Upgrade to 4.4.50-rt62
[kvmfornfv.git] / kernel / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35  * RC6 is a special power stage which allows the GPU to enter an very
36  * low-voltage mode when idle, using down to 0V while at this stage.  This
37  * stage is entered automatically when the GPU is idle when RC6 support is
38  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39  *
40  * There are different RC6 modes available in Intel GPU, which differentiate
41  * among each other with the latency required to enter and leave RC6 and
42  * voltage consumed by the GPU in different states.
43  *
44  * The combination of the following flags define which states GPU is allowed
45  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46  * RC6pp is deepest RC6. Their support by hardware varies according to the
47  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48  * which brings the most power savings; deeper states save more power, but
49  * require higher latency to switch to and wake up.
50  */
51 #define INTEL_RC6_ENABLE                        (1<<0)
52 #define INTEL_RC6p_ENABLE                       (1<<1)
53 #define INTEL_RC6pp_ENABLE                      (1<<2)
54
55 static void bxt_init_clock_gating(struct drm_device *dev)
56 {
57         struct drm_i915_private *dev_priv = dev->dev_private;
58
59         /* WaDisableSDEUnitClockGating:bxt */
60         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
61                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
62
63         /*
64          * FIXME:
65          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
66          */
67         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
68                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
69 }
70
71 static void i915_pineview_get_mem_freq(struct drm_device *dev)
72 {
73         struct drm_i915_private *dev_priv = dev->dev_private;
74         u32 tmp;
75
76         tmp = I915_READ(CLKCFG);
77
78         switch (tmp & CLKCFG_FSB_MASK) {
79         case CLKCFG_FSB_533:
80                 dev_priv->fsb_freq = 533; /* 133*4 */
81                 break;
82         case CLKCFG_FSB_800:
83                 dev_priv->fsb_freq = 800; /* 200*4 */
84                 break;
85         case CLKCFG_FSB_667:
86                 dev_priv->fsb_freq =  667; /* 167*4 */
87                 break;
88         case CLKCFG_FSB_400:
89                 dev_priv->fsb_freq = 400; /* 100*4 */
90                 break;
91         }
92
93         switch (tmp & CLKCFG_MEM_MASK) {
94         case CLKCFG_MEM_533:
95                 dev_priv->mem_freq = 533;
96                 break;
97         case CLKCFG_MEM_667:
98                 dev_priv->mem_freq = 667;
99                 break;
100         case CLKCFG_MEM_800:
101                 dev_priv->mem_freq = 800;
102                 break;
103         }
104
105         /* detect pineview DDR3 setting */
106         tmp = I915_READ(CSHRDDR3CTL);
107         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
108 }
109
110 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
111 {
112         struct drm_i915_private *dev_priv = dev->dev_private;
113         u16 ddrpll, csipll;
114
115         ddrpll = I915_READ16(DDRMPLL1);
116         csipll = I915_READ16(CSIPLL0);
117
118         switch (ddrpll & 0xff) {
119         case 0xc:
120                 dev_priv->mem_freq = 800;
121                 break;
122         case 0x10:
123                 dev_priv->mem_freq = 1066;
124                 break;
125         case 0x14:
126                 dev_priv->mem_freq = 1333;
127                 break;
128         case 0x18:
129                 dev_priv->mem_freq = 1600;
130                 break;
131         default:
132                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
133                                  ddrpll & 0xff);
134                 dev_priv->mem_freq = 0;
135                 break;
136         }
137
138         dev_priv->ips.r_t = dev_priv->mem_freq;
139
140         switch (csipll & 0x3ff) {
141         case 0x00c:
142                 dev_priv->fsb_freq = 3200;
143                 break;
144         case 0x00e:
145                 dev_priv->fsb_freq = 3733;
146                 break;
147         case 0x010:
148                 dev_priv->fsb_freq = 4266;
149                 break;
150         case 0x012:
151                 dev_priv->fsb_freq = 4800;
152                 break;
153         case 0x014:
154                 dev_priv->fsb_freq = 5333;
155                 break;
156         case 0x016:
157                 dev_priv->fsb_freq = 5866;
158                 break;
159         case 0x018:
160                 dev_priv->fsb_freq = 6400;
161                 break;
162         default:
163                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
164                                  csipll & 0x3ff);
165                 dev_priv->fsb_freq = 0;
166                 break;
167         }
168
169         if (dev_priv->fsb_freq == 3200) {
170                 dev_priv->ips.c_m = 0;
171         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
172                 dev_priv->ips.c_m = 1;
173         } else {
174                 dev_priv->ips.c_m = 2;
175         }
176 }
177
178 static const struct cxsr_latency cxsr_latency_table[] = {
179         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
180         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
181         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
182         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
183         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
184
185         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
186         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
187         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
188         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
189         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
190
191         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
192         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
193         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
194         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
195         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
196
197         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
198         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
199         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
200         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
201         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
202
203         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
204         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
205         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
206         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
207         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
208
209         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
210         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
211         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
212         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
213         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
214 };
215
216 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
217                                                          int is_ddr3,
218                                                          int fsb,
219                                                          int mem)
220 {
221         const struct cxsr_latency *latency;
222         int i;
223
224         if (fsb == 0 || mem == 0)
225                 return NULL;
226
227         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
228                 latency = &cxsr_latency_table[i];
229                 if (is_desktop == latency->is_desktop &&
230                     is_ddr3 == latency->is_ddr3 &&
231                     fsb == latency->fsb_freq && mem == latency->mem_freq)
232                         return latency;
233         }
234
235         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
236
237         return NULL;
238 }
239
240 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
241 {
242         u32 val;
243
244         mutex_lock(&dev_priv->rps.hw_lock);
245
246         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
247         if (enable)
248                 val &= ~FORCE_DDR_HIGH_FREQ;
249         else
250                 val |= FORCE_DDR_HIGH_FREQ;
251         val &= ~FORCE_DDR_LOW_FREQ;
252         val |= FORCE_DDR_FREQ_REQ_ACK;
253         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
254
255         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
256                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
257                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
258
259         mutex_unlock(&dev_priv->rps.hw_lock);
260 }
261
262 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
263 {
264         u32 val;
265
266         mutex_lock(&dev_priv->rps.hw_lock);
267
268         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
269         if (enable)
270                 val |= DSP_MAXFIFO_PM5_ENABLE;
271         else
272                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
273         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
274
275         mutex_unlock(&dev_priv->rps.hw_lock);
276 }
277
278 #define FW_WM(value, plane) \
279         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
280
281 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
282 {
283         struct drm_device *dev = dev_priv->dev;
284         u32 val;
285
286         if (IS_VALLEYVIEW(dev)) {
287                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
288                 POSTING_READ(FW_BLC_SELF_VLV);
289                 dev_priv->wm.vlv.cxsr = enable;
290         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
291                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
292                 POSTING_READ(FW_BLC_SELF);
293         } else if (IS_PINEVIEW(dev)) {
294                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
295                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
296                 I915_WRITE(DSPFW3, val);
297                 POSTING_READ(DSPFW3);
298         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
299                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
300                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
301                 I915_WRITE(FW_BLC_SELF, val);
302                 POSTING_READ(FW_BLC_SELF);
303         } else if (IS_I915GM(dev)) {
304                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
305                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
306                 I915_WRITE(INSTPM, val);
307                 POSTING_READ(INSTPM);
308         } else {
309                 return;
310         }
311
312         DRM_DEBUG_KMS("memory self-refresh is %s\n",
313                       enable ? "enabled" : "disabled");
314 }
315
316
317 /*
318  * Latency for FIFO fetches is dependent on several factors:
319  *   - memory configuration (speed, channels)
320  *   - chipset
321  *   - current MCH state
322  * It can be fairly high in some situations, so here we assume a fairly
323  * pessimal value.  It's a tradeoff between extra memory fetches (if we
324  * set this value too high, the FIFO will fetch frequently to stay full)
325  * and power consumption (set it too low to save power and we might see
326  * FIFO underruns and display "flicker").
327  *
328  * A value of 5us seems to be a good balance; safe for very low end
329  * platforms but not overly aggressive on lower latency configs.
330  */
331 static const int pessimal_latency_ns = 5000;
332
333 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
334         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
335
336 static int vlv_get_fifo_size(struct drm_device *dev,
337                               enum pipe pipe, int plane)
338 {
339         struct drm_i915_private *dev_priv = dev->dev_private;
340         int sprite0_start, sprite1_start, size;
341
342         switch (pipe) {
343                 uint32_t dsparb, dsparb2, dsparb3;
344         case PIPE_A:
345                 dsparb = I915_READ(DSPARB);
346                 dsparb2 = I915_READ(DSPARB2);
347                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
348                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
349                 break;
350         case PIPE_B:
351                 dsparb = I915_READ(DSPARB);
352                 dsparb2 = I915_READ(DSPARB2);
353                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
354                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
355                 break;
356         case PIPE_C:
357                 dsparb2 = I915_READ(DSPARB2);
358                 dsparb3 = I915_READ(DSPARB3);
359                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
360                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
361                 break;
362         default:
363                 return 0;
364         }
365
366         switch (plane) {
367         case 0:
368                 size = sprite0_start;
369                 break;
370         case 1:
371                 size = sprite1_start - sprite0_start;
372                 break;
373         case 2:
374                 size = 512 - 1 - sprite1_start;
375                 break;
376         default:
377                 return 0;
378         }
379
380         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
381                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
382                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
383                       size);
384
385         return size;
386 }
387
388 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
389 {
390         struct drm_i915_private *dev_priv = dev->dev_private;
391         uint32_t dsparb = I915_READ(DSPARB);
392         int size;
393
394         size = dsparb & 0x7f;
395         if (plane)
396                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
397
398         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
399                       plane ? "B" : "A", size);
400
401         return size;
402 }
403
404 static int i830_get_fifo_size(struct drm_device *dev, int plane)
405 {
406         struct drm_i915_private *dev_priv = dev->dev_private;
407         uint32_t dsparb = I915_READ(DSPARB);
408         int size;
409
410         size = dsparb & 0x1ff;
411         if (plane)
412                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
413         size >>= 1; /* Convert to cachelines */
414
415         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
416                       plane ? "B" : "A", size);
417
418         return size;
419 }
420
421 static int i845_get_fifo_size(struct drm_device *dev, int plane)
422 {
423         struct drm_i915_private *dev_priv = dev->dev_private;
424         uint32_t dsparb = I915_READ(DSPARB);
425         int size;
426
427         size = dsparb & 0x7f;
428         size >>= 2; /* Convert to cachelines */
429
430         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
431                       plane ? "B" : "A",
432                       size);
433
434         return size;
435 }
436
437 /* Pineview has different values for various configs */
438 static const struct intel_watermark_params pineview_display_wm = {
439         .fifo_size = PINEVIEW_DISPLAY_FIFO,
440         .max_wm = PINEVIEW_MAX_WM,
441         .default_wm = PINEVIEW_DFT_WM,
442         .guard_size = PINEVIEW_GUARD_WM,
443         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
444 };
445 static const struct intel_watermark_params pineview_display_hplloff_wm = {
446         .fifo_size = PINEVIEW_DISPLAY_FIFO,
447         .max_wm = PINEVIEW_MAX_WM,
448         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
449         .guard_size = PINEVIEW_GUARD_WM,
450         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
451 };
452 static const struct intel_watermark_params pineview_cursor_wm = {
453         .fifo_size = PINEVIEW_CURSOR_FIFO,
454         .max_wm = PINEVIEW_CURSOR_MAX_WM,
455         .default_wm = PINEVIEW_CURSOR_DFT_WM,
456         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
457         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
458 };
459 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
460         .fifo_size = PINEVIEW_CURSOR_FIFO,
461         .max_wm = PINEVIEW_CURSOR_MAX_WM,
462         .default_wm = PINEVIEW_CURSOR_DFT_WM,
463         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
464         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
465 };
466 static const struct intel_watermark_params g4x_wm_info = {
467         .fifo_size = G4X_FIFO_SIZE,
468         .max_wm = G4X_MAX_WM,
469         .default_wm = G4X_MAX_WM,
470         .guard_size = 2,
471         .cacheline_size = G4X_FIFO_LINE_SIZE,
472 };
473 static const struct intel_watermark_params g4x_cursor_wm_info = {
474         .fifo_size = I965_CURSOR_FIFO,
475         .max_wm = I965_CURSOR_MAX_WM,
476         .default_wm = I965_CURSOR_DFT_WM,
477         .guard_size = 2,
478         .cacheline_size = G4X_FIFO_LINE_SIZE,
479 };
480 static const struct intel_watermark_params valleyview_wm_info = {
481         .fifo_size = VALLEYVIEW_FIFO_SIZE,
482         .max_wm = VALLEYVIEW_MAX_WM,
483         .default_wm = VALLEYVIEW_MAX_WM,
484         .guard_size = 2,
485         .cacheline_size = G4X_FIFO_LINE_SIZE,
486 };
487 static const struct intel_watermark_params valleyview_cursor_wm_info = {
488         .fifo_size = I965_CURSOR_FIFO,
489         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
490         .default_wm = I965_CURSOR_DFT_WM,
491         .guard_size = 2,
492         .cacheline_size = G4X_FIFO_LINE_SIZE,
493 };
494 static const struct intel_watermark_params i965_cursor_wm_info = {
495         .fifo_size = I965_CURSOR_FIFO,
496         .max_wm = I965_CURSOR_MAX_WM,
497         .default_wm = I965_CURSOR_DFT_WM,
498         .guard_size = 2,
499         .cacheline_size = I915_FIFO_LINE_SIZE,
500 };
501 static const struct intel_watermark_params i945_wm_info = {
502         .fifo_size = I945_FIFO_SIZE,
503         .max_wm = I915_MAX_WM,
504         .default_wm = 1,
505         .guard_size = 2,
506         .cacheline_size = I915_FIFO_LINE_SIZE,
507 };
508 static const struct intel_watermark_params i915_wm_info = {
509         .fifo_size = I915_FIFO_SIZE,
510         .max_wm = I915_MAX_WM,
511         .default_wm = 1,
512         .guard_size = 2,
513         .cacheline_size = I915_FIFO_LINE_SIZE,
514 };
515 static const struct intel_watermark_params i830_a_wm_info = {
516         .fifo_size = I855GM_FIFO_SIZE,
517         .max_wm = I915_MAX_WM,
518         .default_wm = 1,
519         .guard_size = 2,
520         .cacheline_size = I830_FIFO_LINE_SIZE,
521 };
522 static const struct intel_watermark_params i830_bc_wm_info = {
523         .fifo_size = I855GM_FIFO_SIZE,
524         .max_wm = I915_MAX_WM/2,
525         .default_wm = 1,
526         .guard_size = 2,
527         .cacheline_size = I830_FIFO_LINE_SIZE,
528 };
529 static const struct intel_watermark_params i845_wm_info = {
530         .fifo_size = I830_FIFO_SIZE,
531         .max_wm = I915_MAX_WM,
532         .default_wm = 1,
533         .guard_size = 2,
534         .cacheline_size = I830_FIFO_LINE_SIZE,
535 };
536
537 /**
538  * intel_calculate_wm - calculate watermark level
539  * @clock_in_khz: pixel clock
540  * @wm: chip FIFO params
541  * @pixel_size: display pixel size
542  * @latency_ns: memory latency for the platform
543  *
544  * Calculate the watermark level (the level at which the display plane will
545  * start fetching from memory again).  Each chip has a different display
546  * FIFO size and allocation, so the caller needs to figure that out and pass
547  * in the correct intel_watermark_params structure.
548  *
549  * As the pixel clock runs, the FIFO will be drained at a rate that depends
550  * on the pixel size.  When it reaches the watermark level, it'll start
551  * fetching FIFO line sized based chunks from memory until the FIFO fills
552  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
553  * will occur, and a display engine hang could result.
554  */
555 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
556                                         const struct intel_watermark_params *wm,
557                                         int fifo_size,
558                                         int pixel_size,
559                                         unsigned long latency_ns)
560 {
561         long entries_required, wm_size;
562
563         /*
564          * Note: we need to make sure we don't overflow for various clock &
565          * latency values.
566          * clocks go from a few thousand to several hundred thousand.
567          * latency is usually a few thousand
568          */
569         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
570                 1000;
571         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
572
573         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
574
575         wm_size = fifo_size - (entries_required + wm->guard_size);
576
577         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
578
579         /* Don't promote wm_size to unsigned... */
580         if (wm_size > (long)wm->max_wm)
581                 wm_size = wm->max_wm;
582         if (wm_size <= 0)
583                 wm_size = wm->default_wm;
584
585         /*
586          * Bspec seems to indicate that the value shouldn't be lower than
587          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
588          * Lets go for 8 which is the burst size since certain platforms
589          * already use a hardcoded 8 (which is what the spec says should be
590          * done).
591          */
592         if (wm_size <= 8)
593                 wm_size = 8;
594
595         return wm_size;
596 }
597
598 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
599 {
600         struct drm_crtc *crtc, *enabled = NULL;
601
602         for_each_crtc(dev, crtc) {
603                 if (intel_crtc_active(crtc)) {
604                         if (enabled)
605                                 return NULL;
606                         enabled = crtc;
607                 }
608         }
609
610         return enabled;
611 }
612
613 static void pineview_update_wm(struct drm_crtc *unused_crtc)
614 {
615         struct drm_device *dev = unused_crtc->dev;
616         struct drm_i915_private *dev_priv = dev->dev_private;
617         struct drm_crtc *crtc;
618         const struct cxsr_latency *latency;
619         u32 reg;
620         unsigned long wm;
621
622         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
623                                          dev_priv->fsb_freq, dev_priv->mem_freq);
624         if (!latency) {
625                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
626                 intel_set_memory_cxsr(dev_priv, false);
627                 return;
628         }
629
630         crtc = single_enabled_crtc(dev);
631         if (crtc) {
632                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
633                 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
634                 int clock = adjusted_mode->crtc_clock;
635
636                 /* Display SR */
637                 wm = intel_calculate_wm(clock, &pineview_display_wm,
638                                         pineview_display_wm.fifo_size,
639                                         pixel_size, latency->display_sr);
640                 reg = I915_READ(DSPFW1);
641                 reg &= ~DSPFW_SR_MASK;
642                 reg |= FW_WM(wm, SR);
643                 I915_WRITE(DSPFW1, reg);
644                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
645
646                 /* cursor SR */
647                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
648                                         pineview_display_wm.fifo_size,
649                                         pixel_size, latency->cursor_sr);
650                 reg = I915_READ(DSPFW3);
651                 reg &= ~DSPFW_CURSOR_SR_MASK;
652                 reg |= FW_WM(wm, CURSOR_SR);
653                 I915_WRITE(DSPFW3, reg);
654
655                 /* Display HPLL off SR */
656                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
657                                         pineview_display_hplloff_wm.fifo_size,
658                                         pixel_size, latency->display_hpll_disable);
659                 reg = I915_READ(DSPFW3);
660                 reg &= ~DSPFW_HPLL_SR_MASK;
661                 reg |= FW_WM(wm, HPLL_SR);
662                 I915_WRITE(DSPFW3, reg);
663
664                 /* cursor HPLL off SR */
665                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
666                                         pineview_display_hplloff_wm.fifo_size,
667                                         pixel_size, latency->cursor_hpll_disable);
668                 reg = I915_READ(DSPFW3);
669                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
670                 reg |= FW_WM(wm, HPLL_CURSOR);
671                 I915_WRITE(DSPFW3, reg);
672                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
673
674                 intel_set_memory_cxsr(dev_priv, true);
675         } else {
676                 intel_set_memory_cxsr(dev_priv, false);
677         }
678 }
679
680 static bool g4x_compute_wm0(struct drm_device *dev,
681                             int plane,
682                             const struct intel_watermark_params *display,
683                             int display_latency_ns,
684                             const struct intel_watermark_params *cursor,
685                             int cursor_latency_ns,
686                             int *plane_wm,
687                             int *cursor_wm)
688 {
689         struct drm_crtc *crtc;
690         const struct drm_display_mode *adjusted_mode;
691         int htotal, hdisplay, clock, pixel_size;
692         int line_time_us, line_count;
693         int entries, tlb_miss;
694
695         crtc = intel_get_crtc_for_plane(dev, plane);
696         if (!intel_crtc_active(crtc)) {
697                 *cursor_wm = cursor->guard_size;
698                 *plane_wm = display->guard_size;
699                 return false;
700         }
701
702         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
703         clock = adjusted_mode->crtc_clock;
704         htotal = adjusted_mode->crtc_htotal;
705         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
706         pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
707
708         /* Use the small buffer method to calculate plane watermark */
709         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
710         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
711         if (tlb_miss > 0)
712                 entries += tlb_miss;
713         entries = DIV_ROUND_UP(entries, display->cacheline_size);
714         *plane_wm = entries + display->guard_size;
715         if (*plane_wm > (int)display->max_wm)
716                 *plane_wm = display->max_wm;
717
718         /* Use the large buffer method to calculate cursor watermark */
719         line_time_us = max(htotal * 1000 / clock, 1);
720         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
721         entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
722         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
723         if (tlb_miss > 0)
724                 entries += tlb_miss;
725         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
726         *cursor_wm = entries + cursor->guard_size;
727         if (*cursor_wm > (int)cursor->max_wm)
728                 *cursor_wm = (int)cursor->max_wm;
729
730         return true;
731 }
732
733 /*
734  * Check the wm result.
735  *
736  * If any calculated watermark values is larger than the maximum value that
737  * can be programmed into the associated watermark register, that watermark
738  * must be disabled.
739  */
740 static bool g4x_check_srwm(struct drm_device *dev,
741                            int display_wm, int cursor_wm,
742                            const struct intel_watermark_params *display,
743                            const struct intel_watermark_params *cursor)
744 {
745         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
746                       display_wm, cursor_wm);
747
748         if (display_wm > display->max_wm) {
749                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
750                               display_wm, display->max_wm);
751                 return false;
752         }
753
754         if (cursor_wm > cursor->max_wm) {
755                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
756                               cursor_wm, cursor->max_wm);
757                 return false;
758         }
759
760         if (!(display_wm || cursor_wm)) {
761                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
762                 return false;
763         }
764
765         return true;
766 }
767
768 static bool g4x_compute_srwm(struct drm_device *dev,
769                              int plane,
770                              int latency_ns,
771                              const struct intel_watermark_params *display,
772                              const struct intel_watermark_params *cursor,
773                              int *display_wm, int *cursor_wm)
774 {
775         struct drm_crtc *crtc;
776         const struct drm_display_mode *adjusted_mode;
777         int hdisplay, htotal, pixel_size, clock;
778         unsigned long line_time_us;
779         int line_count, line_size;
780         int small, large;
781         int entries;
782
783         if (!latency_ns) {
784                 *display_wm = *cursor_wm = 0;
785                 return false;
786         }
787
788         crtc = intel_get_crtc_for_plane(dev, plane);
789         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
790         clock = adjusted_mode->crtc_clock;
791         htotal = adjusted_mode->crtc_htotal;
792         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
793         pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
794
795         line_time_us = max(htotal * 1000 / clock, 1);
796         line_count = (latency_ns / line_time_us + 1000) / 1000;
797         line_size = hdisplay * pixel_size;
798
799         /* Use the minimum of the small and large buffer method for primary */
800         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
801         large = line_count * line_size;
802
803         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
804         *display_wm = entries + display->guard_size;
805
806         /* calculate the self-refresh watermark for display cursor */
807         entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
808         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
809         *cursor_wm = entries + cursor->guard_size;
810
811         return g4x_check_srwm(dev,
812                               *display_wm, *cursor_wm,
813                               display, cursor);
814 }
815
816 #define FW_WM_VLV(value, plane) \
817         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
818
819 static void vlv_write_wm_values(struct intel_crtc *crtc,
820                                 const struct vlv_wm_values *wm)
821 {
822         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
823         enum pipe pipe = crtc->pipe;
824
825         I915_WRITE(VLV_DDL(pipe),
826                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
827                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
828                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
829                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
830
831         I915_WRITE(DSPFW1,
832                    FW_WM(wm->sr.plane, SR) |
833                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
834                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
835                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
836         I915_WRITE(DSPFW2,
837                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
838                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
839                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
840         I915_WRITE(DSPFW3,
841                    FW_WM(wm->sr.cursor, CURSOR_SR));
842
843         if (IS_CHERRYVIEW(dev_priv)) {
844                 I915_WRITE(DSPFW7_CHV,
845                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
846                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
847                 I915_WRITE(DSPFW8_CHV,
848                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
849                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
850                 I915_WRITE(DSPFW9_CHV,
851                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
852                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
853                 I915_WRITE(DSPHOWM,
854                            FW_WM(wm->sr.plane >> 9, SR_HI) |
855                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
856                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
857                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
858                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
859                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
860                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
861                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
862                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
863                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
864         } else {
865                 I915_WRITE(DSPFW7,
866                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
867                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
868                 I915_WRITE(DSPHOWM,
869                            FW_WM(wm->sr.plane >> 9, SR_HI) |
870                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
871                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
872                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
873                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
874                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
875                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
876         }
877
878         /* zero (unused) WM1 watermarks */
879         I915_WRITE(DSPFW4, 0);
880         I915_WRITE(DSPFW5, 0);
881         I915_WRITE(DSPFW6, 0);
882         I915_WRITE(DSPHOWM1, 0);
883
884         POSTING_READ(DSPFW1);
885 }
886
887 #undef FW_WM_VLV
888
889 enum vlv_wm_level {
890         VLV_WM_LEVEL_PM2,
891         VLV_WM_LEVEL_PM5,
892         VLV_WM_LEVEL_DDR_DVFS,
893 };
894
895 /* latency must be in 0.1us units. */
896 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
897                                    unsigned int pipe_htotal,
898                                    unsigned int horiz_pixels,
899                                    unsigned int bytes_per_pixel,
900                                    unsigned int latency)
901 {
902         unsigned int ret;
903
904         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
905         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
906         ret = DIV_ROUND_UP(ret, 64);
907
908         return ret;
909 }
910
911 static void vlv_setup_wm_latency(struct drm_device *dev)
912 {
913         struct drm_i915_private *dev_priv = dev->dev_private;
914
915         /* all latencies in usec */
916         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
917
918         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
919
920         if (IS_CHERRYVIEW(dev_priv)) {
921                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
922                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
923
924                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
925         }
926 }
927
928 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
929                                      struct intel_crtc *crtc,
930                                      const struct intel_plane_state *state,
931                                      int level)
932 {
933         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
934         int clock, htotal, pixel_size, width, wm;
935
936         if (dev_priv->wm.pri_latency[level] == 0)
937                 return USHRT_MAX;
938
939         if (!state->visible)
940                 return 0;
941
942         pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
943         clock = crtc->config->base.adjusted_mode.crtc_clock;
944         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
945         width = crtc->config->pipe_src_w;
946         if (WARN_ON(htotal == 0))
947                 htotal = 1;
948
949         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
950                 /*
951                  * FIXME the formula gives values that are
952                  * too big for the cursor FIFO, and hence we
953                  * would never be able to use cursors. For
954                  * now just hardcode the watermark.
