424e6219778712dcaf0e7c5c1ae7c51709fce6ba
[kvmfornfv.git] / kernel / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL             (1 << 0x2)
144 #define RING_EXECLIST1_VALID            (1 << 0x3)
145 #define RING_EXECLIST0_VALID            (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
156
157 #define CTX_LRI_HEADER_0                0x01
158 #define CTX_CONTEXT_CONTROL             0x02
159 #define CTX_RING_HEAD                   0x04
160 #define CTX_RING_TAIL                   0x06
161 #define CTX_RING_BUFFER_START           0x08
162 #define CTX_RING_BUFFER_CONTROL         0x0a
163 #define CTX_BB_HEAD_U                   0x0c
164 #define CTX_BB_HEAD_L                   0x0e
165 #define CTX_BB_STATE                    0x10
166 #define CTX_SECOND_BB_HEAD_U            0x12
167 #define CTX_SECOND_BB_HEAD_L            0x14
168 #define CTX_SECOND_BB_STATE             0x16
169 #define CTX_BB_PER_CTX_PTR              0x18
170 #define CTX_RCS_INDIRECT_CTX            0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
172 #define CTX_LRI_HEADER_1                0x21
173 #define CTX_CTX_TIMESTAMP               0x22
174 #define CTX_PDP3_UDW                    0x24
175 #define CTX_PDP3_LDW                    0x26
176 #define CTX_PDP2_UDW                    0x28
177 #define CTX_PDP2_LDW                    0x2a
178 #define CTX_PDP1_UDW                    0x2c
179 #define CTX_PDP1_LDW                    0x2e
180 #define CTX_PDP0_UDW                    0x30
181 #define CTX_PDP0_LDW                    0x32
182 #define CTX_LRI_HEADER_2                0x41
183 #define CTX_R_PWR_CLK_STATE             0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191 enum {
192         ADVANCED_CONTEXT = 0,
193         LEGACY_CONTEXT,
194         ADVANCED_AD_CONTEXT,
195         LEGACY_64B_CONTEXT
196 };
197 #define GEN8_CTX_MODE_SHIFT 3
198 enum {
199         FAULT_AND_HANG = 0,
200         FAULT_AND_HALT, /* Debug only */
201         FAULT_AND_STREAM,
202         FAULT_AND_CONTINUE /* Unsupported */
203 };
204 #define GEN8_CTX_ID_SHIFT 32
205
206 static int intel_lr_context_pin(struct intel_engine_cs *ring,
207                 struct intel_context *ctx);
208
209 /**
210  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
211  * @dev: DRM device.
212  * @enable_execlists: value of i915.enable_execlists module parameter.
213  *
214  * Only certain platforms support Execlists (the prerequisites being
215  * support for Logical Ring Contexts and Aliasing PPGTT or better).
216  *
217  * Return: 1 if Execlists is supported and has to be enabled.
218  */
219 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
220 {
221         WARN_ON(i915.enable_ppgtt == -1);
222
223         if (INTEL_INFO(dev)->gen >= 9)
224                 return 1;
225
226         if (enable_execlists == 0)
227                 return 0;
228
229         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
230             i915.use_mmio_flip >= 0)
231                 return 1;
232
233         return 0;
234 }
235
236 /**
237  * intel_execlists_ctx_id() - get the Execlists Context ID
238  * @ctx_obj: Logical Ring Context backing object.
239  *
240  * Do not confuse with ctx->id! Unfortunately we have a name overload
241  * here: the old context ID we pass to userspace as a handler so that
242  * they can refer to a context, and the new context ID we pass to the
243  * ELSP so that the GPU can inform us of the context status via
244  * interrupts.
245  *
246  * Return: 20-bits globally unique context ID.
247  */
248 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
249 {
250         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
251
252         /* LRCA is required to be 4K aligned so the more significant 20 bits
253          * are globally unique */
254         return lrca >> 12;
255 }
256
257 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
258                                          struct drm_i915_gem_object *ctx_obj)
259 {
260         struct drm_device *dev = ring->dev;
261         uint64_t desc;
262         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
263
264         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
265
266         desc = GEN8_CTX_VALID;
267         desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
268         desc |= GEN8_CTX_L3LLC_COHERENT;
269         desc |= GEN8_CTX_PRIVILEGE;
270         desc |= lrca;
271         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
272
273         /* TODO: WaDisableLiteRestore when we start using semaphore
274          * signalling between Command Streamers */
275         /* desc |= GEN8_CTX_FORCE_RESTORE; */
276
277         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
278         if (IS_GEN9(dev) &&
279             INTEL_REVID(dev) <= SKL_REVID_B0 &&
280             (ring->id == BCS || ring->id == VCS ||
281             ring->id == VECS || ring->id == VCS2))
282                 desc |= GEN8_CTX_FORCE_RESTORE;
283
284         return desc;
285 }
286
287 static void execlists_elsp_write(struct intel_engine_cs *ring,
288                                  struct drm_i915_gem_object *ctx_obj0,
289                                  struct drm_i915_gem_object *ctx_obj1)
290 {
291         struct drm_device *dev = ring->dev;
292         struct drm_i915_private *dev_priv = dev->dev_private;
293         uint64_t temp = 0;
294         uint32_t desc[4];
295
296         /* XXX: You must always write both descriptors in the order below. */
297         if (ctx_obj1)
298                 temp = execlists_ctx_descriptor(ring, ctx_obj1);
299         else
300                 temp = 0;
301         desc[1] = (u32)(temp >> 32);
302         desc[0] = (u32)temp;
303
304         temp = execlists_ctx_descriptor(ring, ctx_obj0);
305         desc[3] = (u32)(temp >> 32);
306         desc[2] = (u32)temp;
307
308         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
309         I915_WRITE(RING_ELSP(ring), desc[1]);
310         I915_WRITE(RING_ELSP(ring), desc[0]);
311         I915_WRITE(RING_ELSP(ring), desc[3]);
312
313         /* The context is automatically loaded after the following */
314         I915_WRITE(RING_ELSP(ring), desc[2]);
315
316         /* ELSP is a wo register, so use another nearby reg for posting instead */
317         POSTING_READ(RING_EXECLIST_STATUS(ring));
318         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
319 }
320
321 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
322                                     struct drm_i915_gem_object *ring_obj,
323                                     u32 tail)
324 {
325         struct page *page;
326         uint32_t *reg_state;
327
328         page = i915_gem_object_get_page(ctx_obj, 1);
329         reg_state = kmap_atomic(page);
330
331         reg_state[CTX_RING_TAIL+1] = tail;
332         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
333
334         kunmap_atomic(reg_state);
335
336         return 0;
337 }
338
339 static void execlists_submit_contexts(struct intel_engine_cs *ring,
340                                       struct intel_context *to0, u32 tail0,
341                                       struct intel_context *to1, u32 tail1)
342 {
343         struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
344         struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
345         struct drm_i915_gem_object *ctx_obj1 = NULL;
346         struct intel_ringbuffer *ringbuf1 = NULL;
347
348         BUG_ON(!ctx_obj0);
349         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
350         WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
351
352         execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
353
354         if (to1) {
355                 ringbuf1 = to1->engine[ring->id].ringbuf;
356                 ctx_obj1 = to1->engine[ring->id].state;
357                 BUG_ON(!ctx_obj1);
358                 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
359                 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
360
361                 execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
362         }
363
364         execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
365 }
366
367 static void execlists_context_unqueue(struct intel_engine_cs *ring)
368 {
369         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
370         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
371
372         assert_spin_locked(&ring->execlist_lock);
373
374         if (list_empty(&ring->execlist_queue))
375                 return;
376
377         /* Try to read in pairs */
378         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
379                                  execlist_link) {
380                 if (!req0) {
381                         req0 = cursor;
382                 } else if (req0->ctx == cursor->ctx) {
383                         /* Same ctx: ignore first request, as second request
384                          * will update tail past first request's workload */
385                         cursor->elsp_submitted = req0->elsp_submitted;
386                         list_del(&req0->execlist_link);
387                         list_add_tail(&req0->execlist_link,
388                                 &ring->execlist_retired_req_list);
389                         req0 = cursor;
390                 } else {
391                         req1 = cursor;
392                         break;
393                 }
394         }
395
396         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
397                 /*
398                  * WaIdleLiteRestore: make sure we never cause a lite
399                  * restore with HEAD==TAIL
400                  */
401                 if (req0 && req0->elsp_submitted) {
402                         /*
403                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
404                          * as we resubmit the request. See gen8_emit_request()
405                          * for where we prepare the padding after the end of the
406                          * request.
