Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats supported by all gen */
49 #define COMMON_PRIMARY_FORMATS \
50         DRM_FORMAT_C8, \
51         DRM_FORMAT_RGB565, \
52         DRM_FORMAT_XRGB8888, \
53         DRM_FORMAT_ARGB8888
54
55 /* Primary plane formats for gen <= 3 */
56 static const uint32_t intel_primary_formats_gen2[] = {
57         COMMON_PRIMARY_FORMATS,
58         DRM_FORMAT_XRGB1555,
59         DRM_FORMAT_ARGB1555,
60 };
61
62 /* Primary plane formats for gen >= 4 */
63 static const uint32_t intel_primary_formats_gen4[] = {
64         COMMON_PRIMARY_FORMATS, \
65         DRM_FORMAT_XBGR8888,
66         DRM_FORMAT_ABGR8888,
67         DRM_FORMAT_XRGB2101010,
68         DRM_FORMAT_ARGB2101010,
69         DRM_FORMAT_XBGR2101010,
70         DRM_FORMAT_ABGR2101010,
71 };
72
73 /* Cursor formats */
74 static const uint32_t intel_cursor_formats[] = {
75         DRM_FORMAT_ARGB8888,
76 };
77
78 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79
80 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
81                                 struct intel_crtc_state *pipe_config);
82 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
83                                    struct intel_crtc_state *pipe_config);
84
85 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
86                           int x, int y, struct drm_framebuffer *old_fb,
87                           struct drm_atomic_state *state);
88 static int intel_framebuffer_init(struct drm_device *dev,
89                                   struct intel_framebuffer *ifb,
90                                   struct drm_mode_fb_cmd2 *mode_cmd,
91                                   struct drm_i915_gem_object *obj);
92 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
93 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
94 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
95                                          struct intel_link_m_n *m_n,
96                                          struct intel_link_m_n *m2_n2);
97 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
98 static void haswell_set_pipeconf(struct drm_crtc *crtc);
99 static void intel_set_pipe_csc(struct drm_crtc *crtc);
100 static void vlv_prepare_pll(struct intel_crtc *crtc,
101                             const struct intel_crtc_state *pipe_config);
102 static void chv_prepare_pll(struct intel_crtc *crtc,
103                             const struct intel_crtc_state *pipe_config);
104 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
105 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
106
107 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
108 {
109         if (!connector->mst_port)
110                 return connector->encoder;
111         else
112                 return &connector->mst_port->mst_encoders[pipe]->base;
113 }
114
115 typedef struct {
116         int     min, max;
117 } intel_range_t;
118
119 typedef struct {
120         int     dot_limit;
121         int     p2_slow, p2_fast;
122 } intel_p2_t;
123
124 typedef struct intel_limit intel_limit_t;
125 struct intel_limit {
126         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
127         intel_p2_t          p2;
128 };
129
130 int
131 intel_pch_rawclk(struct drm_device *dev)
132 {