955                  */
956                 wm = 63;
957         } else {
958                 wm = vlv_wm_method2(clock, htotal, width, pixel_size,
959                                     dev_priv->wm.pri_latency[level] * 10);
960         }
961
962         return min_t(int, wm, USHRT_MAX);
963 }
964
965 static void vlv_compute_fifo(struct intel_crtc *crtc)
966 {
967         struct drm_device *dev = crtc->base.dev;
968         struct vlv_wm_state *wm_state = &crtc->wm_state;
969         struct intel_plane *plane;
970         unsigned int total_rate = 0;
971         const int fifo_size = 512 - 1;
972         int fifo_extra, fifo_left = fifo_size;
973
974         for_each_intel_plane_on_crtc(dev, crtc, plane) {
975                 struct intel_plane_state *state =
976                         to_intel_plane_state(plane->base.state);
977
978                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
979                         continue;
980
981                 if (state->visible) {
982                         wm_state->num_active_planes++;
983                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
984                 }
985         }
986
987         for_each_intel_plane_on_crtc(dev, crtc, plane) {
988                 struct intel_plane_state *state =
989                         to_intel_plane_state(plane->base.state);
990                 unsigned int rate;
991
992                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
993                         plane->wm.fifo_size = 63;
994                         continue;
995                 }
996
997                 if (!state->visible) {
998                         plane->wm.fifo_size = 0;
999                         continue;
1000                 }
1001
1002                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1003                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1004                 fifo_left -= plane->wm.fifo_size;
1005         }
1006
1007         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1008
1009         /* spread the remainder evenly */
1010         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1011                 int plane_extra;
1012
1013                 if (fifo_left == 0)
1014                         break;
1015
1016                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1017                         continue;
1018
1019                 /* give it all to the first plane if none are active */
1020                 if (plane->wm.fifo_size == 0 &&
1021                     wm_state->num_active_planes)
1022                         continue;
1023
1024                 plane_extra = min(fifo_extra, fifo_left);
1025                 plane->wm.fifo_size += plane_extra;
1026                 fifo_left -= plane_extra;
1027         }
1028
1029         WARN_ON(fifo_left != 0);
1030 }
1031
1032 static void vlv_invert_wms(struct intel_crtc *crtc)
1033 {
1034         struct vlv_wm_state *wm_state = &crtc->wm_state;
1035         int level;
1036
1037         for (level = 0; level < wm_state->num_levels; level++) {
1038                 struct drm_device *dev = crtc->base.dev;
1039                 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1040                 struct intel_plane *plane;
1041
1042                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1043                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1044
1045                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1046                         switch (plane->base.type) {
1047                                 int sprite;
1048                         case DRM_PLANE_TYPE_CURSOR:
1049                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
1050                                         wm_state->wm[level].cursor;
1051                                 break;
1052                         case DRM_PLANE_TYPE_PRIMARY:
1053                                 wm_state->wm[level].primary = plane->wm.fifo_size -
1054                                         wm_state->wm[level].primary;
1055                                 break;
1056                         case DRM_PLANE_TYPE_OVERLAY:
1057                                 sprite = plane->plane;
1058                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1059                                         wm_state->wm[level].sprite[sprite];
1060                                 break;
1061                         }
1062                 }
1063         }
1064 }
1065
1066 static void vlv_compute_wm(struct intel_crtc *crtc)
1067 {
1068         struct drm_device *dev = crtc->base.dev;
1069         struct vlv_wm_state *wm_state = &crtc->wm_state;
1070         struct intel_plane *plane;
1071         int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1072         int level;
1073
1074         memset(wm_state, 0, sizeof(*wm_state));
1075
1076         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1077         wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1078
1079         wm_state->num_active_planes = 0;
1080
1081         vlv_compute_fifo(crtc);
1082
1083         if (wm_state->num_active_planes != 1)
1084                 wm_state->cxsr = false;
1085
1086         if (wm_state->cxsr) {
1087                 for (level = 0; level < wm_state->num_levels; level++) {
1088                         wm_state->sr[level].plane = sr_fifo_size;
1089                         wm_state->sr[level].cursor = 63;
1090                 }
1091         }
1092
1093         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1094                 struct intel_plane_state *state =
1095                         to_intel_plane_state(plane->base.state);
1096
1097                 if (!state->visible)
1098                         continue;
1099
1100                 /* normal watermarks */
1101                 for (level = 0; level < wm_state->num_levels; level++) {
1102                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1103                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1104
1105                         /* hack */
1106                         if (WARN_ON(level == 0 && wm > max_wm))
1107                                 wm = max_wm;
1108
1109                         if (wm > plane->wm.fifo_size)
1110                                 break;
1111
1112                         switch (plane->base.type) {
1113                                 int sprite;
1114                         case DRM_PLANE_TYPE_CURSOR:
1115                                 wm_state->wm[level].cursor = wm;
1116                                 break;
1117                         case DRM_PLANE_TYPE_PRIMARY:
1118                                 wm_state->wm[level].primary = wm;
1119                                 break;
1120                         case DRM_PLANE_TYPE_OVERLAY:
1121                                 sprite = plane->plane;
1122                                 wm_state->wm[level].sprite[sprite] = wm;
1123                                 break;
1124                         }
1125                 }
1126
1127                 wm_state->num_levels = level;
1128
1129                 if (!wm_state->cxsr)
1130                         continue;
1131
1132                 /* maxfifo watermarks */
1133                 switch (plane->base.type) {
1134                         int sprite, level;
1135                 case DRM_PLANE_TYPE_CURSOR:
1136                         for (level = 0; level < wm_state->num_levels; level++)
1137                                 wm_state->sr[level].cursor =
1138                                         wm_state->wm[level].cursor;
1139                         break;
1140                 case DRM_PLANE_TYPE_PRIMARY:
1141                         for (level = 0; level < wm_state->num_levels; level++)
1142                                 wm_state->sr[level].plane =
1143                                         min(wm_state->sr[level].plane,
1144                                             wm_state->wm[level].primary);
1145                         break;
1146                 case DRM_PLANE_TYPE_OVERLAY:
1147                         sprite = plane->plane;
1148                         for (level = 0; level < wm_state->num_levels; level++)
1149                                 wm_state->sr[level].plane =
1150                                         min(wm_state->sr[level].plane,
1151                                             wm_state->wm[level].sprite[sprite]);
1152                         break;
1153                 }
1154         }
1155
1156         /* clear any (partially) filled invalid levels */
1157         for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1158                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1159                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1160         }
1161
1162         vlv_invert_wms(crtc);
1163 }
1164
1165 #define VLV_FIFO(plane, value) \
1166         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1167
1168 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1169 {
1170         struct drm_device *dev = crtc->base.dev;
1171         struct drm_i915_private *dev_priv = to_i915(dev);
1172         struct intel_plane *plane;
1173         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1174
1175         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1176                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1177                         WARN_ON(plane->wm.fifo_size != 63);
1178                         continue;
1179                 }
1180
1181                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1182                         sprite0_start = plane->wm.fifo_size;
1183                 else if (plane->plane == 0)
1184                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1185                 else
1186                         fifo_size = sprite1_start + plane->wm.fifo_size;
1187         }
1188
1189         WARN_ON(fifo_size != 512 - 1);
1190
1191         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1192                       pipe_name(crtc->pipe), sprite0_start,
1193                       sprite1_start, fifo_size);
1194
1195         switch (crtc->pipe) {
1196                 uint32_t dsparb, dsparb2, dsparb3;
1197         case PIPE_A:
1198                 dsparb = I915_READ(DSPARB);
1199                 dsparb2 = I915_READ(DSPARB2);
1200
1201                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1202                             VLV_FIFO(SPRITEB, 0xff));
1203                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1204                            VLV_FIFO(SPRITEB, sprite1_start));
1205
1206                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1207                              VLV_FIFO(SPRITEB_HI, 0x1));
1208                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1209                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1210
1211                 I915_WRITE(DSPARB, dsparb);
1212                 I915_WRITE(DSPARB2, dsparb2);
1213                 break;
1214         case PIPE_B:
1215                 dsparb = I915_READ(DSPARB);
1216                 dsparb2 = I915_READ(DSPARB2);
1217
1218                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1219                             VLV_FIFO(SPRITED, 0xff));
1220                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1221                            VLV_FIFO(SPRITED, sprite1_start));
1222
1223                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1224                              VLV_FIFO(SPRITED_HI, 0xff));
1225                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1226                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1227
1228                 I915_WRITE(DSPARB, dsparb);
1229                 I915_WRITE(DSPARB2, dsparb2);
1230                 break;
1231         case PIPE_C:
1232                 dsparb3 = I915_READ(DSPARB3);
1233                 dsparb2 = I915_READ(DSPARB2);
1234
1235                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1236                              VLV_FIFO(SPRITEF, 0xff));
1237                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1238                             VLV_FIFO(SPRITEF, sprite1_start));
1239
1240                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1241                              VLV_FIFO(SPRITEF_HI, 0xff));
1242                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1243                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1244
1245                 I915_WRITE(DSPARB3, dsparb3);
1246                 I915_WRITE(DSPARB2, dsparb2);
1247                 break;
1248         default:
1249                 break;
1250         }
1251 }
1252
1253 #undef VLV_FIFO
1254
1255 static void vlv_merge_wm(struct drm_device *dev,
1256                          struct vlv_wm_values *wm)
1257 {
1258         struct intel_crtc *crtc;
1259         int num_active_crtcs = 0;
1260
1261         wm->level = to_i915(dev)->wm.max_level;
1262         wm->cxsr = true;
1263
1264         for_each_intel_crtc(dev, crtc) {
1265                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1266
1267                 if (!crtc->active)
1268                         continue;
1269
1270                 if (!wm_state->cxsr)
1271                         wm->cxsr = false;
1272
1273                 num_active_crtcs++;
1274                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1275         }
1276
1277         if (num_active_crtcs != 1)
1278                 wm->cxsr = false;
1279
1280         if (num_active_crtcs > 1)
1281                 wm->level = VLV_WM_LEVEL_PM2;
1282
1283         for_each_intel_crtc(dev, crtc) {
1284                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1285                 enum pipe pipe = crtc->pipe;
1286
1287                 if (!crtc->active)
1288                         continue;
1289
1290                 wm->pipe[pipe] = wm_state->wm[wm->level];
1291                 if (wm->cxsr)
1292                         wm->sr = wm_state->sr[wm->level];
1293
1294                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1295                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1296                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1297                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1298         }
1299 }
1300
1301 static void vlv_update_wm(struct drm_crtc *crtc)
1302 {
1303         struct drm_device *dev = crtc->dev;
1304         struct drm_i915_private *dev_priv = dev->dev_private;
1305         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1306         enum pipe pipe = intel_crtc->pipe;
1307         struct vlv_wm_values wm = {};
1308
1309         vlv_compute_wm(intel_crtc);
1310         vlv_merge_wm(dev, &wm);
1311
1312         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1313                 /* FIXME should be part of crtc atomic commit */
1314                 vlv_pipe_set_fifo_size(intel_crtc);
1315                 return;
1316         }
1317
1318         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1319             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1320                 chv_set_memory_dvfs(dev_priv, false);
1321
1322         if (wm.level < VLV_WM_LEVEL_PM5 &&
1323             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1324                 chv_set_memory_pm5(dev_priv, false);
1325
1326         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1327                 intel_set_memory_cxsr(dev_priv, false);
1328
1329         /* FIXME should be part of crtc atomic commit */
1330         vlv_pipe_set_fifo_size(intel_crtc);
1331
1332         vlv_write_wm_values(intel_crtc, &wm);
1333
1334         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1335                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1336                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1337                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1338                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1339
1340         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1341                 intel_set_memory_cxsr(dev_priv, true);
1342
1343         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1344             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1345                 chv_set_memory_pm5(dev_priv, true);
1346
1347         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1348             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1349                 chv_set_memory_dvfs(dev_priv, true);
1350
1351         dev_priv->wm.vlv = wm;
1352 }
1353
1354 #define single_plane_enabled(mask) is_power_of_2(mask)
1355
1356 static void g4x_update_wm(struct drm_crtc *crtc)
1357 {
1358         struct drm_device *dev = crtc->dev;
1359         static const int sr_latency_ns = 12000;
1360         struct drm_i915_private *dev_priv = dev->dev_private;
1361         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1362         int plane_sr, cursor_sr;
1363         unsigned int enabled = 0;
1364         bool cxsr_enabled;
1365
1366         if (g4x_compute_wm0(dev, PIPE_A,
1367                             &g4x_wm_info, pessimal_latency_ns,
1368                             &g4x_cursor_wm_info, pessimal_latency_ns,
1369                             &planea_wm, &cursora_wm))
1370                 enabled |= 1 << PIPE_A;
1371
1372         if (g4x_compute_wm0(dev, PIPE_B,
1373                             &g4x_wm_info, pessimal_latency_ns,
1374                             &g4x_cursor_wm_info, pessimal_latency_ns,
1375                             &planeb_wm, &cursorb_wm))
1376                 enabled |= 1 << PIPE_B;
1377
1378         if (single_plane_enabled(enabled) &&
1379             g4x_compute_srwm(dev, ffs(enabled) - 1,
1380                              sr_latency_ns,
1381                              &g4x_wm_info,
1382                              &g4x_cursor_wm_info,
1383                              &plane_sr, &cursor_sr)) {
1384                 cxsr_enabled = true;
1385         } else {
1386                 cxsr_enabled = false;
1387                 intel_set_memory_cxsr(dev_priv, false);
1388                 plane_sr = cursor_sr = 0;
1389         }
1390
1391         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1392                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1393                       planea_wm, cursora_wm,
1394                       planeb_wm, cursorb_wm,
1395                       plane_sr, cursor_sr);
1396
1397         I915_WRITE(DSPFW1,
1398                    FW_WM(plane_sr, SR) |
1399                    FW_WM(cursorb_wm, CURSORB) |
1400                    FW_WM(planeb_wm, PLANEB) |
1401                    FW_WM(planea_wm, PLANEA));
1402         I915_WRITE(DSPFW2,
1403                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1404                    FW_WM(cursora_wm, CURSORA));
1405         /* HPLL off in SR has some issues on G4x... disable it */
1406         I915_WRITE(DSPFW3,
1407                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1408                    FW_WM(cursor_sr, CURSOR_SR));
1409
1410         if (cxsr_enabled)
1411                 intel_set_memory_cxsr(dev_priv, true);
1412 }
1413
1414 static void i965_update_wm(struct drm_crtc *unused_crtc)
1415 {
1416         struct drm_device *dev = unused_crtc->dev;
1417         struct drm_i915_private *dev_priv = dev->dev_private;
1418         struct drm_crtc *crtc;
1419         int srwm = 1;
1420         int cursor_sr = 16;
1421         bool cxsr_enabled;
1422
1423         /* Calc sr entries for one plane configs */
1424         crtc = single_enabled_crtc(dev);
1425         if (crtc) {
1426                 /* self-refresh has much higher latency */
1427                 static const int sr_latency_ns = 12000;
1428                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1429                 int clock = adjusted_mode->crtc_clock;
1430                 int htotal = adjusted_mode->crtc_htotal;
1431                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1432                 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1433                 unsigned long line_time_us;
1434                 int entries;
1435
1436                 line_time_us = max(htotal * 1000 / clock, 1);
1437
1438                 /* Use ns/us then divide to preserve precision */
1439                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1440                         pixel_size * hdisplay;
1441                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1442                 srwm = I965_FIFO_SIZE - entries;
1443                 if (srwm < 0)
1444                         srwm = 1;
1445                 srwm &= 0x1ff;
1446                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1447                               entries, srwm);
1448
1449                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450                         pixel_size * crtc->cursor->state->crtc_w;
1451                 entries = DIV_ROUND_UP(entries,
1452                                           i965_cursor_wm_info.cacheline_size);
1453                 cursor_sr = i965_cursor_wm_info.fifo_size -
1454                         (entries + i965_cursor_wm_info.guard_size);
1455
1456                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1457                         cursor_sr = i965_cursor_wm_info.max_wm;
1458
1459                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1460                               "cursor %d\n", srwm, cursor_sr);
1461
1462                 cxsr_enabled = true;
1463         } else {
1464                 cxsr_enabled = false;
1465                 /* Turn off self refresh if both pipes are enabled */
1466                 intel_set_memory_cxsr(dev_priv, false);
1467         }
1468
1469         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1470                       srwm);
1471
1472         /* 965 has limitations... */
1473         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1474                    FW_WM(8, CURSORB) |
1475                    FW_WM(8, PLANEB) |
1476                    FW_WM(8, PLANEA));
1477         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1478                    FW_WM(8, PLANEC_OLD));
1479         /* update cursor SR watermark */
1480         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1481
1482         if (cxsr_enabled)
1483                 intel_set_memory_cxsr(dev_priv, true);
1484 }
1485
1486 #undef FW_WM
1487
1488 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1489 {
1490         struct drm_device *dev = unused_crtc->dev;
1491         struct drm_i915_private *dev_priv = dev->dev_private;
1492         const struct intel_watermark_params *wm_info;
1493         uint32_t fwater_lo;
1494         uint32_t fwater_hi;
1495         int cwm, srwm = 1;
1496         int fifo_size;
1497         int planea_wm, planeb_wm;
1498         struct drm_crtc *crtc, *enabled = NULL;
1499
1500         if (IS_I945GM(dev))
1501                 wm_info = &i945_wm_info;
1502         else if (!IS_GEN2(dev))
1503                 wm_info = &i915_wm_info;
1504         else
1505                 wm_info = &i830_a_wm_info;
1506
1507         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1508         crtc = intel_get_crtc_for_plane(dev, 0);
1509         if (intel_crtc_active(crtc)) {
1510                 const struct drm_display_mode *adjusted_mode;
1511                 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1512                 if (IS_GEN2(dev))
1513                         cpp = 4;
1514
1515                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1516                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1517                                                wm_info, fifo_size, cpp,
1518                                                pessimal_latency_ns);
1519                 enabled = crtc;
1520         } else {
1521                 planea_wm = fifo_size - wm_info->guard_size;
1522                 if (planea_wm > (long)wm_info->max_wm)
1523                         planea_wm = wm_info->max_wm;
1524         }
1525
1526         if (IS_GEN2(dev))
1527                 wm_info = &i830_bc_wm_info;
1528
1529         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1530         crtc = intel_get_crtc_for_plane(dev, 1);
1531         if (intel_crtc_active(crtc)) {
1532                 const struct drm_display_mode *adjusted_mode;
1533                 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1534                 if (IS_GEN2(dev))
1535                         cpp = 4;
1536
1537                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1538                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1539                                                wm_info, fifo_size, cpp,
1540                                                pessimal_latency_ns);
1541                 if (enabled == NULL)
1542                         enabled = crtc;
1543                 else
1544                         enabled = NULL;
1545         } else {
1546                 planeb_wm = fifo_size - wm_info->guard_size;
1547                 if (planeb_wm > (long)wm_info->max_wm)
1548                         planeb_wm = wm_info->max_wm;
1549         }
1550
1551         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1552
1553         if (IS_I915GM(dev) && enabled) {
1554                 struct drm_i915_gem_object *obj;
1555
1556                 obj = intel_fb_obj(enabled->primary->state->fb);
1557
1558                 /* self-refresh seems busted with untiled */
1559                 if (obj->tiling_mode == I915_TILING_NONE)
1560                         enabled = NULL;
1561         }
1562
1563         /*
1564          * Overlay gets an aggressive default since video jitter is bad.
1565          */
1566         cwm = 2;
1567
1568         /* Play safe and disable self-refresh before adjusting watermarks. */
1569         intel_set_memory_cxsr(dev_priv, false);
1570
1571         /* Calc sr entries for one plane configs */
1572         if (HAS_FW_BLC(dev) && enabled) {
1573                 /* self-refresh has much higher latency */
1574                 static const int sr_latency_ns = 6000;
1575                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1576                 int clock = adjusted_mode->crtc_clock;
1577                 int htotal = adjusted_mode->crtc_htotal;
1578                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1579                 int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1580                 unsigned long line_time_us;
1581                 int entries;
1582
1583                 line_time_us = max(htotal * 1000 / clock, 1);
1584
1585                 /* Use ns/us then divide to preserve precision */
1586                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1587                         pixel_size * hdisplay;
1588                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1589                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1590                 srwm = wm_info->fifo_size - entries;
1591                 if (srwm < 0)
1592                         srwm = 1;
1593
1594                 if (IS_I945G(dev) || IS_I945GM(dev))
1595                         I915_WRITE(FW_BLC_SELF,
1596                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1597                 else if (IS_I915GM(dev))
1598                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1599         }
1600
1601         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1602                       planea_wm, planeb_wm, cwm, srwm);
1603
1604         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1605         fwater_hi = (cwm & 0x1f);
1606
1607         /* Set request length to 8 cachelines per fetch */
1608         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1609         fwater_hi = fwater_hi | (1 << 8);
1610
1611         I915_WRITE(FW_BLC, fwater_lo);
1612         I915_WRITE(FW_BLC2, fwater_hi);
1613
1614         if (enabled)
1615                 intel_set_memory_cxsr(dev_priv, true);
1616 }
1617
1618 static void i845_update_wm(struct drm_crtc *unused_crtc)
1619 {
1620         struct drm_device *dev = unused_crtc->dev;
1621         struct drm_i915_private *dev_priv = dev->dev_private;
1622         struct drm_crtc *crtc;
1623         const struct drm_display_mode *adjusted_mode;
1624         uint32_t fwater_lo;
1625         int planea_wm;
1626
1627         crtc = single_enabled_crtc(dev);
1628         if (crtc == NULL)
1629                 return;
1630
1631         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1632         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1633                                        &i845_wm_info,
1634                                        dev_priv->display.get_fifo_size(dev, 0),
1635                                        4, pessimal_latency_ns);
1636         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1637         fwater_lo |= (3<<8) | planea_wm;
1638
1639         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1640
1641         I915_WRITE(FW_BLC, fwater_lo);
1642 }
1643
1644 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1645 {
1646         uint32_t pixel_rate;
1647
1648         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1649
1650         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1651          * adjust the pixel_rate here. */
1652
1653         if (pipe_config->pch_pfit.enabled) {
1654                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1655                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1656
1657                 pipe_w = pipe_config->pipe_src_w;
1658                 pipe_h = pipe_config->pipe_src_h;
1659
1660                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1661                 pfit_h = pfit_size & 0xFFFF;
1662                 if (pipe_w < pfit_w)
1663                         pipe_w = pfit_w;
1664                 if (pipe_h < pfit_h)
1665                         pipe_h = pfit_h;
1666
1667                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1668                                      pfit_w * pfit_h);
1669         }
1670
1671         return pixel_rate;
1672 }
1673
1674 /* latency must be in 0.1us units. */
1675 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1676                                uint32_t latency)
1677 {
1678         uint64_t ret;
1679
1680         if (WARN(latency == 0, "Latency value missing\n"))
1681                 return UINT_MAX;
1682
1683         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1684         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1685
1686         return ret;
1687 }
1688
1689 /* latency must be in 0.1us units. */
1690 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1691                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1692                                uint32_t latency)
1693 {
1694         uint32_t ret;
1695
1696         if (WARN(latency == 0, "Latency value missing\n"))
1697                 return UINT_MAX;
1698
1699         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1700         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1701         ret = DIV_ROUND_UP(ret, 64) + 2;
1702         return ret;
1703 }
1704
1705 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1706                            uint8_t bytes_per_pixel)
1707 {
1708         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1709 }
1710
1711 struct skl_pipe_wm_parameters {
1712         bool active;
1713         uint32_t pipe_htotal;
1714         uint32_t pixel_rate; /* in KHz */
1715         struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1716 };
1717
1718 struct ilk_wm_maximums {
1719         uint16_t pri;
1720         uint16_t spr;
1721         uint16_t cur;
1722         uint16_t fbc;
1723 };
1724
1725 /* used in computing the new watermarks state */
1726 struct intel_wm_config {
1727         unsigned int num_pipes_active;
1728         bool sprites_enabled;
1729         bool sprites_scaled;
1730 };
1731
1732 /*
1733  * For both WM_PIPE and WM_LP.
1734  * mem_value must be in 0.1us units.
1735  */
1736 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1737                                    const struct intel_plane_state *pstate,
1738                                    uint32_t mem_value,
1739                                    bool is_lp)
1740 {
1741         int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1742         uint32_t method1, method2;
1743
1744         if (!cstate->base.active || !pstate->visible)
1745                 return 0;
1746
1747         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1748
1749         if (!is_lp)
1750                 return method1;
1751
1752         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1753                                  cstate->base.adjusted_mode.crtc_htotal,
1754                                  drm_rect_width(&pstate->dst),
1755                                  bpp,
1756                                  mem_value);
1757
1758         return min(method1, method2);
1759 }
1760
1761 /*
1762  * For both WM_PIPE and WM_LP.
1763  * mem_value must be in 0.1us units.
1764  */
1765 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1766                                    const struct intel_plane_state *pstate,
1767                                    uint32_t mem_value)
1768 {
1769         int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1770         uint32_t method1, method2;
1771
1772         if (!cstate->base.active || !pstate->visible)
1773                 return 0;
1774
1775         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1776         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1777                                  cstate->base.adjusted_mode.crtc_htotal,
1778                                  drm_rect_width(&pstate->dst),
1779                                  bpp,
1780                                  mem_value);
1781         return min(method1, method2);
1782 }
1783
1784 /*
1785  * For both WM_PIPE and WM_LP.
1786  * mem_value must be in 0.1us units.
1787  */
1788 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1789                                    const struct intel_plane_state *pstate,
1790                                    uint32_t mem_value)
1791 {
1792         /*
1793          * We treat the cursor plane as always-on for the purposes of watermark
1794          * calculation.  Until we have two-stage watermark programming merged,
1795          * this is necessary to avoid flickering.