407                          */
408                         struct intel_ringbuffer *ringbuf;
409
410                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
411                         req0->tail += 8;
412                         req0->tail &= ringbuf->size - 1;
413                 }
414         }
415
416         WARN_ON(req1 && req1->elsp_submitted);
417
418         execlists_submit_contexts(ring, req0->ctx, req0->tail,
419                                   req1 ? req1->ctx : NULL,
420                                   req1 ? req1->tail : 0);
421
422         req0->elsp_submitted++;
423         if (req1)
424                 req1->elsp_submitted++;
425 }
426
427 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
428                                            u32 request_id)
429 {
430         struct drm_i915_gem_request *head_req;
431
432         assert_spin_locked(&ring->execlist_lock);
433
434         head_req = list_first_entry_or_null(&ring->execlist_queue,
435                                             struct drm_i915_gem_request,
436                                             execlist_link);
437
438         if (head_req != NULL) {
439                 struct drm_i915_gem_object *ctx_obj =
440                                 head_req->ctx->engine[ring->id].state;
441                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
442                         WARN(head_req->elsp_submitted == 0,
443                              "Never submitted head request\n");
444
445                         if (--head_req->elsp_submitted <= 0) {
446                                 list_del(&head_req->execlist_link);
447                                 list_add_tail(&head_req->execlist_link,
448                                         &ring->execlist_retired_req_list);
449                                 return true;
450                         }
451                 }
452         }
453
454         return false;
455 }
456
457 /**
458  * intel_lrc_irq_handler() - handle Context Switch interrupts
459  * @ring: Engine Command Streamer to handle.
460  *
461  * Check the unread Context Status Buffers and manage the submission of new
462  * contexts to the ELSP accordingly.
463  */
464 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
465 {
466         struct drm_i915_private *dev_priv = ring->dev->dev_private;
467         u32 status_pointer;
468         u8 read_pointer;
469         u8 write_pointer;
470         u32 status;
471         u32 status_id;
472         u32 submit_contexts = 0;
473
474         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
475
476         read_pointer = ring->next_context_status_buffer;
477         write_pointer = status_pointer & 0x07;
478         if (read_pointer > write_pointer)
479                 write_pointer += 6;
480
481         spin_lock(&ring->execlist_lock);
482
483         while (read_pointer < write_pointer) {
484                 read_pointer++;
485                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
486                                 (read_pointer % 6) * 8);
487                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
488                                 (read_pointer % 6) * 8 + 4);
489
490                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
491                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
492                                 if (execlists_check_remove_request(ring, status_id))
493                                         WARN(1, "Lite Restored request removed from queue\n");
494                         } else
495                                 WARN(1, "Preemption without Lite Restore\n");
496                 }
497
498                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
499                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
500                         if (execlists_check_remove_request(ring, status_id))
501                                 submit_contexts++;
502                 }
503         }
504
505         if (submit_contexts != 0)
506                 execlists_context_unqueue(ring);
507
508         spin_unlock(&ring->execlist_lock);
509
510         WARN(submit_contexts > 2, "More than two context complete events?\n");
511         ring->next_context_status_buffer = write_pointer % 6;
512
513         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
514                    ((u32)ring->next_context_status_buffer & 0x07) << 8);
515 }
516
517 static int execlists_context_queue(struct intel_engine_cs *ring,
518                                    struct intel_context *to,
519                                    u32 tail,
520                                    struct drm_i915_gem_request *request)
521 {
522         struct drm_i915_gem_request *cursor;
523         struct drm_i915_private *dev_priv = ring->dev->dev_private;
524         unsigned long flags;
525         int num_elements = 0;
526
527         if (to != ring->default_context)
528                 intel_lr_context_pin(ring, to);
529
530         if (!request) {
531                 /*
532                  * If there isn't a request associated with this submission,
533                  * create one as a temporary holder.
534                  */
535                 request = kzalloc(sizeof(*request), GFP_KERNEL);
536                 if (request == NULL)
537                         return -ENOMEM;
538                 request->ring = ring;
539                 request->ctx = to;
540                 kref_init(&request->ref);
541                 request->uniq = dev_priv->request_uniq++;
542                 i915_gem_context_reference(request->ctx);
543         } else {
544                 i915_gem_request_reference(request);
545                 WARN_ON(to != request->ctx);
546         }
547         request->tail = tail;
548
549         intel_runtime_pm_get(dev_priv);
550
551         spin_lock_irqsave(&ring->execlist_lock, flags);
552
553         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
554                 if (++num_elements > 2)
555                         break;
556
557         if (num_elements > 2) {
558                 struct drm_i915_gem_request *tail_req;
559
560                 tail_req = list_last_entry(&ring->execlist_queue,
561                                            struct drm_i915_gem_request,
562                                            execlist_link);
563
564                 if (to == tail_req->ctx) {
565                         WARN(tail_req->elsp_submitted != 0,
566                                 "More than 2 already-submitted reqs queued\n");
567                         list_del(&tail_req->execlist_link);
568                         list_add_tail(&tail_req->execlist_link,
569                                 &ring->execlist_retired_req_list);
570                 }
571         }
572
573         list_add_tail(&request->execlist_link, &ring->execlist_queue);
574         if (num_elements == 0)
575                 execlists_context_unqueue(ring);
576
577         spin_unlock_irqrestore(&ring->execlist_lock, flags);
578
579         return 0;
580 }
581
582 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
583                                               struct intel_context *ctx)
584 {
585         struct intel_engine_cs *ring = ringbuf->ring;
586         uint32_t flush_domains;
587         int ret;
588
589         flush_domains = 0;
590         if (ring->gpu_caches_dirty)
591                 flush_domains = I915_GEM_GPU_DOMAINS;
592
593         ret = ring->emit_flush(ringbuf, ctx,
594                                I915_GEM_GPU_DOMAINS, flush_domains);
595         if (ret)
596                 return ret;
597
598         ring->gpu_caches_dirty = false;
599         return 0;
600 }
601
602 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
603                                  struct intel_context *ctx,
604                                  struct list_head *vmas)
605 {
606         struct intel_engine_cs *ring = ringbuf->ring;
607         struct i915_vma *vma;
608         uint32_t flush_domains = 0;
609         bool flush_chipset = false;
610         int ret;
611
612         list_for_each_entry(vma, vmas, exec_list) {
613                 struct drm_i915_gem_object *obj = vma->obj;
614
615                 ret = i915_gem_object_sync(obj, ring);
616                 if (ret)
617                         return ret;
618
619                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
620                         flush_chipset |= i915_gem_clflush_object(obj, false);
621
622                 flush_domains |= obj->base.write_domain;
623         }
624
625         if (flush_domains & I915_GEM_DOMAIN_GTT)
626                 wmb();
627
628         /* Unconditionally invalidate gpu caches and ensure that we do flush
629          * any residual writes from the previous batch.
