
562
563 static int init_ring_common(struct intel_engine_cs *ring)
564 {
565         struct drm_device *dev = ring->dev;
566         struct drm_i915_private *dev_priv = dev->dev_private;
567         struct intel_ringbuffer *ringbuf = ring->buffer;
568         struct drm_i915_gem_object *obj = ringbuf->obj;
569         int ret = 0;
570
571         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
572
573         if (!stop_ring(ring)) {
574                 /* G45 ring initialization often fails to reset head to zero */
575                 DRM_DEBUG_KMS("%s head not reset to zero "
576                               "ctl %08x head %08x tail %08x start %08x\n",
577                               ring->name,
578                               I915_READ_CTL(ring),
579                               I915_READ_HEAD(ring),
580                               I915_READ_TAIL(ring),
581                               I915_READ_START(ring));
582
583                 if (!stop_ring(ring)) {
584                         DRM_ERROR("failed to set %s head to zero "
585                                   "ctl %08x head %08x tail %08x start %08x\n",
586                                   ring->name,
587                                   I915_READ_CTL(ring),
588                                   I915_READ_HEAD(ring),
589                                   I915_READ_TAIL(ring),
590                                   I915_READ_START(ring));
591                         ret = -EIO;
592                         goto out;
593                 }
594         }
595
596         if (I915_NEED_GFX_HWS(dev))
597                 intel_ring_setup_status_page(ring);
598         else
599                 ring_setup_phys_status_page(ring);
600
601         /* Enforce ordering by reading HEAD register back */
602         I915_READ_HEAD(ring);
603
604         /* Initialize the ring. This must happen _after_ we've cleared the ring
605          * registers with the above sequence (the readback of the HEAD registers
606          * also enforces ordering), otherwise the hw might lose the new ring
607          * register values. */
608         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
609
610         /* WaClearRingBufHeadRegAtInit:ctg,elk */
611         if (I915_READ_HEAD(ring))
612                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
613                           ring->name, I915_READ_HEAD(ring));
614         I915_WRITE_HEAD(ring, 0);
615         (void)I915_READ_HEAD(ring);
616
617         I915_WRITE_CTL(ring,
618                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
619                         | RING_VALID);
620
621         /* If the head is still not zero, the ring is dead */
622         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
623                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
624                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
625                 DRM_ERROR("%s initialization failed "
626                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
627                           ring->name,
628                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
629                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
630                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
631                 ret = -EIO;
632                 goto out;
633         }
634
635         ringbuf->last_retired_head = -1;
636         ringbuf->head = I915_READ_HEAD(ring);
637         ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
638         intel_ring_update_space(ringbuf);
639
640         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
641
642 out:
643         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
644
645         return ret;
646 }
647
648 void
649 intel_fini_pipe_control(struct intel_engine_cs *ring)
650 {
651         struct drm_device *dev = ring->dev;
652
653         if (ring->scratch.obj == NULL)
654                 return;
655
656         if (INTEL_INFO(dev)->gen >= 5) {
657                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
658                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
659         }
660
661         drm_gem_object_unreference(&ring->scratch.obj->base);
662         ring->scratch.obj = NULL;
663 }
664
665 int
666 intel_init_pipe_control(struct intel_engine_cs *ring)
667 {
668         int ret;
669
670         WARN_ON(ring->scratch.obj);
671
672         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
673         if (ring->scratch.obj == NULL) {
674                 DRM_ERROR("Failed to allocate seqno page\n");
675                 ret = -ENOMEM;
676                 goto err;
677         }
678
679         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
680         if (ret)
681                 goto err_unref;
682
683         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
684         if (ret)
685                 goto err_unref;
686
687         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
688         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
689         if (ring->scratch.cpu_page == NULL) {
690                 ret = -ENOMEM;
691                 goto err_unpin;
692         }
693
694         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
695                          ring->name, ring->scratch.gtt_offset);
696         return 0;
697
698 err_unpin:
699         i915_gem_object_ggtt_unpin(ring->scratch.obj);
700 err_unref:
701         drm_gem_object_unreference(&ring->scratch.obj->base);
702 err:
703         return ret;
704 }
705
706 static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
707                                        struct intel_context *ctx)
708 {
709         int ret, i;
710         struct drm_device *dev = ring->dev;
711         struct drm_i915_private *dev_priv = dev->dev_private;
712         struct i915_workarounds *w = &dev_priv->workarounds;
713
714         if (WARN_ON_ONCE(w->count == 0))
715                 return 0;
716
717         ring->gpu_caches_dirty = true;
718         ret = intel_ring_flush_all_caches(ring);
719         if (ret)
720                 return ret;
721
722         ret = intel_ring_begin(ring, (w->count * 2 + 2));
723         if (ret)
724                 return ret;
725
726         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
727         for (i = 0; i < w->count; i++) {
728                 intel_ring_emit(ring, w->reg[i].addr);
729                 intel_ring_emit(ring, w->reg[i].value);
730         }
731         intel_ring_emit(ring, MI_NOOP);
732
733         intel_ring_advance(ring);
734
735         ring->gpu_caches_dirty = true;
736         ret = intel_ring_flush_all_caches(ring);
737         if (ret)
738                 return ret;
739
740         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
741
742         return 0;
743 }
744
745 static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
746                               struct intel_context *ctx)
747 {
748         int ret;
749
750         ret = intel_ring_workarounds_emit(ring, ctx);
751         if (ret != 0)
752                 return ret;
753
754         ret = i915_gem_render_state_init(ring);
755         if (ret)
756                 DRM_ERROR("init render state: %d\n", ret);
757
758         return ret;
759 }
760
761 static int wa_add(struct drm_i915_private *dev_priv,
762                   const u32 addr, const u32 mask, const u32 val)
763 {
764         const u32 idx = dev_priv->workarounds.count;
765
766         if (WARN_ON(idx >= I915_MAX_WA_REGS))
767                 return -ENOSPC;
768
769         dev_priv->workarounds.reg[idx].addr = addr;
770         dev_priv->workarounds.reg[idx].value = val;
771         dev_priv->workarounds.reg[idx].mask = mask;
772
773         dev_priv->workarounds.count++;
774
775         return 0;
776 }
777
778 #define WA_REG(addr, mask, val) { \
779                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
780                 if (r) \
781                         return r; \
782         }
783
784 #define WA_SET_BIT_MASKED(addr, mask) \
785         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
786
787 #define WA_CLR_BIT_MASKED(addr, mask) \
788         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
789
790 #define WA_SET_FIELD_MASKED(addr, mask, value) \
791         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
792
793 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
794 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
795
796 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
797
798 static int bdw_init_workarounds(struct intel_engine_cs *ring)
799 {
800         struct drm_device *dev = ring->dev;
801         struct drm_i915_private *dev_priv = dev->dev_private;
802
803         /* WaDisablePartialInstShootdown:bdw */
804         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
805         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
806                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
807                           STALL_DOP_GATING_DISABLE);
808
809         /* WaDisableDopClockGating:bdw */
810         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
811                           DOP_CLOCK_GATING_DISABLE);
812
813         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
814                           GEN8_SAMPLER_POWER_BYPASS_DIS);
815
816         /* Use Force Non-Coherent whenever executing a 3D context. This is a
817          * workaround for for a possible hang in the unlikely event a TLB
818          * invalidation occurs during a PSD flush.
819          */
820         WA_SET_BIT_MASKED(HDC_CHICKEN0,
821                           /* WaForceEnableNonCoherent:bdw */
822                           HDC_FORCE_NON_COHERENT |
823                           /* WaForceContextSaveRestoreNonCoherent:bdw */
824                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
825                           /* WaHdcDisableFetchWhenMasked:bdw */
826                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
827                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
828                           (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
829
830         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
831          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
832          *  polygons in the same 8x4 pixel/sample area to be processed without
833          *  stalling waiting for the earlier ones to write to Hierarchical Z
834          *  buffer."
835          *
836          * This optimization is off by default for Broadwell; turn it on.
837          */
838         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
839
840         /* Wa4x4STCOptimizationDisable:bdw */
841         WA_SET_BIT_MASKED(CACHE_MODE_1,
842                           GEN8_4x4_STC_OPTIMIZATION_DISABLE);
843
844         /*
845          * BSpec recommends 8x4 when MSAA is used,
846          * however in practice 16x4 seems fastest.
847          *
848          * Note that PS/WM thread counts depend on the WIZ hashing
849          * disable bit, which we don't touch here, but it's good
850          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
851          */
852         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
853                             GEN6_WIZ_HASHING_MASK,
854                             GEN6_WIZ_HASHING_16x4);
855
856         return 0;
857 }
858
859 static int chv_init_workarounds(struct intel_engine_cs *ring)
860 {
861         struct drm_device *dev = ring->dev;
862         struct drm_i915_private *dev_priv = dev->dev_private;
863
864         /* WaDisablePartialInstShootdown:chv */
865         /* WaDisableThreadStallDopClockGating:chv */
866         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
867                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
868                           STALL_DOP_GATING_DISABLE);
869
870         /* Use Force Non-Coherent whenever executing a 3D context. This is a
871          * workaround for a possible hang in the unlikely event a TLB
872          * invalidation occurs during a PSD flush.