1796          */
1797         int cpp = 4;
1798         int width = pstate->visible ? pstate->base.crtc_w : 64;
1799
1800         if (!cstate->base.active)
1801                 return 0;
1802
1803         return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1804                               cstate->base.adjusted_mode.crtc_htotal,
1805                               width, cpp, mem_value);
1806 }
1807
1808 /* Only for WM_LP. */
1809 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1810                                    const struct intel_plane_state *pstate,
1811                                    uint32_t pri_val)
1812 {
1813         int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1814
1815         if (!cstate->base.active || !pstate->visible)
1816                 return 0;
1817
1818         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1819 }
1820
1821 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1822 {
1823         if (INTEL_INFO(dev)->gen >= 8)
1824                 return 3072;
1825         else if (INTEL_INFO(dev)->gen >= 7)
1826                 return 768;
1827         else
1828                 return 512;
1829 }
1830
1831 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1832                                          int level, bool is_sprite)
1833 {
1834         if (INTEL_INFO(dev)->gen >= 8)
1835                 /* BDW primary/sprite plane watermarks */
1836                 return level == 0 ? 255 : 2047;
1837         else if (INTEL_INFO(dev)->gen >= 7)
1838                 /* IVB/HSW primary/sprite plane watermarks */
1839                 return level == 0 ? 127 : 1023;
1840         else if (!is_sprite)
1841                 /* ILK/SNB primary plane watermarks */
1842                 return level == 0 ? 127 : 511;
1843         else
1844                 /* ILK/SNB sprite plane watermarks */
1845                 return level == 0 ? 63 : 255;
1846 }
1847
1848 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1849                                           int level)
1850 {
1851         if (INTEL_INFO(dev)->gen >= 7)
1852                 return level == 0 ? 63 : 255;
1853         else
1854                 return level == 0 ? 31 : 63;
1855 }
1856
1857 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1858 {
1859         if (INTEL_INFO(dev)->gen >= 8)
1860                 return 31;
1861         else
1862                 return 15;
1863 }
1864
1865 /* Calculate the maximum primary/sprite plane watermark */
1866 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1867                                      int level,
1868                                      const struct intel_wm_config *config,
1869                                      enum intel_ddb_partitioning ddb_partitioning,
1870                                      bool is_sprite)
1871 {
1872         unsigned int fifo_size = ilk_display_fifo_size(dev);
1873
1874         /* if sprites aren't enabled, sprites get nothing */
1875         if (is_sprite && !config->sprites_enabled)
1876                 return 0;
1877
1878         /* HSW allows LP1+ watermarks even with multiple pipes */
1879         if (level == 0 || config->num_pipes_active > 1) {
1880                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1881
1882                 /*
1883                  * For some reason the non self refresh
1884                  * FIFO size is only half of the self
1885                  * refresh FIFO size on ILK/SNB.
1886                  */
1887                 if (INTEL_INFO(dev)->gen <= 6)
1888                         fifo_size /= 2;
1889         }
1890
1891         if (config->sprites_enabled) {
1892                 /* level 0 is always calculated with 1:1 split */
1893                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1894                         if (is_sprite)
1895                                 fifo_size *= 5;
1896                         fifo_size /= 6;
1897                 } else {
1898                         fifo_size /= 2;
1899                 }
1900         }
1901
1902         /* clamp to max that the registers can hold */
1903         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1904 }
1905
1906 /* Calculate the maximum cursor plane watermark */
1907 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1908                                       int level,
1909                                       const struct intel_wm_config *config)
1910 {
1911         /* HSW LP1+ watermarks w/ multiple pipes */
1912         if (level > 0 && config->num_pipes_active > 1)
1913                 return 64;
1914
1915         /* otherwise just report max that registers can hold */
1916         return ilk_cursor_wm_reg_max(dev, level);
1917 }
1918
1919 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1920                                     int level,
1921                                     const struct intel_wm_config *config,
1922                                     enum intel_ddb_partitioning ddb_partitioning,
1923                                     struct ilk_wm_maximums *max)
1924 {
1925         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1926         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1927         max->cur = ilk_cursor_wm_max(dev, level, config);
1928         max->fbc = ilk_fbc_wm_reg_max(dev);
1929 }
1930
1931 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1932                                         int level,
1933                                         struct ilk_wm_maximums *max)
1934 {
1935         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1936         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1937         max->cur = ilk_cursor_wm_reg_max(dev, level);
1938         max->fbc = ilk_fbc_wm_reg_max(dev);
1939 }
1940
1941 static bool ilk_validate_wm_level(int level,
1942                                   const struct ilk_wm_maximums *max,
1943                                   struct intel_wm_level *result)
1944 {
1945         bool ret;
1946
1947         /* already determined to be invalid? */
1948         if (!result->enable)
1949                 return false;
1950
1951         result->enable = result->pri_val <= max->pri &&
1952                          result->spr_val <= max->spr &&
1953                          result->cur_val <= max->cur;
1954
1955         ret = result->enable;
1956
1957         /*
1958          * HACK until we can pre-compute everything,
1959          * and thus fail gracefully if LP0 watermarks
1960          * are exceeded...
1961          */
1962         if (level == 0 && !result->enable) {
1963                 if (result->pri_val > max->pri)
1964                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1965                                       level, result->pri_val, max->pri);
1966                 if (result->spr_val > max->spr)
1967                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1968                                       level, result->spr_val, max->spr);
1969                 if (result->cur_val > max->cur)
1970                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1971                                       level, result->cur_val, max->cur);
1972
1973                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1974                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1975                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1976                 result->enable = true;
1977         }
1978
1979         return ret;
1980 }
1981
1982 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1983                                  const struct intel_crtc *intel_crtc,
1984                                  int level,
1985                                  struct intel_crtc_state *cstate,
1986                                  struct intel_wm_level *result)
1987 {
1988         struct intel_plane *intel_plane;
1989         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1990         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1991         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1992
1993         /* WM1+ latency values stored in 0.5us units */
1994         if (level > 0) {
1995                 pri_latency *= 5;
1996                 spr_latency *= 5;
1997                 cur_latency *= 5;
1998         }
1999
2000         for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
2001                 struct intel_plane_state *pstate =
2002                         to_intel_plane_state(intel_plane->base.state);
2003
2004                 switch (intel_plane->base.type) {
2005                 case DRM_PLANE_TYPE_PRIMARY:
2006                         result->pri_val = ilk_compute_pri_wm(cstate, pstate,
2007                                                              pri_latency,
2008                                                              level);
2009                         result->fbc_val = ilk_compute_fbc_wm(cstate, pstate,
2010                                                              result->pri_val);
2011                         break;
2012                 case DRM_PLANE_TYPE_OVERLAY:
2013                         result->spr_val = ilk_compute_spr_wm(cstate, pstate,
2014                                                              spr_latency);
2015                         break;
2016                 case DRM_PLANE_TYPE_CURSOR:
2017                         result->cur_val = ilk_compute_cur_wm(cstate, pstate,
2018                                                              cur_latency);
2019                         break;
2020                 }
2021         }
2022
2023         result->enable = true;
2024 }
2025
2026 static uint32_t
2027 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2028 {
2029         struct drm_i915_private *dev_priv = dev->dev_private;
2030         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2031         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2032         u32 linetime, ips_linetime;
2033
2034         if (!intel_crtc->active)
2035                 return 0;
2036
2037         /* The WM are computed with base on how long it takes to fill a single
2038          * row at the given clock rate, multiplied by 8.
2039          * */
2040         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2041                                      adjusted_mode->crtc_clock);
2042         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2043                                          dev_priv->cdclk_freq);
2044
2045         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2046                PIPE_WM_LINETIME_TIME(linetime);
2047 }
2048
2049 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2050 {
2051         struct drm_i915_private *dev_priv = dev->dev_private;
2052
2053         if (IS_GEN9(dev)) {
2054                 uint32_t val;
2055                 int ret, i;
2056                 int level, max_level = ilk_wm_max_level(dev);
2057
2058                 /* read the first set of memory latencies[0:3] */
2059                 val = 0; /* data0 to be programmed to 0 for first set */
2060                 mutex_lock(&dev_priv->rps.hw_lock);
2061                 ret = sandybridge_pcode_read(dev_priv,
2062                                              GEN9_PCODE_READ_MEM_LATENCY,
2063                                              &val);
2064                 mutex_unlock(&dev_priv->rps.hw_lock);
2065
2066                 if (ret) {
2067                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2068                         return;
2069                 }
2070
2071                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2072                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2073                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2074                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2075                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2076                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2077                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2078
2079                 /* read the second set of memory latencies[4:7] */
2080                 val = 1; /* data0 to be programmed to 1 for second set */
2081                 mutex_lock(&dev_priv->rps.hw_lock);
2082                 ret = sandybridge_pcode_read(dev_priv,
2083                                              GEN9_PCODE_READ_MEM_LATENCY,
2084                                              &val);
2085                 mutex_unlock(&dev_priv->rps.hw_lock);
2086                 if (ret) {
2087                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2088                         return;
2089                 }
2090
2091                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2092                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2093                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2094                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2095                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2096                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2097                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2098
2099                 /*
2100                  * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2101                  * need to be disabled. We make sure to sanitize the values out
2102                  * of the punit to satisfy this requirement.
2103                  */
2104                 for (level = 1; level <= max_level; level++) {
2105                         if (wm[level] == 0) {
2106                                 for (i = level + 1; i <= max_level; i++)
2107                                         wm[i] = 0;
2108                                 break;
2109                         }
2110                 }
2111
2112                 /*
2113                  * WaWmMemoryReadLatency:skl
2114                  *
2115                  * punit doesn't take into account the read latency so we need
2116                  * to add 2us to the various latency levels we retrieve from the
2117                  * punit when level 0 response data us 0us.
2118                  */
2119                 if (wm[0] == 0) {
2120                         wm[0] += 2;
2121                         for (level = 1; level <= max_level; level++) {
2122                                 if (wm[level] == 0)
2123                                         break;
2124                                 wm[level] += 2;
2125                         }
2126                 }
2127
2128         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2129                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2130
2131                 wm[0] = (sskpd >> 56) & 0xFF;
2132                 if (wm[0] == 0)
2133                         wm[0] = sskpd & 0xF;
2134                 wm[1] = (sskpd >> 4) & 0xFF;
2135                 wm[2] = (sskpd >> 12) & 0xFF;
2136                 wm[3] = (sskpd >> 20) & 0x1FF;
2137                 wm[4] = (sskpd >> 32) & 0x1FF;
2138         } else if (INTEL_INFO(dev)->gen >= 6) {
2139                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2140
2141                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2142                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2143                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2144                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2145         } else if (INTEL_INFO(dev)->gen >= 5) {
2146                 uint32_t mltr = I915_READ(MLTR_ILK);
2147
2148                 /* ILK primary LP0 latency is 700 ns */
2149                 wm[0] = 7;
2150                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2151                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2152         }
2153 }
2154
2155 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2156 {
2157         /* ILK sprite LP0 latency is 1300 ns */
2158         if (INTEL_INFO(dev)->gen == 5)
2159                 wm[0] = 13;
2160 }
2161
2162 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2163 {
2164         /* ILK cursor LP0 latency is 1300 ns */
2165         if (INTEL_INFO(dev)->gen == 5)
2166                 wm[0] = 13;
2167
2168         /* WaDoubleCursorLP3Latency:ivb */
2169         if (IS_IVYBRIDGE(dev))
2170                 wm[3] *= 2;
2171 }
2172
2173 int ilk_wm_max_level(const struct drm_device *dev)
2174 {
2175         /* how many WM levels are we expecting */
2176         if (INTEL_INFO(dev)->gen >= 9)
2177                 return 7;
2178         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2179                 return 4;
2180         else if (INTEL_INFO(dev)->gen >= 6)
2181                 return 3;
2182         else
2183                 return 2;
2184 }
2185
2186 static void intel_print_wm_latency(struct drm_device *dev,
2187                                    const char *name,
2188                                    const uint16_t wm[8])
2189 {
2190         int level, max_level = ilk_wm_max_level(dev);
2191
2192         for (level = 0; level <= max_level; level++) {
2193                 unsigned int latency = wm[level];
2194
2195                 if (latency == 0) {
2196                         DRM_ERROR("%s WM%d latency not provided\n",
2197                                   name, level);
2198                         continue;
2199                 }
2200
2201                 /*
2202                  * - latencies are in us on gen9.
2203                  * - before then, WM1+ latency values are in 0.5us units
2204                  */
2205                 if (IS_GEN9(dev))
2206                         latency *= 10;
2207                 else if (level > 0)
2208                         latency *= 5;
2209
2210                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2211                               name, level, wm[level],
2212                               latency / 10, latency % 10);
2213         }
2214 }
2215
2216 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2217                                     uint16_t wm[5], uint16_t min)
2218 {
2219         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2220
2221         if (wm[0] >= min)
2222                 return false;
2223
2224         wm[0] = max(wm[0], min);
2225         for (level = 1; level <= max_level; level++)
2226                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2227
2228         return true;
2229 }
2230
2231 static void snb_wm_latency_quirk(struct drm_device *dev)
2232 {
2233         struct drm_i915_private *dev_priv = dev->dev_private;
2234         bool changed;
2235
2236         /*
2237          * The BIOS provided WM memory latency values are often
2238          * inadequate for high resolution displays. Adjust them.
2239          */
2240         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2241                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2242                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2243
2244         if (!changed)
2245                 return;
2246
2247         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2248         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2249         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2250         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2251 }
2252
2253 static void ilk_setup_wm_latency(struct drm_device *dev)
2254 {
2255         struct drm_i915_private *dev_priv = dev->dev_private;
2256
2257         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2258
2259         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2260                sizeof(dev_priv->wm.pri_latency));
2261         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2262                sizeof(dev_priv->wm.pri_latency));
2263
2264         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2265         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2266
2267         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2268         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2269         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2270
2271         if (IS_GEN6(dev))
2272                 snb_wm_latency_quirk(dev);
2273 }
2274
2275 static void skl_setup_wm_latency(struct drm_device *dev)
2276 {
2277         struct drm_i915_private *dev_priv = dev->dev_private;
2278
2279         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2280         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2281 }
2282
2283 static void ilk_compute_wm_config(struct drm_device *dev,
2284                                   struct intel_wm_config *config)
2285 {
2286         struct intel_crtc *intel_crtc;
2287
2288         /* Compute the currently _active_ config */
2289         for_each_intel_crtc(dev, intel_crtc) {
2290                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2291
2292                 if (!wm->pipe_enabled)
2293                         continue;
2294
2295                 config->sprites_enabled |= wm->sprites_enabled;
2296                 config->sprites_scaled |= wm->sprites_scaled;
2297                 config->num_pipes_active++;
2298         }
2299 }
2300
2301 /* Compute new watermarks for the pipe */
2302 static bool intel_compute_pipe_wm(struct intel_crtc_state *cstate,
2303                                   struct intel_pipe_wm *pipe_wm)
2304 {
2305         struct drm_crtc *crtc = cstate->base.crtc;
2306         struct drm_device *dev = crtc->dev;
2307         const struct drm_i915_private *dev_priv = dev->dev_private;
2308         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2309         struct intel_plane *intel_plane;
2310         struct intel_plane_state *sprstate = NULL;
2311         int level, max_level = ilk_wm_max_level(dev);
2312         /* LP0 watermark maximums depend on this pipe alone */
2313         struct intel_wm_config config = {
2314                 .num_pipes_active = 1,
2315         };
2316         struct ilk_wm_maximums max;
2317
2318         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2319                 if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
2320                         sprstate = to_intel_plane_state(intel_plane->base.state);
2321                         break;
2322                 }
2323         }
2324
2325         config.sprites_enabled = sprstate->visible;
2326         config.sprites_scaled = sprstate->visible &&
2327                 (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2328                 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2329
2330         pipe_wm->pipe_enabled = cstate->base.active;
2331         pipe_wm->sprites_enabled = sprstate->visible;
2332         pipe_wm->sprites_scaled = config.sprites_scaled;
2333
2334         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2335         if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2336                 max_level = 1;
2337
2338         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2339         if (config.sprites_scaled)
2340                 max_level = 0;
2341
2342         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, &pipe_wm->wm[0]);
2343
2344         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2345                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2346
2347         /* LP0 watermarks always use 1/2 DDB partitioning */
2348         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2349
2350         /* At least LP0 must be valid */
2351         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2352                 return false;
2353
2354         ilk_compute_wm_reg_maximums(dev, 1, &max);
2355
2356         for (level = 1; level <= max_level; level++) {
2357                 struct intel_wm_level wm = {};
2358
2359                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, &wm);
2360
2361                 /*
2362                  * Disable any watermark level that exceeds the
2363                  * register maximums since such watermarks are
2364                  * always invalid.
2365                  */
2366                 if (!ilk_validate_wm_level(level, &max, &wm))
2367                         break;
2368
2369                 pipe_wm->wm[level] = wm;
2370         }
2371
2372         return true;
2373 }
2374
2375 /*
2376  * Merge the watermarks from all active pipes for a specific level.
2377  */
2378 static void ilk_merge_wm_level(struct drm_device *dev,
2379                                int level,
2380                                struct intel_wm_level *ret_wm)
2381 {
2382         const struct intel_crtc *intel_crtc;
2383
2384         ret_wm->enable = true;
2385
2386         for_each_intel_crtc(dev, intel_crtc) {
2387                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2388                 const struct intel_wm_level *wm = &active->wm[level];
2389
2390                 if (!active->pipe_enabled)
2391                         continue;
2392
2393                 /*
2394                  * The watermark values may have been used in the past,
2395                  * so we must maintain them in the registers for some
2396                  * time even if the level is now disabled.
2397                  */
2398                 if (!wm->enable)
2399                         ret_wm->enable = false;
2400
2401                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2402                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2403                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2404                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2405         }
2406 }
2407
2408 /*
2409  * Merge all low power watermarks for all active pipes.
2410  */
2411 static void ilk_wm_merge(struct drm_device *dev,
2412                          const struct intel_wm_config *config,
2413                          const struct ilk_wm_maximums *max,
2414                          struct intel_pipe_wm *merged)
2415 {
2416         struct drm_i915_private *dev_priv = dev->dev_private;
2417         int level, max_level = ilk_wm_max_level(dev);
2418         int last_enabled_level = max_level;
2419
2420         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2421         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2422             config->num_pipes_active > 1)
2423                 return;
2424
2425         /* ILK: FBC WM must be disabled always */
2426         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2427
2428         /* merge each WM1+ level */
2429         for (level = 1; level <= max_level; level++) {
2430                 struct intel_wm_level *wm = &merged->wm[level];
2431
2432                 ilk_merge_wm_level(dev, level, wm);
2433
2434                 if (level > last_enabled_level)
2435                         wm->enable = false;
2436                 else if (!ilk_validate_wm_level(level, max, wm))
2437                         /* make sure all following levels get disabled */
2438                         last_enabled_level = level - 1;
2439
2440                 /*
2441                  * The spec says it is preferred to disable
2442                  * FBC WMs instead of disabling a WM level.
2443                  */
2444                 if (wm->fbc_val > max->fbc) {
2445                         if (wm->enable)
2446                                 merged->fbc_wm_enabled = false;
2447                         wm->fbc_val = 0;
2448                 }
2449         }
2450
2451         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2452         /*
2453          * FIXME this is racy. FBC might get enabled later.
2454          * What we should check here is whether FBC can be
2455          * enabled sometime later.
2456          */
2457         if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2458             intel_fbc_enabled(dev_priv)) {
2459                 for (level = 2; level <= max_level; level++) {
2460                         struct intel_wm_level *wm = &merged->wm[level];
2461
2462                         wm->enable = false;
2463                 }
2464         }
2465 }
2466
2467 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2468 {
2469         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2470         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2471 }
2472
2473 /* The value we need to program into the WM_LPx latency field */
2474 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2475 {
2476         struct drm_i915_private *dev_priv = dev->dev_private;
2477
2478         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2479                 return 2 * level;
2480         else
2481                 return dev_priv->wm.pri_latency[level];
2482 }
2483
2484 static void ilk_compute_wm_results(struct drm_device *dev,
2485                                    const struct intel_pipe_wm *merged,
2486                                    enum intel_ddb_partitioning partitioning,
2487                                    struct ilk_wm_values *results)
2488 {
2489         struct intel_crtc *intel_crtc;
2490         int level, wm_lp;
2491
2492         results->enable_fbc_wm = merged->fbc_wm_enabled;
2493         results->partitioning = partitioning;
2494
2495         /* LP1+ register values */
2496         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2497                 const struct intel_wm_level *r;
2498
2499                 level = ilk_wm_lp_to_level(wm_lp, merged);
2500
2501                 r = &merged->wm[level];
2502
2503                 /*
2504                  * Maintain the watermark values even if the level is
2505                  * disabled. Doing otherwise could cause underruns.
2506                  */
2507                 results->wm_lp[wm_lp - 1] =
2508                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2509                         (r->pri_val << WM1_LP_SR_SHIFT) |
2510                         r->cur_val;
2511
2512                 if (r->enable)
2513                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2514
2515                 if (INTEL_INFO(dev)->gen >= 8)
2516                         results->wm_lp[wm_lp - 1] |=
2517                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2518                 else
2519                         results->wm_lp[wm_lp - 1] |=
2520                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2521
2522                 /*
2523                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2524                  * level is disabled. Doing otherwise could cause underruns.
2525                  */
2526                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2527                         WARN_ON(wm_lp != 1);
2528                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2529                 } else
2530                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2531         }
2532
2533         /* LP0 register values */
2534         for_each_intel_crtc(dev, intel_crtc) {
2535                 enum pipe pipe = intel_crtc->pipe;
2536                 const struct intel_wm_level *r =
2537                         &intel_crtc->wm.active.wm[0];
2538
2539                 if (WARN_ON(!r->enable))
2540                         continue;
2541
2542                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2543
2544                 results->wm_pipe[pipe] =
2545                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2546                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2547                         r->cur_val;
2548         }
2549 }
2550
2551 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2552  * case both are at the same level. Prefer r1 in case they're the same. */
2553 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2554                                                   struct intel_pipe_wm *r1,
2555                                                   struct intel_pipe_wm *r2)
2556 {
2557         int level, max_level = ilk_wm_max_level(dev);
2558         int level1 = 0, level2 = 0;
2559
2560         for (level = 1; level <= max_level; level++) {
2561                 if (r1->wm[level].enable)
2562                         level1 = level;
2563                 if (r2->wm[level].enable)
2564                         level2 = level;
2565         }
2566
2567         if (level1 == level2) {
2568                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2569                         return r2;
2570                 else
2571                         return r1;
2572         } else if (level1 > level2) {
2573                 return r1;
2574         } else {
2575                 return r2;
2576         }
2577 }
2578
2579 /* dirty bits used to track which watermarks need changes */
2580 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2581 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2582 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2583 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2584 #define WM_DIRTY_FBC (1 << 24)
2585 #define WM_DIRTY_DDB (1 << 25)
2586
2587 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2588                                          const struct ilk_wm_values *old,
2589                                          const struct ilk_wm_values *new)
2590 {
2591         unsigned int dirty = 0;
2592         enum pipe pipe;
2593         int wm_lp;
2594
2595         for_each_pipe(dev_priv, pipe) {
2596                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2597                         dirty |= WM_DIRTY_LINETIME(pipe);
2598                         /* Must disable LP1+ watermarks too */
2599                         dirty |= WM_DIRTY_LP_ALL;
2600                 }
2601
2602                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2603                         dirty |= WM_DIRTY_PIPE(pipe);
2604                         /* Must disable LP1+ watermarks too */
2605                         dirty |= WM_DIRTY_LP_ALL;
2606                 }
2607         }
2608
2609         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2610                 dirty |= WM_DIRTY_FBC;
2611                 /* Must disable LP1+ watermarks too */
2612                 dirty |= WM_DIRTY_LP_ALL;
2613         }
2614
2615         if (old->partitioning != new->partitioning) {
2616                 dirty |= WM_DIRTY_DDB;
2617                 /* Must disable LP1+ watermarks too */
2618                 dirty |= WM_DIRTY_LP_ALL;
2619         }
2620
2621         /* LP1+ watermarks already deemed dirty, no need to continue */
2622         if (dirty & WM_DIRTY_LP_ALL)
2623                 return dirty;
2624
2625         /* Find the lowest numbered LP1+ watermark in need of an update... */
2626         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2627                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2628                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2629                         break;
2630         }
2631
2632         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2633         for (; wm_lp <= 3; wm_lp++)
2634                 dirty |= WM_DIRTY_LP(wm_lp);
2635
2636         return dirty;
2637 }
2638
2639 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2640                                unsigned int dirty)
2641 {
2642         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2643         bool changed = false;
2644
2645         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2646                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2647                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2648                 changed = true;
2649         }
2650         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2651                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2652                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2653                 changed = true;
2654         }
2655         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2656                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2657                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2658                 changed = true;
2659         }
2660
2661         /*
2662          * Don't touch WM1S_LP_EN here.
2663          * Doing so could cause underruns.
2664          */
2665
2666         return changed;
2667 }
2668
2669 /*
2670  * The spec says we shouldn't write when we don't need, because every write
2671  * causes WMs to be re-evaluated, expending some power.
2672  */
2673 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2674                                 struct ilk_wm_values *results)
2675 {
2676         struct drm_device *dev = dev_priv->dev;
2677         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2678         unsigned int dirty;
2679         uint32_t val;
2680
2681         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2682         if (!dirty)
2683                 return;
2684
2685         _ilk_disable_lp_wm(dev_priv, dirty);
2686
2687         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2688                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2689         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2690                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2691         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2692                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2693
2694         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2695                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2696         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2697                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2698         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2699                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2700
2701         if (dirty & WM_DIRTY_DDB) {
2702                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2703                         val = I915_READ(WM_MISC);
2704                         if (results->partitioning == INTEL_DDB_PART_1_2)
2705                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2706                         else
2707                                 val |= WM_MISC_DATA_PARTITION_5_6;
2708                         I915_WRITE(WM_MISC, val);
2709                 } else {
2710                         val = I915_READ(DISP_ARB_CTL2);
2711                         if (results->partitioning == INTEL_DDB_PART_1_2)
2712                                 val &= ~DISP_DATA_PARTITION_5_6;
2713                         else
2714                                 val |= DISP_DATA_PARTITION_5_6;
2715                         I915_WRITE(DISP_ARB_CTL2, val);
2716                 }
2717         }
2718
2719         if (dirty & WM_DIRTY_FBC) {
2720                 val = I915_READ(DISP_ARB_CTL);
2721                 if (results->enable_fbc_wm)
2722                         val &= ~DISP_FBC_WM_DIS;
2723                 else
2724                         val |= DISP_FBC_WM_DIS;
2725                 I915_WRITE(DISP_ARB_CTL, val);
2726         }
2727
2728         if (dirty & WM_DIRTY_LP(1) &&
2729             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2730                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2731
2732         if (INTEL_INFO(dev)->gen >= 7) {
2733                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2734                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2735                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2736                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2737         }
2738
2739         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2740                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2741         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2742                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2743         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2744                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2745
2746         dev_priv->wm.hw = *results;
2747 }
2748
2749 static bool ilk_disable_lp_wm(struct drm_device *dev)
2750 {
2751         struct drm_i915_private *dev_priv = dev->dev_private;
2752
2753         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2754 }
2755
2756 /*
2757  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2758  * different active planes.
