Kernel bump from 4.1.3-rt to 4.1.7-rt.
[kvmfornfv.git] / kernel / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL             (1 << 0x2)
144 #define RING_EXECLIST1_VALID            (1 << 0x3)
145 #define RING_EXECLIST0_VALID            (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
156
157 #define CTX_LRI_HEADER_0                0x01
158 #define CTX_CONTEXT_CONTROL             0x02
159 #define CTX_RING_HEAD                   0x04
160 #define CTX_RING_TAIL                   0x06
161 #define CTX_RING_BUFFER_START           0x08
162 #define CTX_RING_BUFFER_CONTROL         0x0a
163 #define CTX_BB_HEAD_U                   0x0c
164 #define CTX_BB_HEAD_L                   0x0e
165 #define CTX_BB_STATE                    0x10
166 #define CTX_SECOND_BB_HEAD_U            0x12
167 #define CTX_SECOND_BB_HEAD_L            0x14
168 #define CTX_SECOND_BB_STATE             0x16
169 #define CTX_BB_PER_CTX_PTR              0x18
170 #define CTX_RCS_INDIRECT_CTX            0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
172 #define CTX_LRI_HEADER_1                0x21
173 #define CTX_CTX_TIMESTAMP               0x22
174 #define CTX_PDP3_UDW                    0x24
175 #define CTX_PDP3_LDW                    0x26
176 #define CTX_PDP2_UDW                    0x28
177 #define CTX_PDP2_LDW                    0x2a
178 #define CTX_PDP1_UDW                    0x2c
179 #define CTX_PDP1_LDW                    0x2e
180 #define CTX_PDP0_UDW                    0x30
181 #define CTX_PDP0_LDW                    0x32
182 #define CTX_LRI_HEADER_2                0x41
183 #define CTX_R_PWR_CLK_STATE             0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191 enum {
192         ADVANCED_CONTEXT = 0,
193         LEGACY_CONTEXT,
194         ADVANCED_AD_CONTEXT,
195         LEGACY_64B_CONTEXT
196 };
197 #define GEN8_CTX_MODE_SHIFT 3
198 enum {
199         FAULT_AND_HANG = 0,
200         FAULT_AND_HALT, /* Debug only */
201         FAULT_AND_STREAM,
202         FAULT_AND_CONTINUE /* Unsupported */
203 };
204 #define GEN8_CTX_ID_SHIFT 32
205
206 static int intel_lr_context_pin(struct intel_engine_cs *ring,
207                 struct intel_context *ctx);
208
209 /**
210  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
211  * @dev: DRM device.
212  * @enable_execlists: value of i915.enable_execlists module parameter.
213  *
214  * Only certain platforms support Execlists (the prerequisites being
215  * support for Logical Ring Contexts and Aliasing PPGTT or better).
216  *
217  * Return: 1 if Execlists is supported and has to be enabled.
218  */
219 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
220 {
221         WARN_ON(i915.enable_ppgtt == -1);
222
223         if (INTEL_INFO(dev)->gen >= 9)
224                 return 1;
225
226         if (enable_execlists == 0)
227                 return 0;
228
229         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
230             i915.use_mmio_flip >= 0)
231                 return 1;
232
233         return 0;
234 }
235
236 /**
237  * intel_execlists_ctx_id() - get the Execlists Context ID
238  * @ctx_obj: Logical Ring Context backing object.
239  *
240  * Do not confuse with ctx->id! Unfortunately we have a name overload
241  * here: the old context ID we pass to userspace as a handler so that
242  * they can refer to a context, and the new context ID we pass to the
243  * ELSP so that the GPU can inform us of the context status via
244  * interrupts.
245  *
246  * Return: 20-bits globally unique context ID.
247  */
248 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
249 {
250         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
251
252         /* LRCA is required to be 4K aligned so the more significant 20 bits
253          * are globally unique */
254         return lrca >> 12;
255 }
256
257 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
258                                          struct drm_i915_gem_object *ctx_obj)
259 {
260         struct drm_device *dev = ring->dev;
261         uint64_t desc;
262         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
263
264         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
265
266         desc = GEN8_CTX_VALID;
267         desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
268         desc |= GEN8_CTX_L3LLC_COHERENT;
269         desc |= GEN8_CTX_PRIVILEGE;
270         desc |= lrca;
271         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
272
273         /* TODO: WaDisableLiteRestore when we start using semaphore
274          * signalling between Command Streamers */
275         /* desc |= GEN8_CTX_FORCE_RESTORE; */
276
277         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
278         if (IS_GEN9(dev) &&
279             INTEL_REVID(dev) <= SKL_REVID_B0 &&
280             (ring->id == BCS || ring->id == VCS ||
281             ring->id == VECS || ring->id == VCS2))
282                 desc |= GEN8_CTX_FORCE_RESTORE;
283
284         return desc;
285 }
286
287 static void execlists_elsp_write(struct intel_engine_cs *ring,
288                                  struct drm_i915_gem_object *ctx_obj0,
289                                  struct drm_i915_gem_object *ctx_obj1)
290 {
291         struct drm_device *dev = ring->dev;
292         struct drm_i915_private *dev_priv = dev->dev_private;
293         uint64_t temp = 0;
294         uint32_t desc[4];
295
296         /* XXX: You must always write both descriptors in the order below. */
297         if (ctx_obj1)
298                 temp = execlists_ctx_descriptor(ring, ctx_obj1);
299         else
300                 temp = 0;
301         desc[1] = (u32)(temp >> 32);
302         desc[0] = (u32)temp;
303
304         temp = execlists_ctx_descriptor(ring, ctx_obj0);
305         desc[3] = (u32)(temp >> 32);
306         desc[2] = (u32)temp;
307
308         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
309         I915_WRITE(RING_ELSP(ring), desc[1]);
310         I915_WRITE(RING_ELSP(ring), desc[0]);
311         I915_WRITE(RING_ELSP(ring), desc[3]);
312
313         /* The context is automatically loaded after the following */
314         I915_WRITE(RING_ELSP(ring), desc[2]);
315
316         /* ELSP is a wo register, so use another nearby reg for posting instead */
317         POSTING_READ(RING_EXECLIST_STATUS(ring));
318         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
319 }
320
321 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
322                                     struct drm_i915_gem_object *ring_obj,
323                                     u32 tail)
324 {
325         struct page *page;
326         uint32_t *reg_state;
327
328         page = i915_gem_object_get_page(ctx_obj, 1);
329         reg_state = kmap_atomic(page);
330
331         reg_state[CTX_RING_TAIL+1] = tail;
332         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
333
334         kunmap_atomic(reg_state);
335
336         return 0;
337 }
338
339 static void execlists_submit_contexts(struct intel_engine_cs *ring,
340                                       struct intel_context *to0, u32 tail0,
341                                       struct intel_context *to1, u32 tail1)
342 {
343         struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
344         struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
345         struct drm_i915_gem_object *ctx_obj1 = NULL;
346         struct intel_ringbuffer *ringbuf1 = NULL;
347
348         BUG_ON(!ctx_obj0);
349         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
350         WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
351
352         execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
353
354         if (to1) {
355                 ringbuf1 = to1->engine[ring->id].ringbuf;
356                 ctx_obj1 = to1->engine[ring->id].state;
357                 BUG_ON(!ctx_obj1);
358                 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
359                 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
360
361                 execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
362         }
363
364         execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
365 }
366
367 static void execlists_context_unqueue(struct intel_engine_cs *ring)
368 {
369         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
370         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
371
372         assert_spin_locked(&ring->execlist_lock);
373
374         if (list_empty(&ring->execlist_queue))
375                 return;
376
377         /* Try to read in pairs */
378         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
379                                  execlist_link) {
380                 if (!req0) {
381                         req0 = cursor;
382                 } else if (req0->ctx == cursor->ctx) {
383                         /* Same ctx: ignore first request, as second request
384                          * will update tail past first request's workload */
385                         cursor->elsp_submitted = req0->elsp_submitted;
386                         list_del(&req0->execlist_link);
387                         list_add_tail(&req0->execlist_link,
388                                 &ring->execlist_retired_req_list);
389                         req0 = cursor;
390                 } else {
391                         req1 = cursor;
392                         break;
393                 }
394         }
395
396         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
397                 /*
398                  * WaIdleLiteRestore: make sure we never cause a lite
399                  * restore with HEAD==TAIL
400                  */
401                 if (req0 && req0->elsp_submitted) {
402                         /*
403                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
404                          * as we resubmit the request. See gen8_emit_request()
405                          * for where we prepare the padding after the end of the
406                          * request.