873          */
874         /* WaForceEnableNonCoherent:chv */
875         /* WaHdcDisableFetchWhenMasked:chv */
876         WA_SET_BIT_MASKED(HDC_CHICKEN0,
877                           HDC_FORCE_NON_COHERENT |
878                           HDC_DONOT_FETCH_MEM_WHEN_MASKED);
879
880         /* According to the CACHE_MODE_0 default value documentation, some
881          * CHV platforms disable this optimization by default.  Turn it on.
882          */
883         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
884
885         /* Wa4x4STCOptimizationDisable:chv */
886         WA_SET_BIT_MASKED(CACHE_MODE_1,
887                           GEN8_4x4_STC_OPTIMIZATION_DISABLE);
888
889         /* Improve HiZ throughput on CHV. */
890         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
891
892         /*
893          * BSpec recommends 8x4 when MSAA is used,
894          * however in practice 16x4 seems fastest.
895          *
896          * Note that PS/WM thread counts depend on the WIZ hashing
897          * disable bit, which we don't touch here, but it's good
898          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
899          */
900         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
901                             GEN6_WIZ_HASHING_MASK,
902                             GEN6_WIZ_HASHING_16x4);
903
904         return 0;
905 }
906
907 static int gen9_init_workarounds(struct intel_engine_cs *ring)
908 {
909         struct drm_device *dev = ring->dev;
910         struct drm_i915_private *dev_priv = dev->dev_private;
911
912         /* WaDisablePartialInstShootdown:skl */
913         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
914                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
915
916         /* Syncing dependencies between camera and graphics */
917         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
918                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
919
920         if (INTEL_REVID(dev) == SKL_REVID_A0 ||
921             INTEL_REVID(dev) == SKL_REVID_B0) {
922                 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl */
923                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
924                                   GEN9_DG_MIRROR_FIX_ENABLE);
925         }
926
927         if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) {
928                 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl */
929                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
930                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
931                 WA_SET_BIT_MASKED(GEN9_SLICE_COMMON_ECO_CHICKEN0,
932                                   DISABLE_PIXEL_MASK_CAMMING);
933         }
934
935         if (INTEL_REVID(dev) >= SKL_REVID_C0) {
936                 /* WaEnableYV12BugFixInHalfSliceChicken7:skl */
937                 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
938                                   GEN9_ENABLE_YV12_BUGFIX);
939         }
940
941         if (INTEL_REVID(dev) <= SKL_REVID_D0) {
942                 /*
943                  *Use Force Non-Coherent whenever executing a 3D context. This
944                  * is a workaround for a possible hang in the unlikely event
945                  * a TLB invalidation occurs during a PSD flush.
946                  */
947                 /* WaForceEnableNonCoherent:skl */
948                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
949                                   HDC_FORCE_NON_COHERENT);
950         }
951
952         /* Wa4x4STCOptimizationDisable:skl */
953         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
954
955         /* WaDisablePartialResolveInVc:skl */
956         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
957
958         /* WaCcsTlbPrefetchDisable:skl */
959         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
960                           GEN9_CCS_TLB_PREFETCH_ENABLE);
961
962         return 0;
963 }
964
965 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
966 {
967         struct drm_device *dev = ring->dev;
968         struct drm_i915_private *dev_priv = dev->dev_private;
969         u8 vals[3] = { 0, 0, 0 };
970         unsigned int i;
971
972         for (i = 0; i < 3; i++) {
973                 u8 ss;
974
975                 /*
976                  * Only consider slices where one, and only one, subslice has 7
977                  * EUs
978                  */
979                 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
980                         continue;
981
982                 /*
983                  * subslice_7eu[i] != 0 (because of the check above) and
984                  * ss_max == 4 (maximum number of subslices possible per slice)
985                  *
986                  * ->    0 <= ss <= 3;
987                  */
988                 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
989                 vals[i] = 3 - ss;
990         }
991
992         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
993                 return 0;
994
995         /* Tune IZ hashing. See intel_device_info_runtime_init() */
996         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
997                             GEN9_IZ_HASHING_MASK(2) |
998                             GEN9_IZ_HASHING_MASK(1) |
999                             GEN9_IZ_HASHING_MASK(0),
1000                             GEN9_IZ_HASHING(2, vals[2]) |
1001                             GEN9_IZ_HASHING(1, vals[1]) |
1002                             GEN9_IZ_HASHING(0, vals[0]));
1003
1004         return 0;
1005 }
1006
1007
1008 static int skl_init_workarounds(struct intel_engine_cs *ring)
1009 {
1010         struct drm_device *dev = ring->dev;
1011         struct drm_i915_private *dev_priv = dev->dev_private;
1012
1013         gen9_init_workarounds(ring);
1014
1015         /* WaDisablePowerCompilerClockGating:skl */
1016         if (INTEL_REVID(dev) == SKL_REVID_B0)
1017                 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1018                                   BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1019
1020         if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1021             INTEL_REVID(dev) == SKL_REVID_D0)
1022                 /* WaBarrierPerformanceFixDisable:skl */
1023                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1024                                   HDC_FENCE_DEST_SLM_DISABLE |
1025                                   HDC_BARRIER_PERFORMANCE_DISABLE);
1026
1027         return skl_tune_iz_hashing(ring);
1028 }
1029
1030 int init_workarounds_ring(struct intel_engine_cs *ring)
1031 {
1032         struct drm_device *dev = ring->dev;
1033         struct drm_i915_private *dev_priv = dev->dev_private;
1034
1035         WARN_ON(ring->id != RCS);
1036
1037         dev_priv->workarounds.count = 0;
1038
1039         if (IS_BROADWELL(dev))
1040                 return bdw_init_workarounds(ring);
1041
1042         if (IS_CHERRYVIEW(dev))
1043                 return chv_init_workarounds(ring);
1044
1045         if (IS_SKYLAKE(dev))
1046                 return skl_init_workarounds(ring);
1047         else if (IS_GEN9(dev))
1048                 return gen9_init_workarounds(ring);
1049
1050         return 0;
1051 }
1052
1053 static int init_render_ring(struct intel_engine_cs *ring)
1054 {
1055         struct drm_device *dev = ring->dev;
1056         struct drm_i915_private *dev_priv = dev->dev_private;
1057         int ret = init_ring_common(ring);
1058         if (ret)
1059                 return ret;
1060
1061         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1062         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1063                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1064
1065         /* We need to disable the AsyncFlip performance optimisations in order
1066          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1067          * programmed to '1' on all products.
1068          *
1069          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1070          */
1071         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
1072                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1073
1074         /* Required for the hardware to program scanline values for waiting */
1075         /* WaEnableFlushTlbInvalidationMode:snb */
1076         if (INTEL_INFO(dev)->gen == 6)
1077                 I915_WRITE(GFX_MODE,
1078                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1079
1080         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1081         if (IS_GEN7(dev))
1082                 I915_WRITE(GFX_MODE_GEN7,
1083                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1084                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1085
1086         if (IS_GEN6(dev)) {
1087                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1088                  * "If this bit is set, STCunit will have LRA as replacement
1089                  *  policy. [...] This bit must be reset.  LRA replacement
1090                  *  policy is not supported."