630          */
631         return logical_ring_invalidate_all_caches(ringbuf, ctx);
632 }
633
634 /**
635  * execlists_submission() - submit a batchbuffer for execution, Execlists style
636  * @dev: DRM device.
637  * @file: DRM file.
638  * @ring: Engine Command Streamer to submit to.
639  * @ctx: Context to employ for this submission.
640  * @args: execbuffer call arguments.
641  * @vmas: list of vmas.
642  * @batch_obj: the batchbuffer to submit.
643  * @exec_start: batchbuffer start virtual address pointer.
644  * @dispatch_flags: translated execbuffer call flags.
645  *
646  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
647  * away the submission details of the execbuffer ioctl call.
648  *
649  * Return: non-zero if the submission fails.
650  */
651 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
652                                struct intel_engine_cs *ring,
653                                struct intel_context *ctx,
654                                struct drm_i915_gem_execbuffer2 *args,
655                                struct list_head *vmas,
656                                struct drm_i915_gem_object *batch_obj,
657                                u64 exec_start, u32 dispatch_flags)
658 {
659         struct drm_i915_private *dev_priv = dev->dev_private;
660         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
661         int instp_mode;
662         u32 instp_mask;
663         int ret;
664
665         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
666         instp_mask = I915_EXEC_CONSTANTS_MASK;
667         switch (instp_mode) {
668         case I915_EXEC_CONSTANTS_REL_GENERAL:
669         case I915_EXEC_CONSTANTS_ABSOLUTE:
670         case I915_EXEC_CONSTANTS_REL_SURFACE:
671                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
672                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
673                         return -EINVAL;
674                 }
675
676                 if (instp_mode != dev_priv->relative_constants_mode) {
677                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
678                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
679                                 return -EINVAL;
680                         }
681
682                         /* The HW changed the meaning on this bit on gen6 */
683                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
684                 }
685                 break;
686         default:
687                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
688                 return -EINVAL;
689         }
690
691         if (args->num_cliprects != 0) {
692                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
693                 return -EINVAL;
694         } else {
695                 if (args->DR4 == 0xffffffff) {
696                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
697                         args->DR4 = 0;
698                 }
699
700                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
701                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
702                         return -EINVAL;
703                 }
704         }
705
706         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
707                 DRM_DEBUG("sol reset is gen7 only\n");
708                 return -EINVAL;
709         }
710
711         ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
712         if (ret)
713                 return ret;
714
715         if (ring == &dev_priv->ring[RCS] &&
716             instp_mode != dev_priv->relative_constants_mode) {
717                 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
718                 if (ret)
719                         return ret;
720
721                 intel_logical_ring_emit(ringbuf, MI_NOOP);
722                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
723                 intel_logical_ring_emit(ringbuf, INSTPM);
724                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
725                 intel_logical_ring_advance(ringbuf);
726
727                 dev_priv->relative_constants_mode = instp_mode;
728         }
729
730         ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
731         if (ret)
732                 return ret;
733
734         trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
735
736         i915_gem_execbuffer_move_to_active(vmas, ring);
737         i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
738
739         return 0;
740 }
741
742 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
743 {
744         struct drm_i915_gem_request *req, *tmp;
745         struct drm_i915_private *dev_priv = ring->dev->dev_private;
746         unsigned long flags;
747         struct list_head retired_list;
748
749         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
750         if (list_empty(&ring->execlist_retired_req_list))
751                 return;
752
753         INIT_LIST_HEAD(&retired_list);
754         spin_lock_irqsave(&ring->execlist_lock, flags);
755         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
756         spin_unlock_irqrestore(&ring->execlist_lock, flags);
757
758         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
759                 struct intel_context *ctx = req->ctx;
760                 struct drm_i915_gem_object *ctx_obj =
761                                 ctx->engine[ring->id].state;
762
763                 if (ctx_obj && (ctx != ring->default_context))
764                         intel_lr_context_unpin(ring, ctx);
765                 intel_runtime_pm_put(dev_priv);
766                 list_del(&req->execlist_link);
767                 i915_gem_request_unreference(req);
768         }
769 }
770
771 void intel_logical_ring_stop(struct intel_engine_cs *ring)
772 {
773         struct drm_i915_private *dev_priv = ring->dev->dev_private;
774         int ret;
775
776         if (!intel_ring_initialized(ring))
777                 return;
778
779         ret = intel_ring_idle(ring);
780         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
781                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
782                           ring->name, ret);
783
784         /* TODO: Is this correct with Execlists enabled? */
785         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
786         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
787                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
788                 return;
789         }
790         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
791 }
792
793 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
794                                   struct intel_context *ctx)
795 {
796         struct intel_engine_cs *ring = ringbuf->ring;
797         int ret;
798
799         if (!ring->gpu_caches_dirty)
800                 return 0;
801
802         ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
803         if (ret)
804                 return ret;
805
806         ring->gpu_caches_dirty = false;
807         return 0;
808 }
809
810 /*
811  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
812  * @ringbuf: Logical Ringbuffer to advance.
813  *
814  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
815  * really happens during submission is that the context and current tail will be placed
816  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
817  * point, the tail *inside* the context is updated and the ELSP written to.