407                          */
408                         struct intel_ringbuffer *ringbuf;
409
410                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
411                         req0->tail += 8;
412                         req0->tail &= ringbuf->size - 1;
413                 }
414         }
415
416         WARN_ON(req1 && req1->elsp_submitted);
417
418         execlists_submit_contexts(ring, req0->ctx, req0->tail,
419                                   req1 ? req1->ctx : NULL,
420                                   req1 ? req1->tail : 0);
421
422         req0->elsp_submitted++;
423         if (req1)
424                 req1->elsp_submitted++;
425 }
426
427 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
428                                            u32 request_id)
429 {
430         struct drm_i915_gem_request *head_req;
431
432         assert_spin_locked(&ring->execlist_lock);
433
434         head_req = list_first_entry_or_null(&ring->execlist_queue,
435                                             struct drm_i915_gem_request,
436                                             execlist_link);
437
438         if (head_req != NULL) {
439                 struct drm_i915_gem_object *ctx_obj =
440                                 head_req->ctx->engine[ring->id].state;
441                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
442                         WARN(head_req->elsp_submitted == 0,
443                              "Never submitted head request\n");
444
445                         if (--head_req->elsp_submitted <= 0) {
446                                 list_del(&head_req->execlist_link);
447                                 list_add_tail(&head_req->execlist_link,
448                                         &ring->execlist_retired_req_list);
449                                 return true;
450                         }
451                 }
452         }
453
454         return false;
455 }
456
457 /**
458  * intel_lrc_irq_handler() - handle Context Switch interrupts
459  * @ring: Engine Command Streamer to handle.
460  *
461  * Check the unread Context Status Buffers and manage the submission of new
462  * contexts to the ELSP accordingly.
463  */
464 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
465 {
466         struct drm_i915_private *dev_priv = ring->dev->dev_private;
467         u32 status_pointer;
468         u8 read_pointer;
469         u8 write_pointer;
470         u32 status;
471         u32 status_id;
472         u32 submit_contexts = 0;
473
474         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
475
476         read_pointer = ring->next_context_status_buffer;
477         write_pointer = status_pointer & 0x07;
478         if (read_pointer > write_pointer)
479                 write_pointer += 6;
480
481         spin_lock(&ring->execlist_lock);
482
483         while (read_pointer < write_pointer) {
484                 read_pointer++;
485                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
486                                 (read_pointer % 6) * 8);
487                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
488                                 (read_pointer % 6) * 8 + 4);
489
490                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
491                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
492                                 if (execlists_check_remove_request(ring, status_id))
493                                         WARN(1, "Lite Restored request removed from queue\n");
494                         } else
495                                 WARN(1, "Preemption without Lite Restore\n");
496                 }
497
498                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
499                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
500                         if (execlists_check_remove_request(ring, status_id))
501                                 submit_contexts++;
502                 }
503         }
504
505         if (submit_contexts != 0)
506                 execlists_context_unqueue(ring);
507
508         spin_unlock(&ring->execlist_lock);
509
510         WARN(submit_contexts > 2, "More than two context complete events?\n");
511         ring->next_context_status_buffer = write_pointer % 6;
512
513         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
514                    ((u32)ring->next_context_status_buffer & 0x07) << 8);
515 }
516
517 static int execlists_context_queue(struct intel_engine_cs *ring,
518                                    struct intel_context *to,
519                                    u32 tail,
520                                    struct drm_i915_gem_request *request)
521 {
522         struct drm_i915_gem_request *cursor;
523         struct drm_i915_private *dev_priv = ring->dev->dev_private;
524         unsigned long flags;
525         int num_elements = 0;
526
527         if (to != ring->default_context)
528                 intel_lr_context_pin(ring, to);
529
530         if (!request) {
531                 /*
532                  * If there isn't a request associated with this submission,
533                  * create one as a temporary holder.
534                  */
535                 request = kzalloc(sizeof(*request), GFP_KERNEL);
536                 if (request == NULL)
537                         return -ENOMEM;
538                 request->ring = ring;
539                 request->ctx = to;
540                 kref_init(&request->ref);
541                 request->uniq = dev_priv->request_uniq++;
542                 i915_gem_context_reference(request->ctx);
543         } else {
544                 i915_gem_request_reference(request);
545                 WARN_ON(to != request->ctx);
546         }
547         request->tail = tail;
548
549         intel_runtime_pm_get(dev_priv);
550
551         spin_lock_irqsave(&ring->execlist_lock, flags);
552
553         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
554                 if (++num_elements > 2)
555                         break;
556
557         if (num_elements > 2) {
558                 struct drm_i915_gem_request *tail_req;
559
560                 tail_req = list_last_entry(&ring->execlist_queue,
561                                            struct drm_i915_gem_request,
562                                            execlist_link);
563
564                 if (to == tail_req->ctx) {
565                         WARN(tail_req->elsp_submitted != 0,
566                                 "More than 2 already-submitted reqs queued\n");
567                         list_del(&tail_req->execlist_link);
568                         list_add_tail(&tail_req->execlist_link,
569                                 &ring->execlist_retired_req_list);
570                 }
571         }
572
573         list_add_tail(&request->execlist_link, &ring->execlist_queue);
574         if (num_elements == 0)
575                 execlists_context_unqueue(ring);
576
577         spin_unlock_irqrestore(&ring->execlist_lock, flags);
578
579         return 0;
580 }
581
582 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
583                                               struct intel_context *ctx)
584 {
585         struct intel_engine_cs *ring = ringbuf->ring;
586         uint32_t flush_domains;
587         int ret;
588
589         flush_domains = 0;
590         if (ring->gpu_caches_dirty)
591                 flush_domains = I915_GEM_GPU_DOMAINS;
592
593         ret = ring->emit_flush(ringbuf, ctx,
594                                I915_GEM_GPU_DOMAINS, flush_domains);
595         if (ret)
596                 return ret;
597
598         ring->gpu_caches_dirty = false;
599         return 0;
600 }
601
602 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
603                                  struct intel_context *ctx,
604                                  struct list_head *vmas)
605 {
606         struct intel_engine_cs *ring = ringbuf->ring;
607         struct i915_vma *vma;
608         uint32_t flush_domains = 0;
609         bool flush_chipset = false;
610         int ret;
611
612         list_for_each_entry(vma, vmas, exec_list) {
613                 struct drm_i915_gem_object *obj = vma->obj;
614
615                 ret = i915_gem_object_sync(obj, ring);
616                 if (ret)
617                         return ret;
618
619                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
620                         flush_chipset |= i915_gem_clflush_object(obj, false);
621
622                 flush_domains |= obj->base.write_domain;
623         }
624
625         if (flush_domains & I915_GEM_DOMAIN_GTT)
626                 wmb();
627
628         /* Unconditionally invalidate gpu caches and ensure that we do flush
629          * any residual writes from the previous batch.