1091                  */
1092                 I915_WRITE(CACHE_MODE_0,
1093                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1094         }
1095
1096         if (INTEL_INFO(dev)->gen >= 6)
1097                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1098
1099         if (HAS_L3_DPF(dev))
1100                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1101
1102         return init_workarounds_ring(ring);
1103 }
1104
1105 static void render_ring_cleanup(struct intel_engine_cs *ring)
1106 {
1107         struct drm_device *dev = ring->dev;
1108         struct drm_i915_private *dev_priv = dev->dev_private;
1109
1110         if (dev_priv->semaphore_obj) {
1111                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1112                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1113                 dev_priv->semaphore_obj = NULL;
1114         }
1115
1116         intel_fini_pipe_control(ring);
1117 }
1118
1119 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
1120                            unsigned int num_dwords)
1121 {
1122 #define MBOX_UPDATE_DWORDS 8
1123         struct drm_device *dev = signaller->dev;
1124         struct drm_i915_private *dev_priv = dev->dev_private;
1125         struct intel_engine_cs *waiter;
1126         int i, ret, num_rings;
1127
1128         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1129         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1130 #undef MBOX_UPDATE_DWORDS
1131
1132         ret = intel_ring_begin(signaller, num_dwords);
1133         if (ret)
1134                 return ret;
1135
1136         for_each_ring(waiter, dev_priv, i) {
1137                 u32 seqno;
1138                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1139                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1140                         continue;
1141
1142                 seqno = i915_gem_request_get_seqno(
1143                                            signaller->outstanding_lazy_request);
1144                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1145                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1146                                            PIPE_CONTROL_QW_WRITE |
1147                                            PIPE_CONTROL_FLUSH_ENABLE);
1148                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1149                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1150                 intel_ring_emit(signaller, seqno);
1151                 intel_ring_emit(signaller, 0);
1152                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1153                                            MI_SEMAPHORE_TARGET(waiter->id));
1154                 intel_ring_emit(signaller, 0);
1155         }
1156
1157         return 0;
1158 }
1159
1160 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
1161                            unsigned int num_dwords)
1162 {
1163 #define MBOX_UPDATE_DWORDS 6
1164         struct drm_device *dev = signaller->dev;
1165         struct drm_i915_private *dev_priv = dev->dev_private;
1166         struct intel_engine_cs *waiter;
1167         int i, ret, num_rings;
1168
1169         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1170         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1171 #undef MBOX_UPDATE_DWORDS
1172
1173         ret = intel_ring_begin(signaller, num_dwords);
1174         if (ret)
1175                 return ret;
1176
1177         for_each_ring(waiter, dev_priv, i) {
1178                 u32 seqno;
1179                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1180                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1181                         continue;
1182
1183                 seqno = i915_gem_request_get_seqno(
1184                                            signaller->outstanding_lazy_request);
1185                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1186                                            MI_FLUSH_DW_OP_STOREDW);
1187                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1188                                            MI_FLUSH_DW_USE_GTT);
1189                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1190                 intel_ring_emit(signaller, seqno);
1191                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1192                                            MI_SEMAPHORE_TARGET(waiter->id));
1193                 intel_ring_emit(signaller, 0);
1194         }
1195
1196         return 0;
1197 }
1198
1199 static int gen6_signal(struct intel_engine_cs *signaller,
1200                        unsigned int num_dwords)
1201 {
1202         struct drm_device *dev = signaller->dev;
1203         struct drm_i915_private *dev_priv = dev->dev_private;
1204         struct intel_engine_cs *useless;
1205         int i, ret, num_rings;
1206
1207 #define MBOX_UPDATE_DWORDS 3
1208         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1209         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1210 #undef MBOX_UPDATE_DWORDS
1211
1212         ret = intel_ring_begin(signaller, num_dwords);
1213         if (ret)
1214                 return ret;
1215
1216         for_each_ring(useless, dev_priv, i) {
1217                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1218                 if (mbox_reg != GEN6_NOSYNC) {
1219                         u32 seqno = i915_gem_request_get_seqno(
1220                                            signaller->outstanding_lazy_request);
1221                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1222                         intel_ring_emit(signaller, mbox_reg);
1223                         intel_ring_emit(signaller, seqno);
1224                 }
1225         }
1226
1227         /* If num_dwords was rounded, make sure the tail pointer is correct */
1228         if (num_rings % 2 == 0)
1229                 intel_ring_emit(signaller, MI_NOOP);
1230
1231         return 0;
1232 }
1233
1234 /**
1235  * gen6_add_request - Update the semaphore mailbox registers
1236  * 
1237  * @ring - ring that is adding a request
1238  * @seqno - return seqno stuck into the ring
1239  *
1240  * Update the mailbox registers in the *other* rings with the current seqno.
1241  * This acts like a signal in the canonical semaphore.
1242  */
1243 static int
1244 gen6_add_request(struct intel_engine_cs *ring)
1245 {
1246         int ret;
1247
1248         if (ring->semaphore.signal)
1249                 ret = ring->semaphore.signal(ring, 4);
1250         else
1251                 ret = intel_ring_begin(ring, 4);
1252
1253         if (ret)
1254                 return ret;
1255
1256         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1257         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1258         intel_ring_emit(ring,
1259                     i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1260         intel_ring_emit(ring, MI_USER_INTERRUPT);
1261         __intel_ring_advance(ring);
1262
1263         return 0;
1264 }
1265
1266 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1267                                               u32 seqno)
1268 {
1269         struct drm_i915_private *dev_priv = dev->dev_private;
1270         return dev_priv->last_seqno < seqno;
1271 }
1272
1273 /**
1274  * intel_ring_sync - sync the waiter to the signaller on seqno
1275  *
1276  * @waiter - ring that is waiting
1277  * @signaller - ring which has, or will signal
1278  * @seqno - seqno which the waiter will block on
1279  */
1280
1281 static int
1282 gen8_ring_sync(struct intel_engine_cs *waiter,
1283                struct intel_engine_cs *signaller,
1284                u32 seqno)
1285 {
1286         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1287         int ret;
1288
1289         ret = intel_ring_begin(waiter, 4);
1290         if (ret)
1291                 return ret;
1292
1293         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1294                                 MI_SEMAPHORE_GLOBAL_GTT |
1295                                 MI_SEMAPHORE_POLL |
1296                                 MI_SEMAPHORE_SAD_GTE_SDD);
1297         intel_ring_emit(waiter, seqno);
1298         intel_ring_emit(waiter,
1299                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1300         intel_ring_emit(waiter,
1301                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1302         intel_ring_advance(waiter);
1303         return 0;
1304 }
1305
1306 static int
1307 gen6_ring_sync(struct intel_engine_cs *waiter,
1308                struct intel_engine_cs *signaller,
1309                u32 seqno)
1310 {
1311         u32 dw1 = MI_SEMAPHORE_MBOX |
1312                   MI_SEMAPHORE_COMPARE |
1313                   MI_SEMAPHORE_REGISTER;
1314         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1315         int ret;
1316
1317         /* Throughout all of the GEM code, seqno passed implies our current
1318          * seqno is >= the last seqno executed. However for hardware the
1319          * comparison is strictly greater than.
1320          */
1321         seqno -= 1;
1322
1323         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1324
1325         ret = intel_ring_begin(waiter, 4);
1326         if (ret)
1327                 return ret;
1328
1329         /* If seqno wrap happened, omit the wait with no-ops */
1330         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1331                 intel_ring_emit(waiter, dw1 | wait_mbox);
1332                 intel_ring_emit(waiter, seqno);
1333                 intel_ring_emit(waiter, 0);
1334                 intel_ring_emit(waiter, MI_NOOP);
1335         } else {
1336                 intel_ring_emit(waiter, MI_NOOP);
1337                 intel_ring_emit(waiter, MI_NOOP);
1338                 intel_ring_emit(waiter, MI_NOOP);
1339                 intel_ring_emit(waiter, MI_NOOP);
1340         }
1341         intel_ring_advance(waiter);
1342
1343         return 0;
1344 }
1345
1346 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1347 do {                                                                    \
1348         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1349                  PIPE_CONTROL_DEPTH_STALL);                             \
1350         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1351         intel_ring_emit(ring__, 0);                                                     \
1352         intel_ring_emit(ring__, 0);                                                     \
1353 } while (0)
1354
1355 static int
1356 pc_render_add_request(struct intel_engine_cs *ring)
1357 {
1358         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1359         int ret;
1360
1361         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1362          * incoherent with writes to memory, i.e. completely fubar,
1363          * so we need to use PIPE_NOTIFY instead.
1364          *
1365          * However, we also need to workaround the qword write
1366          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1367          * memory before requesting an interrupt.