818  */
819 static void
820 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
821                                       struct intel_context *ctx,
822                                       struct drm_i915_gem_request *request)
823 {
824         struct intel_engine_cs *ring = ringbuf->ring;
825
826         intel_logical_ring_advance(ringbuf);
827
828         if (intel_ring_stopped(ring))
829                 return;
830
831         execlists_context_queue(ring, ctx, ringbuf->tail, request);
832 }
833
834 static int intel_lr_context_pin(struct intel_engine_cs *ring,
835                 struct intel_context *ctx)
836 {
837         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
838         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
839         int ret = 0;
840
841         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
842         if (ctx->engine[ring->id].pin_count++ == 0) {
843                 ret = i915_gem_obj_ggtt_pin(ctx_obj,
844                                 GEN8_LR_CONTEXT_ALIGN, 0);
845                 if (ret)
846                         goto reset_pin_count;
847
848                 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
849                 if (ret)
850                         goto unpin_ctx_obj;
851         }
852
853         return ret;
854
855 unpin_ctx_obj:
856         i915_gem_object_ggtt_unpin(ctx_obj);
857 reset_pin_count:
858         ctx->engine[ring->id].pin_count = 0;
859
860         return ret;
861 }
862
863 void intel_lr_context_unpin(struct intel_engine_cs *ring,
864                 struct intel_context *ctx)
865 {
866         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
867         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
868
869         if (ctx_obj) {
870                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
871                 if (--ctx->engine[ring->id].pin_count == 0) {
872                         intel_unpin_ringbuffer_obj(ringbuf);
873                         i915_gem_object_ggtt_unpin(ctx_obj);
874                 }
875         }
876 }
877
878 static int logical_ring_alloc_request(struct intel_engine_cs *ring,
879                                       struct intel_context *ctx)
880 {
881         struct drm_i915_gem_request *request;
882         struct drm_i915_private *dev_private = ring->dev->dev_private;
883         int ret;
884
885         if (ring->outstanding_lazy_request)
886                 return 0;
887
888         request = kzalloc(sizeof(*request), GFP_KERNEL);
889         if (request == NULL)
890                 return -ENOMEM;
891
892         if (ctx != ring->default_context) {
893                 ret = intel_lr_context_pin(ring, ctx);
894                 if (ret) {
895                         kfree(request);
896                         return ret;
897                 }
898         }
899
900         kref_init(&request->ref);
901         request->ring = ring;
902         request->uniq = dev_private->request_uniq++;
903
904         ret = i915_gem_get_seqno(ring->dev, &request->seqno);
905         if (ret) {
906                 intel_lr_context_unpin(ring, ctx);
907                 kfree(request);
908                 return ret;
909         }
910
911         request->ctx = ctx;
912         i915_gem_context_reference(request->ctx);
913         request->ringbuf = ctx->engine[ring->id].ringbuf;
914
915         ring->outstanding_lazy_request = request;
916         return 0;
917 }
918
919 static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
920                                      int bytes)
921 {
922         struct intel_engine_cs *ring = ringbuf->ring;
923         struct drm_i915_gem_request *request;
924         int ret;
925
926         if (intel_ring_space(ringbuf) >= bytes)
927                 return 0;
928
929         list_for_each_entry(request, &ring->request_list, list) {
930                 /*
931                  * The request queue is per-engine, so can contain requests
932                  * from multiple ringbuffers. Here, we must ignore any that
933                  * aren't from the ringbuffer we're considering.
934                  */
935                 struct intel_context *ctx = request->ctx;
936                 if (ctx->engine[ring->id].ringbuf != ringbuf)
937                         continue;
938
939                 /* Would completion of this request free enough space? */
940                 if (__intel_ring_space(request->tail, ringbuf->tail,
941                                        ringbuf->size) >= bytes) {
942                         break;
943                 }
944         }
945
946         if (&request->list == &ring->request_list)
947                 return -ENOSPC;
948
949         ret = i915_wait_request(request);
950         if (ret)
951                 return ret;
952
953         i915_gem_retire_requests_ring(ring);
954
955         return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
956 }
957
958 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
959                                        struct intel_context *ctx,
960                                        int bytes)
961 {
962         struct intel_engine_cs *ring = ringbuf->ring;
963         struct drm_device *dev = ring->dev;
964         struct drm_i915_private *dev_priv = dev->dev_private;
965         unsigned long end;
966         int ret;
967
968         ret = logical_ring_wait_request(ringbuf, bytes);
969         if (ret != -ENOSPC)
970                 return ret;
971
972         /* Force the context submission in case we have been skipping it */
973         intel_logical_ring_advance_and_submit(ringbuf, ctx, NULL);
974
975         /* With GEM the hangcheck timer should kick us out of the loop,
976          * leaving it early runs the risk of corrupting GEM state (due
977          * to running on almost untested codepaths). But on resume
978          * timers don't work yet, so prevent a complete hang in that
979          * case by choosing an insanely large timeout. */
980         end = jiffies + 60 * HZ;
981
982         ret = 0;
983         do {
984                 if (intel_ring_space(ringbuf) >= bytes)
985                         break;
986
987                 msleep(1);
988
989                 if (dev_priv->mm.interruptible && signal_pending(current)) {
990                         ret = -ERESTARTSYS;
991                         break;
992                 }
993
994                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
995                                            dev_priv->mm.interruptible);
996                 if (ret)
997                         break;
998
999                 if (time_after(jiffies, end)) {
1000                         ret = -EBUSY;
1001                         break;
1002                 }
1003         } while (1);
1004
1005         return ret;
1006 }
1007
1008 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
1009                                     struct intel_context *ctx)
1010 {
1011         uint32_t __iomem *virt;
1012         int rem = ringbuf->size - ringbuf->tail;
1013
1014         if (ringbuf->space < rem) {
1015                 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
1016
1017                 if (ret)
1018                         return ret;
1019         }
1020
1021         virt = ringbuf->virtual_start + ringbuf->tail;
1022         rem /= 4;
1023         while (rem--)
1024                 iowrite32(MI_NOOP, virt++);
1025
1026         ringbuf->tail = 0;
1027         intel_ring_update_space(ringbuf);
1028
1029         return 0;
1030 }
1031
1032 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
1033                                 struct intel_context *ctx, int bytes)
1034 {
1035         int ret;
1036
1037         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1038                 ret = logical_ring_wrap_buffer(ringbuf, ctx);
1039                 if (unlikely(ret))
1040                         return ret;
1041         }
1042
1043         if (unlikely(ringbuf->space < bytes)) {
1044                 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
1045                 if (unlikely(ret))
1046                         return ret;
1047         }
1048
1049         return 0;
1050 }
1051
1052 /**
1053  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
1054  *
1055  * @ringbuf: Logical ringbuffer.
1056  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
1057  *
1058  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
1059  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
1060  * and also preallocates a request (every workload submission is still mediated through
1061  * requests, same as it did with legacy ringbuffer submission).
1062  *
1063  * Return: non-zero if the ringbuffer is not ready to be written to.
1064  */
1065 int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
1066                              struct intel_context *ctx, int num_dwords)
1067 {
1068         struct intel_engine_cs *ring = ringbuf->ring;
1069         struct drm_device *dev = ring->dev;
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         int ret;
1072
1073         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1074                                    dev_priv->mm.interruptible);
1075         if (ret)
1076                 return ret;
1077
1078         ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
1079         if (ret)
1080                 return ret;
1081
1082         /* Preallocate the olr before touching the ring */
1083         ret = logical_ring_alloc_request(ring, ctx);
1084         if (ret)
1085                 return ret;
1086
1087         ringbuf->space -= num_dwords * sizeof(uint32_t);
1088         return 0;
1089 }
1090
1091 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1092                                                struct intel_context *ctx)
1093 {
1094         int ret, i;
1095         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1096         struct drm_device *dev = ring->dev;
1097         struct drm_i915_private *dev_priv = dev->dev_private;
1098         struct i915_workarounds *w = &dev_priv->workarounds;
1099
1100         if (WARN_ON_ONCE(w->count == 0))
1101                 return 0;
1102
1103         ring->gpu_caches_dirty = true;
1104         ret = logical_ring_flush_all_caches(ringbuf, ctx);
1105         if (ret)
1106                 return ret;
1107
1108         ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1109         if (ret)
1110                 return ret;
1111
1112         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1113         for (i = 0; i < w->count; i++) {
1114                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1115                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1116         }
1117         intel_logical_ring_emit(ringbuf, MI_NOOP);
1118
1119         intel_logical_ring_advance(ringbuf);
1120
1121         ring->gpu_caches_dirty = true;
1122         ret = logical_ring_flush_all_caches(ringbuf, ctx);
1123         if (ret)
1124                 return ret;
1125
1126         return 0;
1127 }
1128
1129 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1130 {
1131         struct drm_device *dev = ring->dev;
1132         struct drm_i915_private *dev_priv = dev->dev_private;
1133
1134         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1135         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1136
1137         if (ring->status_page.obj) {
1138                 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1139                            (u32)ring->status_page.gfx_addr);
1140                 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1141         }
1142
1143         I915_WRITE(RING_MODE_GEN7(ring),
1144                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1145                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1146         POSTING_READ(RING_MODE_GEN7(ring));
1147         ring->next_context_status_buffer = 0;
1148         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1149
1150         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1151
1152         return 0;
1153 }
1154
1155 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1156 {
1157         struct drm_device *dev = ring->dev;
1158         struct drm_i915_private *dev_priv = dev->dev_private;
1159         int ret;
1160
1161         ret = gen8_init_common_ring(ring);
1162         if (ret)
1163                 return ret;
1164
1165         /* We need to disable the AsyncFlip performance optimisations in order
1166          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1167          * programmed to '1' on all products.