630          */
631         return logical_ring_invalidate_all_caches(ringbuf, ctx);
632 }
633
634 /**
635  * execlists_submission() - submit a batchbuffer for execution, Execlists style
636  * @dev: DRM device.
637  * @file: DRM file.
638  * @ring: Engine Command Streamer to submit to.
639  * @ctx: Context to employ for this submission.
640  * @args: execbuffer call arguments.
641  * @vmas: list of vmas.
642  * @batch_obj: the batchbuffer to submit.
643  * @exec_start: batchbuffer start virtual address pointer.
644  * @dispatch_flags: translated execbuffer call flags.
645  *
646  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
647  * away the submission details of the execbuffer ioctl call.
648  *
649  * Return: non-zero if the submission fails.
650  */
651 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
652                                struct intel_engine_cs *ring,
653                                struct intel_context *ctx,
654                                struct drm_i915_gem_execbuffer2 *args,
655                                struct list_head *vmas,
656                                struct drm_i915_gem_object *batch_obj,
657                                u64 exec_start, u32 dispatch_flags)
658 {
659         struct drm_i915_private *dev_priv = dev->dev_private;
660         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
661         int instp_mode;
662         u32 instp_mask;
663         int ret;
664
665         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
666         instp_mask = I915_EXEC_CONSTANTS_MASK;
667         switch (instp_mode) {
668         case I915_EXEC_CONSTANTS_REL_GENERAL:
669         case I915_EXEC_CONSTANTS_ABSOLUTE:
670         case I915_EXEC_CONSTANTS_REL_SURFACE:
671                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
672                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
673                         return -EINVAL;
674                 }
675
676                 if (instp_mode != dev_priv->relative_constants_mode) {
677                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
678                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
679                                 return -EINVAL;
680                         }
681
682                         /* The HW changed the meaning on this bit on gen6 */
683                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
684                 }
685                 break;
686         default:
687                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
688                 return -EINVAL;
689         }
690
691         if (args->num_cliprects != 0) {
692                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
693                 return -EINVAL;
694         } else {
695                 if (args->DR4 == 0xffffffff) {
696                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
697                         args->DR4 = 0;
698                 }
699
700                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
701                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
702                         return -EINVAL;
703                 }
704         }
705
706         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
707                 DRM_DEBUG("sol reset is gen7 only\n");
708                 return -EINVAL;
709         }
710
711         ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
712         if (ret)
713                 return ret;
714
715         if (ring == &dev_priv->ring[RCS] &&
716             instp_mode != dev_priv->relative_constants_mode) {
717                 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
718                 if (ret)
719                         return ret;
720
721                 intel_logical_ring_emit(ringbuf, MI_NOOP);
722                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
723                 intel_logical_ring_emit(ringbuf, INSTPM);
724                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
725                 intel_logical_ring_advance(ringbuf);
726
727                 dev_priv->relative_constants_mode = instp_mode;
728         }
729
730         ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
731         if (ret)
732                 return ret;
733
734         trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
735
736         i915_gem_execbuffer_move_to_active(vmas, ring);
737         i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
738
739         return 0;
740 }
741
742 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
743 {
744         struct drm_i915_gem_request *req, *tmp;
745         struct drm_i915_private *dev_priv = ring->dev->dev_private;
746         unsigned long flags;
747         struct list_head retired_list;
748
749         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
750         if (list_empty(&ring->execlist_retired_req_list))
751                 return;
752
753         INIT_LIST_HEAD(&retired_list);
754         spin_lock_irqsave(&ring->execlist_lock, flags);
755         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
756         spin_unlock_irqrestore(&ring->execlist_lock, flags);
757
758         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
759                 struct intel_context *ctx = req->ctx;
760                 struct drm_i915_gem_object *ctx_obj =
761                                 ctx->engine[ring->id].state;
762
763                 if (ctx_obj && (ctx != ring->default_context))
764                         intel_lr_context_unpin(ring, ctx);
765                 intel_runtime_pm_put(dev_priv);
766                 list_del(&req->execlist_link);
767                 i915_gem_request_unreference(req);
768         }
769 }
770
771 void intel_logical_ring_stop(struct intel_engine_cs *ring)
772 {
773         struct drm_i915_private *dev_priv = ring->dev->dev_private;
774         int ret;
775
776         if (!intel_ring_initialized(ring))
777                 return;
778
779         ret = intel_ring_idle(ring);
780         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
781                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
782                           ring->name, ret);
783
784         /* TODO: Is this correct with Execlists enabled? */
785         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
786         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
787                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
788                 return;
789         }
790         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
791 }
792
793 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
794                                   struct intel_context *ctx)
795 {
796         struct intel_engine_cs *ring = ringbuf->ring;
797         int ret;
798
799         if (!ring->gpu_caches_dirty)
800                 return 0;
801
802         ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
803         if (ret)
804                 return ret;
805
806         ring->gpu_caches_dirty = false;
807         return 0;
808 }
809
810 /*
811  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
812  * @ringbuf: Logical Ringbuffer to advance.
813  *
814  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
815  * really happens during submission is that the context and current tail will be placed
816  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
817  * point, the tail *inside* the context is updated and the ELSP written to.