1368          */
1369         ret = intel_ring_begin(ring, 32);
1370         if (ret)
1371                 return ret;
1372
1373         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1374                         PIPE_CONTROL_WRITE_FLUSH |
1375                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1376         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1377         intel_ring_emit(ring,
1378                     i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1379         intel_ring_emit(ring, 0);
1380         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1381         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1382         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1383         scratch_addr += 2 * CACHELINE_BYTES;
1384         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1385         scratch_addr += 2 * CACHELINE_BYTES;
1386         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1387         scratch_addr += 2 * CACHELINE_BYTES;
1388         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1389         scratch_addr += 2 * CACHELINE_BYTES;
1390         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1391
1392         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1393                         PIPE_CONTROL_WRITE_FLUSH |
1394                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1395                         PIPE_CONTROL_NOTIFY);
1396         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1397         intel_ring_emit(ring,
1398                     i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1399         intel_ring_emit(ring, 0);
1400         __intel_ring_advance(ring);
1401
1402         return 0;
1403 }
1404
1405 static u32
1406 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1407 {
1408         /* Workaround to force correct ordering between irq and seqno writes on
1409          * ivb (and maybe also on snb) by reading from a CS register (like
1410          * ACTHD) before reading the status page. */
1411         if (!lazy_coherency) {
1412                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1413                 POSTING_READ(RING_ACTHD(ring->mmio_base));
1414         }
1415
1416         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1417 }
1418
1419 static u32
1420 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1421 {
1422         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1423 }
1424
1425 static void
1426 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1427 {
1428         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1429 }
1430
1431 static u32
1432 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1433 {
1434         return ring->scratch.cpu_page[0];
1435 }
1436
1437 static void
1438 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1439 {
1440         ring->scratch.cpu_page[0] = seqno;
1441 }
1442
1443 static bool
1444 gen5_ring_get_irq(struct intel_engine_cs *ring)
1445 {
1446         struct drm_device *dev = ring->dev;
1447         struct drm_i915_private *dev_priv = dev->dev_private;
1448         unsigned long flags;
1449
1450         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1451                 return false;
1452
1453         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1454         if (ring->irq_refcount++ == 0)
1455                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1456         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1457
1458         return true;
1459 }
1460
1461 static void
1462 gen5_ring_put_irq(struct intel_engine_cs *ring)
1463 {
1464         struct drm_device *dev = ring->dev;
1465         struct drm_i915_private *dev_priv = dev->dev_private;
1466         unsigned long flags;
1467
1468         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1469         if (--ring->irq_refcount == 0)
1470                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1471         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1472 }
1473
1474 static bool
1475 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1476 {
1477         struct drm_device *dev = ring->dev;
1478         struct drm_i915_private *dev_priv = dev->dev_private;
1479         unsigned long flags;
1480
1481         if (!intel_irqs_enabled(dev_priv))
1482                 return false;
1483
1484         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1485         if (ring->irq_refcount++ == 0) {
1486                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1487                 I915_WRITE(IMR, dev_priv->irq_mask);
1488                 POSTING_READ(IMR);
1489         }
1490         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1491
1492         return true;
1493 }
1494
1495 static void
1496 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1497 {
1498         struct drm_device *dev = ring->dev;
1499         struct drm_i915_private *dev_priv = dev->dev_private;
1500         unsigned long flags;
1501
1502         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1503         if (--ring->irq_refcount == 0) {
1504                 dev_priv->irq_mask |= ring->irq_enable_mask;
1505                 I915_WRITE(IMR, dev_priv->irq_mask);
1506                 POSTING_READ(IMR);
1507         }
1508         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1509 }
1510
1511 static bool
1512 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1513 {
1514         struct drm_device *dev = ring->dev;
1515         struct drm_i915_private *dev_priv = dev->dev_private;
1516         unsigned long flags;
1517
1518         if (!intel_irqs_enabled(dev_priv))
1519                 return false;
1520
1521         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1522         if (ring->irq_refcount++ == 0) {
1523                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1524                 I915_WRITE16(IMR, dev_priv->irq_mask);
1525                 POSTING_READ16(IMR);
1526         }
1527         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1528
1529         return true;
1530 }
1531
1532 static void
1533 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1534 {
1535         struct drm_device *dev = ring->dev;
1536         struct drm_i915_private *dev_priv = dev->dev_private;
1537         unsigned long flags;
1538
1539         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1540         if (--ring->irq_refcount == 0) {
1541                 dev_priv->irq_mask |= ring->irq_enable_mask;
1542                 I915_WRITE16(IMR, dev_priv->irq_mask);
1543                 POSTING_READ16(IMR);
1544         }
1545         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1546 }
1547
1548 static int
1549 bsd_ring_flush(struct intel_engine_cs *ring,
1550                u32     invalidate_domains,
1551                u32     flush_domains)
1552 {
1553         int ret;
1554
1555         ret = intel_ring_begin(ring, 2);
1556         if (ret)
1557                 return ret;
1558
1559         intel_ring_emit(ring, MI_FLUSH);
1560         intel_ring_emit(ring, MI_NOOP);
1561         intel_ring_advance(ring);
1562         return 0;
1563 }
1564
1565 static int
1566 i9xx_add_request(struct intel_engine_cs *ring)
1567 {
1568         int ret;
1569
1570         ret = intel_ring_begin(ring, 4);
1571         if (ret)
1572                 return ret;
1573
1574         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1575         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1576         intel_ring_emit(ring,
1577                     i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1578         intel_ring_emit(ring, MI_USER_INTERRUPT);
1579         __intel_ring_advance(ring);
1580
1581         return 0;
1582 }
1583
1584 static bool
1585 gen6_ring_get_irq(struct intel_engine_cs *ring)
1586 {
1587         struct drm_device *dev = ring->dev;
1588         struct drm_i915_private *dev_priv = dev->dev_private;
1589         unsigned long flags;
1590
1591         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1592                 return false;
1593
1594         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1595         if (ring->irq_refcount++ == 0) {
1596                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1597                         I915_WRITE_IMR(ring,
1598                                        ~(ring->irq_enable_mask |
1599                                          GT_PARITY_ERROR(dev)));
1600                 else
1601                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1602                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1603         }
1604         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1605
1606         return true;
1607 }
1608
1609 static void
1610 gen6_ring_put_irq(struct intel_engine_cs *ring)
1611 {
1612         struct drm_device *dev = ring->dev;
1613         struct drm_i915_private *dev_priv = dev->dev_private;
1614         unsigned long flags;
1615
1616         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1617         if (--ring->irq_refcount == 0) {
1618                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1619                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1620                 else
1621                         I915_WRITE_IMR(ring, ~0);
1622                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1623         }
1624         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1625 }
1626
1627 static bool
1628 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1629 {
1630         struct drm_device *dev = ring->dev;
1631         struct drm_i915_private *dev_priv = dev->dev_private;
1632         unsigned long flags;
1633
1634         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1635                 return false;
1636
1637         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1638         if (ring->irq_refcount++ == 0) {
1639                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1640                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1641         }
1642         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1643
1644         return true;
1645 }
1646
1647 static void
1648 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1649 {
1650         struct drm_device *dev = ring->dev;
1651         struct drm_i915_private *dev_priv = dev->dev_private;
1652         unsigned long flags;
1653
1654         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1655         if (--ring->irq_refcount == 0) {
1656                 I915_WRITE_IMR(ring, ~0);
1657                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1658         }
1659         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1660 }
1661
1662 static bool
1663 gen8_ring_get_irq(struct intel_engine_cs *ring)
1664 {
1665         struct drm_device *dev = ring->dev;
1666         struct drm_i915_private *dev_priv = dev->dev_private;
1667         unsigned long flags;
1668
1669         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1670                 return false;
1671
1672         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1673         if (ring->irq_refcount++ == 0) {
1674                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1675                         I915_WRITE_IMR(ring,
1676                                        ~(ring->irq_enable_mask |
1677                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1678                 } else {
1679                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1680                 }
1681                 POSTING_READ(RING_IMR(ring->mmio_base));
1682         }
1683         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1684
1685         return true;
1686 }
1687
1688 static void
1689 gen8_ring_put_irq(struct intel_engine_cs *ring)
1690 {
1691         struct drm_device *dev = ring->dev;
1692         struct drm_i915_private *dev_priv = dev->dev_private;
1693         unsigned long flags;
1694
1695         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1696         if (--ring->irq_refcount == 0) {
1697                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1698                         I915_WRITE_IMR(ring,
1699                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1700                 } else {
1701                         I915_WRITE_IMR(ring, ~0);
1702                 }
1703                 POSTING_READ(RING_IMR(ring->mmio_base));
1704         }
1705         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1706 }
1707
1708 static int
1709 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1710                          u64 offset, u32 length,
1711                          unsigned dispatch_flags)
1712 {
1713         int ret;
1714
1715         ret = intel_ring_begin(ring, 2);
1716         if (ret)
1717                 return ret;
1718
1719         intel_ring_emit(ring,
1720                         MI_BATCH_BUFFER_START |
1721                         MI_BATCH_GTT |
1722                         (dispatch_flags & I915_DISPATCH_SECURE ?
1723                          0 : MI_BATCH_NON_SECURE_I965));
1724         intel_ring_emit(ring, offset);
1725         intel_ring_advance(ring);
1726
1727         return 0;
1728 }
1729
1730 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1731 #define I830_BATCH_LIMIT (256*1024)
1732 #define I830_TLB_ENTRIES (2)
1733 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1734 static int
1735 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1736                          u64 offset, u32 len,
1737                          unsigned dispatch_flags)
1738 {
1739         u32 cs_offset = ring->scratch.gtt_offset;
1740         int ret;
1741
1742         ret = intel_ring_begin(ring, 6);
1743         if (ret)
1744                 return ret;
1745
1746         /* Evict the invalid PTE TLBs */
1747         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1748         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1749         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1750         intel_ring_emit(ring, cs_offset);
1751         intel_ring_emit(ring, 0xdeadbeef);
1752         intel_ring_emit(ring, MI_NOOP);
1753         intel_ring_advance(ring);
1754
1755         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1756                 if (len > I830_BATCH_LIMIT)
1757                         return -ENOSPC;
1758
1759                 ret = intel_ring_begin(ring, 6 + 2);
1760                 if (ret)
1761                         return ret;
1762
1763                 /* Blit the batch (which has now all relocs applied) to the
1764                  * stable batch scratch bo area (so that the CS never
1765                  * stumbles over its tlb invalidation bug) ...