2759  */
2760
2761 #define SKL_DDB_SIZE            896     /* in blocks */
2762 #define BXT_DDB_SIZE            512
2763
2764 static void
2765 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2766                                    struct drm_crtc *for_crtc,
2767                                    const struct intel_wm_config *config,
2768                                    const struct skl_pipe_wm_parameters *params,
2769                                    struct skl_ddb_entry *alloc /* out */)
2770 {
2771         struct drm_crtc *crtc;
2772         unsigned int pipe_size, ddb_size;
2773         int nth_active_pipe;
2774
2775         if (!params->active) {
2776                 alloc->start = 0;
2777                 alloc->end = 0;
2778                 return;
2779         }
2780
2781         if (IS_BROXTON(dev))
2782                 ddb_size = BXT_DDB_SIZE;
2783         else
2784                 ddb_size = SKL_DDB_SIZE;
2785
2786         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2787
2788         nth_active_pipe = 0;
2789         for_each_crtc(dev, crtc) {
2790                 if (!to_intel_crtc(crtc)->active)
2791                         continue;
2792
2793                 if (crtc == for_crtc)
2794                         break;
2795
2796                 nth_active_pipe++;
2797         }
2798
2799         pipe_size = ddb_size / config->num_pipes_active;
2800         alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2801         alloc->end = alloc->start + pipe_size;
2802 }
2803
2804 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2805 {
2806         if (config->num_pipes_active == 1)
2807                 return 32;
2808
2809         return 8;
2810 }
2811
2812 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2813 {
2814         entry->start = reg & 0x3ff;
2815         entry->end = (reg >> 16) & 0x3ff;
2816         if (entry->end)
2817                 entry->end += 1;
2818 }
2819
2820 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2821                           struct skl_ddb_allocation *ddb /* out */)
2822 {
2823         enum pipe pipe;
2824         int plane;
2825         u32 val;
2826
2827         memset(ddb, 0, sizeof(*ddb));
2828
2829         for_each_pipe(dev_priv, pipe) {
2830                 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
2831                         continue;
2832
2833                 for_each_plane(dev_priv, pipe, plane) {
2834                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2835                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2836                                                    val);
2837                 }
2838
2839                 val = I915_READ(CUR_BUF_CFG(pipe));
2840                 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2841                                            val);
2842         }
2843 }
2844
2845 static unsigned int
2846 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2847 {
2848
2849         /* for planar format */
2850         if (p->y_bytes_per_pixel) {
2851                 if (y)  /* y-plane data rate */
2852                         return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2853                 else    /* uv-plane data rate */
2854                         return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2855         }
2856
2857         /* for packed formats */
2858         return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2859 }
2860
2861 /*
2862  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2863  * a 8192x4096@32bpp framebuffer:
2864  *   3 * 4096 * 8192  * 4 < 2^32
2865  */
2866 static unsigned int
2867 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2868                                  const struct skl_pipe_wm_parameters *params)
2869 {
2870         unsigned int total_data_rate = 0;
2871         int plane;
2872
2873         for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2874                 const struct intel_plane_wm_parameters *p;
2875
2876                 p = &params->plane[plane];
2877                 if (!p->enabled)
2878                         continue;
2879
2880                 total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
2881                 if (p->y_bytes_per_pixel) {
2882                         total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
2883                 }
2884         }
2885
2886         return total_data_rate;
2887 }
2888
2889 static void
2890 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2891                       const struct intel_wm_config *config,
2892                       const struct skl_pipe_wm_parameters *params,
2893                       struct skl_ddb_allocation *ddb /* out */)
2894 {
2895         struct drm_device *dev = crtc->dev;
2896         struct drm_i915_private *dev_priv = dev->dev_private;
2897         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2898         enum pipe pipe = intel_crtc->pipe;
2899         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2900         uint16_t alloc_size, start, cursor_blocks;
2901         uint16_t minimum[I915_MAX_PLANES];
2902         uint16_t y_minimum[I915_MAX_PLANES];
2903         unsigned int total_data_rate;
2904         int plane;
2905
2906         skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2907         alloc_size = skl_ddb_entry_size(alloc);
2908         if (alloc_size == 0) {
2909                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2910                 memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2911                        sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2912                 return;
2913         }
2914
2915         cursor_blocks = skl_cursor_allocation(config);
2916         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2917         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2918
2919         alloc_size -= cursor_blocks;
2920         alloc->end -= cursor_blocks;
2921
2922         /* 1. Allocate the mininum required blocks for each active plane */
2923         for_each_plane(dev_priv, pipe, plane) {
2924                 const struct intel_plane_wm_parameters *p;
2925
2926                 p = &params->plane[plane];
2927                 if (!p->enabled)
2928                         continue;
2929
2930                 minimum[plane] = 8;
2931                 alloc_size -= minimum[plane];
2932                 y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
2933                 alloc_size -= y_minimum[plane];
2934         }
2935
2936         /*
2937          * 2. Distribute the remaining space in proportion to the amount of
2938          * data each plane needs to fetch from memory.
2939          *
2940          * FIXME: we may not allocate every single block here.
2941          */
2942         total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2943
2944         start = alloc->start;
2945         for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2946                 const struct intel_plane_wm_parameters *p;
2947                 unsigned int data_rate, y_data_rate;
2948                 uint16_t plane_blocks, y_plane_blocks = 0;
2949
2950                 p = &params->plane[plane];
2951                 if (!p->enabled)
2952                         continue;
2953
2954                 data_rate = skl_plane_relative_data_rate(p, 0);
2955
2956                 /*
2957                  * allocation for (packed formats) or (uv-plane part of planar format):
2958                  * promote the expression to 64 bits to avoid overflowing, the
2959                  * result is < available as data_rate / total_data_rate < 1
2960                  */
2961                 plane_blocks = minimum[plane];
2962                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2963                                         total_data_rate);
2964
2965                 ddb->plane[pipe][plane].start = start;
2966                 ddb->plane[pipe][plane].end = start + plane_blocks;
2967
2968                 start += plane_blocks;
2969
2970                 /*
2971                  * allocation for y_plane part of planar format:
2972                  */
2973                 if (p->y_bytes_per_pixel) {
2974                         y_data_rate = skl_plane_relative_data_rate(p, 1);
2975                         y_plane_blocks = y_minimum[plane];
2976                         y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
2977                                                 total_data_rate);
2978
2979                         ddb->y_plane[pipe][plane].start = start;
2980                         ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
2981
2982                         start += y_plane_blocks;
2983                 }
2984
2985         }
2986
2987 }
2988
2989 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2990 {
2991         /* TODO: Take into account the scalers once we support them */
2992         return config->base.adjusted_mode.crtc_clock;
2993 }
2994
2995 /*
2996  * The max latency should be 257 (max the punit can code is 255 and we add 2us
2997  * for the read latency) and bytes_per_pixel should always be <= 8, so that
2998  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
2999  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3000 */
3001 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3002                                uint32_t latency)
3003 {
3004         uint32_t wm_intermediate_val, ret;
3005
3006         if (latency == 0)
3007                 return UINT_MAX;
3008
3009         wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3010         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3011
3012         return ret;
3013 }
3014
3015 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3016                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3017                                uint64_t tiling, uint32_t latency)
3018 {
3019         uint32_t ret;
3020         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3021         uint32_t wm_intermediate_val;
3022
3023         if (latency == 0)
3024                 return UINT_MAX;
3025
3026         plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3027
3028         if (tiling == I915_FORMAT_MOD_Y_TILED ||
3029             tiling == I915_FORMAT_MOD_Yf_TILED) {
3030                 plane_bytes_per_line *= 4;
3031                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3032                 plane_blocks_per_line /= 4;
3033         } else {
3034                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3035         }
3036
3037         wm_intermediate_val = latency * pixel_rate;
3038         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3039                                 plane_blocks_per_line;
3040
3041         return ret;
3042 }
3043
3044 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3045                                        const struct intel_crtc *intel_crtc)
3046 {
3047         struct drm_device *dev = intel_crtc->base.dev;
3048         struct drm_i915_private *dev_priv = dev->dev_private;
3049         const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3050         enum pipe pipe = intel_crtc->pipe;
3051
3052         if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3053                    sizeof(new_ddb->plane[pipe])))
3054                 return true;
3055
3056         if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
3057                     sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
3058                 return true;
3059
3060         return false;
3061 }
3062
3063 static void skl_compute_wm_global_parameters(struct drm_device *dev,
3064                                              struct intel_wm_config *config)
3065 {
3066         struct drm_crtc *crtc;
3067         struct drm_plane *plane;
3068
3069         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3070                 config->num_pipes_active += to_intel_crtc(crtc)->active;
3071
3072         /* FIXME: I don't think we need those two global parameters on SKL */
3073         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3074                 struct intel_plane *intel_plane = to_intel_plane(plane);
3075
3076                 config->sprites_enabled |= intel_plane->wm.enabled;
3077                 config->sprites_scaled |= intel_plane->wm.scaled;
3078         }
3079 }
3080
3081 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
3082                                            struct skl_pipe_wm_parameters *p)
3083 {
3084         struct drm_device *dev = crtc->dev;
3085         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3086         enum pipe pipe = intel_crtc->pipe;
3087         struct drm_plane *plane;
3088         struct drm_framebuffer *fb;
3089         int i = 1; /* Index for sprite planes start */
3090
3091         p->active = intel_crtc->active;
3092         if (p->active) {
3093                 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
3094                 p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
3095
3096                 fb = crtc->primary->state->fb;
3097                 /* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3098                 if (fb) {
3099                         p->plane[0].enabled = true;
3100                         p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3101                                 drm_format_plane_cpp(fb->pixel_format, 1) :
3102                                 drm_format_plane_cpp(fb->pixel_format, 0);
3103                         p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3104                                 drm_format_plane_cpp(fb->pixel_format, 0) : 0;
3105                         p->plane[0].tiling = fb->modifier[0];
3106                 } else {
3107                         p->plane[0].enabled = false;
3108                         p->plane[0].bytes_per_pixel = 0;
3109                         p->plane[0].y_bytes_per_pixel = 0;
3110                         p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
3111                 }
3112                 p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
3113                 p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
3114                 p->plane[0].rotation = crtc->primary->state->rotation;
3115
3116                 fb = crtc->cursor->state->fb;
3117                 p->plane[PLANE_CURSOR].y_bytes_per_pixel = 0;
3118                 if (fb) {
3119                         p->plane[PLANE_CURSOR].enabled = true;
3120                         p->plane[PLANE_CURSOR].bytes_per_pixel = fb->bits_per_pixel / 8;
3121                         p->plane[PLANE_CURSOR].horiz_pixels = crtc->cursor->state->crtc_w;
3122                         p->plane[PLANE_CURSOR].vert_pixels = crtc->cursor->state->crtc_h;
3123                 } else {
3124                         p->plane[PLANE_CURSOR].enabled = false;
3125                         p->plane[PLANE_CURSOR].bytes_per_pixel = 0;
3126                         p->plane[PLANE_CURSOR].horiz_pixels = 64;
3127                         p->plane[PLANE_CURSOR].vert_pixels = 64;
3128                 }
3129         }
3130
3131         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3132                 struct intel_plane *intel_plane = to_intel_plane(plane);
3133
3134                 if (intel_plane->pipe == pipe &&
3135                         plane->type == DRM_PLANE_TYPE_OVERLAY)
3136                         p->plane[i++] = intel_plane->wm;
3137         }
3138 }
3139
3140 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3141                                  struct skl_pipe_wm_parameters *p,
3142                                  struct intel_plane_wm_parameters *p_params,
3143                                  uint16_t ddb_allocation,
3144                                  int level,
3145                                  uint16_t *out_blocks, /* out */
3146                                  uint8_t *out_lines /* out */)
3147 {
3148         uint32_t latency = dev_priv->wm.skl_latency[level];
3149         uint32_t method1, method2;
3150         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3151         uint32_t res_blocks, res_lines;
3152         uint32_t selected_result;
3153         uint8_t bytes_per_pixel;
3154
3155         if (latency == 0 || !p->active || !p_params->enabled)
3156                 return false;
3157
3158         bytes_per_pixel = p_params->y_bytes_per_pixel ?
3159                 p_params->y_bytes_per_pixel :
3160                 p_params->bytes_per_pixel;
3161         method1 = skl_wm_method1(p->pixel_rate,
3162                                  bytes_per_pixel,
3163                                  latency);
3164         method2 = skl_wm_method2(p->pixel_rate,
3165                                  p->pipe_htotal,
3166                                  p_params->horiz_pixels,
3167                                  bytes_per_pixel,
3168                                  p_params->tiling,
3169                                  latency);
3170
3171         plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3172         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3173
3174         if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3175             p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3176                 uint32_t min_scanlines = 4;
3177                 uint32_t y_tile_minimum;
3178                 if (intel_rotation_90_or_270(p_params->rotation)) {
3179                         switch (p_params->bytes_per_pixel) {
3180                         case 1:
3181                                 min_scanlines = 16;
3182                                 break;
3183                         case 2:
3184                                 min_scanlines = 8;
3185                                 break;
3186                         case 8:
3187                                 WARN(1, "Unsupported pixel depth for rotation");
3188                         }
3189                 }
3190                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3191                 selected_result = max(method2, y_tile_minimum);
3192         } else {
3193                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3194                         selected_result = min(method1, method2);
3195                 else
3196                         selected_result = method1;
3197         }
3198
3199         res_blocks = selected_result + 1;
3200         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3201
3202         if (level >= 1 && level <= 7) {
3203                 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3204                     p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3205                         res_lines += 4;
3206                 else
3207                         res_blocks++;
3208         }
3209
3210         if (res_blocks >= ddb_allocation || res_lines > 31)
3211                 return false;
3212
3213         *out_blocks = res_blocks;
3214         *out_lines = res_lines;
3215
3216         return true;
3217 }
3218
3219 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3220                                  struct skl_ddb_allocation *ddb,
3221                                  struct skl_pipe_wm_parameters *p,
3222                                  enum pipe pipe,
3223                                  int level,
3224                                  int num_planes,
3225                                  struct skl_wm_level *result)
3226 {
3227         uint16_t ddb_blocks;
3228         int i;
3229
3230         for (i = 0; i < num_planes; i++) {
3231                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3232
3233                 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3234                                                 p, &p->plane[i],
3235                                                 ddb_blocks,
3236                                                 level,
3237                                                 &result->plane_res_b[i],
3238                                                 &result->plane_res_l[i]);
3239         }
3240
3241         ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][PLANE_CURSOR]);
3242         result->plane_en[PLANE_CURSOR] = skl_compute_plane_wm(dev_priv, p,
3243                                                  &p->plane[PLANE_CURSOR],
3244                                                  ddb_blocks, level,
3245                                                  &result->plane_res_b[PLANE_CURSOR],
3246                                                  &result->plane_res_l[PLANE_CURSOR]);
3247 }
3248
3249 static uint32_t
3250 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3251 {
3252         if (!to_intel_crtc(crtc)->active)
3253                 return 0;
3254
3255         if (WARN_ON(p->pixel_rate == 0))
3256                 return 0;
3257
3258         return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3259 }
3260
3261 static void skl_compute_transition_wm(struct drm_crtc *crtc,
3262                                       struct skl_pipe_wm_parameters *params,
3263                                       struct skl_wm_level *trans_wm /* out */)
3264 {
3265         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3266         int i;
3267
3268         if (!params->active)
3269                 return;
3270
3271         /* Until we know more, just disable transition WMs */
3272         for (i = 0; i < intel_num_planes(intel_crtc); i++)
3273                 trans_wm->plane_en[i] = false;
3274         trans_wm->plane_en[PLANE_CURSOR] = false;
3275 }
3276
3277 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3278                                 struct skl_ddb_allocation *ddb,
3279                                 struct skl_pipe_wm_parameters *params,
3280                                 struct skl_pipe_wm *pipe_wm)
3281 {
3282         struct drm_device *dev = crtc->dev;
3283         const struct drm_i915_private *dev_priv = dev->dev_private;
3284         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3285         int level, max_level = ilk_wm_max_level(dev);
3286
3287         for (level = 0; level <= max_level; level++) {
3288                 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3289                                      level, intel_num_planes(intel_crtc),
3290                                      &pipe_wm->wm[level]);
3291         }
3292         pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3293
3294         skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3295 }
3296
3297 static void skl_compute_wm_results(struct drm_device *dev,
3298                                    struct skl_pipe_wm_parameters *p,
3299                                    struct skl_pipe_wm *p_wm,
3300                                    struct skl_wm_values *r,
3301                                    struct intel_crtc *intel_crtc)
3302 {
3303         int level, max_level = ilk_wm_max_level(dev);
3304         enum pipe pipe = intel_crtc->pipe;
3305         uint32_t temp;
3306         int i;
3307
3308         for (level = 0; level <= max_level; level++) {
3309                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3310                         temp = 0;
3311
3312                         temp |= p_wm->wm[level].plane_res_l[i] <<
3313                                         PLANE_WM_LINES_SHIFT;
3314                         temp |= p_wm->wm[level].plane_res_b[i];
3315                         if (p_wm->wm[level].plane_en[i])
3316                                 temp |= PLANE_WM_EN;
3317
3318                         r->plane[pipe][i][level] = temp;
3319                 }
3320
3321                 temp = 0;
3322
3323                 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3324                 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3325
3326                 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3327                         temp |= PLANE_WM_EN;
3328
3329                 r->plane[pipe][PLANE_CURSOR][level] = temp;
3330
3331         }
3332
3333         /* transition WMs */
3334         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3335                 temp = 0;
3336                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3337                 temp |= p_wm->trans_wm.plane_res_b[i];
3338                 if (p_wm->trans_wm.plane_en[i])
3339                         temp |= PLANE_WM_EN;
3340
3341                 r->plane_trans[pipe][i] = temp;
3342         }
3343
3344         temp = 0;
3345         temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3346         temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3347         if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3348                 temp |= PLANE_WM_EN;
3349
3350         r->plane_trans[pipe][PLANE_CURSOR] = temp;
3351
3352         r->wm_linetime[pipe] = p_wm->linetime;
3353 }
3354
3355 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3356                                 const struct skl_ddb_entry *entry)
3357 {
3358         if (entry->end)
3359                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3360         else
3361                 I915_WRITE(reg, 0);
3362 }
3363
3364 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3365                                 const struct skl_wm_values *new)
3366 {
3367         struct drm_device *dev = dev_priv->dev;
3368         struct intel_crtc *crtc;
3369
3370         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3371                 int i, level, max_level = ilk_wm_max_level(dev);
3372                 enum pipe pipe = crtc->pipe;
3373
3374                 if (!new->dirty[pipe])
3375                         continue;
3376
3377                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3378
3379                 for (level = 0; level <= max_level; level++) {
3380                         for (i = 0; i < intel_num_planes(crtc); i++)
3381                                 I915_WRITE(PLANE_WM(pipe, i, level),
3382                                            new->plane[pipe][i][level]);
3383                         I915_WRITE(CUR_WM(pipe, level),
3384                                    new->plane[pipe][PLANE_CURSOR][level]);
3385                 }
3386                 for (i = 0; i < intel_num_planes(crtc); i++)
3387                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3388                                    new->plane_trans[pipe][i]);
3389                 I915_WRITE(CUR_WM_TRANS(pipe),
3390                            new->plane_trans[pipe][PLANE_CURSOR]);
3391
3392                 for (i = 0; i < intel_num_planes(crtc); i++) {
3393                         skl_ddb_entry_write(dev_priv,
3394                                             PLANE_BUF_CFG(pipe, i),
3395                                             &new->ddb.plane[pipe][i]);
3396                         skl_ddb_entry_write(dev_priv,
3397                                             PLANE_NV12_BUF_CFG(pipe, i),
3398                                             &new->ddb.y_plane[pipe][i]);
3399                 }
3400
3401                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3402                                     &new->ddb.plane[pipe][PLANE_CURSOR]);
3403         }
3404 }
3405
3406 /*
3407  * When setting up a new DDB allocation arrangement, we need to correctly
3408  * sequence the times at which the new allocations for the pipes are taken into
3409  * account or we'll have pipes fetching from space previously allocated to
3410  * another pipe.
3411  *
3412  * Roughly the sequence looks like:
3413  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3414  *     overlapping with a previous light-up pipe (another way to put it is:
3415  *     pipes with their new allocation strickly included into their old ones).
3416  *  2. re-allocate the other pipes that get their allocation reduced
3417  *  3. allocate the pipes having their allocation increased
3418  *
3419  * Steps 1. and 2. are here to take care of the following case:
3420  * - Initially DDB looks like this:
3421  *     |   B    |   C    |
3422  * - enable pipe A.
3423  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3424  *   allocation
3425  *     |  A  |  B  |  C  |
3426  *
3427  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3428  */
3429
3430 static void
3431 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3432 {
3433         int plane;
3434
3435         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3436
3437         for_each_plane(dev_priv, pipe, plane) {
3438                 I915_WRITE(PLANE_SURF(pipe, plane),
3439                            I915_READ(PLANE_SURF(pipe, plane)));
3440         }
3441         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3442 }
3443
3444 static bool
3445 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3446                             const struct skl_ddb_allocation *new,
3447                             enum pipe pipe)
3448 {
3449         uint16_t old_size, new_size;
3450
3451         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3452         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3453
3454         return old_size != new_size &&
3455                new->pipe[pipe].start >= old->pipe[pipe].start &&
3456                new->pipe[pipe].end <= old->pipe[pipe].end;
3457 }
3458
3459 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3460                                 struct skl_wm_values *new_values)
3461 {
3462         struct drm_device *dev = dev_priv->dev;
3463         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3464         bool reallocated[I915_MAX_PIPES] = {};
3465         struct intel_crtc *crtc;
3466         enum pipe pipe;
3467
3468         new_ddb = &new_values->ddb;
3469         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3470
3471         /*
3472          * First pass: flush the pipes with the new allocation contained into
3473          * the old space.
3474          *
3475          * We'll wait for the vblank on those pipes to ensure we can safely
3476          * re-allocate the freed space without this pipe fetching from it.
3477          */
3478         for_each_intel_crtc(dev, crtc) {
3479                 if (!crtc->active)
3480                         continue;
3481
3482                 pipe = crtc->pipe;
3483
3484                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3485                         continue;
3486
3487                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3488                 intel_wait_for_vblank(dev, pipe);
3489
3490                 reallocated[pipe] = true;
3491         }
3492
3493
3494         /*
3495          * Second pass: flush the pipes that are having their allocation
3496          * reduced, but overlapping with a previous allocation.
3497          *
3498          * Here as well we need to wait for the vblank to make sure the freed
3499          * space is not used anymore.
3500          */
3501         for_each_intel_crtc(dev, crtc) {
3502                 if (!crtc->active)
3503                         continue;
3504
3505                 pipe = crtc->pipe;
3506
3507                 if (reallocated[pipe])
3508                         continue;
3509
3510                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3511                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3512                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3513                         intel_wait_for_vblank(dev, pipe);
3514                         reallocated[pipe] = true;
3515                 }
3516         }
3517
3518         /*
3519          * Third pass: flush the pipes that got more space allocated.
3520          *
3521          * We don't need to actively wait for the update here, next vblank
3522          * will just get more DDB space with the correct WM values.
3523          */
3524         for_each_intel_crtc(dev, crtc) {
3525                 if (!crtc->active)
3526                         continue;
3527
3528                 pipe = crtc->pipe;
3529
3530                 /*
3531                  * At this point, only the pipes more space than before are
3532                  * left to re-allocate.
3533                  */
3534                 if (reallocated[pipe])
3535                         continue;
3536
3537                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3538         }
3539 }
3540
3541 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3542                                struct skl_pipe_wm_parameters *params,
3543                                struct intel_wm_config *config,
3544                                struct skl_ddb_allocation *ddb, /* out */
3545                                struct skl_pipe_wm *pipe_wm /* out */)
3546 {
3547         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3548
3549         skl_compute_wm_pipe_parameters(crtc, params);
3550         skl_allocate_pipe_ddb(crtc, config, params, ddb);
3551         skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3552
3553         if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3554                 return false;
3555
3556         intel_crtc->wm.skl_active = *pipe_wm;
3557
3558         return true;
3559 }
3560
3561 static void skl_update_other_pipe_wm(struct drm_device *dev,
3562                                      struct drm_crtc *crtc,
3563                                      struct intel_wm_config *config,
3564                                      struct skl_wm_values *r)
3565 {
3566         struct intel_crtc *intel_crtc;
3567         struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3568
3569         /*
3570          * If the WM update hasn't changed the allocation for this_crtc (the
3571          * crtc we are currently computing the new WM values for), other
3572          * enabled crtcs will keep the same allocation and we don't need to
3573          * recompute anything for them.
3574          */
3575         if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3576                 return;
3577
3578         /*
3579          * Otherwise, because of this_crtc being freshly enabled/disabled, the
3580          * other active pipes need new DDB allocation and WM values.
3581          */
3582         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3583                                 base.head) {
3584                 struct skl_pipe_wm_parameters params = {};
3585                 struct skl_pipe_wm pipe_wm = {};
3586                 bool wm_changed;
3587
3588                 if (this_crtc->pipe == intel_crtc->pipe)
3589                         continue;
3590
3591                 if (!intel_crtc->active)
3592                         continue;
3593
3594                 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3595                                                 &params, config,
3596                                                 &r->ddb, &pipe_wm);
3597
3598                 /*
3599                  * If we end up re-computing the other pipe WM values, it's
3600                  * because it was really needed, so we expect the WM values to
3601                  * be different.
3602                  */
3603                 WARN_ON(!wm_changed);
3604
3605                 skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3606                 r->dirty[intel_crtc->pipe] = true;
3607         }
3608 }
3609
3610 static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3611 {
3612         watermarks->wm_linetime[pipe] = 0;
3613         memset(watermarks->plane[pipe], 0,
3614                sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3615         memset(watermarks->plane_trans[pipe],
3616                0, sizeof(uint32_t) * I915_MAX_PLANES);
3617         watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3618
3619         /* Clear ddb entries for pipe */
3620         memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3621         memset(&watermarks->ddb.plane[pipe], 0,
3622                sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3623         memset(&watermarks->ddb.y_plane[pipe], 0,
3624                sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3625         memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3626                sizeof(struct skl_ddb_entry));
3627
3628 }
3629
3630 static void skl_update_wm(struct drm_crtc *crtc)
3631 {
3632         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3633         struct drm_device *dev = crtc->dev;
3634         struct drm_i915_private *dev_priv = dev->dev_private;
3635         struct skl_pipe_wm_parameters params = {};
3636         struct skl_wm_values *results = &dev_priv->wm.skl_results;
3637         struct skl_pipe_wm pipe_wm = {};
3638         struct intel_wm_config config = {};
3639
3640
3641         /* Clear all dirty flags */
3642         memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3643
3644         skl_clear_wm(results, intel_crtc->pipe);
3645
3646         skl_compute_wm_global_parameters(dev, &config);
3647
3648         if (!skl_update_pipe_wm(crtc, &params, &config,
3649                                 &results->ddb, &pipe_wm))
3650                 return;
3651
3652         skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3653         results->dirty[intel_crtc->pipe] = true;
3654
3655         skl_update_other_pipe_wm(dev, crtc, &config, results);
3656         skl_write_wm_values(dev_priv, results);
3657         skl_flush_wm_values(dev_priv, results);
3658
3659         /* store the new configuration */
3660         dev_priv->wm.skl_hw = *results;
3661 }
3662
3663 static void
3664 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3665                      uint32_t sprite_width, uint32_t sprite_height,
3666                      int pixel_size, bool enabled, bool scaled)
3667 {
3668         struct intel_plane *intel_plane = to_intel_plane(plane);
3669         struct drm_framebuffer *fb = plane->state->fb;
3670
3671         intel_plane->wm.enabled = enabled;
3672         intel_plane->wm.scaled = scaled;
3673         intel_plane->wm.horiz_pixels = sprite_width;
3674         intel_plane->wm.vert_pixels = sprite_height;
3675         intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3676
3677         /* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3678         intel_plane->wm.bytes_per_pixel =
3679                 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3680                 drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
3681         intel_plane->wm.y_bytes_per_pixel =
3682                 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3683                 drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
3684
3685         /*
3686          * Framebuffer can be NULL on plane disable, but it does not
3687          * matter for watermarks if we assume no tiling in that case.