818  */
819 static void
820 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
821                                       struct intel_context *ctx,
822                                       struct drm_i915_gem_request *request)
823 {
824         struct intel_engine_cs *ring = ringbuf->ring;
825
826         intel_logical_ring_advance(ringbuf);
827
828         if (intel_ring_stopped(ring))
829                 return;
830
831         execlists_context_queue(ring, ctx, ringbuf->tail, request);
832 }
833
834 static int intel_lr_context_pin(struct intel_engine_cs *ring,
835                 struct intel_context *ctx)
836 {
837         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
838         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
839         int ret = 0;
840
841         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
842         if (ctx->engine[ring->id].pin_count++ == 0) {
843                 ret = i915_gem_obj_ggtt_pin(ctx_obj,
844                                 GEN8_LR_CONTEXT_ALIGN, 0);
845                 if (ret)
846                         goto reset_pin_count;
847
848                 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
849                 if (ret)
850                         goto unpin_ctx_obj;
851
852                 ctx_obj->dirty = true;
853         }
854
855         return ret;
856
857 unpin_ctx_obj:
858         i915_gem_object_ggtt_unpin(ctx_obj);
859 reset_pin_count:
860         ctx->engine[ring->id].pin_count = 0;
861
862         return ret;
863 }
864
865 void intel_lr_context_unpin(struct intel_engine_cs *ring,
866                 struct intel_context *ctx)
867 {
868         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
869         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
870
871         if (ctx_obj) {
872                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
873                 if (--ctx->engine[ring->id].pin_count == 0) {
874                         intel_unpin_ringbuffer_obj(ringbuf);
875                         i915_gem_object_ggtt_unpin(ctx_obj);
876                 }
877         }
878 }
879
880 static int logical_ring_alloc_request(struct intel_engine_cs *ring,
881                                       struct intel_context *ctx)
882 {
883         struct drm_i915_gem_request *request;
884         struct drm_i915_private *dev_private = ring->dev->dev_private;
885         int ret;
886
887         if (ring->outstanding_lazy_request)
888                 return 0;
889
890         request = kzalloc(sizeof(*request), GFP_KERNEL);
891         if (request == NULL)
892                 return -ENOMEM;
893
894         if (ctx != ring->default_context) {
895                 ret = intel_lr_context_pin(ring, ctx);
896                 if (ret) {
897                         kfree(request);
898                         return ret;
899                 }
900         }
901
902         kref_init(&request->ref);
903         request->ring = ring;
904         request->uniq = dev_private->request_uniq++;
905
906         ret = i915_gem_get_seqno(ring->dev, &request->seqno);
907         if (ret) {
908                 intel_lr_context_unpin(ring, ctx);
909                 kfree(request);
910                 return ret;
911         }
912
913         request->ctx = ctx;
914         i915_gem_context_reference(request->ctx);
915         request->ringbuf = ctx->engine[ring->id].ringbuf;
916
917         ring->outstanding_lazy_request = request;
918         return 0;
919 }
920
921 static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
922                                      int bytes)
923 {
924         struct intel_engine_cs *ring = ringbuf->ring;
925         struct drm_i915_gem_request *request;
926         int ret;
927
928         if (intel_ring_space(ringbuf) >= bytes)
929                 return 0;
930
931         list_for_each_entry(request, &ring->request_list, list) {
932                 /*
933                  * The request queue is per-engine, so can contain requests
934                  * from multiple ringbuffers. Here, we must ignore any that
935                  * aren't from the ringbuffer we're considering.
936                  */
937                 struct intel_context *ctx = request->ctx;
938                 if (ctx->engine[ring->id].ringbuf != ringbuf)
939                         continue;
940
941                 /* Would completion of this request free enough space? */
942                 if (__intel_ring_space(request->tail, ringbuf->tail,
943                                        ringbuf->size) >= bytes) {
944                         break;
945                 }
946         }
947
948         if (&request->list == &ring->request_list)
949                 return -ENOSPC;
950
951         ret = i915_wait_request(request);
952         if (ret)
953                 return ret;
954
955         i915_gem_retire_requests_ring(ring);
956
957         return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
958 }
959
960 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
961                                        struct intel_context *ctx,
962                                        int bytes)
963 {
964         struct intel_engine_cs *ring = ringbuf->ring;
965         struct drm_device *dev = ring->dev;
966         struct drm_i915_private *dev_priv = dev->dev_private;
967         unsigned long end;
968         int ret;
969
970         ret = logical_ring_wait_request(ringbuf, bytes);
971         if (ret != -ENOSPC)
972                 return ret;
973
974         /* Force the context submission in case we have been skipping it */
975         intel_logical_ring_advance_and_submit(ringbuf, ctx, NULL);
976
977         /* With GEM the hangcheck timer should kick us out of the loop,
978          * leaving it early runs the risk of corrupting GEM state (due
979          * to running on almost untested codepaths). But on resume
980          * timers don't work yet, so prevent a complete hang in that
981          * case by choosing an insanely large timeout. */
982         end = jiffies + 60 * HZ;
983
984         ret = 0;
985         do {
986                 if (intel_ring_space(ringbuf) >= bytes)
987                         break;
988
989                 msleep(1);
990
991                 if (dev_priv->mm.interruptible && signal_pending(current)) {
992                         ret = -ERESTARTSYS;
993                         break;
994                 }
995
996                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
997                                            dev_priv->mm.interruptible);
998                 if (ret)
999                         break;
1000
1001                 if (time_after(jiffies, end)) {
1002                         ret = -EBUSY;
1003                         break;
1004                 }
1005         } while (1);
1006
1007         return ret;
1008 }
1009
1010 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
1011                                     struct intel_context *ctx)
1012 {
1013         uint32_t __iomem *virt;
1014         int rem = ringbuf->size - ringbuf->tail;
1015
1016         if (ringbuf->space < rem) {
1017                 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
1018
1019                 if (ret)
1020                         return ret;
1021         }
1022
1023         virt = ringbuf->virtual_start + ringbuf->tail;
1024         rem /= 4;
1025         while (rem--)
1026                 iowrite32(MI_NOOP, virt++);
1027
1028         ringbuf->tail = 0;
1029         intel_ring_update_space(ringbuf);
1030
1031         return 0;
1032 }
1033
1034 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
1035                                 struct intel_context *ctx, int bytes)
1036 {
1037         int ret;
1038
1039         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1040                 ret = logical_ring_wrap_buffer(ringbuf, ctx);
1041                 if (unlikely(ret))
1042                         return ret;
1043         }
1044
1045         if (unlikely(ringbuf->space < bytes)) {
1046                 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
1047                 if (unlikely(ret))
1048                         return ret;
1049         }
1050
1051         return 0;
1052 }
1053
1054 /**
1055  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
1056  *
1057  * @ringbuf: Logical ringbuffer.
1058  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
1059  *
1060  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
1061  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
1062  * and also preallocates a request (every workload submission is still mediated through
1063  * requests, same as it did with legacy ringbuffer submission).
1064  *
1065  * Return: non-zero if the ringbuffer is not ready to be written to.