1766                  */
1767                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1768                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1769                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1770                 intel_ring_emit(ring, cs_offset);
1771                 intel_ring_emit(ring, 4096);
1772                 intel_ring_emit(ring, offset);
1773
1774                 intel_ring_emit(ring, MI_FLUSH);
1775                 intel_ring_emit(ring, MI_NOOP);
1776                 intel_ring_advance(ring);
1777
1778                 /* ... and execute it. */
1779                 offset = cs_offset;
1780         }
1781
1782         ret = intel_ring_begin(ring, 4);
1783         if (ret)
1784                 return ret;
1785
1786         intel_ring_emit(ring, MI_BATCH_BUFFER);
1787         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1788                                         0 : MI_BATCH_NON_SECURE));
1789         intel_ring_emit(ring, offset + len - 8);
1790         intel_ring_emit(ring, MI_NOOP);
1791         intel_ring_advance(ring);
1792
1793         return 0;
1794 }
1795
1796 static int
1797 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1798                          u64 offset, u32 len,
1799                          unsigned dispatch_flags)
1800 {
1801         int ret;
1802
1803         ret = intel_ring_begin(ring, 2);
1804         if (ret)
1805                 return ret;
1806
1807         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1808         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1809                                         0 : MI_BATCH_NON_SECURE));
1810         intel_ring_advance(ring);
1811
1812         return 0;
1813 }
1814
1815 static void cleanup_status_page(struct intel_engine_cs *ring)
1816 {
1817         struct drm_i915_gem_object *obj;
1818
1819         obj = ring->status_page.obj;
1820         if (obj == NULL)
1821                 return;
1822
1823         kunmap(sg_page(obj->pages->sgl));
1824         i915_gem_object_ggtt_unpin(obj);
1825         drm_gem_object_unreference(&obj->base);
1826         ring->status_page.obj = NULL;
1827 }
1828
1829 static int init_status_page(struct intel_engine_cs *ring)
1830 {
1831         struct drm_i915_gem_object *obj;
1832
1833         if ((obj = ring->status_page.obj) == NULL) {
1834                 unsigned flags;
1835                 int ret;
1836
1837                 obj = i915_gem_alloc_object(ring->dev, 4096);
1838                 if (obj == NULL) {
1839                         DRM_ERROR("Failed to allocate status page\n");
1840                         return -ENOMEM;
1841                 }
1842
1843                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1844                 if (ret)
1845                         goto err_unref;
1846
1847                 flags = 0;
1848                 if (!HAS_LLC(ring->dev))
1849                         /* On g33, we cannot place HWS above 256MiB, so
1850                          * restrict its pinning to the low mappable arena.
1851                          * Though this restriction is not documented for
1852                          * gen4, gen5, or byt, they also behave similarly
1853                          * and hang if the HWS is placed at the top of the
1854                          * GTT. To generalise, it appears that all !llc
1855                          * platforms have issues with us placing the HWS
1856                          * above the mappable region (even though we never
1857                          * actualy map it).
1858                          */
1859                         flags |= PIN_MAPPABLE;
1860                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1861                 if (ret) {
1862 err_unref:
1863                         drm_gem_object_unreference(&obj->base);
1864                         return ret;
1865                 }
1866
1867                 ring->status_page.obj = obj;
1868         }
1869
1870         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1871         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1872         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1873
1874         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1875                         ring->name, ring->status_page.gfx_addr);
1876
1877         return 0;
1878 }
1879
1880 static int init_phys_status_page(struct intel_engine_cs *ring)
1881 {
1882         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1883
1884         if (!dev_priv->status_page_dmah) {
1885                 dev_priv->status_page_dmah =
1886                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1887                 if (!dev_priv->status_page_dmah)
1888                         return -ENOMEM;
1889         }
1890
1891         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1892         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1893
1894         return 0;
1895 }
1896
1897 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1898 {
1899         iounmap(ringbuf->virtual_start);
1900         ringbuf->virtual_start = NULL;
1901         i915_gem_object_ggtt_unpin(ringbuf->obj);
1902 }
1903
1904 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1905                                      struct intel_ringbuffer *ringbuf)
1906 {
1907         struct drm_i915_private *dev_priv = to_i915(dev);
1908         struct drm_i915_gem_object *obj = ringbuf->obj;
1909         int ret;
1910
1911         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1912         if (ret)
1913                 return ret;
1914
1915         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1916         if (ret) {
1917                 i915_gem_object_ggtt_unpin(obj);
1918                 return ret;
1919         }
1920
1921         ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1922                         i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1923         if (ringbuf->virtual_start == NULL) {
1924                 i915_gem_object_ggtt_unpin(obj);
1925                 return -EINVAL;
1926         }
1927
1928         return 0;
1929 }
1930
1931 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1932 {
1933         drm_gem_object_unreference(&ringbuf->obj->base);
1934         ringbuf->obj = NULL;
1935 }
1936
1937 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1938                                struct intel_ringbuffer *ringbuf)
1939 {
1940         struct drm_i915_gem_object *obj;
1941
1942         obj = NULL;
1943         if (!HAS_LLC(dev))
1944                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1945         if (obj == NULL)
1946                 obj = i915_gem_alloc_object(dev, ringbuf->size);
1947         if (obj == NULL)
1948                 return -ENOMEM;
1949
1950         /* mark ring buffers as read-only from GPU side by default */
1951         obj->gt_ro = 1;
1952
1953         ringbuf->obj = obj;
1954
1955         return 0;
1956 }
1957
1958 static int intel_init_ring_buffer(struct drm_device *dev,
1959                                   struct intel_engine_cs *ring)
1960 {
1961         struct intel_ringbuffer *ringbuf;
1962         int ret;
1963
1964         WARN_ON(ring->buffer);
1965
1966         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1967         if (!ringbuf)
1968                 return -ENOMEM;
1969         ring->buffer = ringbuf;
1970
1971         ring->dev = dev;
1972         INIT_LIST_HEAD(&ring->active_list);
1973         INIT_LIST_HEAD(&ring->request_list);
1974         INIT_LIST_HEAD(&ring->execlist_queue);
1975         ringbuf->size = 32 * PAGE_SIZE;
1976         ringbuf->ring = ring;
1977         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1978
1979         init_waitqueue_head(&ring->irq_queue);
1980
1981         if (I915_NEED_GFX_HWS(dev)) {
1982                 ret = init_status_page(ring);
1983                 if (ret)
1984                         goto error;
1985         } else {
1986                 BUG_ON(ring->id != RCS);
1987                 ret = init_phys_status_page(ring);
1988                 if (ret)
1989                         goto error;
1990         }
1991
1992         WARN_ON(ringbuf->obj);
1993
1994         ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1995         if (ret) {
1996                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
1997                                 ring->name, ret);
1998                 goto error;
1999         }
2000
2001         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2002         if (ret) {
2003                 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2004                                 ring->name, ret);
2005                 intel_destroy_ringbuffer_obj(ringbuf);
2006                 goto error;
2007         }
2008
2009         /* Workaround an erratum on the i830 which causes a hang if
2010          * the TAIL pointer points to within the last 2 cachelines
2011          * of the buffer.