133         struct drm_i915_private *dev_priv = dev->dev_private;
134
135         WARN_ON(!HAS_PCH_SPLIT(dev));
136
137         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
138 }
139
140 static inline u32 /* units of 100MHz */
141 intel_fdi_link_freq(struct drm_device *dev)
142 {
143         if (IS_GEN5(dev)) {
144                 struct drm_i915_private *dev_priv = dev->dev_private;
145                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
146         } else
147                 return 27;
148 }
149
150 static const intel_limit_t intel_limits_i8xx_dac = {
151         .dot = { .min = 25000, .max = 350000 },
152         .vco = { .min = 908000, .max = 1512000 },
153         .n = { .min = 2, .max = 16 },
154         .m = { .min = 96, .max = 140 },
155         .m1 = { .min = 18, .max = 26 },
156         .m2 = { .min = 6, .max = 16 },
157         .p = { .min = 4, .max = 128 },
158         .p1 = { .min = 2, .max = 33 },
159         .p2 = { .dot_limit = 165000,
160                 .p2_slow = 4, .p2_fast = 2 },
161 };
162
163 static const intel_limit_t intel_limits_i8xx_dvo = {
164         .dot = { .min = 25000, .max = 350000 },
165         .vco = { .min = 908000, .max = 1512000 },
166         .n = { .min = 2, .max = 16 },
167         .m = { .min = 96, .max = 140 },
168         .m1 = { .min = 18, .max = 26 },
169         .m2 = { .min = 6, .max = 16 },
170         .p = { .min = 4, .max = 128 },
171         .p1 = { .min = 2, .max = 33 },
172         .p2 = { .dot_limit = 165000,
173                 .p2_slow = 4, .p2_fast = 4 },
174 };
175
176 static const intel_limit_t intel_limits_i8xx_lvds = {
177         .dot = { .min = 25000, .max = 350000 },
178         .vco = { .min = 908000, .max = 1512000 },
179         .n = { .min = 2, .max = 16 },
180         .m = { .min = 96, .max = 140 },
181         .m1 = { .min = 18, .max = 26 },
182         .m2 = { .min = 6, .max = 16 },
183         .p = { .min = 4, .max = 128 },
184         .p1 = { .min = 1, .max = 6 },
185         .p2 = { .dot_limit = 165000,
186                 .p2_slow = 14, .p2_fast = 7 },
187 };
188
189 static const intel_limit_t intel_limits_i9xx_sdvo = {
190         .dot = { .min = 20000, .max = 400000 },
191         .vco = { .min = 1400000, .max = 2800000 },
192         .n = { .min = 1, .max = 6 },
193         .m = { .min = 70, .max = 120 },
194         .m1 = { .min = 8, .max = 18 },
195         .m2 = { .min = 3, .max = 7 },
196         .p = { .min = 5, .max = 80 },
197         .p1 = { .min = 1, .max = 8 },
198         .p2 = { .dot_limit = 200000,
199                 .p2_slow = 10, .p2_fast = 5 },
200 };
201
202 static const intel_limit_t intel_limits_i9xx_lvds = {
203         .dot = { .min = 20000, .max = 400000 },
204         .vco = { .min = 1400000, .max = 2800000 },
205         .n = { .min = 1, .max = 6 },
206         .m = { .min = 70, .max = 120 },
207         .m1 = { .min = 8, .max = 18 },
208         .m2 = { .min = 3, .max = 7 },
209         .p = { .min = 7, .max = 98 },
210         .p1 = { .min = 1, .max = 8 },
211         .p2 = { .dot_limit = 112000,
212                 .p2_slow = 14, .p2_fast = 7 },
213 };
214
215
216 static const intel_limit_t intel_limits_g4x_sdvo = {
217         .dot = { .min = 25000, .max = 270000 },
218         .vco = { .min = 1750000, .max = 3500000},
219         .n = { .min = 1, .max = 4 },