3688          */
3689         if (fb)
3690                 intel_plane->wm.tiling = fb->modifier[0];
3691         intel_plane->wm.rotation = plane->state->rotation;
3692
3693         skl_update_wm(crtc);
3694 }
3695
3696 static void ilk_update_wm(struct drm_crtc *crtc)
3697 {
3698         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3699         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3700         struct drm_device *dev = crtc->dev;
3701         struct drm_i915_private *dev_priv = dev->dev_private;
3702         struct ilk_wm_maximums max;
3703         struct ilk_wm_values results = {};
3704         enum intel_ddb_partitioning partitioning;
3705         struct intel_pipe_wm pipe_wm = {};
3706         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3707         struct intel_wm_config config = {};
3708
3709         WARN_ON(cstate->base.active != intel_crtc->active);
3710
3711         intel_compute_pipe_wm(cstate, &pipe_wm);
3712
3713         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3714                 return;
3715
3716         intel_crtc->wm.active = pipe_wm;
3717
3718         ilk_compute_wm_config(dev, &config);
3719
3720         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3721         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3722
3723         /* 5/6 split only in single pipe config on IVB+ */
3724         if (INTEL_INFO(dev)->gen >= 7 &&
3725             config.num_pipes_active == 1 && config.sprites_enabled) {
3726                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3727                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3728
3729                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3730         } else {
3731                 best_lp_wm = &lp_wm_1_2;
3732         }
3733
3734         partitioning = (best_lp_wm == &lp_wm_1_2) ?
3735                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3736
3737         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3738
3739         ilk_write_wm_values(dev_priv, &results);
3740 }
3741
3742 static void
3743 ilk_update_sprite_wm(struct drm_plane *plane,
3744                      struct drm_crtc *crtc,
3745                      uint32_t sprite_width, uint32_t sprite_height,
3746                      int pixel_size, bool enabled, bool scaled)
3747 {
3748         struct drm_device *dev = plane->dev;
3749         struct intel_plane *intel_plane = to_intel_plane(plane);
3750
3751         /*
3752          * IVB workaround: must disable low power watermarks for at least
3753          * one frame before enabling scaling.  LP watermarks can be re-enabled
3754          * when scaling is disabled.
3755          *
3756          * WaCxSRDisabledForSpriteScaling:ivb
3757          */
3758         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3759                 intel_wait_for_vblank(dev, intel_plane->pipe);
3760
3761         ilk_update_wm(crtc);
3762 }
3763
3764 static void skl_pipe_wm_active_state(uint32_t val,
3765                                      struct skl_pipe_wm *active,
3766                                      bool is_transwm,
3767                                      bool is_cursor,
3768                                      int i,
3769                                      int level)
3770 {
3771         bool is_enabled = (val & PLANE_WM_EN) != 0;
3772
3773         if (!is_transwm) {
3774                 if (!is_cursor) {
3775                         active->wm[level].plane_en[i] = is_enabled;
3776                         active->wm[level].plane_res_b[i] =
3777                                         val & PLANE_WM_BLOCKS_MASK;
3778                         active->wm[level].plane_res_l[i] =
3779                                         (val >> PLANE_WM_LINES_SHIFT) &
3780                                                 PLANE_WM_LINES_MASK;
3781                 } else {
3782                         active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3783                         active->wm[level].plane_res_b[PLANE_CURSOR] =
3784                                         val & PLANE_WM_BLOCKS_MASK;
3785                         active->wm[level].plane_res_l[PLANE_CURSOR] =
3786                                         (val >> PLANE_WM_LINES_SHIFT) &
3787                                                 PLANE_WM_LINES_MASK;
3788                 }
3789         } else {
3790                 if (!is_cursor) {
3791                         active->trans_wm.plane_en[i] = is_enabled;
3792                         active->trans_wm.plane_res_b[i] =
3793                                         val & PLANE_WM_BLOCKS_MASK;
3794                         active->trans_wm.plane_res_l[i] =
3795                                         (val >> PLANE_WM_LINES_SHIFT) &
3796                                                 PLANE_WM_LINES_MASK;
3797                 } else {
3798                         active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3799                         active->trans_wm.plane_res_b[PLANE_CURSOR] =
3800                                         val & PLANE_WM_BLOCKS_MASK;
3801                         active->trans_wm.plane_res_l[PLANE_CURSOR] =
3802                                         (val >> PLANE_WM_LINES_SHIFT) &
3803                                                 PLANE_WM_LINES_MASK;
3804                 }
3805         }
3806 }
3807
3808 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3809 {
3810         struct drm_device *dev = crtc->dev;
3811         struct drm_i915_private *dev_priv = dev->dev_private;
3812         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3813         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3814         struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3815         enum pipe pipe = intel_crtc->pipe;
3816         int level, i, max_level;
3817         uint32_t temp;
3818
3819         max_level = ilk_wm_max_level(dev);
3820
3821         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3822
3823         for (level = 0; level <= max_level; level++) {
3824                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3825                         hw->plane[pipe][i][level] =
3826                                         I915_READ(PLANE_WM(pipe, i, level));
3827                 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3828         }
3829
3830         for (i = 0; i < intel_num_planes(intel_crtc); i++)
3831                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3832         hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3833
3834         if (!intel_crtc->active)
3835                 return;
3836
3837         hw->dirty[pipe] = true;
3838
3839         active->linetime = hw->wm_linetime[pipe];
3840
3841         for (level = 0; level <= max_level; level++) {
3842                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3843                         temp = hw->plane[pipe][i][level];
3844                         skl_pipe_wm_active_state(temp, active, false,
3845                                                 false, i, level);
3846                 }
3847                 temp = hw->plane[pipe][PLANE_CURSOR][level];
3848                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3849         }
3850
3851         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3852                 temp = hw->plane_trans[pipe][i];
3853                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3854         }
3855
3856         temp = hw->plane_trans[pipe][PLANE_CURSOR];
3857         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3858 }
3859
3860 void skl_wm_get_hw_state(struct drm_device *dev)
3861 {
3862         struct drm_i915_private *dev_priv = dev->dev_private;
3863         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3864         struct drm_crtc *crtc;
3865
3866         skl_ddb_get_hw_state(dev_priv, ddb);
3867         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3868                 skl_pipe_wm_get_hw_state(crtc);
3869 }
3870
3871 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3872 {
3873         struct drm_device *dev = crtc->dev;
3874         struct drm_i915_private *dev_priv = dev->dev_private;
3875         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3876         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3877         struct intel_pipe_wm *active = &intel_crtc->wm.active;
3878         enum pipe pipe = intel_crtc->pipe;
3879         static const unsigned int wm0_pipe_reg[] = {
3880                 [PIPE_A] = WM0_PIPEA_ILK,
3881                 [PIPE_B] = WM0_PIPEB_ILK,
3882                 [PIPE_C] = WM0_PIPEC_IVB,
3883         };
3884
3885         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3886         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3887                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3888
3889         memset(active, 0, sizeof(*active));
3890
3891         active->pipe_enabled = intel_crtc->active;
3892
3893         if (active->pipe_enabled) {
3894                 u32 tmp = hw->wm_pipe[pipe];
3895
3896                 /*
3897                  * For active pipes LP0 watermark is marked as
3898                  * enabled, and LP1+ watermaks as disabled since
3899                  * we can't really reverse compute them in case
3900                  * multiple pipes are active.
3901                  */
3902                 active->wm[0].enable = true;
3903                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3904                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3905                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3906                 active->linetime = hw->wm_linetime[pipe];
3907         } else {
3908                 int level, max_level = ilk_wm_max_level(dev);
3909
3910                 /*
3911                  * For inactive pipes, all watermark levels
3912                  * should be marked as enabled but zeroed,
3913                  * which is what we'd compute them to.
3914                  */
3915                 for (level = 0; level <= max_level; level++)
3916                         active->wm[level].enable = true;
3917         }
3918 }
3919
3920 #define _FW_WM(value, plane) \
3921         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3922 #define _FW_WM_VLV(value, plane) \
3923         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3924
3925 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3926                                struct vlv_wm_values *wm)
3927 {
3928         enum pipe pipe;
3929         uint32_t tmp;
3930
3931         for_each_pipe(dev_priv, pipe) {
3932                 tmp = I915_READ(VLV_DDL(pipe));
3933
3934                 wm->ddl[pipe].primary =
3935                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3936                 wm->ddl[pipe].cursor =
3937                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3938                 wm->ddl[pipe].sprite[0] =
3939                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3940                 wm->ddl[pipe].sprite[1] =
3941                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3942         }
3943
3944         tmp = I915_READ(DSPFW1);
3945         wm->sr.plane = _FW_WM(tmp, SR);
3946         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3947         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3948         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3949
3950         tmp = I915_READ(DSPFW2);
3951         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3952         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3953         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3954
3955         tmp = I915_READ(DSPFW3);
3956         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3957
3958         if (IS_CHERRYVIEW(dev_priv)) {
3959                 tmp = I915_READ(DSPFW7_CHV);
3960                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3961                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3962
3963                 tmp = I915_READ(DSPFW8_CHV);
3964                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3965                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3966
3967                 tmp = I915_READ(DSPFW9_CHV);
3968                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3969                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3970
3971                 tmp = I915_READ(DSPHOWM);
3972                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3973                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3974                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3975                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3976                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3977                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3978                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3979                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3980                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3981                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3982         } else {
3983                 tmp = I915_READ(DSPFW7);
3984                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3985                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3986
3987                 tmp = I915_READ(DSPHOWM);
3988                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3989                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3990                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3991                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3992                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3993                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3994                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3995         }
3996 }
3997
3998 #undef _FW_WM
3999 #undef _FW_WM_VLV
4000
4001 void vlv_wm_get_hw_state(struct drm_device *dev)
4002 {
4003         struct drm_i915_private *dev_priv = to_i915(dev);
4004         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4005         struct intel_plane *plane;
4006         enum pipe pipe;
4007         u32 val;
4008
4009         vlv_read_wm_values(dev_priv, wm);
4010
4011         for_each_intel_plane(dev, plane) {
4012                 switch (plane->base.type) {
4013                         int sprite;
4014                 case DRM_PLANE_TYPE_CURSOR:
4015                         plane->wm.fifo_size = 63;
4016                         break;
4017                 case DRM_PLANE_TYPE_PRIMARY:
4018                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4019                         break;
4020                 case DRM_PLANE_TYPE_OVERLAY:
4021                         sprite = plane->plane;
4022                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4023                         break;
4024                 }
4025         }
4026
4027         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4028         wm->level = VLV_WM_LEVEL_PM2;
4029
4030         if (IS_CHERRYVIEW(dev_priv)) {
4031                 mutex_lock(&dev_priv->rps.hw_lock);
4032
4033                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4034                 if (val & DSP_MAXFIFO_PM5_ENABLE)
4035                         wm->level = VLV_WM_LEVEL_PM5;
4036
4037                 /*
4038                  * If DDR DVFS is disabled in the BIOS, Punit
4039                  * will never ack the request. So if that happens
4040                  * assume we don't have to enable/disable DDR DVFS
4041                  * dynamically. To test that just set the REQ_ACK
4042                  * bit to poke the Punit, but don't change the
4043                  * HIGH/LOW bits so that we don't actually change
4044                  * the current state.
4045                  */
4046                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4047                 val |= FORCE_DDR_FREQ_REQ_ACK;
4048                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4049
4050                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4051                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4052                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4053                                       "assuming DDR DVFS is disabled\n");
4054                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4055                 } else {
4056                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4057                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4058                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4059                 }
4060
4061                 mutex_unlock(&dev_priv->rps.hw_lock);
4062         }
4063
4064         for_each_pipe(dev_priv, pipe)
4065                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4066                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4067                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4068
4069         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4070                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4071 }
4072
4073 void ilk_wm_get_hw_state(struct drm_device *dev)
4074 {
4075         struct drm_i915_private *dev_priv = dev->dev_private;
4076         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4077         struct drm_crtc *crtc;
4078
4079         for_each_crtc(dev, crtc)
4080                 ilk_pipe_wm_get_hw_state(crtc);
4081
4082         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4083         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4084         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4085
4086         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4087         if (INTEL_INFO(dev)->gen >= 7) {
4088                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4089                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4090         }
4091
4092         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4093                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4094                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4095         else if (IS_IVYBRIDGE(dev))
4096                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4097                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4098
4099         hw->enable_fbc_wm =
4100                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4101 }
4102
4103 /**
4104  * intel_update_watermarks - update FIFO watermark values based on current modes
4105  *
4106  * Calculate watermark values for the various WM regs based on current mode
4107  * and plane configuration.
4108  *
4109  * There are several cases to deal with here:
4110  *   - normal (i.e. non-self-refresh)
4111  *   - self-refresh (SR) mode
4112  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4113  *   - lines are small relative to FIFO size (buffer can hold more than 2
4114  *     lines), so need to account for TLB latency
4115  *
4116  *   The normal calculation is:
4117  *     watermark = dotclock * bytes per pixel * latency
4118  *   where latency is platform & configuration dependent (we assume pessimal
4119  *   values here).
4120  *
4121  *   The SR calculation is:
4122  *     watermark = (trunc(latency/line time)+1) * surface width *
4123  *       bytes per pixel
4124  *   where
4125  *     line time = htotal / dotclock
4126  *     surface width = hdisplay for normal plane and 64 for cursor
4127  *   and latency is assumed to be high, as above.
4128  *
4129  * The final value programmed to the register should always be rounded up,
4130  * and include an extra 2 entries to account for clock crossings.
4131  *
4132  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4133  * to set the non-SR watermarks to 8.
4134  */
4135 void intel_update_watermarks(struct drm_crtc *crtc)
4136 {
4137         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4138
4139         if (dev_priv->display.update_wm)
4140                 dev_priv->display.update_wm(crtc);
4141 }
4142
4143 void intel_update_sprite_watermarks(struct drm_plane *plane,
4144                                     struct drm_crtc *crtc,
4145                                     uint32_t sprite_width,
4146                                     uint32_t sprite_height,
4147                                     int pixel_size,
4148                                     bool enabled, bool scaled)
4149 {
4150         struct drm_i915_private *dev_priv = plane->dev->dev_private;
4151
4152         if (dev_priv->display.update_sprite_wm)
4153                 dev_priv->display.update_sprite_wm(plane, crtc,
4154                                                    sprite_width, sprite_height,
4155                                                    pixel_size, enabled, scaled);
4156 }
4157
4158 /**
4159  * Lock protecting IPS related data structures
4160  */
4161 DEFINE_SPINLOCK(mchdev_lock);
4162
4163 /* Global for IPS driver to get at the current i915 device. Protected by
4164  * mchdev_lock. */
4165 static struct drm_i915_private *i915_mch_dev;
4166
4167 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4168 {
4169         struct drm_i915_private *dev_priv = dev->dev_private;
4170         u16 rgvswctl;
4171
4172         assert_spin_locked(&mchdev_lock);
4173
4174         rgvswctl = I915_READ16(MEMSWCTL);
4175         if (rgvswctl & MEMCTL_CMD_STS) {
4176                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4177                 return false; /* still busy with another command */
4178         }
4179
4180         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4181                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4182         I915_WRITE16(MEMSWCTL, rgvswctl);
4183         POSTING_READ16(MEMSWCTL);
4184
4185         rgvswctl |= MEMCTL_CMD_STS;
4186         I915_WRITE16(MEMSWCTL, rgvswctl);
4187
4188         return true;
4189 }
4190
4191 static void ironlake_enable_drps(struct drm_device *dev)
4192 {
4193         struct drm_i915_private *dev_priv = dev->dev_private;
4194         u32 rgvmodectl = I915_READ(MEMMODECTL);
4195         u8 fmax, fmin, fstart, vstart;
4196
4197         spin_lock_irq(&mchdev_lock);
4198
4199         /* Enable temp reporting */
4200         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4201         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4202
4203         /* 100ms RC evaluation intervals */
4204         I915_WRITE(RCUPEI, 100000);
4205         I915_WRITE(RCDNEI, 100000);
4206
4207         /* Set max/min thresholds to 90ms and 80ms respectively */
4208         I915_WRITE(RCBMAXAVG, 90000);
4209         I915_WRITE(RCBMINAVG, 80000);
4210
4211         I915_WRITE(MEMIHYST, 1);
4212
4213         /* Set up min, max, and cur for interrupt handling */
4214         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4215         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4216         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4217                 MEMMODE_FSTART_SHIFT;
4218
4219         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4220                 PXVFREQ_PX_SHIFT;
4221
4222         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4223         dev_priv->ips.fstart = fstart;
4224
4225         dev_priv->ips.max_delay = fstart;
4226         dev_priv->ips.min_delay = fmin;
4227         dev_priv->ips.cur_delay = fstart;
4228
4229         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4230                          fmax, fmin, fstart);
4231
4232         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4233
4234         /*
4235          * Interrupts will be enabled in ironlake_irq_postinstall
4236          */
4237
4238         I915_WRITE(VIDSTART, vstart);
4239         POSTING_READ(VIDSTART);
4240
4241         rgvmodectl |= MEMMODE_SWMODE_EN;
4242         I915_WRITE(MEMMODECTL, rgvmodectl);
4243
4244         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4245                 DRM_ERROR("stuck trying to change perf mode\n");
4246         mdelay(1);
4247
4248         ironlake_set_drps(dev, fstart);
4249
4250         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4251                 I915_READ(DDREC) + I915_READ(CSIEC);
4252         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4253         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4254         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4255
4256         spin_unlock_irq(&mchdev_lock);
4257 }
4258
4259 static void ironlake_disable_drps(struct drm_device *dev)
4260 {
4261         struct drm_i915_private *dev_priv = dev->dev_private;
4262         u16 rgvswctl;
4263
4264         spin_lock_irq(&mchdev_lock);
4265
4266         rgvswctl = I915_READ16(MEMSWCTL);
4267
4268         /* Ack interrupts, disable EFC interrupt */
4269         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4270         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4271         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4272         I915_WRITE(DEIIR, DE_PCU_EVENT);
4273         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4274
4275         /* Go back to the starting frequency */
4276         ironlake_set_drps(dev, dev_priv->ips.fstart);
4277         mdelay(1);
4278         rgvswctl |= MEMCTL_CMD_STS;
4279         I915_WRITE(MEMSWCTL, rgvswctl);
4280         mdelay(1);
4281
4282         spin_unlock_irq(&mchdev_lock);
4283 }
4284
4285 /* There's a funny hw issue where the hw returns all 0 when reading from
4286  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4287  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4288  * all limits and the gpu stuck at whatever frequency it is at atm).
4289  */
4290 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4291 {
4292         u32 limits;
4293
4294         /* Only set the down limit when we've reached the lowest level to avoid
4295          * getting more interrupts, otherwise leave this clear. This prevents a
4296          * race in the hw when coming out of rc6: There's a tiny window where
4297          * the hw runs at the minimal clock before selecting the desired
4298          * frequency, if the down threshold expires in that window we will not
4299          * receive a down interrupt. */
4300         if (IS_GEN9(dev_priv->dev)) {
4301                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4302                 if (val <= dev_priv->rps.min_freq_softlimit)
4303                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4304         } else {
4305                 limits = dev_priv->rps.max_freq_softlimit << 24;
4306                 if (val <= dev_priv->rps.min_freq_softlimit)
4307                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4308         }
4309
4310         return limits;
4311 }
4312
4313 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4314 {
4315         int new_power;
4316         u32 threshold_up = 0, threshold_down = 0; /* in % */
4317         u32 ei_up = 0, ei_down = 0;
4318
4319         new_power = dev_priv->rps.power;
4320         switch (dev_priv->rps.power) {
4321         case LOW_POWER:
4322                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4323                         new_power = BETWEEN;
4324                 break;
4325
4326         case BETWEEN:
4327                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4328                         new_power = LOW_POWER;
4329                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4330                         new_power = HIGH_POWER;
4331                 break;
4332
4333         case HIGH_POWER:
4334                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4335                         new_power = BETWEEN;
4336                 break;
4337         }
4338         /* Max/min bins are special */
4339         if (val <= dev_priv->rps.min_freq_softlimit)
4340                 new_power = LOW_POWER;
4341         if (val >= dev_priv->rps.max_freq_softlimit)
4342                 new_power = HIGH_POWER;
4343         if (new_power == dev_priv->rps.power)
4344                 return;
4345
4346         /* Note the units here are not exactly 1us, but 1280ns. */
4347         switch (new_power) {
4348         case LOW_POWER:
4349                 /* Upclock if more than 95% busy over 16ms */
4350                 ei_up = 16000;
4351                 threshold_up = 95;
4352
4353                 /* Downclock if less than 85% busy over 32ms */
4354                 ei_down = 32000;
4355                 threshold_down = 85;
4356                 break;
4357
4358         case BETWEEN:
4359                 /* Upclock if more than 90% busy over 13ms */
4360                 ei_up = 13000;
4361                 threshold_up = 90;
4362
4363                 /* Downclock if less than 75% busy over 32ms */
4364                 ei_down = 32000;
4365                 threshold_down = 75;
4366                 break;
4367
4368         case HIGH_POWER:
4369                 /* Upclock if more than 85% busy over 10ms */
4370                 ei_up = 10000;
4371                 threshold_up = 85;
4372
4373                 /* Downclock if less than 60% busy over 32ms */
4374                 ei_down = 32000;
4375                 threshold_down = 60;
4376                 break;
4377         }
4378
4379         I915_WRITE(GEN6_RP_UP_EI,
4380                 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4381         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4382                 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4383
4384         I915_WRITE(GEN6_RP_DOWN_EI,
4385                 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4386         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4387                 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4388
4389          I915_WRITE(GEN6_RP_CONTROL,
4390                     GEN6_RP_MEDIA_TURBO |
4391                     GEN6_RP_MEDIA_HW_NORMAL_MODE |
4392                     GEN6_RP_MEDIA_IS_GFX |
4393                     GEN6_RP_ENABLE |
4394                     GEN6_RP_UP_BUSY_AVG |
4395                     GEN6_RP_DOWN_IDLE_AVG);
4396
4397         dev_priv->rps.power = new_power;
4398         dev_priv->rps.up_threshold = threshold_up;
4399         dev_priv->rps.down_threshold = threshold_down;
4400         dev_priv->rps.last_adj = 0;
4401 }
4402
4403 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4404 {
4405         u32 mask = 0;
4406
4407         if (val > dev_priv->rps.min_freq_softlimit)
4408                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4409         if (val < dev_priv->rps.max_freq_softlimit)
4410                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4411
4412         mask &= dev_priv->pm_rps_events;
4413
4414         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4415 }
4416
4417 /* gen6_set_rps is called to update the frequency request, but should also be
4418  * called when the range (min_delay and max_delay) is modified so that we can
4419  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4420 static void gen6_set_rps(struct drm_device *dev, u8 val)
4421 {
4422         struct drm_i915_private *dev_priv = dev->dev_private;
4423
4424         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4425         if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
4426                 return;
4427
4428         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4429         WARN_ON(val > dev_priv->rps.max_freq);
4430         WARN_ON(val < dev_priv->rps.min_freq);
4431
4432         /* min/max delay may still have been modified so be sure to
4433          * write the limits value.
4434          */
4435         if (val != dev_priv->rps.cur_freq) {
4436                 gen6_set_rps_thresholds(dev_priv, val);
4437
4438                 if (IS_GEN9(dev))
4439                         I915_WRITE(GEN6_RPNSWREQ,
4440                                    GEN9_FREQUENCY(val));
4441                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4442                         I915_WRITE(GEN6_RPNSWREQ,
4443                                    HSW_FREQUENCY(val));
4444                 else
4445                         I915_WRITE(GEN6_RPNSWREQ,
4446                                    GEN6_FREQUENCY(val) |
4447                                    GEN6_OFFSET(0) |
4448                                    GEN6_AGGRESSIVE_TURBO);
4449         }
4450
4451         /* Make sure we continue to get interrupts
4452          * until we hit the minimum or maximum frequencies.
4453          */
4454         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4455         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4456
4457         POSTING_READ(GEN6_RPNSWREQ);
4458
4459         dev_priv->rps.cur_freq = val;
4460         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4461 }
4462
4463 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4464 {
4465         struct drm_i915_private *dev_priv = dev->dev_private;
4466
4467         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4468         WARN_ON(val > dev_priv->rps.max_freq);
4469         WARN_ON(val < dev_priv->rps.min_freq);
4470
4471         if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4472                       "Odd GPU freq value\n"))
4473                 val &= ~1;
4474
4475         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4476
4477         if (val != dev_priv->rps.cur_freq) {
4478                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4479                 if (!IS_CHERRYVIEW(dev_priv))
4480                         gen6_set_rps_thresholds(dev_priv, val);
4481         }
4482
4483         dev_priv->rps.cur_freq = val;
4484         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4485 }
4486
4487 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4488  *
4489  * * If Gfx is Idle, then
4490  * 1. Forcewake Media well.
4491  * 2. Request idle freq.
4492  * 3. Release Forcewake of Media well.
4493 */
4494 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4495 {
4496         u32 val = dev_priv->rps.idle_freq;
4497
4498         if (dev_priv->rps.cur_freq <= val)
4499                 return;
4500
4501         /* Wake up the media well, as that takes a lot less
4502          * power than the Render well. */
4503         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4504         valleyview_set_rps(dev_priv->dev, val);
4505         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4506 }
4507
4508 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4509 {
4510         mutex_lock(&dev_priv->rps.hw_lock);
4511         if (dev_priv->rps.enabled) {
4512                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4513                         gen6_rps_reset_ei(dev_priv);
4514                 I915_WRITE(GEN6_PMINTRMSK,
4515                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4516         }
4517         mutex_unlock(&dev_priv->rps.hw_lock);
4518 }
4519
4520 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4521 {
4522         struct drm_device *dev = dev_priv->dev;
4523
4524         mutex_lock(&dev_priv->rps.hw_lock);
4525         if (dev_priv->rps.enabled) {
4526                 if (IS_VALLEYVIEW(dev))
4527                         vlv_set_rps_idle(dev_priv);
4528                 else
4529                         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4530                 dev_priv->rps.last_adj = 0;
4531                 I915_WRITE(GEN6_PMINTRMSK,
4532                            gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4533         }
4534         mutex_unlock(&dev_priv->rps.hw_lock);
4535
4536         spin_lock(&dev_priv->rps.client_lock);
4537         while (!list_empty(&dev_priv->rps.clients))
4538                 list_del_init(dev_priv->rps.clients.next);
4539         spin_unlock(&dev_priv->rps.client_lock);
4540 }
4541
4542 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4543                     struct intel_rps_client *rps,
4544                     unsigned long submitted)
4545 {
4546         /* This is intentionally racy! We peek at the state here, then
4547          * validate inside the RPS worker.