2012          */
2013         ringbuf->effective_size = ringbuf->size;
2014         if (IS_I830(dev) || IS_845G(dev))
2015                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2016
2017         ret = i915_cmd_parser_init_ring(ring);
2018         if (ret)
2019                 goto error;
2020
2021         return 0;
2022
2023 error:
2024         kfree(ringbuf);
2025         ring->buffer = NULL;
2026         return ret;
2027 }
2028
2029 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2030 {
2031         struct drm_i915_private *dev_priv;
2032         struct intel_ringbuffer *ringbuf;
2033
2034         if (!intel_ring_initialized(ring))
2035                 return;
2036
2037         dev_priv = to_i915(ring->dev);
2038         ringbuf = ring->buffer;
2039
2040         intel_stop_ring_buffer(ring);
2041         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2042
2043         intel_unpin_ringbuffer_obj(ringbuf);
2044         intel_destroy_ringbuffer_obj(ringbuf);
2045         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2046
2047         if (ring->cleanup)
2048                 ring->cleanup(ring);
2049
2050         cleanup_status_page(ring);
2051
2052         i915_cmd_parser_fini_ring(ring);
2053
2054         kfree(ringbuf);
2055         ring->buffer = NULL;
2056 }
2057
2058 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
2059 {
2060         struct intel_ringbuffer *ringbuf = ring->buffer;
2061         struct drm_i915_gem_request *request;
2062         int ret;
2063
2064         if (intel_ring_space(ringbuf) >= n)
2065                 return 0;
2066
2067         list_for_each_entry(request, &ring->request_list, list) {
2068                 if (__intel_ring_space(request->postfix, ringbuf->tail,
2069                                        ringbuf->size) >= n) {
2070                         break;
2071                 }
2072         }
2073
2074         if (&request->list == &ring->request_list)
2075                 return -ENOSPC;
2076
2077         ret = i915_wait_request(request);
2078         if (ret)
2079                 return ret;
2080
2081         i915_gem_retire_requests_ring(ring);
2082
2083         return 0;
2084 }
2085
2086 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2087 {
2088         struct drm_device *dev = ring->dev;
2089         struct drm_i915_private *dev_priv = dev->dev_private;
2090         struct intel_ringbuffer *ringbuf = ring->buffer;
2091         unsigned long end;
2092         int ret;
2093
2094         ret = intel_ring_wait_request(ring, n);
2095         if (ret != -ENOSPC)
2096                 return ret;
2097
2098         /* force the tail write in case we have been skipping them */
2099         __intel_ring_advance(ring);
2100
2101         /* With GEM the hangcheck timer should kick us out of the loop,
2102          * leaving it early runs the risk of corrupting GEM state (due
2103          * to running on almost untested codepaths). But on resume
2104          * timers don't work yet, so prevent a complete hang in that
2105          * case by choosing an insanely large timeout. */
2106         end = jiffies + 60 * HZ;
2107
2108         ret = 0;
2109         trace_i915_ring_wait_begin(ring);
2110         do {
2111                 if (intel_ring_space(ringbuf) >= n)
2112                         break;
2113                 ringbuf->head = I915_READ_HEAD(ring);
2114                 if (intel_ring_space(ringbuf) >= n)
2115                         break;
2116
2117                 msleep(1);
2118
2119                 if (dev_priv->mm.interruptible && signal_pending(current)) {
2120                         ret = -ERESTARTSYS;
2121                         break;
2122                 }
2123
2124                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2125                                            dev_priv->mm.interruptible);
2126                 if (ret)
2127                         break;
2128
2129                 if (time_after(jiffies, end)) {
2130                         ret = -EBUSY;
2131                         break;
2132                 }
2133         } while (1);
2134         trace_i915_ring_wait_end(ring);
2135         return ret;
2136 }
2137
2138 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
2139 {
2140         uint32_t __iomem *virt;
2141         struct intel_ringbuffer *ringbuf = ring->buffer;
2142         int rem = ringbuf->size - ringbuf->tail;
2143
2144         if (ringbuf->space < rem) {
2145                 int ret = ring_wait_for_space(ring, rem);
2146                 if (ret)
2147                         return ret;
2148         }
2149
2150         virt = ringbuf->virtual_start + ringbuf->tail;
2151         rem /= 4;
2152         while (rem--)
2153                 iowrite32(MI_NOOP, virt++);
2154
2155         ringbuf->tail = 0;
2156         intel_ring_update_space(ringbuf);
2157
2158         return 0;
2159 }
2160
2161 int intel_ring_idle(struct intel_engine_cs *ring)
2162 {
2163         struct drm_i915_gem_request *req;
2164         int ret;
2165
2166         /* We need to add any requests required to flush the objects and ring */
2167         if (ring->outstanding_lazy_request) {
2168                 ret = i915_add_request(ring);
2169                 if (ret)
2170                         return ret;
2171         }
2172
2173         /* Wait upon the last request to be completed */
2174         if (list_empty(&ring->request_list))
2175                 return 0;
2176
2177         req = list_entry(ring->request_list.prev,
2178                            struct drm_i915_gem_request,
2179                            list);
2180
2181         return i915_wait_request(req);
2182 }
2183
2184 static int
2185 intel_ring_alloc_request(struct intel_engine_cs *ring)
2186 {
2187         int ret;
2188         struct drm_i915_gem_request *request;
2189         struct drm_i915_private *dev_private = ring->dev->dev_private;
2190
2191         if (ring->outstanding_lazy_request)
2192                 return 0;
2193
2194         request = kzalloc(sizeof(*request), GFP_KERNEL);
2195         if (request == NULL)
2196                 return -ENOMEM;
2197
2198         kref_init(&request->ref);
2199         request->ring = ring;
2200         request->ringbuf = ring->buffer;
2201         request->uniq = dev_private->request_uniq++;
2202
2203         ret = i915_gem_get_seqno(ring->dev, &request->seqno);
2204         if (ret) {
2205                 kfree(request);
2206                 return ret;
2207         }
2208
2209         ring->outstanding_lazy_request = request;
2210         return 0;
2211 }
2212
2213 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2214                                 int bytes)
2215 {
2216         struct intel_ringbuffer *ringbuf = ring->buffer;
2217         int ret;
2218
2219         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2220                 ret = intel_wrap_ring_buffer(ring);
2221                 if (unlikely(ret))
2222                         return ret;
2223         }
2224
2225         if (unlikely(ringbuf->space < bytes)) {
2226                 ret = ring_wait_for_space(ring, bytes);
2227                 if (unlikely(ret))
2228                         return ret;
2229         }
2230
2231         return 0;
2232 }
2233
2234 int intel_ring_begin(struct intel_engine_cs *ring,
2235                      int num_dwords)
2236 {
2237         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2238         int ret;
2239
2240         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2241                                    dev_priv->mm.interruptible);
2242         if (ret)
2243                 return ret;
2244
2245         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2246         if (ret)
2247                 return ret;
2248
2249         /* Preallocate the olr before touching the ring */
2250         ret = intel_ring_alloc_request(ring);
2251         if (ret)
2252                 return ret;
2253
2254         ring->buffer->space -= num_dwords * sizeof(uint32_t);
2255         return 0;
2256 }
2257
2258 /* Align the ring tail to a cacheline boundary */
2259 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2260 {
2261         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2262         int ret;
2263
2264         if (num_dwords == 0)
2265                 return 0;
2266
2267         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2268         ret = intel_ring_begin(ring, num_dwords);
2269         if (ret)
2270                 return ret;
2271
2272         while (num_dwords--)
2273                 intel_ring_emit(ring, MI_NOOP);
2274
2275         intel_ring_advance(ring);
2276
2277         return 0;
2278 }
2279
2280 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2281 {
2282         struct drm_device *dev = ring->dev;
2283         struct drm_i915_private *dev_priv = dev->dev_private;
2284
2285         BUG_ON(ring->outstanding_lazy_request);
2286
2287         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2288                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2289                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2290                 if (HAS_VEBOX(dev))
2291                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2292         }
2293
2294         ring->set_seqno(ring, seqno);
2295         ring->hangcheck.seqno = seqno;
2296 }
2297
2298 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2299                                      u32 value)
2300 {
2301         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2302
2303        /* Every tail move must follow the sequence below */
2304
2305         /* Disable notification that the ring is IDLE. The GT
2306          * will then assume that it is busy and bring it out of rc6.
2307          */
2308         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2309                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2310
2311         /* Clear the context id. Here be magic! */
2312         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2313
2314         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2315         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2316                       GEN6_BSD_SLEEP_INDICATOR) == 0,
2317                      50))
2318                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2319
2320         /* Now that the ring is fully powered up, update the tail */
2321         I915_WRITE_TAIL(ring, value);
2322         POSTING_READ(RING_TAIL(ring->mmio_base));
2323
2324         /* Let the ring send IDLE messages to the GT again,
2325          * and so let it sleep to conserve power when idle.
2326          */
2327         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2328                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2329 }
2330
2331 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2332                                u32 invalidate, u32 flush)
2333 {
2334         uint32_t cmd;
2335         int ret;
2336
2337         ret = intel_ring_begin(ring, 4);
2338         if (ret)
2339                 return ret;
2340
2341         cmd = MI_FLUSH_DW;
2342         if (INTEL_INFO(ring->dev)->gen >= 8)
2343                 cmd += 1;
2344
2345         /* We always require a command barrier so that subsequent
2346          * commands, such as breadcrumb interrupts, are strictly ordered
2347          * wrt the contents of the write cache being flushed to memory
2348          * (and thus being coherent from the CPU).
2349          */
2350         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2351
2352         /*
2353          * Bspec vol 1c.5 - video engine command streamer:
2354          * "If ENABLED, all TLBs will be invalidated once the flush
2355          * operation is complete. This bit is only valid when the
2356          * Post-Sync Operation field is a value of 1h or 3h."
2357          */
2358         if (invalidate & I915_GEM_GPU_DOMAINS)
2359                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2360
2361         intel_ring_emit(ring, cmd);
2362         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2363         if (INTEL_INFO(ring->dev)->gen >= 8) {
2364                 intel_ring_emit(ring, 0); /* upper addr */
2365                 intel_ring_emit(ring, 0); /* value */
2366         } else  {
2367                 intel_ring_emit(ring, 0);
2368                 intel_ring_emit(ring, MI_NOOP);
2369         }
2370         intel_ring_advance(ring);
2371         return 0;
2372 }
2373
2374 static int
2375 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2376                               u64 offset, u32 len,
2377                               unsigned dispatch_flags)
2378 {
2379         bool ppgtt = USES_PPGTT(ring->dev) &&
2380                         !(dispatch_flags & I915_DISPATCH_SECURE);
2381         int ret;
2382
2383         ret = intel_ring_begin(ring, 4);
2384         if (ret)
2385                 return ret;
2386
2387         /* FIXME(BDW): Address space and security selectors. */
2388         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2389         intel_ring_emit(ring, lower_32_bits(offset));
2390         intel_ring_emit(ring, upper_32_bits(offset));
2391         intel_ring_emit(ring, MI_NOOP);
2392         intel_ring_advance(ring);
2393
2394         return 0;
2395 }
2396
2397 static int
2398 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2399                              u64 offset, u32 len,
2400                              unsigned dispatch_flags)
2401 {
2402         int ret;
2403
2404         ret = intel_ring_begin(ring, 2);
2405         if (ret)
2406                 return ret;
2407
2408         intel_ring_emit(ring,
2409                         MI_BATCH_BUFFER_START |
2410                         (dispatch_flags & I915_DISPATCH_SECURE ?