1066  */
1067 int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
1068                              struct intel_context *ctx, int num_dwords)
1069 {
1070         struct intel_engine_cs *ring = ringbuf->ring;
1071         struct drm_device *dev = ring->dev;
1072         struct drm_i915_private *dev_priv = dev->dev_private;
1073         int ret;
1074
1075         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1076                                    dev_priv->mm.interruptible);
1077         if (ret)
1078                 return ret;
1079
1080         ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
1081         if (ret)
1082                 return ret;
1083
1084         /* Preallocate the olr before touching the ring */
1085         ret = logical_ring_alloc_request(ring, ctx);
1086         if (ret)
1087                 return ret;
1088
1089         ringbuf->space -= num_dwords * sizeof(uint32_t);
1090         return 0;
1091 }
1092
1093 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1094                                                struct intel_context *ctx)
1095 {
1096         int ret, i;
1097         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1098         struct drm_device *dev = ring->dev;
1099         struct drm_i915_private *dev_priv = dev->dev_private;
1100         struct i915_workarounds *w = &dev_priv->workarounds;
1101
1102         if (WARN_ON_ONCE(w->count == 0))
1103                 return 0;
1104
1105         ring->gpu_caches_dirty = true;
1106         ret = logical_ring_flush_all_caches(ringbuf, ctx);
1107         if (ret)
1108                 return ret;
1109
1110         ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1111         if (ret)
1112                 return ret;
1113
1114         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1115         for (i = 0; i < w->count; i++) {
1116                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1117                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1118         }
1119         intel_logical_ring_emit(ringbuf, MI_NOOP);
1120
1121         intel_logical_ring_advance(ringbuf);
1122
1123         ring->gpu_caches_dirty = true;
1124         ret = logical_ring_flush_all_caches(ringbuf, ctx);
1125         if (ret)
1126                 return ret;
1127
1128         return 0;
1129 }
1130
1131 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1132 {
1133         struct drm_device *dev = ring->dev;
1134         struct drm_i915_private *dev_priv = dev->dev_private;
1135
1136         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1137         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1138
1139         if (ring->status_page.obj) {
1140                 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1141                            (u32)ring->status_page.gfx_addr);
1142                 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1143         }
1144
1145         I915_WRITE(RING_MODE_GEN7(ring),
1146                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1147                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1148         POSTING_READ(RING_MODE_GEN7(ring));
1149         ring->next_context_status_buffer = 0;
1150         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1151
1152         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1153
1154         return 0;
1155 }
1156
1157 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1158 {
1159         struct drm_device *dev = ring->dev;
1160         struct drm_i915_private *dev_priv = dev->dev_private;
1161         int ret;
1162
1163         ret = gen8_init_common_ring(ring);
1164         if (ret)
1165                 return ret;
1166
1167         /* We need to disable the AsyncFlip performance optimisations in order
1168          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1169          * programmed to '1' on all products.
1170          *
1171          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1172          */
1173         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1174
1175         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1176
1177         return init_workarounds_ring(ring);
1178 }
1179
1180 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1181 {
1182         int ret;
1183
1184         ret = gen8_init_common_ring(ring);
1185         if (ret)
1186                 return ret;
1187
1188         return init_workarounds_ring(ring);
1189 }
1190
1191 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1192                               struct intel_context *ctx,
1193                               u64 offset, unsigned dispatch_flags)
1194 {
1195         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1196         int ret;
1197
1198         ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1199         if (ret)
1200                 return ret;
1201
1202         /* FIXME(BDW): Address space and security selectors. */
1203         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1204         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1205         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1206         intel_logical_ring_emit(ringbuf, MI_NOOP);
1207         intel_logical_ring_advance(ringbuf);
1208
1209         return 0;
1210 }
1211
1212 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1213 {
1214         struct drm_device *dev = ring->dev;
1215         struct drm_i915_private *dev_priv = dev->dev_private;
1216         unsigned long flags;
1217
1218         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1219                 return false;
1220
1221         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1222         if (ring->irq_refcount++ == 0) {
1223                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1224                 POSTING_READ(RING_IMR(ring->mmio_base));
1225         }
1226         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1227
1228         return true;
1229 }
1230
1231 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1232 {
1233         struct drm_device *dev = ring->dev;
1234         struct drm_i915_private *dev_priv = dev->dev_private;
1235         unsigned long flags;
1236
1237         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1238         if (--ring->irq_refcount == 0) {
1239                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1240                 POSTING_READ(RING_IMR(ring->mmio_base));
1241         }
1242         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1243 }
1244
1245 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1246                            struct intel_context *ctx,
1247                            u32 invalidate_domains,
1248                            u32 unused)
1249 {
1250         struct intel_engine_cs *ring = ringbuf->ring;
1251         struct drm_device *dev = ring->dev;
1252         struct drm_i915_private *dev_priv = dev->dev_private;
1253         uint32_t cmd;
1254         int ret;
1255
1256         ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1257         if (ret)
1258                 return ret;
1259
1260         cmd = MI_FLUSH_DW + 1;
1261
1262         /* We always require a command barrier so that subsequent
1263          * commands, such as breadcrumb interrupts, are strictly ordered
1264          * wrt the contents of the write cache being flushed to memory
1265          * (and thus being coherent from the CPU).
1266          */
1267         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1268
1269         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1270                 cmd |= MI_INVALIDATE_TLB;
1271                 if (ring == &dev_priv->ring[VCS])
1272                         cmd |= MI_INVALIDATE_BSD;
1273         }
1274
1275         intel_logical_ring_emit(ringbuf, cmd);
1276         intel_logical_ring_emit(ringbuf,
1277                                 I915_GEM_HWS_SCRATCH_ADDR |
1278                                 MI_FLUSH_DW_USE_GTT);
1279         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1280         intel_logical_ring_emit(ringbuf, 0); /* value */
1281         intel_logical_ring_advance(ringbuf);
1282
1283         return 0;
1284 }
1285
1286 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1287                                   struct intel_context *ctx,
1288                                   u32 invalidate_domains,
1289                                   u32 flush_domains)
1290 {
1291         struct intel_engine_cs *ring = ringbuf->ring;
1292         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1293         u32 flags = 0;
1294         int ret;
1295
1296         flags |= PIPE_CONTROL_CS_STALL;
1297
1298         if (flush_domains) {
1299                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1300                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1301         }
1302
1303         if (invalidate_domains) {
1304                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1305                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1306                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1307                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1308                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1309                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1310                 flags |= PIPE_CONTROL_QW_WRITE;
1311                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1312         }
1313
1314         ret = intel_logical_ring_begin(ringbuf, ctx, 6);
1315         if (ret)
1316                 return ret;
1317
1318         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1319         intel_logical_ring_emit(ringbuf, flags);
1320         intel_logical_ring_emit(ringbuf, scratch_addr);
1321         intel_logical_ring_emit(ringbuf, 0);
1322         intel_logical_ring_emit(ringbuf, 0);
1323         intel_logical_ring_emit(ringbuf, 0);
1324         intel_logical_ring_advance(ringbuf);
1325
1326         return 0;
1327 }
1328
1329 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1330 {
1331         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1332 }
1333
1334 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1335 {
1336         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1337 }
1338
1339 static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1340                              struct drm_i915_gem_request *request)
1341 {
1342         struct intel_engine_cs *ring = ringbuf->ring;
1343         u32 cmd;
1344         int ret;
1345
1346         /*
1347          * Reserve space for 2 NOOPs at the end of each request to be
1348          * used as a workaround for not being allowed to do lite
1349          * restore with HEAD==TAIL (WaIdleLiteRestore).
1350          */
1351         ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
1352         if (ret)
1353                 return ret;
1354
1355         cmd = MI_STORE_DWORD_IMM_GEN4;
1356         cmd |= MI_GLOBAL_GTT;
1357
1358         intel_logical_ring_emit(ringbuf, cmd);
1359         intel_logical_ring_emit(ringbuf,
1360                                 (ring->status_page.gfx_addr +
1361                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1362         intel_logical_ring_emit(ringbuf, 0);
1363         intel_logical_ring_emit(ringbuf,
1364                 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1365         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1366         intel_logical_ring_emit(ringbuf, MI_NOOP);
1367         intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1368
1369         /*
1370          * Here we add two extra NOOPs as padding to avoid
1371          * lite restore of a context with HEAD==TAIL.