1168          *
1169          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1170          */
1171         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1172
1173         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1174
1175         return init_workarounds_ring(ring);
1176 }
1177
1178 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1179 {
1180         int ret;
1181
1182         ret = gen8_init_common_ring(ring);
1183         if (ret)
1184                 return ret;
1185
1186         return init_workarounds_ring(ring);
1187 }
1188
1189 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1190                               struct intel_context *ctx,
1191                               u64 offset, unsigned dispatch_flags)
1192 {
1193         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1194         int ret;
1195
1196         ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1197         if (ret)
1198                 return ret;
1199
1200         /* FIXME(BDW): Address space and security selectors. */
1201         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1202         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1203         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1204         intel_logical_ring_emit(ringbuf, MI_NOOP);
1205         intel_logical_ring_advance(ringbuf);
1206
1207         return 0;
1208 }
1209
1210 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1211 {
1212         struct drm_device *dev = ring->dev;
1213         struct drm_i915_private *dev_priv = dev->dev_private;
1214         unsigned long flags;
1215
1216         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1217                 return false;
1218
1219         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1220         if (ring->irq_refcount++ == 0) {
1221                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1222                 POSTING_READ(RING_IMR(ring->mmio_base));
1223         }
1224         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1225
1226         return true;
1227 }
1228
1229 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1230 {
1231         struct drm_device *dev = ring->dev;
1232         struct drm_i915_private *dev_priv = dev->dev_private;
1233         unsigned long flags;
1234
1235         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1236         if (--ring->irq_refcount == 0) {
1237                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1238                 POSTING_READ(RING_IMR(ring->mmio_base));
1239         }
1240         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1241 }
1242
1243 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1244                            struct intel_context *ctx,
1245                            u32 invalidate_domains,
1246                            u32 unused)
1247 {
1248         struct intel_engine_cs *ring = ringbuf->ring;
1249         struct drm_device *dev = ring->dev;
1250         struct drm_i915_private *dev_priv = dev->dev_private;
1251         uint32_t cmd;
1252         int ret;
1253
1254         ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1255         if (ret)
1256                 return ret;
1257
1258         cmd = MI_FLUSH_DW + 1;
1259
1260         /* We always require a command barrier so that subsequent
1261          * commands, such as breadcrumb interrupts, are strictly ordered
1262          * wrt the contents of the write cache being flushed to memory
1263          * (and thus being coherent from the CPU).
1264          */
1265         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1266
1267         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1268                 cmd |= MI_INVALIDATE_TLB;
1269                 if (ring == &dev_priv->ring[VCS])
1270                         cmd |= MI_INVALIDATE_BSD;
1271         }
1272
1273         intel_logical_ring_emit(ringbuf, cmd);
1274         intel_logical_ring_emit(ringbuf,
1275                                 I915_GEM_HWS_SCRATCH_ADDR |
1276                                 MI_FLUSH_DW_USE_GTT);
1277         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1278         intel_logical_ring_emit(ringbuf, 0); /* value */
1279         intel_logical_ring_advance(ringbuf);
1280
1281         return 0;
1282 }
1283
1284 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1285                                   struct intel_context *ctx,
1286                                   u32 invalidate_domains,
1287                                   u32 flush_domains)
1288 {
1289         struct intel_engine_cs *ring = ringbuf->ring;
1290         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1291         u32 flags = 0;
1292         int ret;
1293
1294         flags |= PIPE_CONTROL_CS_STALL;
1295
1296         if (flush_domains) {
1297                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1298                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1299         }
1300
1301         if (invalidate_domains) {
1302                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1303                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1304                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1305                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1306                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1307                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1308                 flags |= PIPE_CONTROL_QW_WRITE;
1309                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1310         }
1311
1312         ret = intel_logical_ring_begin(ringbuf, ctx, 6);
1313         if (ret)
1314                 return ret;
1315
1316         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1317         intel_logical_ring_emit(ringbuf, flags);
1318         intel_logical_ring_emit(ringbuf, scratch_addr);
1319         intel_logical_ring_emit(ringbuf, 0);
1320         intel_logical_ring_emit(ringbuf, 0);
1321         intel_logical_ring_emit(ringbuf, 0);
1322         intel_logical_ring_advance(ringbuf);
1323
1324         return 0;
1325 }
1326
1327 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1328 {
1329         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1330 }
1331
1332 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1333 {
1334         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1335 }
1336
1337 static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1338                              struct drm_i915_gem_request *request)
1339 {
1340         struct intel_engine_cs *ring = ringbuf->ring;
1341         u32 cmd;
1342         int ret;
1343
1344         /*
1345          * Reserve space for 2 NOOPs at the end of each request to be
1346          * used as a workaround for not being allowed to do lite
1347          * restore with HEAD==TAIL (WaIdleLiteRestore).
1348          */
1349         ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
1350         if (ret)
1351                 return ret;
1352
1353         cmd = MI_STORE_DWORD_IMM_GEN4;
1354         cmd |= MI_GLOBAL_GTT;
1355
1356         intel_logical_ring_emit(ringbuf, cmd);
1357         intel_logical_ring_emit(ringbuf,
1358                                 (ring->status_page.gfx_addr +
1359                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1360         intel_logical_ring_emit(ringbuf, 0);
1361         intel_logical_ring_emit(ringbuf,
1362                 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1363         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1364         intel_logical_ring_emit(ringbuf, MI_NOOP);
1365         intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1366
1367         /*
1368          * Here we add two extra NOOPs as padding to avoid
1369          * lite restore of a context with HEAD==TAIL.