4548          */
4549         if (!(dev_priv->mm.busy &&
4550               dev_priv->rps.enabled &&
4551               dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4552                 return;
4553
4554         /* Force a RPS boost (and don't count it against the client) if
4555          * the GPU is severely congested.
4556          */
4557         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4558                 rps = NULL;
4559
4560         spin_lock(&dev_priv->rps.client_lock);
4561         if (rps == NULL || list_empty(&rps->link)) {
4562                 spin_lock_irq(&dev_priv->irq_lock);
4563                 if (dev_priv->rps.interrupts_enabled) {
4564                         dev_priv->rps.client_boost = true;
4565                         queue_work(dev_priv->wq, &dev_priv->rps.work);
4566                 }
4567                 spin_unlock_irq(&dev_priv->irq_lock);
4568
4569                 if (rps != NULL) {
4570                         list_add(&rps->link, &dev_priv->rps.clients);
4571                         rps->boosts++;
4572                 } else
4573                         dev_priv->rps.boosts++;
4574         }
4575         spin_unlock(&dev_priv->rps.client_lock);
4576 }
4577
4578 void intel_set_rps(struct drm_device *dev, u8 val)
4579 {
4580         if (IS_VALLEYVIEW(dev))
4581                 valleyview_set_rps(dev, val);
4582         else
4583                 gen6_set_rps(dev, val);
4584 }
4585
4586 static void gen9_disable_rps(struct drm_device *dev)
4587 {
4588         struct drm_i915_private *dev_priv = dev->dev_private;
4589
4590         I915_WRITE(GEN6_RC_CONTROL, 0);
4591         I915_WRITE(GEN9_PG_ENABLE, 0);
4592 }
4593
4594 static void gen6_disable_rps(struct drm_device *dev)
4595 {
4596         struct drm_i915_private *dev_priv = dev->dev_private;
4597
4598         I915_WRITE(GEN6_RC_CONTROL, 0);
4599         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4600 }
4601
4602 static void cherryview_disable_rps(struct drm_device *dev)
4603 {
4604         struct drm_i915_private *dev_priv = dev->dev_private;
4605
4606         I915_WRITE(GEN6_RC_CONTROL, 0);
4607 }
4608
4609 static void valleyview_disable_rps(struct drm_device *dev)
4610 {
4611         struct drm_i915_private *dev_priv = dev->dev_private;
4612
4613         /* we're doing forcewake before Disabling RC6,
4614          * This what the BIOS expects when going into suspend */
4615         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4616
4617         I915_WRITE(GEN6_RC_CONTROL, 0);
4618
4619         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4620 }
4621
4622 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4623 {
4624         if (IS_VALLEYVIEW(dev)) {
4625                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4626                         mode = GEN6_RC_CTL_RC6_ENABLE;
4627                 else
4628                         mode = 0;
4629         }
4630         if (HAS_RC6p(dev))
4631                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4632                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4633                               (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4634                               (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4635
4636         else
4637                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4638                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4639 }
4640
4641 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4642 {
4643         /* No RC6 before Ironlake and code is gone for ilk. */
4644         if (INTEL_INFO(dev)->gen < 6)
4645                 return 0;
4646
4647         /* Respect the kernel parameter if it is set */
4648         if (enable_rc6 >= 0) {
4649                 int mask;
4650
4651                 if (HAS_RC6p(dev))
4652                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4653                                INTEL_RC6pp_ENABLE;
4654                 else
4655                         mask = INTEL_RC6_ENABLE;
4656
4657                 if ((enable_rc6 & mask) != enable_rc6)
4658                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4659                                       enable_rc6 & mask, enable_rc6, mask);
4660
4661                 return enable_rc6 & mask;
4662         }
4663
4664         if (IS_IVYBRIDGE(dev))
4665                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4666
4667         return INTEL_RC6_ENABLE;
4668 }
4669
4670 int intel_enable_rc6(const struct drm_device *dev)
4671 {
4672         return i915.enable_rc6;
4673 }
4674
4675 static void gen6_init_rps_frequencies(struct drm_device *dev)
4676 {
4677         struct drm_i915_private *dev_priv = dev->dev_private;
4678         uint32_t rp_state_cap;
4679         u32 ddcc_status = 0;
4680         int ret;
4681
4682         /* All of these values are in units of 50MHz */
4683         dev_priv->rps.cur_freq          = 0;
4684         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4685         if (IS_BROXTON(dev)) {
4686                 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4687                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4688                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4689                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4690         } else {
4691                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4692                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4693                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4694                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4695         }
4696
4697         /* hw_max = RP0 until we check for overclocking */
4698         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
4699
4700         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4701         if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4702                 ret = sandybridge_pcode_read(dev_priv,
4703                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4704                                         &ddcc_status);
4705                 if (0 == ret)
4706                         dev_priv->rps.efficient_freq =
4707                                 clamp_t(u8,
4708                                         ((ddcc_status >> 8) & 0xff),
4709                                         dev_priv->rps.min_freq,
4710                                         dev_priv->rps.max_freq);
4711         }
4712
4713         if (IS_SKYLAKE(dev)) {
4714                 /* Store the frequency values in 16.66 MHZ units, which is
4715                    the natural hardware unit for SKL */
4716                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4717                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4718                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4719                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4720                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4721         }
4722
4723         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4724
4725         /* Preserve min/max settings in case of re-init */
4726         if (dev_priv->rps.max_freq_softlimit == 0)
4727                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4728
4729         if (dev_priv->rps.min_freq_softlimit == 0) {
4730                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4731                         dev_priv->rps.min_freq_softlimit =
4732                                 max_t(int, dev_priv->rps.efficient_freq,
4733                                       intel_freq_opcode(dev_priv, 450));
4734                 else
4735                         dev_priv->rps.min_freq_softlimit =
4736                                 dev_priv->rps.min_freq;
4737         }
4738 }
4739
4740 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4741 static void gen9_enable_rps(struct drm_device *dev)
4742 {
4743         struct drm_i915_private *dev_priv = dev->dev_private;
4744
4745         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4746
4747         gen6_init_rps_frequencies(dev);
4748
4749         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4750         if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
4751                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4752                 return;
4753         }
4754
4755         /* Program defaults and thresholds for RPS*/
4756         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4757                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4758
4759         /* 1 second timeout*/
4760         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4761                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4762
4763         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4764
4765         /* Leaning on the below call to gen6_set_rps to program/setup the
4766          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4767          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4768         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4769         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4770
4771         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4772 }
4773
4774 static void gen9_enable_rc6(struct drm_device *dev)
4775 {
4776         struct drm_i915_private *dev_priv = dev->dev_private;
4777         struct intel_engine_cs *ring;
4778         uint32_t rc6_mask = 0;
4779         int unused;
4780
4781         /* 1a: Software RC state - RC0 */
4782         I915_WRITE(GEN6_RC_STATE, 0);
4783
4784         /* 1b: Get forcewake during program sequence. Although the driver
4785          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4786         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4787
4788         /* 2a: Disable RC states. */
4789         I915_WRITE(GEN6_RC_CONTROL, 0);
4790
4791         /* 2b: Program RC6 thresholds.*/
4792
4793         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4794         if (IS_SKYLAKE(dev))
4795                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4796         else
4797                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4798         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4799         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4800         for_each_ring(ring, dev_priv, unused)
4801                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4802
4803         if (HAS_GUC_UCODE(dev))
4804                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4805
4806         I915_WRITE(GEN6_RC_SLEEP, 0);
4807
4808         /* 2c: Program Coarse Power Gating Policies. */
4809         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4810         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4811
4812         /* 3a: Enable RC6 */
4813         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4814                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4815         DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4816                         "on" : "off");
4817         /* WaRsUseTimeoutMode */
4818         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
4819             (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0)) {
4820                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4821                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4822                            GEN7_RC_CTL_TO_MODE |
4823                            rc6_mask);
4824         } else {
4825                 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4826                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4827                            GEN6_RC_CTL_EI_MODE(1) |
4828                            rc6_mask);
4829         }
4830
4831         /*
4832          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4833          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4834          */
4835         if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4836             ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_F0)))
4837                 I915_WRITE(GEN9_PG_ENABLE, 0);
4838         else
4839                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4840                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4841
4842         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4843
4844 }
4845
4846 static void gen8_enable_rps(struct drm_device *dev)
4847 {
4848         struct drm_i915_private *dev_priv = dev->dev_private;
4849         struct intel_engine_cs *ring;
4850         uint32_t rc6_mask = 0;
4851         int unused;
4852
4853         /* 1a: Software RC state - RC0 */
4854         I915_WRITE(GEN6_RC_STATE, 0);
4855
4856         /* 1c & 1d: Get forcewake during program sequence. Although the driver
4857          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4858         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4859
4860         /* 2a: Disable RC states. */
4861         I915_WRITE(GEN6_RC_CONTROL, 0);
4862
4863         /* Initialize rps frequencies */
4864         gen6_init_rps_frequencies(dev);
4865
4866         /* 2b: Program RC6 thresholds.*/
4867         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4868         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4869         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4870         for_each_ring(ring, dev_priv, unused)
4871                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4872         I915_WRITE(GEN6_RC_SLEEP, 0);
4873         if (IS_BROADWELL(dev))
4874                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4875         else
4876                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4877
4878         /* 3: Enable RC6 */
4879         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4880                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4881         intel_print_rc6_info(dev, rc6_mask);
4882         if (IS_BROADWELL(dev))
4883                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4884                                 GEN7_RC_CTL_TO_MODE |
4885                                 rc6_mask);
4886         else
4887                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4888                                 GEN6_RC_CTL_EI_MODE(1) |
4889                                 rc6_mask);
4890
4891         /* 4 Program defaults and thresholds for RPS*/
4892         I915_WRITE(GEN6_RPNSWREQ,
4893                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4894         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4895                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4896         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4897         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4898
4899         /* Docs recommend 900MHz, and 300 MHz respectively */
4900         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4901                    dev_priv->rps.max_freq_softlimit << 24 |
4902                    dev_priv->rps.min_freq_softlimit << 16);
4903
4904         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4905         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4906         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4907         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4908
4909         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4910
4911         /* 5: Enable RPS */
4912         I915_WRITE(GEN6_RP_CONTROL,
4913                    GEN6_RP_MEDIA_TURBO |
4914                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4915                    GEN6_RP_MEDIA_IS_GFX |
4916                    GEN6_RP_ENABLE |
4917                    GEN6_RP_UP_BUSY_AVG |
4918                    GEN6_RP_DOWN_IDLE_AVG);
4919
4920         /* 6: Ring frequency + overclocking (our driver does this later */
4921
4922         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4923         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4924
4925         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4926 }
4927
4928 static void gen6_enable_rps(struct drm_device *dev)
4929 {
4930         struct drm_i915_private *dev_priv = dev->dev_private;
4931         struct intel_engine_cs *ring;
4932         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4933         u32 gtfifodbg;
4934         int rc6_mode;
4935         int i, ret;
4936
4937         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4938
4939         /* Here begins a magic sequence of register writes to enable
4940          * auto-downclocking.
4941          *
4942          * Perhaps there might be some value in exposing these to
4943          * userspace...
4944          */
4945         I915_WRITE(GEN6_RC_STATE, 0);
4946
4947         /* Clear the DBG now so we don't confuse earlier errors */
4948         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4949                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4950                 I915_WRITE(GTFIFODBG, gtfifodbg);
4951         }
4952
4953         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4954
4955         /* Initialize rps frequencies */
4956         gen6_init_rps_frequencies(dev);
4957
4958         /* disable the counters and set deterministic thresholds */
4959         I915_WRITE(GEN6_RC_CONTROL, 0);
4960
4961         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4962         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4963         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4964         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4965         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4966
4967         for_each_ring(ring, dev_priv, i)
4968                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4969
4970         I915_WRITE(GEN6_RC_SLEEP, 0);
4971         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4972         if (IS_IVYBRIDGE(dev))
4973                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4974         else
4975                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4976         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4977         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4978
4979         /* Check if we are enabling RC6 */
4980         rc6_mode = intel_enable_rc6(dev_priv->dev);
4981         if (rc6_mode & INTEL_RC6_ENABLE)
4982                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4983
4984         /* We don't use those on Haswell */
4985         if (!IS_HASWELL(dev)) {
4986                 if (rc6_mode & INTEL_RC6p_ENABLE)
4987                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4988
4989                 if (rc6_mode & INTEL_RC6pp_ENABLE)
4990                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4991         }
4992
4993         intel_print_rc6_info(dev, rc6_mask);
4994
4995         I915_WRITE(GEN6_RC_CONTROL,
4996                    rc6_mask |
4997                    GEN6_RC_CTL_EI_MODE(1) |
4998                    GEN6_RC_CTL_HW_ENABLE);
4999
5000         /* Power down if completely idle for over 50ms */
5001         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5002         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5003
5004         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5005         if (ret)
5006                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5007
5008         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5009         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5010                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5011                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5012                                  (pcu_mbox & 0xff) * 50);
5013                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5014         }
5015
5016         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5017         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5018
5019         rc6vids = 0;
5020         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5021         if (IS_GEN6(dev) && ret) {
5022                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5023         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5024                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5025                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5026                 rc6vids &= 0xffff00;
5027                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5028                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5029                 if (ret)
5030                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5031         }
5032
5033         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5034 }
5035
5036 static void __gen6_update_ring_freq(struct drm_device *dev)
5037 {
5038         struct drm_i915_private *dev_priv = dev->dev_private;
5039         int min_freq = 15;
5040         unsigned int gpu_freq;
5041         unsigned int max_ia_freq, min_ring_freq;
5042         unsigned int max_gpu_freq, min_gpu_freq;
5043         int scaling_factor = 180;
5044         struct cpufreq_policy *policy;
5045
5046         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5047
5048         policy = cpufreq_cpu_get(0);
5049         if (policy) {
5050                 max_ia_freq = policy->cpuinfo.max_freq;
5051                 cpufreq_cpu_put(policy);
5052         } else {
5053                 /*
5054                  * Default to measured freq if none found, PCU will ensure we
5055                  * don't go over
5056                  */
5057                 max_ia_freq = tsc_khz;
5058         }
5059
5060         /* Convert from kHz to MHz */
5061         max_ia_freq /= 1000;
5062
5063         min_ring_freq = I915_READ(DCLK) & 0xf;
5064         /* convert DDR frequency from units of 266.6MHz to bandwidth */
5065         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5066
5067         if (IS_SKYLAKE(dev)) {
5068                 /* Convert GT frequency to 50 HZ units */
5069                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5070                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5071         } else {
5072                 min_gpu_freq = dev_priv->rps.min_freq;
5073                 max_gpu_freq = dev_priv->rps.max_freq;
5074         }
5075
5076         /*
5077          * For each potential GPU frequency, load a ring frequency we'd like
5078          * to use for memory access.  We do this by specifying the IA frequency
5079          * the PCU should use as a reference to determine the ring frequency.
5080          */
5081         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5082                 int diff = max_gpu_freq - gpu_freq;
5083                 unsigned int ia_freq = 0, ring_freq = 0;
5084
5085                 if (IS_SKYLAKE(dev)) {
5086                         /*
5087                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
5088                          * No floor required for ring frequency on SKL.
5089                          */
5090                         ring_freq = gpu_freq;
5091                 } else if (INTEL_INFO(dev)->gen >= 8) {
5092                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
5093                         ring_freq = max(min_ring_freq, gpu_freq);
5094                 } else if (IS_HASWELL(dev)) {
5095                         ring_freq = mult_frac(gpu_freq, 5, 4);
5096                         ring_freq = max(min_ring_freq, ring_freq);
5097                         /* leave ia_freq as the default, chosen by cpufreq */
5098                 } else {
5099                         /* On older processors, there is no separate ring
5100                          * clock domain, so in order to boost the bandwidth
5101                          * of the ring, we need to upclock the CPU (ia_freq).
5102                          *
5103                          * For GPU frequencies less than 750MHz,
5104                          * just use the lowest ring freq.
5105                          */
5106                         if (gpu_freq < min_freq)
5107                                 ia_freq = 800;
5108                         else
5109                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5110                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5111                 }
5112
5113                 sandybridge_pcode_write(dev_priv,
5114                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5115                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5116                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5117                                         gpu_freq);
5118         }
5119 }
5120
5121 void gen6_update_ring_freq(struct drm_device *dev)
5122 {
5123         struct drm_i915_private *dev_priv = dev->dev_private;
5124
5125         if (!HAS_CORE_RING_FREQ(dev))
5126                 return;
5127
5128         mutex_lock(&dev_priv->rps.hw_lock);
5129         __gen6_update_ring_freq(dev);
5130         mutex_unlock(&dev_priv->rps.hw_lock);
5131 }
5132
5133 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5134 {
5135         struct drm_device *dev = dev_priv->dev;
5136         u32 val, rp0;
5137
5138         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5139
5140         switch (INTEL_INFO(dev)->eu_total) {
5141         case 8:
5142                 /* (2 * 4) config */
5143                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5144                 break;
5145         case 12:
5146                 /* (2 * 6) config */
5147                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5148                 break;
5149         case 16:
5150                 /* (2 * 8) config */
5151         default:
5152                 /* Setting (2 * 8) Min RP0 for any other combination */
5153                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5154                 break;
5155         }
5156
5157         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5158
5159         return rp0;
5160 }
5161
5162 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5163 {
5164         u32 val, rpe;
5165
5166         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5167         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5168
5169         return rpe;
5170 }
5171
5172 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5173 {
5174         u32 val, rp1;
5175
5176         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5177         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5178
5179         return rp1;
5180 }
5181
5182 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5183 {
5184         u32 val, rp1;
5185
5186         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5187
5188         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5189
5190         return rp1;
5191 }
5192
5193 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5194 {
5195         u32 val, rp0;
5196
5197         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5198
5199         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5200         /* Clamp to max */
5201         rp0 = min_t(u32, rp0, 0xea);
5202
5203         return rp0;
5204 }
5205
5206 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5207 {
5208         u32 val, rpe;
5209
5210         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5211         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5212         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5213         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5214
5215         return rpe;
5216 }
5217
5218 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5219 {
5220         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5221 }
5222
5223 /* Check that the pctx buffer wasn't move under us. */
5224 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5225 {
5226         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5227
5228         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5229                              dev_priv->vlv_pctx->stolen->start);
5230 }
5231
5232
5233 /* Check that the pcbr address is not empty. */
5234 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5235 {
5236         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5237
5238         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5239 }
5240
5241 static void cherryview_setup_pctx(struct drm_device *dev)
5242 {
5243         struct drm_i915_private *dev_priv = dev->dev_private;
5244         unsigned long pctx_paddr, paddr;
5245         struct i915_gtt *gtt = &dev_priv->gtt;
5246         u32 pcbr;
5247         int pctx_size = 32*1024;
5248
5249         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5250
5251         pcbr = I915_READ(VLV_PCBR);
5252         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5253                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5254                 paddr = (dev_priv->mm.stolen_base +
5255                          (gtt->stolen_size - pctx_size));
5256
5257                 pctx_paddr = (paddr & (~4095));
5258                 I915_WRITE(VLV_PCBR, pctx_paddr);
5259         }
5260
5261         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5262 }
5263
5264 static void valleyview_setup_pctx(struct drm_device *dev)
5265 {
5266         struct drm_i915_private *dev_priv = dev->dev_private;
5267         struct drm_i915_gem_object *pctx;
5268         unsigned long pctx_paddr;
5269         u32 pcbr;
5270         int pctx_size = 24*1024;
5271
5272         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5273
5274         pcbr = I915_READ(VLV_PCBR);
5275         if (pcbr) {
5276                 /* BIOS set it up already, grab the pre-alloc'd space */
5277                 int pcbr_offset;
5278
5279                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5280                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5281                                                                       pcbr_offset,
5282                                                                       I915_GTT_OFFSET_NONE,
5283                                                                       pctx_size);
5284                 goto out;
5285         }
5286
5287         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5288
5289         /*
5290          * From the Gunit register HAS:
5291          * The Gfx driver is expected to program this register and ensure
5292          * proper allocation within Gfx stolen memory.  For example, this
5293          * register should be programmed such than the PCBR range does not
5294          * overlap with other ranges, such as the frame buffer, protected
5295          * memory, or any other relevant ranges.
5296          */
5297         pctx = i915_gem_object_create_stolen(dev, pctx_size);
5298         if (!pctx) {
5299                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5300                 return;
5301         }
5302
5303         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5304         I915_WRITE(VLV_PCBR, pctx_paddr);
5305
5306 out:
5307         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5308         dev_priv->vlv_pctx = pctx;
5309 }
5310
5311 static void valleyview_cleanup_pctx(struct drm_device *dev)
5312 {
5313         struct drm_i915_private *dev_priv = dev->dev_private;
5314
5315         if (WARN_ON(!dev_priv->vlv_pctx))
5316                 return;
5317
5318         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5319         dev_priv->vlv_pctx = NULL;
5320 }
5321
5322 static void valleyview_init_gt_powersave(struct drm_device *dev)
5323 {
5324         struct drm_i915_private *dev_priv = dev->dev_private;
5325         u32 val;
5326
5327         valleyview_setup_pctx(dev);
5328
5329         mutex_lock(&dev_priv->rps.hw_lock);
5330
5331         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5332         switch ((val >> 6) & 3) {
5333         case 0:
5334         case 1:
5335                 dev_priv->mem_freq = 800;
5336                 break;
5337         case 2:
5338                 dev_priv->mem_freq = 1066;
5339                 break;
5340         case 3:
5341                 dev_priv->mem_freq = 1333;
5342                 break;
5343         }
5344         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5345
5346         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5347         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5348         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5349                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5350                          dev_priv->rps.max_freq);
5351
5352         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5353         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5354                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5355                          dev_priv->rps.efficient_freq);
5356
5357         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5358         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5359                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5360                          dev_priv->rps.rp1_freq);
5361
5362         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5363         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5364                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5365                          dev_priv->rps.min_freq);
5366
5367         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5368
5369         /* Preserve min/max settings in case of re-init */
5370         if (dev_priv->rps.max_freq_softlimit == 0)
5371                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5372
5373         if (dev_priv->rps.min_freq_softlimit == 0)
5374                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5375
5376         mutex_unlock(&dev_priv->rps.hw_lock);
5377 }
5378
5379 static void cherryview_init_gt_powersave(struct drm_device *dev)
5380 {
5381         struct drm_i915_private *dev_priv = dev->dev_private;
5382         u32 val;
5383
5384         cherryview_setup_pctx(dev);
5385
5386         mutex_lock(&dev_priv->rps.hw_lock);
5387
5388         mutex_lock(&dev_priv->sb_lock);
5389         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5390         mutex_unlock(&dev_priv->sb_lock);
5391
5392         switch ((val >> 2) & 0x7) {
5393         case 3:
5394                 dev_priv->mem_freq = 2000;
5395                 break;
5396         default:
5397                 dev_priv->mem_freq = 1600;
5398                 break;
5399         }
5400         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5401
5402         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5403         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5404         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5405                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5406                          dev_priv->rps.max_freq);
5407
5408         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5409         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5410                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5411                          dev_priv->rps.efficient_freq);
5412
5413         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5414         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5415                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5416                          dev_priv->rps.rp1_freq);
5417
5418         /* PUnit validated range is only [RPe, RP0] */
5419         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5420         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5421                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5422                          dev_priv->rps.min_freq);
5423
5424         WARN_ONCE((dev_priv->rps.max_freq |
5425                    dev_priv->rps.efficient_freq |
5426                    dev_priv->rps.rp1_freq |
5427                    dev_priv->rps.min_freq) & 1,
5428                   "Odd GPU freq values\n");
5429
5430         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5431
5432         /* Preserve min/max settings in case of re-init */
5433         if (dev_priv->rps.max_freq_softlimit == 0)
5434                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5435
5436         if (dev_priv->rps.min_freq_softlimit == 0)
5437                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5438
5439         mutex_unlock(&dev_priv->rps.hw_lock);
5440 }
5441
5442 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5443 {
5444         valleyview_cleanup_pctx(dev);
5445 }
5446
5447 static void cherryview_enable_rps(struct drm_device *dev)
5448 {
5449         struct drm_i915_private *dev_priv = dev->dev_private;
5450         struct intel_engine_cs *ring;
5451         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5452         int i;
5453
5454         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5455
5456         gtfifodbg = I915_READ(GTFIFODBG);
5457         if (gtfifodbg) {
5458                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5459                                  gtfifodbg);
5460                 I915_WRITE(GTFIFODBG, gtfifodbg);
5461         }
5462
5463         cherryview_check_pctx(dev_priv);
5464
5465         /* 1a & 1b: Get forcewake during program sequence. Although the driver
5466          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5467         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5468
5469         /*  Disable RC states. */
5470         I915_WRITE(GEN6_RC_CONTROL, 0);
5471
5472         /* 2a: Program RC6 thresholds.*/
5473         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5474         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5475         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5476
5477         for_each_ring(ring, dev_priv, i)
5478                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5479         I915_WRITE(GEN6_RC_SLEEP, 0);
5480
5481         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5482         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5483
5484         /* allows RC6 residency counter to work */
5485         I915_WRITE(VLV_COUNTER_CONTROL,
5486                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5487                                       VLV_MEDIA_RC6_COUNT_EN |
5488                                       VLV_RENDER_RC6_COUNT_EN));
5489
5490         /* For now we assume BIOS is allocating and populating the PCBR  */
5491         pcbr = I915_READ(VLV_PCBR);
5492
5493         /* 3: Enable RC6 */
5494         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5495                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5496                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5497
5498         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5499
5500         /* 4 Program defaults and thresholds for RPS*/
5501         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5502         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5503         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5504         I915_WRITE(GEN6_RP_UP_EI, 66000);
5505         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5506
5507         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5508
5509         /* 5: Enable RPS */
5510         I915_WRITE(GEN6_RP_CONTROL,
5511                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5512                    GEN6_RP_MEDIA_IS_GFX |
5513                    GEN6_RP_ENABLE |
5514                    GEN6_RP_UP_BUSY_AVG |
5515                    GEN6_RP_DOWN_IDLE_AVG);
5516
5517         /* Setting Fixed Bias */
5518         val = VLV_OVERRIDE_EN |
5519                   VLV_SOC_TDP_EN |
5520                   CHV_BIAS_CPU_50_SOC_50;
5521         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5522
5523         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5524
5525         /* RPS code assumes GPLL is used */
5526         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5527
5528         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5529         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5530
5531         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5532         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5533                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5534                          dev_priv->rps.cur_freq);
5535
5536         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5537                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5538                          dev_priv->rps.efficient_freq);
5539
5540         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5541
5542         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5543 }
5544
5545 static void valleyview_enable_rps(struct drm_device *dev)
5546 {
5547         struct drm_i915_private *dev_priv = dev->dev_private;
5548         struct intel_engine_cs *ring;
5549         u32 gtfifodbg, val, rc6_mode = 0;
5550         int i;
5551
5552         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5553
5554         valleyview_check_pctx(dev_priv);
5555
5556         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5557                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5558                                  gtfifodbg);
5559                 I915_WRITE(GTFIFODBG, gtfifodbg);
5560         }
5561
5562         /* If VLV, Forcewake all wells, else re-direct to regular path */
5563         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5564
5565         /*  Disable RC states. */
5566         I915_WRITE(GEN6_RC_CONTROL, 0);
5567
5568         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5569         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5570         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5571         I915_WRITE(GEN6_RP_UP_EI, 66000);
5572         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5573
5574         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5575
5576         I915_WRITE(GEN6_RP_CONTROL,
5577                    GEN6_RP_MEDIA_TURBO |
5578                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5579                    GEN6_RP_MEDIA_IS_GFX |
5580                    GEN6_RP_ENABLE |
5581                    GEN6_RP_UP_BUSY_AVG |
5582                    GEN6_RP_DOWN_IDLE_CONT);
5583
5584         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5585         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5586         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5587
5588         for_each_ring(ring, dev_priv, i)
5589                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5590
5591         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5592
5593         /* allows RC6 residency counter to work */
5594         I915_WRITE(VLV_COUNTER_CONTROL,
5595                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5596                                       VLV_RENDER_RC0_COUNT_EN |
5597                                       VLV_MEDIA_RC6_COUNT_EN |
5598                                       VLV_RENDER_RC6_COUNT_EN));
5599
5600         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5601                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5602
5603         intel_print_rc6_info(dev, rc6_mode);
5604
5605         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5606
5607         /* Setting Fixed Bias */
5608         val = VLV_OVERRIDE_EN |
5609                   VLV_SOC_TDP_EN |
5610                   VLV_BIAS_CPU_125_SOC_875;
5611         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5612
5613         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5614
5615         /* RPS code assumes GPLL is used */
5616         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5617
5618         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5619         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5620
5621         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5622         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5623                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5624                          dev_priv->rps.cur_freq);
5625
5626         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5627                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5628                          dev_priv->rps.efficient_freq);
5629
5630         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5631
5632         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5633 }
5634
5635 static unsigned long intel_pxfreq(u32 vidfreq)
5636 {
5637         unsigned long freq;
5638         int div = (vidfreq & 0x3f0000) >> 16;
5639         int post = (vidfreq & 0x3000) >> 12;
5640         int pre = (vidfreq & 0x7);
5641
5642         if (!pre)
5643                 return 0;
5644
5645         freq = ((div * 133333) / ((1<<post) * pre));
5646
5647         return freq;
5648 }
5649
5650 static const struct cparams {
5651         u16 i;
5652         u16 t;
5653         u16 m;
5654         u16 c;
5655 } cparams[] = {
5656         { 1, 1333, 301, 28664 },
5657         { 1, 1066, 294, 24460 },
5658         { 1, 800, 294, 25192 },
5659         { 0, 1333, 276, 27605 },
5660         { 0, 1066, 276, 27605 },
5661         { 0, 800, 231, 23784 },
5662 };
5663
5664 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5665 {
5666         u64 total_count, diff, ret;
5667         u32 count1, count2, count3, m = 0, c = 0;
5668         unsigned long now = jiffies_to_msecs(jiffies), diff1;
5669         int i;
5670
5671         assert_spin_locked(&mchdev_lock);
5672
5673         diff1 = now - dev_priv->ips.last_time1;
5674
5675         /* Prevent division-by-zero if we are asking too fast.