1372          */
1373         intel_logical_ring_emit(ringbuf, MI_NOOP);
1374         intel_logical_ring_emit(ringbuf, MI_NOOP);
1375         intel_logical_ring_advance(ringbuf);
1376
1377         return 0;
1378 }
1379
1380 static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1381                                               struct intel_context *ctx)
1382 {
1383         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1384         struct render_state so;
1385         struct drm_i915_file_private *file_priv = ctx->file_priv;
1386         struct drm_file *file = file_priv ? file_priv->file : NULL;
1387         int ret;
1388
1389         ret = i915_gem_render_state_prepare(ring, &so);
1390         if (ret)
1391                 return ret;
1392
1393         if (so.rodata == NULL)
1394                 return 0;
1395
1396         ret = ring->emit_bb_start(ringbuf,
1397                         ctx,
1398                         so.ggtt_offset,
1399                         I915_DISPATCH_SECURE);
1400         if (ret)
1401                 goto out;
1402
1403         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1404
1405         ret = __i915_add_request(ring, file, so.obj);
1406         /* intel_logical_ring_add_request moves object to inactive if it
1407          * fails */
1408 out:
1409         i915_gem_render_state_fini(&so);
1410         return ret;
1411 }
1412
1413 static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1414                        struct intel_context *ctx)
1415 {
1416         int ret;
1417
1418         ret = intel_logical_ring_workarounds_emit(ring, ctx);
1419         if (ret)
1420                 return ret;
1421
1422         return intel_lr_context_render_state_init(ring, ctx);
1423 }
1424
1425 /**
1426  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1427  *
1428  * @ring: Engine Command Streamer.
1429  *
1430  */
1431 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1432 {
1433         struct drm_i915_private *dev_priv;
1434
1435         if (!intel_ring_initialized(ring))
1436                 return;
1437
1438         dev_priv = ring->dev->dev_private;
1439
1440         intel_logical_ring_stop(ring);
1441         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1442         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1443
1444         if (ring->cleanup)
1445                 ring->cleanup(ring);
1446
1447         i915_cmd_parser_fini_ring(ring);
1448
1449         if (ring->status_page.obj) {
1450                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1451                 ring->status_page.obj = NULL;
1452         }
1453 }
1454
1455 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1456 {
1457         int ret;
1458
1459         /* Intentionally left blank. */
1460         ring->buffer = NULL;
1461
1462         ring->dev = dev;
1463         INIT_LIST_HEAD(&ring->active_list);
1464         INIT_LIST_HEAD(&ring->request_list);
1465         init_waitqueue_head(&ring->irq_queue);
1466
1467         INIT_LIST_HEAD(&ring->execlist_queue);
1468         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1469         spin_lock_init(&ring->execlist_lock);
1470
1471         ret = i915_cmd_parser_init_ring(ring);
1472         if (ret)
1473                 return ret;
1474
1475         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1476
1477         return ret;
1478 }
1479
1480 static int logical_render_ring_init(struct drm_device *dev)
1481 {
1482         struct drm_i915_private *dev_priv = dev->dev_private;
1483         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1484         int ret;
1485
1486         ring->name = "render ring";
1487         ring->id = RCS;
1488         ring->mmio_base = RENDER_RING_BASE;
1489         ring->irq_enable_mask =
1490                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1491         ring->irq_keep_mask =
1492                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1493         if (HAS_L3_DPF(dev))
1494                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1495
1496         if (INTEL_INFO(dev)->gen >= 9)
1497                 ring->init_hw = gen9_init_render_ring;
1498         else
1499                 ring->init_hw = gen8_init_render_ring;
1500         ring->init_context = gen8_init_rcs_context;
1501         ring->cleanup = intel_fini_pipe_control;
1502         ring->get_seqno = gen8_get_seqno;
1503         ring->set_seqno = gen8_set_seqno;
1504         ring->emit_request = gen8_emit_request;
1505         ring->emit_flush = gen8_emit_flush_render;
1506         ring->irq_get = gen8_logical_ring_get_irq;
1507         ring->irq_put = gen8_logical_ring_put_irq;
1508         ring->emit_bb_start = gen8_emit_bb_start;
1509
1510         ring->dev = dev;
1511         ret = logical_ring_init(dev, ring);
1512         if (ret)
1513                 return ret;
1514
1515         return intel_init_pipe_control(ring);
1516 }
1517
1518 static int logical_bsd_ring_init(struct drm_device *dev)
1519 {
1520         struct drm_i915_private *dev_priv = dev->dev_private;
1521         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1522
1523         ring->name = "bsd ring";
1524         ring->id = VCS;
1525         ring->mmio_base = GEN6_BSD_RING_BASE;
1526         ring->irq_enable_mask =
1527                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1528         ring->irq_keep_mask =
1529                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1530
1531         ring->init_hw = gen8_init_common_ring;
1532         ring->get_seqno = gen8_get_seqno;
1533         ring->set_seqno = gen8_set_seqno;
1534         ring->emit_request = gen8_emit_request;
1535         ring->emit_flush = gen8_emit_flush;
1536         ring->irq_get = gen8_logical_ring_get_irq;
1537         ring->irq_put = gen8_logical_ring_put_irq;
1538         ring->emit_bb_start = gen8_emit_bb_start;
1539
1540         return logical_ring_init(dev, ring);
1541 }
1542
1543 static int logical_bsd2_ring_init(struct drm_device *dev)
1544 {
1545         struct drm_i915_private *dev_priv = dev->dev_private;
1546         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1547
1548         ring->name = "bds2 ring";
1549         ring->id = VCS2;
1550         ring->mmio_base = GEN8_BSD2_RING_BASE;
1551         ring->irq_enable_mask =
1552                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1553         ring->irq_keep_mask =
1554                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1555
1556         ring->init_hw = gen8_init_common_ring;
1557         ring->get_seqno = gen8_get_seqno;
1558         ring->set_seqno = gen8_set_seqno;
1559         ring->emit_request = gen8_emit_request;
1560         ring->emit_flush = gen8_emit_flush;
1561         ring->irq_get = gen8_logical_ring_get_irq;
1562         ring->irq_put = gen8_logical_ring_put_irq;
1563         ring->emit_bb_start = gen8_emit_bb_start;
1564
1565         return logical_ring_init(dev, ring);
1566 }
1567
1568 static int logical_blt_ring_init(struct drm_device *dev)
1569 {
1570         struct drm_i915_private *dev_priv = dev->dev_private;
1571         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1572
1573         ring->name = "blitter ring";
1574         ring->id = BCS;
1575         ring->mmio_base = BLT_RING_BASE;
1576         ring->irq_enable_mask =
1577                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1578         ring->irq_keep_mask =
1579                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1580
1581         ring->init_hw = gen8_init_common_ring;
1582         ring->get_seqno = gen8_get_seqno;
1583         ring->set_seqno = gen8_set_seqno;
1584         ring->emit_request = gen8_emit_request;
1585         ring->emit_flush = gen8_emit_flush;
1586         ring->irq_get = gen8_logical_ring_get_irq;
1587         ring->irq_put = gen8_logical_ring_put_irq;
1588         ring->emit_bb_start = gen8_emit_bb_start;
1589
1590         return logical_ring_init(dev, ring);
1591 }
1592
1593 static int logical_vebox_ring_init(struct drm_device *dev)
1594 {
1595         struct drm_i915_private *dev_priv = dev->dev_private;
1596         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1597
1598         ring->name = "video enhancement ring";
1599         ring->id = VECS;
1600         ring->mmio_base = VEBOX_RING_BASE;
1601         ring->irq_enable_mask =
1602                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1603         ring->irq_keep_mask =
1604                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1605
1606         ring->init_hw = gen8_init_common_ring;
1607         ring->get_seqno = gen8_get_seqno;
1608         ring->set_seqno = gen8_set_seqno;
1609         ring->emit_request = gen8_emit_request;
1610         ring->emit_flush = gen8_emit_flush;
1611         ring->irq_get = gen8_logical_ring_get_irq;
1612         ring->irq_put = gen8_logical_ring_put_irq;
1613         ring->emit_bb_start = gen8_emit_bb_start;
1614
1615         return logical_ring_init(dev, ring);
1616 }
1617
1618 /**
1619  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1620  * @dev: DRM device.