1370          */
1371         intel_logical_ring_emit(ringbuf, MI_NOOP);
1372         intel_logical_ring_emit(ringbuf, MI_NOOP);
1373         intel_logical_ring_advance(ringbuf);
1374
1375         return 0;
1376 }
1377
1378 static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1379                                               struct intel_context *ctx)
1380 {
1381         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1382         struct render_state so;
1383         struct drm_i915_file_private *file_priv = ctx->file_priv;
1384         struct drm_file *file = file_priv ? file_priv->file : NULL;
1385         int ret;
1386
1387         ret = i915_gem_render_state_prepare(ring, &so);
1388         if (ret)
1389                 return ret;
1390
1391         if (so.rodata == NULL)
1392                 return 0;
1393
1394         ret = ring->emit_bb_start(ringbuf,
1395                         ctx,
1396                         so.ggtt_offset,
1397                         I915_DISPATCH_SECURE);
1398         if (ret)
1399                 goto out;
1400
1401         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1402
1403         ret = __i915_add_request(ring, file, so.obj);
1404         /* intel_logical_ring_add_request moves object to inactive if it
1405          * fails */
1406 out:
1407         i915_gem_render_state_fini(&so);
1408         return ret;
1409 }
1410
1411 static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1412                        struct intel_context *ctx)
1413 {
1414         int ret;
1415
1416         ret = intel_logical_ring_workarounds_emit(ring, ctx);
1417         if (ret)
1418                 return ret;
1419
1420         return intel_lr_context_render_state_init(ring, ctx);
1421 }
1422
1423 /**
1424  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1425  *
1426  * @ring: Engine Command Streamer.
1427  *
1428  */
1429 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1430 {
1431         struct drm_i915_private *dev_priv;
1432
1433         if (!intel_ring_initialized(ring))
1434                 return;
1435
1436         dev_priv = ring->dev->dev_private;
1437
1438         intel_logical_ring_stop(ring);
1439         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1440         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1441
1442         if (ring->cleanup)
1443                 ring->cleanup(ring);
1444
1445         i915_cmd_parser_fini_ring(ring);
1446
1447         if (ring->status_page.obj) {
1448                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1449                 ring->status_page.obj = NULL;
1450         }
1451 }
1452
1453 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1454 {
1455         int ret;
1456
1457         /* Intentionally left blank. */
1458         ring->buffer = NULL;
1459
1460         ring->dev = dev;
1461         INIT_LIST_HEAD(&ring->active_list);
1462         INIT_LIST_HEAD(&ring->request_list);
1463         init_waitqueue_head(&ring->irq_queue);
1464
1465         INIT_LIST_HEAD(&ring->execlist_queue);
1466         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1467         spin_lock_init(&ring->execlist_lock);
1468
1469         ret = i915_cmd_parser_init_ring(ring);
1470         if (ret)
1471                 return ret;
1472
1473         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1474
1475         return ret;
1476 }
1477
1478 static int logical_render_ring_init(struct drm_device *dev)
1479 {
1480         struct drm_i915_private *dev_priv = dev->dev_private;
1481         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1482         int ret;
1483
1484         ring->name = "render ring";
1485         ring->id = RCS;
1486         ring->mmio_base = RENDER_RING_BASE;
1487         ring->irq_enable_mask =
1488                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1489         ring->irq_keep_mask =
1490                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1491         if (HAS_L3_DPF(dev))
1492                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1493
1494         if (INTEL_INFO(dev)->gen >= 9)
1495                 ring->init_hw = gen9_init_render_ring;
1496         else
1497                 ring->init_hw = gen8_init_render_ring;
1498         ring->init_context = gen8_init_rcs_context;
1499         ring->cleanup = intel_fini_pipe_control;
1500         ring->get_seqno = gen8_get_seqno;
1501         ring->set_seqno = gen8_set_seqno;
1502         ring->emit_request = gen8_emit_request;
1503         ring->emit_flush = gen8_emit_flush_render;
1504         ring->irq_get = gen8_logical_ring_get_irq;
1505         ring->irq_put = gen8_logical_ring_put_irq;
1506         ring->emit_bb_start = gen8_emit_bb_start;
1507
1508         ring->dev = dev;
1509         ret = logical_ring_init(dev, ring);
1510         if (ret)
1511                 return ret;
1512
1513         return intel_init_pipe_control(ring);
1514 }
1515
1516 static int logical_bsd_ring_init(struct drm_device *dev)
1517 {
1518         struct drm_i915_private *dev_priv = dev->dev_private;
1519         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1520
1521         ring->name = "bsd ring";
1522         ring->id = VCS;
1523         ring->mmio_base = GEN6_BSD_RING_BASE;
1524         ring->irq_enable_mask =
1525                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1526         ring->irq_keep_mask =
1527                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1528
1529         ring->init_hw = gen8_init_common_ring;
1530         ring->get_seqno = gen8_get_seqno;
1531         ring->set_seqno = gen8_set_seqno;
1532         ring->emit_request = gen8_emit_request;
1533         ring->emit_flush = gen8_emit_flush;
1534         ring->irq_get = gen8_logical_ring_get_irq;
1535         ring->irq_put = gen8_logical_ring_put_irq;
1536         ring->emit_bb_start = gen8_emit_bb_start;
1537
1538         return logical_ring_init(dev, ring);
1539 }
1540
1541 static int logical_bsd2_ring_init(struct drm_device *dev)
1542 {
1543         struct drm_i915_private *dev_priv = dev->dev_private;
1544         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1545
1546         ring->name = "bds2 ring";
1547         ring->id = VCS2;
1548         ring->mmio_base = GEN8_BSD2_RING_BASE;
1549         ring->irq_enable_mask =
1550                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1551         ring->irq_keep_mask =
1552                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1553
1554         ring->init_hw = gen8_init_common_ring;
1555         ring->get_seqno = gen8_get_seqno;
1556         ring->set_seqno = gen8_set_seqno;
1557         ring->emit_request = gen8_emit_request;
1558         ring->emit_flush = gen8_emit_flush;
1559         ring->irq_get = gen8_logical_ring_get_irq;
1560         ring->irq_put = gen8_logical_ring_put_irq;
1561         ring->emit_bb_start = gen8_emit_bb_start;
1562
1563         return logical_ring_init(dev, ring);
1564 }
1565
1566 static int logical_blt_ring_init(struct drm_device *dev)
1567 {
1568         struct drm_i915_private *dev_priv = dev->dev_private;
1569         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1570
1571         ring->name = "blitter ring";
1572         ring->id = BCS;
1573         ring->mmio_base = BLT_RING_BASE;
1574         ring->irq_enable_mask =
1575                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1576         ring->irq_keep_mask =
1577                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1578
1579         ring->init_hw = gen8_init_common_ring;
1580         ring->get_seqno = gen8_get_seqno;
1581         ring->set_seqno = gen8_set_seqno;
1582         ring->emit_request = gen8_emit_request;
1583         ring->emit_flush = gen8_emit_flush;
1584         ring->irq_get = gen8_logical_ring_get_irq;
1585         ring->irq_put = gen8_logical_ring_put_irq;
1586         ring->emit_bb_start = gen8_emit_bb_start;
1587
1588         return logical_ring_init(dev, ring);
1589 }
1590
1591 static int logical_vebox_ring_init(struct drm_device *dev)
1592 {
1593         struct drm_i915_private *dev_priv = dev->dev_private;
1594         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1595
1596         ring->name = "video enhancement ring";
1597         ring->id = VECS;
1598         ring->mmio_base = VEBOX_RING_BASE;
1599         ring->irq_enable_mask =
1600                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1601         ring->irq_keep_mask =
1602                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1603
1604         ring->init_hw = gen8_init_common_ring;
1605         ring->get_seqno = gen8_get_seqno;
1606         ring->set_seqno = gen8_set_seqno;
1607         ring->emit_request = gen8_emit_request;
1608         ring->emit_flush = gen8_emit_flush;
1609         ring->irq_get = gen8_logical_ring_get_irq;
1610         ring->irq_put = gen8_logical_ring_put_irq;
1611         ring->emit_bb_start = gen8_emit_bb_start;
1612
1613         return logical_ring_init(dev, ring);
1614 }
1615
1616 /**
1617  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1618  * @dev: DRM device.