5676          * Also, we don't get interesting results if we are polling
5677          * faster than once in 10ms, so just return the saved value
5678          * in such cases.
5679          */
5680         if (diff1 <= 10)
5681                 return dev_priv->ips.chipset_power;
5682
5683         count1 = I915_READ(DMIEC);
5684         count2 = I915_READ(DDREC);
5685         count3 = I915_READ(CSIEC);
5686
5687         total_count = count1 + count2 + count3;
5688
5689         /* FIXME: handle per-counter overflow */
5690         if (total_count < dev_priv->ips.last_count1) {
5691                 diff = ~0UL - dev_priv->ips.last_count1;
5692                 diff += total_count;
5693         } else {
5694                 diff = total_count - dev_priv->ips.last_count1;
5695         }
5696
5697         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5698                 if (cparams[i].i == dev_priv->ips.c_m &&
5699                     cparams[i].t == dev_priv->ips.r_t) {
5700                         m = cparams[i].m;
5701                         c = cparams[i].c;
5702                         break;
5703                 }
5704         }
5705
5706         diff = div_u64(diff, diff1);
5707         ret = ((m * diff) + c);
5708         ret = div_u64(ret, 10);
5709
5710         dev_priv->ips.last_count1 = total_count;
5711         dev_priv->ips.last_time1 = now;
5712
5713         dev_priv->ips.chipset_power = ret;
5714
5715         return ret;
5716 }
5717
5718 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5719 {
5720         struct drm_device *dev = dev_priv->dev;
5721         unsigned long val;
5722
5723         if (INTEL_INFO(dev)->gen != 5)
5724                 return 0;
5725
5726         spin_lock_irq(&mchdev_lock);
5727
5728         val = __i915_chipset_val(dev_priv);
5729
5730         spin_unlock_irq(&mchdev_lock);
5731
5732         return val;
5733 }
5734
5735 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5736 {
5737         unsigned long m, x, b;
5738         u32 tsfs;
5739
5740         tsfs = I915_READ(TSFS);
5741
5742         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5743         x = I915_READ8(TR1);
5744
5745         b = tsfs & TSFS_INTR_MASK;
5746
5747         return ((m * x) / 127) - b;
5748 }
5749
5750 static int _pxvid_to_vd(u8 pxvid)
5751 {
5752         if (pxvid == 0)
5753                 return 0;
5754
5755         if (pxvid >= 8 && pxvid < 31)
5756                 pxvid = 31;
5757
5758         return (pxvid + 2) * 125;
5759 }
5760
5761 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5762 {
5763         struct drm_device *dev = dev_priv->dev;
5764         const int vd = _pxvid_to_vd(pxvid);
5765         const int vm = vd - 1125;
5766
5767         if (INTEL_INFO(dev)->is_mobile)
5768                 return vm > 0 ? vm : 0;
5769
5770         return vd;
5771 }
5772
5773 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5774 {
5775         u64 now, diff, diffms;
5776         u32 count;
5777
5778         assert_spin_locked(&mchdev_lock);
5779
5780         now = ktime_get_raw_ns();
5781         diffms = now - dev_priv->ips.last_time2;
5782         do_div(diffms, NSEC_PER_MSEC);
5783
5784         /* Don't divide by 0 */
5785         if (!diffms)
5786                 return;
5787
5788         count = I915_READ(GFXEC);
5789
5790         if (count < dev_priv->ips.last_count2) {
5791                 diff = ~0UL - dev_priv->ips.last_count2;
5792                 diff += count;
5793         } else {
5794                 diff = count - dev_priv->ips.last_count2;
5795         }
5796
5797         dev_priv->ips.last_count2 = count;
5798         dev_priv->ips.last_time2 = now;
5799
5800         /* More magic constants... */
5801         diff = diff * 1181;
5802         diff = div_u64(diff, diffms * 10);
5803         dev_priv->ips.gfx_power = diff;
5804 }
5805
5806 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5807 {
5808         struct drm_device *dev = dev_priv->dev;
5809
5810         if (INTEL_INFO(dev)->gen != 5)
5811                 return;
5812
5813         spin_lock_irq(&mchdev_lock);
5814
5815         __i915_update_gfx_val(dev_priv);
5816
5817         spin_unlock_irq(&mchdev_lock);
5818 }
5819
5820 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5821 {
5822         unsigned long t, corr, state1, corr2, state2;
5823         u32 pxvid, ext_v;
5824
5825         assert_spin_locked(&mchdev_lock);
5826
5827         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5828         pxvid = (pxvid >> 24) & 0x7f;
5829         ext_v = pvid_to_extvid(dev_priv, pxvid);
5830
5831         state1 = ext_v;
5832
5833         t = i915_mch_val(dev_priv);
5834
5835         /* Revel in the empirically derived constants */
5836
5837         /* Correction factor in 1/100000 units */
5838         if (t > 80)
5839                 corr = ((t * 2349) + 135940);
5840         else if (t >= 50)
5841                 corr = ((t * 964) + 29317);
5842         else /* < 50 */
5843                 corr = ((t * 301) + 1004);
5844
5845         corr = corr * ((150142 * state1) / 10000 - 78642);
5846         corr /= 100000;
5847         corr2 = (corr * dev_priv->ips.corr);
5848
5849         state2 = (corr2 * state1) / 10000;
5850         state2 /= 100; /* convert to mW */
5851
5852         __i915_update_gfx_val(dev_priv);
5853
5854         return dev_priv->ips.gfx_power + state2;
5855 }
5856
5857 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5858 {
5859         struct drm_device *dev = dev_priv->dev;
5860         unsigned long val;
5861
5862         if (INTEL_INFO(dev)->gen != 5)
5863                 return 0;
5864
5865         spin_lock_irq(&mchdev_lock);
5866
5867         val = __i915_gfx_val(dev_priv);
5868
5869         spin_unlock_irq(&mchdev_lock);
5870
5871         return val;
5872 }
5873
5874 /**
5875  * i915_read_mch_val - return value for IPS use
5876  *
5877  * Calculate and return a value for the IPS driver to use when deciding whether
5878  * we have thermal and power headroom to increase CPU or GPU power budget.
5879  */
5880 unsigned long i915_read_mch_val(void)
5881 {
5882         struct drm_i915_private *dev_priv;
5883         unsigned long chipset_val, graphics_val, ret = 0;
5884
5885         spin_lock_irq(&mchdev_lock);
5886         if (!i915_mch_dev)
5887                 goto out_unlock;
5888         dev_priv = i915_mch_dev;
5889
5890         chipset_val = __i915_chipset_val(dev_priv);
5891         graphics_val = __i915_gfx_val(dev_priv);
5892
5893         ret = chipset_val + graphics_val;
5894
5895 out_unlock:
5896         spin_unlock_irq(&mchdev_lock);
5897
5898         return ret;
5899 }
5900 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5901
5902 /**
5903  * i915_gpu_raise - raise GPU frequency limit
5904  *
5905  * Raise the limit; IPS indicates we have thermal headroom.
5906  */
5907 bool i915_gpu_raise(void)
5908 {
5909         struct drm_i915_private *dev_priv;
5910         bool ret = true;
5911
5912         spin_lock_irq(&mchdev_lock);
5913         if (!i915_mch_dev) {
5914                 ret = false;
5915                 goto out_unlock;
5916         }
5917         dev_priv = i915_mch_dev;
5918
5919         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5920                 dev_priv->ips.max_delay--;
5921
5922 out_unlock:
5923         spin_unlock_irq(&mchdev_lock);
5924
5925         return ret;
5926 }
5927 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5928
5929 /**
5930  * i915_gpu_lower - lower GPU frequency limit
5931  *
5932  * IPS indicates we're close to a thermal limit, so throttle back the GPU
5933  * frequency maximum.
5934  */
5935 bool i915_gpu_lower(void)
5936 {
5937         struct drm_i915_private *dev_priv;
5938         bool ret = true;
5939
5940         spin_lock_irq(&mchdev_lock);
5941         if (!i915_mch_dev) {
5942                 ret = false;
5943                 goto out_unlock;
5944         }
5945         dev_priv = i915_mch_dev;
5946
5947         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5948                 dev_priv->ips.max_delay++;
5949
5950 out_unlock:
5951         spin_unlock_irq(&mchdev_lock);
5952
5953         return ret;
5954 }
5955 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5956
5957 /**
5958  * i915_gpu_busy - indicate GPU business to IPS
5959  *
5960  * Tell the IPS driver whether or not the GPU is busy.
5961  */
5962 bool i915_gpu_busy(void)
5963 {
5964         struct drm_i915_private *dev_priv;
5965         struct intel_engine_cs *ring;
5966         bool ret = false;
5967         int i;
5968
5969         spin_lock_irq(&mchdev_lock);
5970         if (!i915_mch_dev)
5971                 goto out_unlock;
5972         dev_priv = i915_mch_dev;
5973
5974         for_each_ring(ring, dev_priv, i)
5975                 ret |= !list_empty(&ring->request_list);
5976
5977 out_unlock:
5978         spin_unlock_irq(&mchdev_lock);
5979
5980         return ret;
5981 }
5982 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5983
5984 /**
5985  * i915_gpu_turbo_disable - disable graphics turbo
5986  *
5987  * Disable graphics turbo by resetting the max frequency and setting the
5988  * current frequency to the default.
5989  */
5990 bool i915_gpu_turbo_disable(void)
5991 {
5992         struct drm_i915_private *dev_priv;
5993         bool ret = true;
5994
5995         spin_lock_irq(&mchdev_lock);
5996         if (!i915_mch_dev) {
5997                 ret = false;
5998                 goto out_unlock;
5999         }
6000         dev_priv = i915_mch_dev;
6001
6002         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6003
6004         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6005                 ret = false;
6006
6007 out_unlock:
6008         spin_unlock_irq(&mchdev_lock);
6009
6010         return ret;
6011 }
6012 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6013
6014 /**
6015  * Tells the intel_ips driver that the i915 driver is now loaded, if
6016  * IPS got loaded first.
6017  *
6018  * This awkward dance is so that neither module has to depend on the
6019  * other in order for IPS to do the appropriate communication of
6020  * GPU turbo limits to i915.
6021  */
6022 static void
6023 ips_ping_for_i915_load(void)
6024 {
6025         void (*link)(void);
6026
6027         link = symbol_get(ips_link_to_i915_driver);
6028         if (link) {
6029                 link();
6030                 symbol_put(ips_link_to_i915_driver);
6031         }
6032 }
6033
6034 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6035 {
6036         /* We only register the i915 ips part with intel-ips once everything is
6037          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6038         spin_lock_irq(&mchdev_lock);
6039         i915_mch_dev = dev_priv;
6040         spin_unlock_irq(&mchdev_lock);
6041
6042         ips_ping_for_i915_load();
6043 }
6044
6045 void intel_gpu_ips_teardown(void)
6046 {
6047         spin_lock_irq(&mchdev_lock);
6048         i915_mch_dev = NULL;
6049         spin_unlock_irq(&mchdev_lock);
6050 }
6051
6052 static void intel_init_emon(struct drm_device *dev)
6053 {
6054         struct drm_i915_private *dev_priv = dev->dev_private;
6055         u32 lcfuse;
6056         u8 pxw[16];
6057         int i;
6058
6059         /* Disable to program */
6060         I915_WRITE(ECR, 0);
6061         POSTING_READ(ECR);
6062
6063         /* Program energy weights for various events */
6064         I915_WRITE(SDEW, 0x15040d00);
6065         I915_WRITE(CSIEW0, 0x007f0000);
6066         I915_WRITE(CSIEW1, 0x1e220004);
6067         I915_WRITE(CSIEW2, 0x04000004);
6068
6069         for (i = 0; i < 5; i++)
6070                 I915_WRITE(PEW(i), 0);
6071         for (i = 0; i < 3; i++)
6072                 I915_WRITE(DEW(i), 0);
6073
6074         /* Program P-state weights to account for frequency power adjustment */
6075         for (i = 0; i < 16; i++) {
6076                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6077                 unsigned long freq = intel_pxfreq(pxvidfreq);
6078                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6079                         PXVFREQ_PX_SHIFT;
6080                 unsigned long val;
6081
6082                 val = vid * vid;
6083                 val *= (freq / 1000);
6084                 val *= 255;
6085                 val /= (127*127*900);
6086                 if (val > 0xff)
6087                         DRM_ERROR("bad pxval: %ld\n", val);
6088                 pxw[i] = val;
6089         }
6090         /* Render standby states get 0 weight */
6091         pxw[14] = 0;
6092         pxw[15] = 0;
6093
6094         for (i = 0; i < 4; i++) {
6095                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6096                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6097                 I915_WRITE(PXW(i), val);
6098         }
6099
6100         /* Adjust magic regs to magic values (more experimental results) */
6101         I915_WRITE(OGW0, 0);
6102         I915_WRITE(OGW1, 0);
6103         I915_WRITE(EG0, 0x00007f00);
6104         I915_WRITE(EG1, 0x0000000e);
6105         I915_WRITE(EG2, 0x000e0000);
6106         I915_WRITE(EG3, 0x68000300);
6107         I915_WRITE(EG4, 0x42000000);
6108         I915_WRITE(EG5, 0x00140031);
6109         I915_WRITE(EG6, 0);
6110         I915_WRITE(EG7, 0);
6111
6112         for (i = 0; i < 8; i++)
6113                 I915_WRITE(PXWL(i), 0);
6114
6115         /* Enable PMON + select events */
6116         I915_WRITE(ECR, 0x80000019);
6117
6118         lcfuse = I915_READ(LCFUSE02);
6119
6120         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6121 }
6122
6123 void intel_init_gt_powersave(struct drm_device *dev)
6124 {
6125         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6126
6127         if (IS_CHERRYVIEW(dev))
6128                 cherryview_init_gt_powersave(dev);
6129         else if (IS_VALLEYVIEW(dev))
6130                 valleyview_init_gt_powersave(dev);
6131 }
6132
6133 void intel_cleanup_gt_powersave(struct drm_device *dev)
6134 {
6135         if (IS_CHERRYVIEW(dev))
6136                 return;
6137         else if (IS_VALLEYVIEW(dev))
6138                 valleyview_cleanup_gt_powersave(dev);
6139 }
6140
6141 static void gen6_suspend_rps(struct drm_device *dev)
6142 {
6143         struct drm_i915_private *dev_priv = dev->dev_private;
6144
6145         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6146
6147         gen6_disable_rps_interrupts(dev);
6148 }
6149
6150 /**
6151  * intel_suspend_gt_powersave - suspend PM work and helper threads
6152  * @dev: drm device
6153  *
6154  * We don't want to disable RC6 or other features here, we just want
6155  * to make sure any work we've queued has finished and won't bother
6156  * us while we're suspended.
6157  */
6158 void intel_suspend_gt_powersave(struct drm_device *dev)
6159 {
6160         struct drm_i915_private *dev_priv = dev->dev_private;
6161
6162         if (INTEL_INFO(dev)->gen < 6)
6163                 return;
6164
6165         gen6_suspend_rps(dev);
6166
6167         /* Force GPU to min freq during suspend */
6168         gen6_rps_idle(dev_priv);
6169 }
6170
6171 void intel_disable_gt_powersave(struct drm_device *dev)
6172 {
6173         struct drm_i915_private *dev_priv = dev->dev_private;
6174
6175         if (IS_IRONLAKE_M(dev)) {
6176                 ironlake_disable_drps(dev);
6177         } else if (INTEL_INFO(dev)->gen >= 6) {
6178                 intel_suspend_gt_powersave(dev);
6179
6180                 mutex_lock(&dev_priv->rps.hw_lock);
6181                 if (INTEL_INFO(dev)->gen >= 9)
6182                         gen9_disable_rps(dev);
6183                 else if (IS_CHERRYVIEW(dev))
6184                         cherryview_disable_rps(dev);
6185                 else if (IS_VALLEYVIEW(dev))
6186                         valleyview_disable_rps(dev);
6187                 else
6188                         gen6_disable_rps(dev);
6189
6190                 dev_priv->rps.enabled = false;
6191                 mutex_unlock(&dev_priv->rps.hw_lock);
6192         }
6193 }
6194
6195 static void intel_gen6_powersave_work(struct work_struct *work)
6196 {
6197         struct drm_i915_private *dev_priv =
6198                 container_of(work, struct drm_i915_private,
6199                              rps.delayed_resume_work.work);
6200         struct drm_device *dev = dev_priv->dev;
6201
6202         mutex_lock(&dev_priv->rps.hw_lock);
6203
6204         gen6_reset_rps_interrupts(dev);
6205
6206         if (IS_CHERRYVIEW(dev)) {
6207                 cherryview_enable_rps(dev);
6208         } else if (IS_VALLEYVIEW(dev)) {
6209                 valleyview_enable_rps(dev);
6210         } else if (INTEL_INFO(dev)->gen >= 9) {
6211                 gen9_enable_rc6(dev);
6212                 gen9_enable_rps(dev);
6213                 if (IS_SKYLAKE(dev))
6214                         __gen6_update_ring_freq(dev);
6215         } else if (IS_BROADWELL(dev)) {
6216                 gen8_enable_rps(dev);
6217                 __gen6_update_ring_freq(dev);
6218         } else {
6219                 gen6_enable_rps(dev);
6220                 __gen6_update_ring_freq(dev);
6221         }
6222
6223         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6224         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6225
6226         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6227         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6228
6229         dev_priv->rps.enabled = true;
6230
6231         gen6_enable_rps_interrupts(dev);
6232
6233         mutex_unlock(&dev_priv->rps.hw_lock);
6234
6235         intel_runtime_pm_put(dev_priv);
6236 }
6237
6238 void intel_enable_gt_powersave(struct drm_device *dev)
6239 {
6240         struct drm_i915_private *dev_priv = dev->dev_private;
6241
6242         /* Powersaving is controlled by the host when inside a VM */
6243         if (intel_vgpu_active(dev))
6244                 return;
6245
6246         if (IS_IRONLAKE_M(dev)) {
6247                 mutex_lock(&dev->struct_mutex);
6248                 ironlake_enable_drps(dev);
6249                 intel_init_emon(dev);
6250                 mutex_unlock(&dev->struct_mutex);
6251         } else if (INTEL_INFO(dev)->gen >= 6) {
6252                 /*
6253                  * PCU communication is slow and this doesn't need to be
6254                  * done at any specific time, so do this out of our fast path
6255                  * to make resume and init faster.
6256                  *
6257                  * We depend on the HW RC6 power context save/restore
6258                  * mechanism when entering D3 through runtime PM suspend. So
6259                  * disable RPM until RPS/RC6 is properly setup. We can only
6260                  * get here via the driver load/system resume/runtime resume
6261                  * paths, so the _noresume version is enough (and in case of
6262                  * runtime resume it's necessary).
6263                  */
6264                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6265                                            round_jiffies_up_relative(HZ)))
6266                         intel_runtime_pm_get_noresume(dev_priv);
6267         }
6268 }
6269
6270 void intel_reset_gt_powersave(struct drm_device *dev)
6271 {
6272         struct drm_i915_private *dev_priv = dev->dev_private;
6273
6274         if (INTEL_INFO(dev)->gen < 6)
6275                 return;
6276
6277         gen6_suspend_rps(dev);
6278         dev_priv->rps.enabled = false;
6279 }
6280
6281 static void ibx_init_clock_gating(struct drm_device *dev)
6282 {
6283         struct drm_i915_private *dev_priv = dev->dev_private;
6284
6285         /*
6286          * On Ibex Peak and Cougar Point, we need to disable clock
6287          * gating for the panel power sequencer or it will fail to
6288          * start up when no ports are active.
6289          */
6290         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6291 }
6292
6293 static void g4x_disable_trickle_feed(struct drm_device *dev)
6294 {
6295         struct drm_i915_private *dev_priv = dev->dev_private;
6296         enum pipe pipe;
6297
6298         for_each_pipe(dev_priv, pipe) {
6299                 I915_WRITE(DSPCNTR(pipe),
6300                            I915_READ(DSPCNTR(pipe)) |
6301                            DISPPLANE_TRICKLE_FEED_DISABLE);
6302
6303                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6304                 POSTING_READ(DSPSURF(pipe));
6305         }
6306 }
6307
6308 static void ilk_init_lp_watermarks(struct drm_device *dev)
6309 {
6310         struct drm_i915_private *dev_priv = dev->dev_private;
6311
6312         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6313         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6314         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6315
6316         /*
6317          * Don't touch WM1S_LP_EN here.
6318          * Doing so could cause underruns.
6319          */
6320 }
6321
6322 static void ironlake_init_clock_gating(struct drm_device *dev)
6323 {
6324         struct drm_i915_private *dev_priv = dev->dev_private;
6325         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6326
6327         /*
6328          * Required for FBC
6329          * WaFbcDisableDpfcClockGating:ilk
6330          */
6331         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6332                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6333                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6334
6335         I915_WRITE(PCH_3DCGDIS0,
6336                    MARIUNIT_CLOCK_GATE_DISABLE |
6337                    SVSMUNIT_CLOCK_GATE_DISABLE);
6338         I915_WRITE(PCH_3DCGDIS1,
6339                    VFMUNIT_CLOCK_GATE_DISABLE);
6340
6341         /*
6342          * According to the spec the following bits should be set in
6343          * order to enable memory self-refresh
6344          * The bit 22/21 of 0x42004
6345          * The bit 5 of 0x42020
6346          * The bit 15 of 0x45000
6347          */
6348         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6349                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6350                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6351         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6352         I915_WRITE(DISP_ARB_CTL,
6353                    (I915_READ(DISP_ARB_CTL) |
6354                     DISP_FBC_WM_DIS));
6355
6356         ilk_init_lp_watermarks(dev);
6357
6358         /*
6359          * Based on the document from hardware guys the following bits
6360          * should be set unconditionally in order to enable FBC.
6361          * The bit 22 of 0x42000
6362          * The bit 22 of 0x42004
6363          * The bit 7,8,9 of 0x42020.
6364          */
6365         if (IS_IRONLAKE_M(dev)) {
6366                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6367                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6368                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6369                            ILK_FBCQ_DIS);
6370                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6371                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6372                            ILK_DPARB_GATE);
6373         }
6374
6375         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6376
6377         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6378                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6379                    ILK_ELPIN_409_SELECT);
6380         I915_WRITE(_3D_CHICKEN2,
6381                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6382                    _3D_CHICKEN2_WM_READ_PIPELINED);
6383
6384         /* WaDisableRenderCachePipelinedFlush:ilk */
6385         I915_WRITE(CACHE_MODE_0,
6386                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6387
6388         /* WaDisable_RenderCache_OperationalFlush:ilk */
6389         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6390
6391         g4x_disable_trickle_feed(dev);
6392
6393         ibx_init_clock_gating(dev);
6394 }
6395
6396 static void cpt_init_clock_gating(struct drm_device *dev)
6397 {
6398         struct drm_i915_private *dev_priv = dev->dev_private;
6399         int pipe;
6400         uint32_t val;
6401
6402         /*
6403          * On Ibex Peak and Cougar Point, we need to disable clock
6404          * gating for the panel power sequencer or it will fail to
6405          * start up when no ports are active.
6406          */
6407         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6408                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6409                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6410         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6411                    DPLS_EDP_PPS_FIX_DIS);
6412         /* The below fixes the weird display corruption, a few pixels shifted
6413          * downward, on (only) LVDS of some HP laptops with IVY.