1621  *
1622  * This function inits the engines for an Execlists submission style (the equivalent in the
1623  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1624  * those engines that are present in the hardware.
1625  *
1626  * Return: non-zero if the initialization failed.
1627  */
1628 int intel_logical_rings_init(struct drm_device *dev)
1629 {
1630         struct drm_i915_private *dev_priv = dev->dev_private;
1631         int ret;
1632
1633         ret = logical_render_ring_init(dev);
1634         if (ret)
1635                 return ret;
1636
1637         if (HAS_BSD(dev)) {
1638                 ret = logical_bsd_ring_init(dev);
1639                 if (ret)
1640                         goto cleanup_render_ring;
1641         }
1642
1643         if (HAS_BLT(dev)) {
1644                 ret = logical_blt_ring_init(dev);
1645                 if (ret)
1646                         goto cleanup_bsd_ring;
1647         }
1648
1649         if (HAS_VEBOX(dev)) {
1650                 ret = logical_vebox_ring_init(dev);
1651                 if (ret)
1652                         goto cleanup_blt_ring;
1653         }
1654
1655         if (HAS_BSD2(dev)) {
1656                 ret = logical_bsd2_ring_init(dev);
1657                 if (ret)
1658                         goto cleanup_vebox_ring;
1659         }
1660
1661         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1662         if (ret)
1663                 goto cleanup_bsd2_ring;
1664
1665         return 0;
1666
1667 cleanup_bsd2_ring:
1668         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1669 cleanup_vebox_ring:
1670         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1671 cleanup_blt_ring:
1672         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1673 cleanup_bsd_ring:
1674         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1675 cleanup_render_ring:
1676         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1677
1678         return ret;
1679 }
1680
1681 static u32
1682 make_rpcs(struct drm_device *dev)
1683 {
1684         u32 rpcs = 0;
1685
1686         /*
1687          * No explicit RPCS request is needed to ensure full
1688          * slice/subslice/EU enablement prior to Gen9.
1689         */
1690         if (INTEL_INFO(dev)->gen < 9)
1691                 return 0;
1692
1693         /*
1694          * Starting in Gen9, render power gating can leave
1695          * slice/subslice/EU in a partially enabled state. We
1696          * must make an explicit request through RPCS for full
1697          * enablement.
1698         */
1699         if (INTEL_INFO(dev)->has_slice_pg) {
1700                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1701                 rpcs |= INTEL_INFO(dev)->slice_total <<
1702                         GEN8_RPCS_S_CNT_SHIFT;
1703                 rpcs |= GEN8_RPCS_ENABLE;
1704         }
1705
1706         if (INTEL_INFO(dev)->has_subslice_pg) {
1707                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1708                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1709                         GEN8_RPCS_SS_CNT_SHIFT;
1710                 rpcs |= GEN8_RPCS_ENABLE;
1711         }
1712
1713         if (INTEL_INFO(dev)->has_eu_pg) {
1714                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1715                         GEN8_RPCS_EU_MIN_SHIFT;
1716                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1717                         GEN8_RPCS_EU_MAX_SHIFT;
1718                 rpcs |= GEN8_RPCS_ENABLE;
1719         }
1720
1721         return rpcs;
1722 }
1723
1724 static int
1725 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1726                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1727 {
1728         struct drm_device *dev = ring->dev;
1729         struct drm_i915_private *dev_priv = dev->dev_private;
1730         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1731         struct page *page;
1732         uint32_t *reg_state;
1733         int ret;
1734
1735         if (!ppgtt)
1736                 ppgtt = dev_priv->mm.aliasing_ppgtt;
1737
1738         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1739         if (ret) {
1740                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1741                 return ret;
1742         }
1743
1744         ret = i915_gem_object_get_pages(ctx_obj);
1745         if (ret) {
1746                 DRM_DEBUG_DRIVER("Could not get object pages\n");
1747                 return ret;
1748         }
1749
1750         i915_gem_object_pin_pages(ctx_obj);
1751
1752         /* The second page of the context object contains some fields which must
1753          * be set up prior to the first execution. */
1754         page = i915_gem_object_get_page(ctx_obj, 1);
1755         reg_state = kmap_atomic(page);
1756
1757         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1758          * commands followed by (reg, value) pairs. The values we are setting here are
1759          * only for the first context restore: on a subsequent save, the GPU will
1760          * recreate this batchbuffer with new values (including all the missing
1761          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1762         if (ring->id == RCS)
1763                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1764         else
1765                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1766         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1767         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1768         reg_state[CTX_CONTEXT_CONTROL+1] =
1769                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1770                                 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1771         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1772         reg_state[CTX_RING_HEAD+1] = 0;
1773         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1774         reg_state[CTX_RING_TAIL+1] = 0;
1775         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1776         /* Ring buffer start address is not known until the buffer is pinned.
1777          * It is written to the context image in execlists_update_context()
1778          */
1779         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1780         reg_state[CTX_RING_BUFFER_CONTROL+1] =
1781                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1782         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1783         reg_state[CTX_BB_HEAD_U+1] = 0;
1784         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1785         reg_state[CTX_BB_HEAD_L+1] = 0;
1786         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1787         reg_state[CTX_BB_STATE+1] = (1<<5);
1788         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1789         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1790         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1791         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1792         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1793         reg_state[CTX_SECOND_BB_STATE+1] = 0;
1794         if (ring->id == RCS) {
1795                 /* TODO: according to BSpec, the register state context
1796                  * for CHV does not have these. OTOH, these registers do
1797                  * exist in CHV. I'm waiting for a clarification */
1798                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1799                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1800                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1801                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1802                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1803                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1804         }
1805         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1806         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1807         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1808         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1809         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1810         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1811         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1812         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1813         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1814         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1815         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1816         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1817         reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[3]->daddr);
1818         reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[3]->daddr);
1819         reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[2]->daddr);
1820         reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[2]->daddr);
1821         reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[1]->daddr);
1822         reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[1]->daddr);
1823         reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[0]->daddr);
1824         reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[0]->daddr);
1825         if (ring->id == RCS) {
1826                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1827                 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
1828                 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
1829         }
1830
1831         kunmap_atomic(reg_state);
1832
1833         ctx_obj->dirty = 1;
1834         set_page_dirty(page);
1835         i915_gem_object_unpin_pages(ctx_obj);
1836
1837         return 0;
1838 }
1839
1840 /**
1841  * intel_lr_context_free() - free the LRC specific bits of a context
1842  * @ctx: the LR context to free.
1843  *
1844  * The real context freeing is done in i915_gem_context_free: this only
1845  * takes care of the bits that are LRC related: the per-engine backing
1846  * objects and the logical ringbuffer.