1619  *
1620  * This function inits the engines for an Execlists submission style (the equivalent in the
1621  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1622  * those engines that are present in the hardware.
1623  *
1624  * Return: non-zero if the initialization failed.
1625  */
1626 int intel_logical_rings_init(struct drm_device *dev)
1627 {
1628         struct drm_i915_private *dev_priv = dev->dev_private;
1629         int ret;
1630
1631         ret = logical_render_ring_init(dev);
1632         if (ret)
1633                 return ret;
1634
1635         if (HAS_BSD(dev)) {
1636                 ret = logical_bsd_ring_init(dev);
1637                 if (ret)
1638                         goto cleanup_render_ring;
1639         }
1640
1641         if (HAS_BLT(dev)) {
1642                 ret = logical_blt_ring_init(dev);
1643                 if (ret)
1644                         goto cleanup_bsd_ring;
1645         }
1646
1647         if (HAS_VEBOX(dev)) {
1648                 ret = logical_vebox_ring_init(dev);
1649                 if (ret)
1650                         goto cleanup_blt_ring;
1651         }
1652
1653         if (HAS_BSD2(dev)) {
1654                 ret = logical_bsd2_ring_init(dev);
1655                 if (ret)
1656                         goto cleanup_vebox_ring;
1657         }
1658
1659         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1660         if (ret)
1661                 goto cleanup_bsd2_ring;
1662
1663         return 0;
1664
1665 cleanup_bsd2_ring:
1666         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1667 cleanup_vebox_ring:
1668         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1669 cleanup_blt_ring:
1670         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1671 cleanup_bsd_ring:
1672         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1673 cleanup_render_ring:
1674         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1675
1676         return ret;
1677 }
1678
1679 static u32
1680 make_rpcs(struct drm_device *dev)
1681 {
1682         u32 rpcs = 0;
1683
1684         /*
1685          * No explicit RPCS request is needed to ensure full
1686          * slice/subslice/EU enablement prior to Gen9.
1687         */
1688         if (INTEL_INFO(dev)->gen < 9)
1689                 return 0;
1690
1691         /*
1692          * Starting in Gen9, render power gating can leave
1693          * slice/subslice/EU in a partially enabled state. We
1694          * must make an explicit request through RPCS for full
1695          * enablement.
1696         */
1697         if (INTEL_INFO(dev)->has_slice_pg) {
1698                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1699                 rpcs |= INTEL_INFO(dev)->slice_total <<
1700                         GEN8_RPCS_S_CNT_SHIFT;
1701                 rpcs |= GEN8_RPCS_ENABLE;
1702         }
1703
1704         if (INTEL_INFO(dev)->has_subslice_pg) {
1705                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1706                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1707                         GEN8_RPCS_SS_CNT_SHIFT;
1708                 rpcs |= GEN8_RPCS_ENABLE;
1709         }
1710
1711         if (INTEL_INFO(dev)->has_eu_pg) {
1712                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1713                         GEN8_RPCS_EU_MIN_SHIFT;
1714                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1715                         GEN8_RPCS_EU_MAX_SHIFT;
1716                 rpcs |= GEN8_RPCS_ENABLE;
1717         }
1718
1719         return rpcs;
1720 }
1721
1722 static int
1723 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1724                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1725 {
1726         struct drm_device *dev = ring->dev;
1727         struct drm_i915_private *dev_priv = dev->dev_private;
1728         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1729         struct page *page;
1730         uint32_t *reg_state;
1731         int ret;
1732
1733         if (!ppgtt)
1734                 ppgtt = dev_priv->mm.aliasing_ppgtt;
1735
1736         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1737         if (ret) {
1738                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1739                 return ret;
1740         }
1741
1742         ret = i915_gem_object_get_pages(ctx_obj);
1743         if (ret) {
1744                 DRM_DEBUG_DRIVER("Could not get object pages\n");
1745                 return ret;
1746         }
1747
1748         i915_gem_object_pin_pages(ctx_obj);
1749
1750         /* The second page of the context object contains some fields which must
1751          * be set up prior to the first execution. */
1752         page = i915_gem_object_get_page(ctx_obj, 1);
1753         reg_state = kmap_atomic(page);
1754
1755         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1756          * commands followed by (reg, value) pairs. The values we are setting here are
1757          * only for the first context restore: on a subsequent save, the GPU will
1758          * recreate this batchbuffer with new values (including all the missing
1759          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1760         if (ring->id == RCS)
1761                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1762         else
1763                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1764         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1765         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1766         reg_state[CTX_CONTEXT_CONTROL+1] =
1767                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1768                                 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1769         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1770         reg_state[CTX_RING_HEAD+1] = 0;
1771         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1772         reg_state[CTX_RING_TAIL+1] = 0;
1773         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1774         /* Ring buffer start address is not known until the buffer is pinned.
1775          * It is written to the context image in execlists_update_context()
1776          */
1777         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1778         reg_state[CTX_RING_BUFFER_CONTROL+1] =
1779                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1780         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1781         reg_state[CTX_BB_HEAD_U+1] = 0;
1782         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1783         reg_state[CTX_BB_HEAD_L+1] = 0;
1784         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1785         reg_state[CTX_BB_STATE+1] = (1<<5);
1786         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1787         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1788         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1789         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1790         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1791         reg_state[CTX_SECOND_BB_STATE+1] = 0;
1792         if (ring->id == RCS) {
1793                 /* TODO: according to BSpec, the register state context
1794                  * for CHV does not have these. OTOH, these registers do
1795                  * exist in CHV. I'm waiting for a clarification */
1796                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1797                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1798                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1799                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1800                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1801                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1802         }
1803         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1804         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1805         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1806         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1807         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1808         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1809         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1810         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1811         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1812         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1813         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1814         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1815         reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[3]->daddr);
1816         reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[3]->daddr);
1817         reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[2]->daddr);
1818         reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[2]->daddr);
1819         reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[1]->daddr);
1820         reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[1]->daddr);
1821         reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[0]->daddr);
1822         reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[0]->daddr);
1823         if (ring->id == RCS) {
1824                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1825                 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
1826                 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
1827         }
1828
1829         kunmap_atomic(reg_state);
1830
1831         ctx_obj->dirty = 1;
1832         set_page_dirty(page);
1833         i915_gem_object_unpin_pages(ctx_obj);
1834
1835         return 0;
1836 }
1837
1838 /**
1839  * intel_lr_context_free() - free the LRC specific bits of a context
1840  * @ctx: the LR context to free.
1841  *
1842  * The real context freeing is done in i915_gem_context_free: this only
1843  * takes care of the bits that are LRC related: the per-engine backing
1844  * objects and the logical ringbuffer.