220         .m = { .min = 104, .max = 138 },
221         .m1 = { .min = 17, .max = 23 },
222         .m2 = { .min = 5, .max = 11 },
223         .p = { .min = 10, .max = 30 },
224         .p1 = { .min = 1, .max = 3},
225         .p2 = { .dot_limit = 270000,
226                 .p2_slow = 10,
227                 .p2_fast = 10
228         },
229 };
230
231 static const intel_limit_t intel_limits_g4x_hdmi = {
232         .dot = { .min = 22000, .max = 400000 },
233         .vco = { .min = 1750000, .max = 3500000},
234         .n = { .min = 1, .max = 4 },
235         .m = { .min = 104, .max = 138 },
236         .m1 = { .min = 16, .max = 23 },
237         .m2 = { .min = 5, .max = 11 },
238         .p = { .min = 5, .max = 80 },
239         .p1 = { .min = 1, .max = 8},
240         .p2 = { .dot_limit = 165000,
241                 .p2_slow = 10, .p2_fast = 5 },
242 };
243
244 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
245         .dot = { .min = 20000, .max = 115000 },
246         .vco = { .min = 1750000, .max = 3500000 },
247         .n = { .min = 1, .max = 3 },
248         .m = { .min = 104, .max = 138 },
249         .m1 = { .min = 17, .max = 23 },
250         .m2 = { .min = 5, .max = 11 },
251         .p = { .min = 28, .max = 112 },
252         .p1 = { .min = 2, .max = 8 },
253         .p2 = { .dot_limit = 0,
254                 .p2_slow = 14, .p2_fast = 14
255         },
256 };
257
258 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
259         .dot = { .min = 80000, .max = 224000 },
260         .vco = { .min = 1750000, .max = 3500000 },
261         .n = { .min = 1, .max = 3 },
262         .m = { .min = 104, .max = 138 },
263         .m1 = { .min = 17, .max = 23 },
264         .m2 = { .min = 5, .max = 11 },
265         .p = { .min = 14, .max = 42 },
266         .p1 = { .min = 2, .max = 6 },
267         .p2 = { .dot_limit = 0,
268                 .p2_slow = 7, .p2_fast = 7
269         },
270 };
271
272 static const intel_limit_t intel_limits_pineview_sdvo = {
273         .dot = { .min = 20000, .max = 400000},
274         .vco = { .min = 1700000, .max = 3500000 },
275         /* Pineview's Ncounter is a ring counter */
276         .n = { .min = 3, .max = 6 },
277         .m = { .min = 2, .max = 256 },
278         /* Pineview only has one combined m divider, which we treat as m2. */
279         .m1 = { .min = 0, .max = 0 },
280         .m2 = { .min = 0, .max = 254 },
281         .p = { .min = 5, .max = 80 },
282         .p1 = { .min = 1, .max = 8 },
283         .p2 = { .dot_limit = 200000,
284                 .p2_slow = 10, .p2_fast = 5 },
285 };
286
287 static const intel_limit_t intel_limits_pineview_lvds = {
288         .dot = { .min = 20000, .max = 400000 },
289         .vco = { .min = 1700000, .max = 3500000 },
290         .n = { .min = 3, .max = 6 },
291         .m = { .min = 2, .max = 256 },
292         .m1 = { .min = 0, .max = 0 },
293         .m2 = { .min = 0, .max = 254 },
294         .p = { .min = 7, .max = 112 },
295         .p1 = { .min = 1, .max = 8 },
296         .p2 = { .dot_limit = 112000,
297                 .p2_slow = 14, .p2_fast = 14 },
298 };
299
300 /* Ironlake / Sandybridge
301  *
302  * We calculate clock using (register_value + 2) for N/M1/M2, so here
303  * the range value for them is (actual_value - 2).