2411                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2412         /* bit0-7 is the length on GEN6+ */
2413         intel_ring_emit(ring, offset);
2414         intel_ring_advance(ring);
2415
2416         return 0;
2417 }
2418
2419 static int
2420 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2421                               u64 offset, u32 len,
2422                               unsigned dispatch_flags)
2423 {
2424         int ret;
2425
2426         ret = intel_ring_begin(ring, 2);
2427         if (ret)
2428                 return ret;
2429
2430         intel_ring_emit(ring,
2431                         MI_BATCH_BUFFER_START |
2432                         (dispatch_flags & I915_DISPATCH_SECURE ?
2433                          0 : MI_BATCH_NON_SECURE_I965));
2434         /* bit0-7 is the length on GEN6+ */
2435         intel_ring_emit(ring, offset);
2436         intel_ring_advance(ring);
2437
2438         return 0;
2439 }
2440
2441 /* Blitter support (SandyBridge+) */
2442
2443 static int gen6_ring_flush(struct intel_engine_cs *ring,
2444                            u32 invalidate, u32 flush)
2445 {
2446         struct drm_device *dev = ring->dev;
2447         uint32_t cmd;
2448         int ret;
2449
2450         ret = intel_ring_begin(ring, 4);
2451         if (ret)
2452                 return ret;
2453
2454         cmd = MI_FLUSH_DW;
2455         if (INTEL_INFO(dev)->gen >= 8)
2456                 cmd += 1;
2457
2458         /* We always require a command barrier so that subsequent
2459          * commands, such as breadcrumb interrupts, are strictly ordered
2460          * wrt the contents of the write cache being flushed to memory
2461          * (and thus being coherent from the CPU).
2462          */
2463         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2464
2465         /*
2466          * Bspec vol 1c.3 - blitter engine command streamer:
2467          * "If ENABLED, all TLBs will be invalidated once the flush
2468          * operation is complete. This bit is only valid when the
2469          * Post-Sync Operation field is a value of 1h or 3h."
2470          */
2471         if (invalidate & I915_GEM_DOMAIN_RENDER)
2472                 cmd |= MI_INVALIDATE_TLB;
2473         intel_ring_emit(ring, cmd);
2474         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2475         if (INTEL_INFO(dev)->gen >= 8) {
2476                 intel_ring_emit(ring, 0); /* upper addr */
2477                 intel_ring_emit(ring, 0); /* value */
2478         } else  {
2479                 intel_ring_emit(ring, 0);
2480                 intel_ring_emit(ring, MI_NOOP);
2481         }
2482         intel_ring_advance(ring);
2483
2484         return 0;
2485 }
2486
2487 int intel_init_render_ring_buffer(struct drm_device *dev)
2488 {
2489         struct drm_i915_private *dev_priv = dev->dev_private;
2490         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2491         struct drm_i915_gem_object *obj;
2492         int ret;
2493
2494         ring->name = "render ring";
2495         ring->id = RCS;
2496         ring->mmio_base = RENDER_RING_BASE;
2497
2498         if (INTEL_INFO(dev)->gen >= 8) {
2499                 if (i915_semaphore_is_enabled(dev)) {
2500                         obj = i915_gem_alloc_object(dev, 4096);
2501                         if (obj == NULL) {
2502                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2503                                 i915.semaphores = 0;
2504                         } else {
2505                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2506                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2507                                 if (ret != 0) {
2508                                         drm_gem_object_unreference(&obj->base);
2509                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2510                                         i915.semaphores = 0;
2511                                 } else
2512                                         dev_priv->semaphore_obj = obj;
2513                         }
2514                 }
2515
2516                 ring->init_context = intel_rcs_ctx_init;
2517                 ring->add_request = gen6_add_request;
2518                 ring->flush = gen8_render_ring_flush;
2519                 ring->irq_get = gen8_ring_get_irq;
2520                 ring->irq_put = gen8_ring_put_irq;
2521                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2522                 ring->get_seqno = gen6_ring_get_seqno;
2523                 ring->set_seqno = ring_set_seqno;
2524                 if (i915_semaphore_is_enabled(dev)) {
2525                         WARN_ON(!dev_priv->semaphore_obj);
2526                         ring->semaphore.sync_to = gen8_ring_sync;
2527                         ring->semaphore.signal = gen8_rcs_signal;
2528                         GEN8_RING_SEMAPHORE_INIT;
2529                 }
2530         } else if (INTEL_INFO(dev)->gen >= 6) {
2531                 ring->add_request = gen6_add_request;
2532                 ring->flush = gen7_render_ring_flush;
2533                 if (INTEL_INFO(dev)->gen == 6)
2534                         ring->flush = gen6_render_ring_flush;
2535                 ring->irq_get = gen6_ring_get_irq;
2536                 ring->irq_put = gen6_ring_put_irq;
2537                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2538                 ring->get_seqno = gen6_ring_get_seqno;
2539                 ring->set_seqno = ring_set_seqno;
2540                 if (i915_semaphore_is_enabled(dev)) {
2541                         ring->semaphore.sync_to = gen6_ring_sync;
2542                         ring->semaphore.signal = gen6_signal;
2543                         /*
2544                          * The current semaphore is only applied on pre-gen8
2545                          * platform.  And there is no VCS2 ring on the pre-gen8
2546                          * platform. So the semaphore between RCS and VCS2 is
2547                          * initialized as INVALID.  Gen8 will initialize the
2548                          * sema between VCS2 and RCS later.
2549                          */
2550                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2551                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2552                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2553                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2554                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2555                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2556                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2557                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2558                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2559                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2560                 }
2561         } else if (IS_GEN5(dev)) {
2562                 ring->add_request = pc_render_add_request;
2563                 ring->flush = gen4_render_ring_flush;
2564                 ring->get_seqno = pc_render_get_seqno;
2565                 ring->set_seqno = pc_render_set_seqno;
2566                 ring->irq_get = gen5_ring_get_irq;
2567                 ring->irq_put = gen5_ring_put_irq;
2568                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2569                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2570         } else {
2571                 ring->add_request = i9xx_add_request;
2572                 if (INTEL_INFO(dev)->gen < 4)
2573                         ring->flush = gen2_render_ring_flush;
2574                 else
2575                         ring->flush = gen4_render_ring_flush;
2576                 ring->get_seqno = ring_get_seqno;
2577                 ring->set_seqno = ring_set_seqno;
2578                 if (IS_GEN2(dev)) {
2579                         ring->irq_get = i8xx_ring_get_irq;
2580                         ring->irq_put = i8xx_ring_put_irq;
2581                 } else {
2582                         ring->irq_get = i9xx_ring_get_irq;
2583                         ring->irq_put = i9xx_ring_put_irq;
2584                 }
2585                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2586         }
2587         ring->write_tail = ring_write_tail;
2588
2589         if (IS_HASWELL(dev))
2590                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2591         else if (IS_GEN8(dev))
2592                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2593         else if (INTEL_INFO(dev)->gen >= 6)
2594                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2595         else if (INTEL_INFO(dev)->gen >= 4)
2596                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2597         else if (IS_I830(dev) || IS_845G(dev))
2598                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2599         else
2600                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2601         ring->init_hw = init_render_ring;
2602         ring->cleanup = render_ring_cleanup;
2603
2604         /* Workaround batchbuffer to combat CS tlb bug. */
2605         if (HAS_BROKEN_CS_TLB(dev)) {
2606                 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2607                 if (obj == NULL) {
2608                         DRM_ERROR("Failed to allocate batch bo\n");
2609                         return -ENOMEM;
2610                 }
2611
2612                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2613                 if (ret != 0) {
2614                         drm_gem_object_unreference(&obj->base);
2615                         DRM_ERROR("Failed to ping batch bo\n");
2616                         return ret;
2617                 }
2618
2619                 ring->scratch.obj = obj;
2620                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2621         }
2622
2623         ret = intel_init_ring_buffer(dev, ring);
2624         if (ret)
2625                 return ret;
2626
2627         if (INTEL_INFO(dev)->gen >= 5) {
2628                 ret = intel_init_pipe_control(ring);
2629                 if (ret)
2630                         return ret;
2631         }
2632
2633         return 0;
2634 }
2635
2636 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2637 {
2638         struct drm_i915_private *dev_priv = dev->dev_private;
2639         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2640
2641         ring->name = "bsd ring";
2642         ring->id = VCS;
2643
2644         ring->write_tail = ring_write_tail;
2645         if (INTEL_INFO(dev)->gen >= 6) {
2646                 ring->mmio_base = GEN6_BSD_RING_BASE;
2647                 /* gen6 bsd needs a special wa for tail updates */
2648                 if (IS_GEN6(dev))
2649                         ring->write_tail = gen6_bsd_ring_write_tail;
2650                 ring->flush = gen6_bsd_ring_flush;
2651                 ring->add_request = gen6_add_request;
2652                 ring->get_seqno = gen6_ring_get_seqno;
2653                 ring->set_seqno = ring_set_seqno;
2654                 if (INTEL_INFO(dev)->gen >= 8) {
2655                         ring->irq_enable_mask =