1847  */
1848 void intel_lr_context_free(struct intel_context *ctx)
1849 {
1850         int i;
1851
1852         for (i = 0; i < I915_NUM_RINGS; i++) {
1853                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1854
1855                 if (ctx_obj) {
1856                         struct intel_ringbuffer *ringbuf =
1857                                         ctx->engine[i].ringbuf;
1858                         struct intel_engine_cs *ring = ringbuf->ring;
1859
1860                         if (ctx == ring->default_context) {
1861                                 intel_unpin_ringbuffer_obj(ringbuf);
1862                                 i915_gem_object_ggtt_unpin(ctx_obj);
1863                         }
1864                         WARN_ON(ctx->engine[ring->id].pin_count);
1865                         intel_destroy_ringbuffer_obj(ringbuf);
1866                         kfree(ringbuf);
1867                         drm_gem_object_unreference(&ctx_obj->base);
1868                 }
1869         }
1870 }
1871
1872 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1873 {
1874         int ret = 0;
1875
1876         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1877
1878         switch (ring->id) {
1879         case RCS:
1880                 if (INTEL_INFO(ring->dev)->gen >= 9)
1881                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1882                 else
1883                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1884                 break;
1885         case VCS:
1886         case BCS:
1887         case VECS:
1888         case VCS2:
1889                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1890                 break;
1891         }
1892
1893         return ret;
1894 }
1895
1896 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1897                 struct drm_i915_gem_object *default_ctx_obj)
1898 {
1899         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1900
1901         /* The status page is offset 0 from the default context object
1902          * in LRC mode. */
1903         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1904         ring->status_page.page_addr =
1905                         kmap(sg_page(default_ctx_obj->pages->sgl));
1906         ring->status_page.obj = default_ctx_obj;
1907
1908         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1909                         (u32)ring->status_page.gfx_addr);
1910         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1911 }
1912
1913 /**
1914  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1915  * @ctx: LR context to create.
1916  * @ring: engine to be used with the context.
1917  *
1918  * This function can be called more than once, with different engines, if we plan
1919  * to use the context with them. The context backing objects and the ringbuffers
1920  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1921  * the creation is a deferred call: it's better to make sure first that we need to use
1922  * a given ring with the context.
1923  *
1924  * Return: non-zero on error.
1925  */
1926 int intel_lr_context_deferred_create(struct intel_context *ctx,
1927                                      struct intel_engine_cs *ring)
1928 {
1929         const bool is_global_default_ctx = (ctx == ring->default_context);
1930         struct drm_device *dev = ring->dev;
1931         struct drm_i915_gem_object *ctx_obj;
1932         uint32_t context_size;
1933         struct intel_ringbuffer *ringbuf;
1934         int ret;
1935
1936         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1937         WARN_ON(ctx->engine[ring->id].state);
1938
1939         context_size = round_up(get_lr_context_size(ring), 4096);
1940
1941         ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1942         if (IS_ERR(ctx_obj)) {
1943                 ret = PTR_ERR(ctx_obj);
1944                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1945                 return ret;
1946         }
1947
1948         if (is_global_default_ctx) {
1949                 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1950                 if (ret) {
1951                         DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1952                                         ret);
1953                         drm_gem_object_unreference(&ctx_obj->base);
1954                         return ret;
1955                 }
1956         }
1957
1958         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1959         if (!ringbuf) {
1960                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1961                                 ring->name);
1962                 ret = -ENOMEM;
1963                 goto error_unpin_ctx;
1964         }
1965
1966         ringbuf->ring = ring;
1967
1968         ringbuf->size = 32 * PAGE_SIZE;
1969         ringbuf->effective_size = ringbuf->size;
1970         ringbuf->head = 0;
1971         ringbuf->tail = 0;
1972         ringbuf->last_retired_head = -1;
1973         intel_ring_update_space(ringbuf);
1974
1975         if (ringbuf->obj == NULL) {
1976                 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1977                 if (ret) {
1978                         DRM_DEBUG_DRIVER(
1979                                 "Failed to allocate ringbuffer obj %s: %d\n",
1980                                 ring->name, ret);
1981                         goto error_free_rbuf;
1982                 }
1983
1984                 if (is_global_default_ctx) {
1985                         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1986                         if (ret) {
1987                                 DRM_ERROR(
1988                                         "Failed to pin and map ringbuffer %s: %d\n",
1989                                         ring->name, ret);
1990                                 goto error_destroy_rbuf;
1991                         }
1992                 }
1993
1994         }
1995
1996         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1997         if (ret) {
1998                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1999                 goto error;
2000         }
2001
2002         ctx->engine[ring->id].ringbuf = ringbuf;
2003         ctx->engine[ring->id].state = ctx_obj;
2004
2005         if (ctx == ring->default_context)
2006                 lrc_setup_hardware_status_page(ring, ctx_obj);
2007         else if (ring->id == RCS && !ctx->rcs_initialized) {
2008                 if (ring->init_context) {
2009                         ret = ring->init_context(ring, ctx);
2010                         if (ret) {
2011                                 DRM_ERROR("ring init context: %d\n", ret);
2012                                 ctx->engine[ring->id].ringbuf = NULL;
2013                                 ctx->engine[ring->id].state = NULL;
2014                                 goto error;
2015                         }
2016                 }
2017
2018                 ctx->rcs_initialized = true;
2019         }
2020
2021         return 0;
2022
2023 error:
2024         if (is_global_default_ctx)
2025                 intel_unpin_ringbuffer_obj(ringbuf);
2026 error_destroy_rbuf:
2027         intel_destroy_ringbuffer_obj(ringbuf);
2028 error_free_rbuf:
2029         kfree(ringbuf);
2030 error_unpin_ctx:
2031         if (is_global_default_ctx)
2032                 i915_gem_object_ggtt_unpin(ctx_obj);
2033         drm_gem_object_unreference(&ctx_obj->base);
2034         return ret;
2035 }
2036
2037 void intel_lr_context_reset(struct drm_device *dev,
2038                         struct intel_context *ctx)
2039 {
2040         struct drm_i915_private *dev_priv = dev->dev_private;
2041         struct intel_engine_cs *ring;
2042         int i;
2043
2044         for_each_ring(ring, dev_priv, i) {
2045                 struct drm_i915_gem_object *ctx_obj =
2046                                 ctx->engine[ring->id].state;
2047                 struct intel_ringbuffer *ringbuf =
2048                                 ctx->engine[ring->id].ringbuf;
2049                 uint32_t *reg_state;
2050                 struct page *page;
2051
2052                 if (!ctx_obj)
2053                         continue;
2054
2055                 if (i915_gem_object_get_pages(ctx_obj)) {
2056                         WARN(1, "Failed get_pages for context obj\n");
2057                         continue;
2058                 }
2059                 page = i915_gem_object_get_page(ctx_obj, 1);
2060                 reg_state = kmap_atomic(page);
2061
2062                 reg_state[CTX_RING_HEAD+1] = 0;
2063                 reg_state[CTX_RING_TAIL+1] = 0;
2064
2065                 kunmap_atomic(reg_state);
2066
2067                 ringbuf->head = 0;
2068                 ringbuf->tail = 0;
2069         }
2070 }