1845  */
1846 void intel_lr_context_free(struct intel_context *ctx)
1847 {
1848         int i;
1849
1850         for (i = 0; i < I915_NUM_RINGS; i++) {
1851                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1852
1853                 if (ctx_obj) {
1854                         struct intel_ringbuffer *ringbuf =
1855                                         ctx->engine[i].ringbuf;
1856                         struct intel_engine_cs *ring = ringbuf->ring;
1857
1858                         if (ctx == ring->default_context) {
1859                                 intel_unpin_ringbuffer_obj(ringbuf);
1860                                 i915_gem_object_ggtt_unpin(ctx_obj);
1861                         }
1862                         WARN_ON(ctx->engine[ring->id].pin_count);
1863                         intel_destroy_ringbuffer_obj(ringbuf);
1864                         kfree(ringbuf);
1865                         drm_gem_object_unreference(&ctx_obj->base);
1866                 }
1867         }
1868 }
1869
1870 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1871 {
1872         int ret = 0;
1873
1874         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1875
1876         switch (ring->id) {
1877         case RCS:
1878                 if (INTEL_INFO(ring->dev)->gen >= 9)
1879                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1880                 else
1881                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1882                 break;
1883         case VCS:
1884         case BCS:
1885         case VECS:
1886         case VCS2:
1887                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1888                 break;
1889         }
1890
1891         return ret;
1892 }
1893
1894 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1895                 struct drm_i915_gem_object *default_ctx_obj)
1896 {
1897         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1898
1899         /* The status page is offset 0 from the default context object
1900          * in LRC mode. */
1901         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1902         ring->status_page.page_addr =
1903                         kmap(sg_page(default_ctx_obj->pages->sgl));
1904         ring->status_page.obj = default_ctx_obj;
1905
1906         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1907                         (u32)ring->status_page.gfx_addr);
1908         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1909 }
1910
1911 /**
1912  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1913  * @ctx: LR context to create.
1914  * @ring: engine to be used with the context.
1915  *
1916  * This function can be called more than once, with different engines, if we plan
1917  * to use the context with them. The context backing objects and the ringbuffers
1918  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1919  * the creation is a deferred call: it's better to make sure first that we need to use
1920  * a given ring with the context.
1921  *
1922  * Return: non-zero on error.
1923  */
1924 int intel_lr_context_deferred_create(struct intel_context *ctx,
1925                                      struct intel_engine_cs *ring)
1926 {
1927         const bool is_global_default_ctx = (ctx == ring->default_context);
1928         struct drm_device *dev = ring->dev;
1929         struct drm_i915_gem_object *ctx_obj;
1930         uint32_t context_size;
1931         struct intel_ringbuffer *ringbuf;
1932         int ret;
1933
1934         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1935         WARN_ON(ctx->engine[ring->id].state);
1936
1937         context_size = round_up(get_lr_context_size(ring), 4096);
1938
1939         ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1940         if (IS_ERR(ctx_obj)) {
1941                 ret = PTR_ERR(ctx_obj);
1942                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1943                 return ret;
1944         }
1945
1946         if (is_global_default_ctx) {
1947                 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1948                 if (ret) {
1949                         DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1950                                         ret);
1951                         drm_gem_object_unreference(&ctx_obj->base);
1952                         return ret;
1953                 }
1954         }
1955
1956         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1957         if (!ringbuf) {
1958                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1959                                 ring->name);
1960                 ret = -ENOMEM;
1961                 goto error_unpin_ctx;
1962         }
1963
1964         ringbuf->ring = ring;
1965
1966         ringbuf->size = 32 * PAGE_SIZE;
1967         ringbuf->effective_size = ringbuf->size;
1968         ringbuf->head = 0;
1969         ringbuf->tail = 0;
1970         ringbuf->last_retired_head = -1;
1971         intel_ring_update_space(ringbuf);
1972
1973         if (ringbuf->obj == NULL) {
1974                 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1975                 if (ret) {
1976                         DRM_DEBUG_DRIVER(
1977                                 "Failed to allocate ringbuffer obj %s: %d\n",
1978                                 ring->name, ret);
1979                         goto error_free_rbuf;
1980                 }
1981
1982                 if (is_global_default_ctx) {
1983                         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1984                         if (ret) {
1985                                 DRM_ERROR(
1986                                         "Failed to pin and map ringbuffer %s: %d\n",
1987                                         ring->name, ret);
1988                                 goto error_destroy_rbuf;
1989                         }
1990                 }
1991
1992         }
1993
1994         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1995         if (ret) {
1996                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1997                 goto error;
1998         }
1999
2000         ctx->engine[ring->id].ringbuf = ringbuf;
2001         ctx->engine[ring->id].state = ctx_obj;
2002
2003         if (ctx == ring->default_context)
2004                 lrc_setup_hardware_status_page(ring, ctx_obj);
2005         else if (ring->id == RCS && !ctx->rcs_initialized) {
2006                 if (ring->init_context) {
2007                         ret = ring->init_context(ring, ctx);
2008                         if (ret) {
2009                                 DRM_ERROR("ring init context: %d\n", ret);
2010                                 ctx->engine[ring->id].ringbuf = NULL;
2011                                 ctx->engine[ring->id].state = NULL;
2012                                 goto error;
2013                         }
2014                 }
2015
2016                 ctx->rcs_initialized = true;
2017         }
2018
2019         return 0;
2020
2021 error:
2022         if (is_global_default_ctx)
2023                 intel_unpin_ringbuffer_obj(ringbuf);
2024 error_destroy_rbuf:
2025         intel_destroy_ringbuffer_obj(ringbuf);
2026 error_free_rbuf:
2027         kfree(ringbuf);
2028 error_unpin_ctx:
2029         if (is_global_default_ctx)
2030                 i915_gem_object_ggtt_unpin(ctx_obj);
2031         drm_gem_object_unreference(&ctx_obj->base);
2032         return ret;
2033 }
2034
2035 void intel_lr_context_reset(struct drm_device *dev,
2036                         struct intel_context *ctx)
2037 {
2038         struct drm_i915_private *dev_priv = dev->dev_private;
2039         struct intel_engine_cs *ring;
2040         int i;
2041
2042         for_each_ring(ring, dev_priv, i) {
2043                 struct drm_i915_gem_object *ctx_obj =
2044                                 ctx->engine[ring->id].state;
2045                 struct intel_ringbuffer *ringbuf =
2046                                 ctx->engine[ring->id].ringbuf;
2047                 uint32_t *reg_state;
2048                 struct page *page;
2049
2050                 if (!ctx_obj)
2051                         continue;
2052
2053                 if (i915_gem_object_get_pages(ctx_obj)) {
2054                         WARN(1, "Failed get_pages for context obj\n");
2055                         continue;
2056                 }
2057                 page = i915_gem_object_get_page(ctx_obj, 1);
2058                 reg_state = kmap_atomic(page);
2059
2060                 reg_state[CTX_RING_HEAD+1] = 0;
2061                 reg_state[CTX_RING_TAIL+1] = 0;
2062
2063                 kunmap_atomic(reg_state);
2064
2065                 ringbuf->head = 0;
2066                 ringbuf->tail = 0;
2067         }
2068 }