2656                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2657                         ring->irq_get = gen8_ring_get_irq;
2658                         ring->irq_put = gen8_ring_put_irq;
2659                         ring->dispatch_execbuffer =
2660                                 gen8_ring_dispatch_execbuffer;
2661                         if (i915_semaphore_is_enabled(dev)) {
2662                                 ring->semaphore.sync_to = gen8_ring_sync;
2663                                 ring->semaphore.signal = gen8_xcs_signal;
2664                                 GEN8_RING_SEMAPHORE_INIT;
2665                         }
2666                 } else {
2667                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2668                         ring->irq_get = gen6_ring_get_irq;
2669                         ring->irq_put = gen6_ring_put_irq;
2670                         ring->dispatch_execbuffer =
2671                                 gen6_ring_dispatch_execbuffer;
2672                         if (i915_semaphore_is_enabled(dev)) {
2673                                 ring->semaphore.sync_to = gen6_ring_sync;
2674                                 ring->semaphore.signal = gen6_signal;
2675                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2676                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2677                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2678                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2679                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2680                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2681                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2682                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2683                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2684                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2685                         }
2686                 }
2687         } else {
2688                 ring->mmio_base = BSD_RING_BASE;
2689                 ring->flush = bsd_ring_flush;
2690                 ring->add_request = i9xx_add_request;
2691                 ring->get_seqno = ring_get_seqno;
2692                 ring->set_seqno = ring_set_seqno;
2693                 if (IS_GEN5(dev)) {
2694                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2695                         ring->irq_get = gen5_ring_get_irq;
2696                         ring->irq_put = gen5_ring_put_irq;
2697                 } else {
2698                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2699                         ring->irq_get = i9xx_ring_get_irq;
2700                         ring->irq_put = i9xx_ring_put_irq;
2701                 }
2702                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2703         }
2704         ring->init_hw = init_ring_common;
2705
2706         return intel_init_ring_buffer(dev, ring);
2707 }
2708
2709 /**
2710  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2711  */
2712 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2713 {
2714         struct drm_i915_private *dev_priv = dev->dev_private;
2715         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2716
2717         ring->name = "bsd2 ring";
2718         ring->id = VCS2;
2719
2720         ring->write_tail = ring_write_tail;
2721         ring->mmio_base = GEN8_BSD2_RING_BASE;
2722         ring->flush = gen6_bsd_ring_flush;
2723         ring->add_request = gen6_add_request;
2724         ring->get_seqno = gen6_ring_get_seqno;
2725         ring->set_seqno = ring_set_seqno;
2726         ring->irq_enable_mask =
2727                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2728         ring->irq_get = gen8_ring_get_irq;
2729         ring->irq_put = gen8_ring_put_irq;
2730         ring->dispatch_execbuffer =
2731                         gen8_ring_dispatch_execbuffer;
2732         if (i915_semaphore_is_enabled(dev)) {
2733                 ring->semaphore.sync_to = gen8_ring_sync;
2734                 ring->semaphore.signal = gen8_xcs_signal;
2735                 GEN8_RING_SEMAPHORE_INIT;
2736         }
2737         ring->init_hw = init_ring_common;
2738
2739         return intel_init_ring_buffer(dev, ring);
2740 }
2741
2742 int intel_init_blt_ring_buffer(struct drm_device *dev)
2743 {
2744         struct drm_i915_private *dev_priv = dev->dev_private;
2745         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2746
2747         ring->name = "blitter ring";
2748         ring->id = BCS;
2749
2750         ring->mmio_base = BLT_RING_BASE;
2751         ring->write_tail = ring_write_tail;
2752         ring->flush = gen6_ring_flush;
2753         ring->add_request = gen6_add_request;
2754         ring->get_seqno = gen6_ring_get_seqno;
2755         ring->set_seqno = ring_set_seqno;
2756         if (INTEL_INFO(dev)->gen >= 8) {
2757                 ring->irq_enable_mask =
2758                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2759                 ring->irq_get = gen8_ring_get_irq;
2760                 ring->irq_put = gen8_ring_put_irq;
2761                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2762                 if (i915_semaphore_is_enabled(dev)) {
2763                         ring->semaphore.sync_to = gen8_ring_sync;
2764                         ring->semaphore.signal = gen8_xcs_signal;
2765                         GEN8_RING_SEMAPHORE_INIT;
2766                 }
2767         } else {
2768                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2769                 ring->irq_get = gen6_ring_get_irq;
2770                 ring->irq_put = gen6_ring_put_irq;
2771                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2772                 if (i915_semaphore_is_enabled(dev)) {
2773                         ring->semaphore.signal = gen6_signal;
2774                         ring->semaphore.sync_to = gen6_ring_sync;
2775                         /*
2776                          * The current semaphore is only applied on pre-gen8
2777                          * platform.  And there is no VCS2 ring on the pre-gen8
2778                          * platform. So the semaphore between BCS and VCS2 is
2779                          * initialized as INVALID.  Gen8 will initialize the
2780                          * sema between BCS and VCS2 later.
2781                          */
2782                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2783                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2784                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2785                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2786                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2787                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2788                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2789                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2790                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2791                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2792                 }
2793         }
2794         ring->init_hw = init_ring_common;
2795
2796         return intel_init_ring_buffer(dev, ring);
2797 }
2798
2799 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2800 {
2801         struct drm_i915_private *dev_priv = dev->dev_private;
2802         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2803
2804         ring->name = "video enhancement ring";
2805         ring->id = VECS;
2806
2807         ring->mmio_base = VEBOX_RING_BASE;
2808         ring->write_tail = ring_write_tail;
2809         ring->flush = gen6_ring_flush;
2810         ring->add_request = gen6_add_request;
2811         ring->get_seqno = gen6_ring_get_seqno;
2812         ring->set_seqno = ring_set_seqno;
2813
2814         if (INTEL_INFO(dev)->gen >= 8) {
2815                 ring->irq_enable_mask =
2816                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2817                 ring->irq_get = gen8_ring_get_irq;
2818                 ring->irq_put = gen8_ring_put_irq;
2819                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2820                 if (i915_semaphore_is_enabled(dev)) {
2821                         ring->semaphore.sync_to = gen8_ring_sync;
2822                         ring->semaphore.signal = gen8_xcs_signal;
2823                         GEN8_RING_SEMAPHORE_INIT;
2824                 }
2825         } else {
2826                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2827                 ring->irq_get = hsw_vebox_get_irq;
2828                 ring->irq_put = hsw_vebox_put_irq;
2829                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2830                 if (i915_semaphore_is_enabled(dev)) {
2831                         ring->semaphore.sync_to = gen6_ring_sync;
2832                         ring->semaphore.signal = gen6_signal;
2833                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2834                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2835                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2836                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2837                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2838                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2839                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2840                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2841                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2842                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2843                 }
2844         }
2845         ring->init_hw = init_ring_common;
2846
2847         return intel_init_ring_buffer(dev, ring);
2848 }
2849
2850 int
2851 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2852 {
2853         int ret;
2854
2855         if (!ring->gpu_caches_dirty)
2856                 return 0;
2857
2858         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2859         if (ret)
2860                 return ret;
2861
2862         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2863
2864         ring->gpu_caches_dirty = false;
2865         return 0;
2866 }
2867
2868 int
2869 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2870 {
2871         uint32_t flush_domains;
2872         int ret;
2873
2874         flush_domains = 0;
2875         if (ring->gpu_caches_dirty)
2876                 flush_domains = I915_GEM_GPU_DOMAINS;
2877
2878         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2879         if (ret)
2880                 return ret;
2881
2882         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2883
2884         ring->gpu_caches_dirty = false;
2885         return 0;
2886 }
2887
2888 void
2889 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2890 {
2891         int ret;
2892
2893         if (!intel_ring_initialized(ring))
2894                 return;
2895
2896         ret = intel_ring_idle(ring);
2897         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2898                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2899                           ring->name, ret);
2900
2901         stop_ring(ring);
2902 }