6414          */
6415         for_each_pipe(dev_priv, pipe) {
6416                 val = I915_READ(TRANS_CHICKEN2(pipe));
6417                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6418                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6419                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6420                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6421                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6422                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6423                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6424                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6425         }
6426         /* WADP0ClockGatingDisable */
6427         for_each_pipe(dev_priv, pipe) {
6428                 I915_WRITE(TRANS_CHICKEN1(pipe),
6429                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6430         }
6431 }
6432
6433 static void gen6_check_mch_setup(struct drm_device *dev)
6434 {
6435         struct drm_i915_private *dev_priv = dev->dev_private;
6436         uint32_t tmp;
6437
6438         tmp = I915_READ(MCH_SSKPD);
6439         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6440                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6441                               tmp);
6442 }
6443
6444 static void gen6_init_clock_gating(struct drm_device *dev)
6445 {
6446         struct drm_i915_private *dev_priv = dev->dev_private;
6447         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6448
6449         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6450
6451         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6452                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6453                    ILK_ELPIN_409_SELECT);
6454
6455         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6456         I915_WRITE(_3D_CHICKEN,
6457                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6458
6459         /* WaDisable_RenderCache_OperationalFlush:snb */
6460         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6461
6462         /*
6463          * BSpec recoomends 8x4 when MSAA is used,
6464          * however in practice 16x4 seems fastest.
6465          *
6466          * Note that PS/WM thread counts depend on the WIZ hashing
6467          * disable bit, which we don't touch here, but it's good
6468          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6469          */
6470         I915_WRITE(GEN6_GT_MODE,
6471                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6472
6473         ilk_init_lp_watermarks(dev);
6474
6475         I915_WRITE(CACHE_MODE_0,
6476                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6477
6478         I915_WRITE(GEN6_UCGCTL1,
6479                    I915_READ(GEN6_UCGCTL1) |
6480                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6481                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6482
6483         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6484          * gating disable must be set.  Failure to set it results in
6485          * flickering pixels due to Z write ordering failures after
6486          * some amount of runtime in the Mesa "fire" demo, and Unigine
6487          * Sanctuary and Tropics, and apparently anything else with
6488          * alpha test or pixel discard.
6489          *
6490          * According to the spec, bit 11 (RCCUNIT) must also be set,
6491          * but we didn't debug actual testcases to find it out.
6492          *
6493          * WaDisableRCCUnitClockGating:snb
6494          * WaDisableRCPBUnitClockGating:snb
6495          */
6496         I915_WRITE(GEN6_UCGCTL2,
6497                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6498                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6499
6500         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6501         I915_WRITE(_3D_CHICKEN3,
6502                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6503
6504         /*
6505          * Bspec says:
6506          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6507          * 3DSTATE_SF number of SF output attributes is more than 16."
6508          */
6509         I915_WRITE(_3D_CHICKEN3,
6510                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6511
6512         /*
6513          * According to the spec the following bits should be
6514          * set in order to enable memory self-refresh and fbc:
6515          * The bit21 and bit22 of 0x42000
6516          * The bit21 and bit22 of 0x42004
6517          * The bit5 and bit7 of 0x42020
6518          * The bit14 of 0x70180
6519          * The bit14 of 0x71180
6520          *
6521          * WaFbcAsynchFlipDisableFbcQueue:snb
6522          */
6523         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6524                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6525                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6526         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6527                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6528                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6529         I915_WRITE(ILK_DSPCLK_GATE_D,
6530                    I915_READ(ILK_DSPCLK_GATE_D) |
6531                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6532                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6533
6534         g4x_disable_trickle_feed(dev);
6535
6536         cpt_init_clock_gating(dev);
6537
6538         gen6_check_mch_setup(dev);
6539 }
6540
6541 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6542 {
6543         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6544
6545         /*
6546          * WaVSThreadDispatchOverride:ivb,vlv
6547          *
6548          * This actually overrides the dispatch
6549          * mode for all thread types.
6550          */
6551         reg &= ~GEN7_FF_SCHED_MASK;
6552         reg |= GEN7_FF_TS_SCHED_HW;
6553         reg |= GEN7_FF_VS_SCHED_HW;
6554         reg |= GEN7_FF_DS_SCHED_HW;
6555
6556         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6557 }
6558
6559 static void lpt_init_clock_gating(struct drm_device *dev)
6560 {
6561         struct drm_i915_private *dev_priv = dev->dev_private;
6562
6563         /*
6564          * TODO: this bit should only be enabled when really needed, then
6565          * disabled when not needed anymore in order to save power.
6566          */
6567         if (HAS_PCH_LPT_LP(dev))
6568                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6569                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6570                            PCH_LP_PARTITION_LEVEL_DISABLE);
6571
6572         /* WADPOClockGatingDisable:hsw */
6573         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6574                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6575                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6576 }
6577
6578 static void lpt_suspend_hw(struct drm_device *dev)
6579 {
6580         struct drm_i915_private *dev_priv = dev->dev_private;
6581
6582         if (HAS_PCH_LPT_LP(dev)) {
6583                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6584
6585                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6586                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6587         }
6588 }
6589
6590 static void broadwell_init_clock_gating(struct drm_device *dev)
6591 {
6592         struct drm_i915_private *dev_priv = dev->dev_private;
6593         enum pipe pipe;
6594         uint32_t misccpctl;
6595
6596         ilk_init_lp_watermarks(dev);
6597
6598         /* WaSwitchSolVfFArbitrationPriority:bdw */
6599         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6600
6601         /* WaPsrDPAMaskVBlankInSRD:bdw */
6602         I915_WRITE(CHICKEN_PAR1_1,
6603                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6604
6605         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6606         for_each_pipe(dev_priv, pipe) {
6607                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6608                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
6609                            BDW_DPRS_MASK_VBLANK_SRD);
6610         }
6611
6612         /* WaVSRefCountFullforceMissDisable:bdw */
6613         /* WaDSRefCountFullforceMissDisable:bdw */
6614         I915_WRITE(GEN7_FF_THREAD_MODE,
6615                    I915_READ(GEN7_FF_THREAD_MODE) &
6616                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6617
6618         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6619                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6620
6621         /* WaDisableSDEUnitClockGating:bdw */
6622         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6623                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6624
6625         /*
6626          * WaProgramL3SqcReg1Default:bdw
6627          * WaTempDisableDOPClkGating:bdw
6628          */
6629         misccpctl = I915_READ(GEN7_MISCCPCTL);
6630         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6631         I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6632         /*
6633          * Wait at least 100 clocks before re-enabling clock gating. See
6634          * the definition of L3SQCREG1 in BSpec.
6635          */
6636         POSTING_READ(GEN8_L3SQCREG1);
6637         udelay(1);
6638         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6639
6640         /*
6641          * WaGttCachingOffByDefault:bdw
6642          * GTT cache may not work with big pages, so if those
6643          * are ever enabled GTT cache may need to be disabled.
6644          */
6645         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6646
6647         lpt_init_clock_gating(dev);
6648 }
6649
6650 static void haswell_init_clock_gating(struct drm_device *dev)
6651 {
6652         struct drm_i915_private *dev_priv = dev->dev_private;
6653
6654         ilk_init_lp_watermarks(dev);
6655
6656         /* L3 caching of data atomics doesn't work -- disable it. */
6657         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6658         I915_WRITE(HSW_ROW_CHICKEN3,
6659                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6660
6661         /* This is required by WaCatErrorRejectionIssue:hsw */
6662         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6663                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6664                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6665
6666         /* WaVSRefCountFullforceMissDisable:hsw */
6667         I915_WRITE(GEN7_FF_THREAD_MODE,
6668                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6669
6670         /* WaDisable_RenderCache_OperationalFlush:hsw */
6671         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6672
6673         /* enable HiZ Raw Stall Optimization */
6674         I915_WRITE(CACHE_MODE_0_GEN7,
6675                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6676
6677         /* WaDisable4x2SubspanOptimization:hsw */
6678         I915_WRITE(CACHE_MODE_1,
6679                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6680
6681         /*
6682          * BSpec recommends 8x4 when MSAA is used,
6683          * however in practice 16x4 seems fastest.
6684          *
6685          * Note that PS/WM thread counts depend on the WIZ hashing
6686          * disable bit, which we don't touch here, but it's good
6687          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6688          */
6689         I915_WRITE(GEN7_GT_MODE,
6690                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6691
6692         /* WaSampleCChickenBitEnable:hsw */
6693         I915_WRITE(HALF_SLICE_CHICKEN3,
6694                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6695
6696         /* WaSwitchSolVfFArbitrationPriority:hsw */
6697         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6698
6699         /* WaRsPkgCStateDisplayPMReq:hsw */
6700         I915_WRITE(CHICKEN_PAR1_1,
6701                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6702
6703         lpt_init_clock_gating(dev);
6704 }
6705
6706 static void ivybridge_init_clock_gating(struct drm_device *dev)
6707 {
6708         struct drm_i915_private *dev_priv = dev->dev_private;
6709         uint32_t snpcr;
6710
6711         ilk_init_lp_watermarks(dev);
6712
6713         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6714
6715         /* WaDisableEarlyCull:ivb */
6716         I915_WRITE(_3D_CHICKEN3,
6717                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6718
6719         /* WaDisableBackToBackFlipFix:ivb */
6720         I915_WRITE(IVB_CHICKEN3,
6721                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6722                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6723
6724         /* WaDisablePSDDualDispatchEnable:ivb */
6725         if (IS_IVB_GT1(dev))
6726                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6727                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6728
6729         /* WaDisable_RenderCache_OperationalFlush:ivb */
6730         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6731
6732         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6733         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6734                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6735
6736         /* WaApplyL3ControlAndL3ChickenMode:ivb */
6737         I915_WRITE(GEN7_L3CNTLREG1,
6738                         GEN7_WA_FOR_GEN7_L3_CONTROL);
6739         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6740                    GEN7_WA_L3_CHICKEN_MODE);
6741         if (IS_IVB_GT1(dev))
6742                 I915_WRITE(GEN7_ROW_CHICKEN2,
6743                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6744         else {
6745                 /* must write both registers */
6746                 I915_WRITE(GEN7_ROW_CHICKEN2,
6747                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6748                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6749                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6750         }
6751
6752         /* WaForceL3Serialization:ivb */
6753         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6754                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6755
6756         /*
6757          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6758          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6759          */
6760         I915_WRITE(GEN6_UCGCTL2,
6761                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6762
6763         /* This is required by WaCatErrorRejectionIssue:ivb */
6764         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6765                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6766                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6767
6768         g4x_disable_trickle_feed(dev);
6769
6770         gen7_setup_fixed_func_scheduler(dev_priv);
6771
6772         if (0) { /* causes HiZ corruption on ivb:gt1 */
6773                 /* enable HiZ Raw Stall Optimization */
6774                 I915_WRITE(CACHE_MODE_0_GEN7,
6775                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6776         }
6777
6778         /* WaDisable4x2SubspanOptimization:ivb */
6779         I915_WRITE(CACHE_MODE_1,
6780                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6781
6782         /*
6783          * BSpec recommends 8x4 when MSAA is used,
6784          * however in practice 16x4 seems fastest.
6785          *
6786          * Note that PS/WM thread counts depend on the WIZ hashing
6787          * disable bit, which we don't touch here, but it's good
6788          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6789          */
6790         I915_WRITE(GEN7_GT_MODE,
6791                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6792
6793         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6794         snpcr &= ~GEN6_MBC_SNPCR_MASK;
6795         snpcr |= GEN6_MBC_SNPCR_MED;
6796         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6797
6798         if (!HAS_PCH_NOP(dev))
6799                 cpt_init_clock_gating(dev);
6800
6801         gen6_check_mch_setup(dev);
6802 }
6803
6804 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6805 {
6806         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6807
6808         /*
6809          * Disable trickle feed and enable pnd deadline calculation
6810          */
6811         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6812         I915_WRITE(CBR1_VLV, 0);
6813 }
6814
6815 static void valleyview_init_clock_gating(struct drm_device *dev)
6816 {
6817         struct drm_i915_private *dev_priv = dev->dev_private;
6818
6819         vlv_init_display_clock_gating(dev_priv);
6820
6821         /* WaDisableEarlyCull:vlv */
6822         I915_WRITE(_3D_CHICKEN3,
6823                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6824
6825         /* WaDisableBackToBackFlipFix:vlv */
6826         I915_WRITE(IVB_CHICKEN3,
6827                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6828                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6829
6830         /* WaPsdDispatchEnable:vlv */
6831         /* WaDisablePSDDualDispatchEnable:vlv */
6832         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6833                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6834                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6835
6836         /* WaDisable_RenderCache_OperationalFlush:vlv */
6837         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6838
6839         /* WaForceL3Serialization:vlv */
6840         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6841                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6842
6843         /* WaDisableDopClockGating:vlv */
6844         I915_WRITE(GEN7_ROW_CHICKEN2,
6845                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6846
6847         /* This is required by WaCatErrorRejectionIssue:vlv */
6848         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6849                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6850                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6851
6852         gen7_setup_fixed_func_scheduler(dev_priv);
6853
6854         /*
6855          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6856          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6857          */
6858         I915_WRITE(GEN6_UCGCTL2,
6859                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6860
6861         /* WaDisableL3Bank2xClockGate:vlv
6862          * Disabling L3 clock gating- MMIO 940c[25] = 1
6863          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6864         I915_WRITE(GEN7_UCGCTL4,
6865                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6866
6867         /*
6868          * BSpec says this must be set, even though
6869          * WaDisable4x2SubspanOptimization isn't listed for VLV.
6870          */
6871         I915_WRITE(CACHE_MODE_1,
6872                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6873
6874         /*
6875          * BSpec recommends 8x4 when MSAA is used,
6876          * however in practice 16x4 seems fastest.
6877          *
6878          * Note that PS/WM thread counts depend on the WIZ hashing
6879          * disable bit, which we don't touch here, but it's good
6880          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6881          */
6882         I915_WRITE(GEN7_GT_MODE,
6883                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6884
6885         /*
6886          * WaIncreaseL3CreditsForVLVB0:vlv
6887          * This is the hardware default actually.
6888          */
6889         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6890
6891         /*
6892          * WaDisableVLVClockGating_VBIIssue:vlv
6893          * Disable clock gating on th GCFG unit to prevent a delay
6894          * in the reporting of vblank events.
6895          */
6896         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6897 }
6898
6899 static void cherryview_init_clock_gating(struct drm_device *dev)
6900 {
6901         struct drm_i915_private *dev_priv = dev->dev_private;
6902
6903         vlv_init_display_clock_gating(dev_priv);
6904
6905         /* WaVSRefCountFullforceMissDisable:chv */
6906         /* WaDSRefCountFullforceMissDisable:chv */
6907         I915_WRITE(GEN7_FF_THREAD_MODE,
6908                    I915_READ(GEN7_FF_THREAD_MODE) &
6909                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6910
6911         /* WaDisableSemaphoreAndSyncFlipWait:chv */
6912         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6913                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6914
6915         /* WaDisableCSUnitClockGating:chv */
6916         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6917                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6918
6919         /* WaDisableSDEUnitClockGating:chv */
6920         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6921                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6922
6923         /*
6924          * GTT cache may not work with big pages, so if those
6925          * are ever enabled GTT cache may need to be disabled.
6926          */
6927         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6928 }
6929
6930 static void g4x_init_clock_gating(struct drm_device *dev)
6931 {
6932         struct drm_i915_private *dev_priv = dev->dev_private;
6933         uint32_t dspclk_gate;
6934
6935         I915_WRITE(RENCLK_GATE_D1, 0);
6936         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6937                    GS_UNIT_CLOCK_GATE_DISABLE |
6938                    CL_UNIT_CLOCK_GATE_DISABLE);
6939         I915_WRITE(RAMCLK_GATE_D, 0);
6940         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6941                 OVRUNIT_CLOCK_GATE_DISABLE |
6942                 OVCUNIT_CLOCK_GATE_DISABLE;
6943         if (IS_GM45(dev))
6944                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6945         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6946
6947         /* WaDisableRenderCachePipelinedFlush */
6948         I915_WRITE(CACHE_MODE_0,
6949                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6950
6951         /* WaDisable_RenderCache_OperationalFlush:g4x */
6952         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6953
6954         g4x_disable_trickle_feed(dev);
6955 }
6956
6957 static void crestline_init_clock_gating(struct drm_device *dev)
6958 {
6959         struct drm_i915_private *dev_priv = dev->dev_private;
6960
6961         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6962         I915_WRITE(RENCLK_GATE_D2, 0);
6963         I915_WRITE(DSPCLK_GATE_D, 0);
6964         I915_WRITE(RAMCLK_GATE_D, 0);
6965         I915_WRITE16(DEUC, 0);
6966         I915_WRITE(MI_ARB_STATE,
6967                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6968
6969         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6970         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6971 }
6972
6973 static void broadwater_init_clock_gating(struct drm_device *dev)
6974 {
6975         struct drm_i915_private *dev_priv = dev->dev_private;
6976
6977         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6978                    I965_RCC_CLOCK_GATE_DISABLE |
6979                    I965_RCPB_CLOCK_GATE_DISABLE |
6980                    I965_ISC_CLOCK_GATE_DISABLE |
6981                    I965_FBC_CLOCK_GATE_DISABLE);
6982         I915_WRITE(RENCLK_GATE_D2, 0);
6983         I915_WRITE(MI_ARB_STATE,
6984                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6985
6986         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6987         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6988 }
6989
6990 static void gen3_init_clock_gating(struct drm_device *dev)
6991 {
6992         struct drm_i915_private *dev_priv = dev->dev_private;
6993         u32 dstate = I915_READ(D_STATE);
6994
6995         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6996                 DSTATE_DOT_CLOCK_GATING;
6997         I915_WRITE(D_STATE, dstate);
6998
6999         if (IS_PINEVIEW(dev))
7000                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7001
7002         /* IIR "flip pending" means done if this bit is set */
7003         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7004
7005         /* interrupts should cause a wake up from C3 */
7006         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7007
7008         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7009         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7010
7011         I915_WRITE(MI_ARB_STATE,
7012                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7013 }
7014
7015 static void i85x_init_clock_gating(struct drm_device *dev)
7016 {
7017         struct drm_i915_private *dev_priv = dev->dev_private;
7018
7019         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7020
7021         /* interrupts should cause a wake up from C3 */
7022         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7023                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7024
7025         I915_WRITE(MEM_MODE,
7026                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7027 }
7028
7029 static void i830_init_clock_gating(struct drm_device *dev)
7030 {
7031         struct drm_i915_private *dev_priv = dev->dev_private;
7032
7033         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7034
7035         I915_WRITE(MEM_MODE,
7036                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7037                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7038 }
7039
7040 void intel_init_clock_gating(struct drm_device *dev)
7041 {
7042         struct drm_i915_private *dev_priv = dev->dev_private;
7043
7044         if (dev_priv->display.init_clock_gating)
7045                 dev_priv->display.init_clock_gating(dev);
7046 }
7047
7048 void intel_suspend_hw(struct drm_device *dev)
7049 {
7050         if (HAS_PCH_LPT(dev))
7051                 lpt_suspend_hw(dev);
7052 }
7053
7054 /* Set up chip specific power management-related functions */
7055 void intel_init_pm(struct drm_device *dev)
7056 {
7057         struct drm_i915_private *dev_priv = dev->dev_private;
7058
7059         intel_fbc_init(dev_priv);
7060
7061         /* For cxsr */
7062         if (IS_PINEVIEW(dev))
7063                 i915_pineview_get_mem_freq(dev);
7064         else if (IS_GEN5(dev))
7065                 i915_ironlake_get_mem_freq(dev);
7066
7067         /* For FIFO watermark updates */
7068         if (INTEL_INFO(dev)->gen >= 9) {
7069                 skl_setup_wm_latency(dev);
7070
7071                 if (IS_BROXTON(dev))
7072                         dev_priv->display.init_clock_gating =
7073                                 bxt_init_clock_gating;
7074                 dev_priv->display.update_wm = skl_update_wm;
7075                 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7076         } else if (HAS_PCH_SPLIT(dev)) {
7077                 ilk_setup_wm_latency(dev);
7078
7079                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7080                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7081                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7082                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7083                         dev_priv->display.update_wm = ilk_update_wm;
7084                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7085                 } else {
7086                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7087                                       "Disable CxSR\n");
7088                 }
7089
7090                 if (IS_GEN5(dev))
7091                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7092                 else if (IS_GEN6(dev))
7093                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7094                 else if (IS_IVYBRIDGE(dev))
7095                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7096                 else if (IS_HASWELL(dev))
7097                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7098                 else if (INTEL_INFO(dev)->gen == 8)
7099                         dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7100         } else if (IS_CHERRYVIEW(dev)) {
7101                 vlv_setup_wm_latency(dev);
7102
7103                 dev_priv->display.update_wm = vlv_update_wm;
7104                 dev_priv->display.init_clock_gating =
7105                         cherryview_init_clock_gating;
7106         } else if (IS_VALLEYVIEW(dev)) {
7107                 vlv_setup_wm_latency(dev);
7108
7109                 dev_priv->display.update_wm = vlv_update_wm;
7110                 dev_priv->display.init_clock_gating =
7111                         valleyview_init_clock_gating;
7112         } else if (IS_PINEVIEW(dev)) {
7113                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7114                                             dev_priv->is_ddr3,
7115                                             dev_priv->fsb_freq,
7116                                             dev_priv->mem_freq)) {
7117                         DRM_INFO("failed to find known CxSR latency "
7118                                  "(found ddr%s fsb freq %d, mem freq %d), "
7119                                  "disabling CxSR\n",
7120                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7121                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7122                         /* Disable CxSR and never update its watermark again */
7123                         intel_set_memory_cxsr(dev_priv, false);
7124                         dev_priv->display.update_wm = NULL;
7125                 } else
7126                         dev_priv->display.update_wm = pineview_update_wm;
7127                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7128         } else if (IS_G4X(dev)) {
7129                 dev_priv->display.update_wm = g4x_update_wm;
7130                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7131         } else if (IS_GEN4(dev)) {
7132                 dev_priv->display.update_wm = i965_update_wm;
7133                 if (IS_CRESTLINE(dev))
7134                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7135                 else if (IS_BROADWATER(dev))
7136                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7137         } else if (IS_GEN3(dev)) {
7138                 dev_priv->display.update_wm = i9xx_update_wm;
7139                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7140                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7141         } else if (IS_GEN2(dev)) {
7142                 if (INTEL_INFO(dev)->num_pipes == 1) {
7143                         dev_priv->display.update_wm = i845_update_wm;
7144                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7145                 } else {
7146                         dev_priv->display.update_wm = i9xx_update_wm;
7147                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7148                 }
7149
7150                 if (IS_I85X(dev) || IS_I865G(dev))
7151                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7152                 else
7153                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
7154         } else {
7155                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7156         }
7157 }
7158
7159 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7160 {
7161         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7162
7163         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7164                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7165                 return -EAGAIN;
7166         }
7167
7168         I915_WRITE(GEN6_PCODE_DATA, *val);
7169         I915_WRITE(GEN6_PCODE_DATA1, 0);
7170         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7171
7172         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7173                      500)) {
7174                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7175                 return -ETIMEDOUT;
7176         }
7177
7178         *val = I915_READ(GEN6_PCODE_DATA);
7179         I915_WRITE(GEN6_PCODE_DATA, 0);
7180
7181         return 0;
7182 }
7183
7184 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7185 {
7186         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7187
7188         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7189                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7190                 return -EAGAIN;
7191         }
7192
7193         I915_WRITE(GEN6_PCODE_DATA, val);
7194         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7195
7196         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7197                      500)) {
7198                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7199                 return -ETIMEDOUT;
7200         }
7201
7202         I915_WRITE(GEN6_PCODE_DATA, 0);
7203
7204         return 0;
7205 }
7206
7207 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7208 {
7209         switch (czclk_freq) {
7210         case 200:
7211                 return 10;
7212         case 267:
7213                 return 12;
7214         case 320:
7215         case 333:
7216                 return 16;
7217         case 400:
7218                 return 20;
7219         default:
7220                 return -1;
7221         }
7222 }
7223
7224 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7225 {
7226         int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7227
7228         div = vlv_gpu_freq_div(czclk_freq);
7229         if (div < 0)
7230                 return div;
7231
7232         return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7233 }
7234
7235 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7236 {
7237         int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7238
7239         mul = vlv_gpu_freq_div(czclk_freq);
7240         if (mul < 0)
7241                 return mul;
7242
7243         return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7244 }
7245
7246 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7247 {
7248         int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7249
7250         div = vlv_gpu_freq_div(czclk_freq) / 2;
7251         if (div < 0)
7252                 return div;
7253
7254         return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7255 }
7256
7257 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7258 {
7259         int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7260
7261         mul = vlv_gpu_freq_div(czclk_freq) / 2;
7262         if (mul < 0)
7263                 return mul;
7264
7265         /* CHV needs even values */
7266         return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7267 }
7268
7269 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7270 {
7271         if (IS_GEN9(dev_priv->dev))
7272                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7273                                          GEN9_FREQ_SCALER);
7274         else if (IS_CHERRYVIEW(dev_priv->dev))
7275                 return chv_gpu_freq(dev_priv, val);
7276         else if (IS_VALLEYVIEW(dev_priv->dev))
7277                 return byt_gpu_freq(dev_priv, val);
7278         else
7279                 return val * GT_FREQUENCY_MULTIPLIER;
7280 }
7281
7282 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7283 {
7284         if (IS_GEN9(dev_priv->dev))
7285                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7286                                          GT_FREQUENCY_MULTIPLIER);
7287         else if (IS_CHERRYVIEW(dev_priv->dev))
7288                 return chv_freq_opcode(dev_priv, val);
7289         else if (IS_VALLEYVIEW(dev_priv->dev))
7290                 return byt_freq_opcode(dev_priv, val);
7291         else
7292                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7293 }
7294
7295 struct request_boost {
7296         struct work_struct work;
7297         struct drm_i915_gem_request *req;
7298 };
7299
7300 static void __intel_rps_boost_work(struct work_struct *work)
7301 {
7302         struct request_boost *boost = container_of(work, struct request_boost, work);
7303         struct drm_i915_gem_request *req = boost->req;
7304
7305         if (!i915_gem_request_completed(req, true))
7306                 gen6_rps_boost(to_i915(req->ring->dev), NULL,
7307                                req->emitted_jiffies);
7308
7309         i915_gem_request_unreference__unlocked(req);
7310         kfree(boost);
7311 }
7312
7313 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7314                                        struct drm_i915_gem_request *req)
7315 {
7316         struct request_boost *boost;
7317
7318         if (req == NULL || INTEL_INFO(dev)->gen < 6)
7319                 return;
7320
7321         if (i915_gem_request_completed(req, true))
7322                 return;
7323
7324         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7325         if (boost == NULL)
7326                 return;
7327
7328         i915_gem_request_reference(req);
7329         boost->req = req;
7330
7331         INIT_WORK(&boost->work, __intel_rps_boost_work);
7332         queue_work(to_i915(dev)->wq, &boost->work);
7333 }
7334
7335 void intel_pm_setup(struct drm_device *dev)
7336 {
7337         struct drm_i915_private *dev_priv = dev->dev_private;
7338
7339         mutex_init(&dev_priv->rps.hw_lock);
7340         spin_lock_init(&dev_priv->rps.client_lock);
7341
7342         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7343                           intel_gen6_powersave_work);
7344         INIT_LIST_HEAD(&dev_priv->rps.clients);
7345         INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7346         INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7347
7348         dev_priv->pm.suspended = false;
7349 }