304  */
305 static const intel_limit_t intel_limits_ironlake_dac = {
306         .dot = { .min = 25000, .max = 350000 },
307         .vco = { .min = 1760000, .max = 3510000 },
308         .n = { .min = 1, .max = 5 },
309         .m = { .min = 79, .max = 127 },
310         .m1 = { .min = 12, .max = 22 },
311         .m2 = { .min = 5, .max = 9 },
312         .p = { .min = 5, .max = 80 },
313         .p1 = { .min = 1, .max = 8 },
314         .p2 = { .dot_limit = 225000,
315                 .p2_slow = 10, .p2_fast = 5 },
316 };
317
318 static const intel_limit_t intel_limits_ironlake_single_lvds = {
319         .dot = { .min = 25000, .max = 350000 },
320         .vco = { .min = 1760000, .max = 3510000 },
321         .n = { .min = 1, .max = 3 },
322         .m = { .min = 79, .max = 118 },
323         .m1 = { .min = 12, .max = 22 },
324         .m2 = { .min = 5, .max = 9 },
325         .p = { .min = 28, .max = 112 },
326         .p1 = { .min = 2, .max = 8 },
327         .p2 = { .dot_limit = 225000,
328                 .p2_slow = 14, .p2_fast = 14 },
329 };
330
331 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
332         .dot = { .min = 25000, .max = 350000 },
333         .vco = { .min = 1760000, .max = 3510000 },
334         .n = { .min = 1, .max = 3 },
335         .m = { .min = 79, .max = 127 },
336         .m1 = { .min = 12, .max = 22 },
337         .m2 = { .min = 5, .max = 9 },
338         .p = { .min = 14, .max = 56 },
339         .p1 = { .min = 2, .max = 8 },
340         .p2 = { .dot_limit = 225000,
341                 .p2_slow = 7, .p2_fast = 7 },
342 };
343
344 /* LVDS 100mhz refclk limits. */
345 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
346         .dot = { .min = 25000, .max = 350000 },
347         .vco = { .min = 1760000, .max = 3510000 },
348         .n = { .min = 1, .max = 2 },
349         .m = { .min = 79, .max = 126 },
350         .m1 = { .min = 12, .max = 22 },
351         .m2 = { .min = 5, .max = 9 },
352         .p = { .min = 28, .max = 112 },
353         .p1 = { .min = 2, .max = 8 },
354         .p2 = { .dot_limit = 225000,
355                 .p2_slow = 14, .p2_fast = 14 },
356 };
357
358 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
359         .dot = { .min = 25000, .max = 350000 },
360         .vco = { .min = 1760000, .max = 3510000 },
361         .n = { .min = 1, .max = 3 },
362         .m = { .min = 79, .max = 126 },
363         .m1 = { .min = 12, .max = 22 },
364         .m2 = { .min = 5, .max = 9 },
365         .p = { .min = 14, .max = 42 },
366         .p1 = { .min = 2, .max = 6 },
367         .p2 = { .dot_limit = 225000,
368                 .p2_slow = 7, .p2_fast = 7 },
369 };
370
371 static const intel_limit_t intel_limits_vlv = {
372          /*
373           * These are the data rate limits (measured in fast clocks)
374           * since those are the strictest limits we have. The fast
375           * clock and actual rate limits are more relaxed, so checking
376           * them would make no difference.
377           */
378         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
379         .vco = { .min = 4000000, .max = 6000000 },
380         .n = { .min = 1, .max = 7 },
381         .m1 = { .min = 2, .max = 3 },
382         .m2 = { .min = 11, .max = 156 },
383         .p1 = { .min = 2, .max = 3 },
384         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
385 };
386
387 static const intel_limit_t intel_limits_chv = {
388         /*
389          * These are the data rate limits (measured in fast clocks)
390          * since those are the strictest limits we have.  The fast
391          * clock and actual rate limits are more relaxed, so checking
392          * them would make no difference.
393          */
394         .dot = { .min = 25000 * 5, .max = 540000 * 5},
395         .vco = { .min = 4800000, .max = 6480000 },
396         .n = { .min = 1, .max = 1 },
397         .m1 = { .min = 2, .max = 2 },
398         .m2 = { .min = 24 << 22, .max = 175 << 22 },
399         .p1 = { .min = 2, .max = 4 },
400         .p2 = { .p2_slow = 1, .p2_fast = 14 },
401 };
402
403 static void vlv_clock(int refclk, intel_clock_t *clock)
404 {
405         clock->m = clock->m1 * clock->m2;
406         clock->p = clock->p1 * clock->p2;
407         if (WARN_ON(clock->n == 0 || clock->p == 0))
408                 return;
409         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
410         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
411 }
412
413 /**
414  * Returns whether any output on the specified pipe is of the specified type
415  */
416 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
417 {
418         struct drm_device *dev = crtc->base.dev;
419         struct intel_encoder *encoder;
420
421         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
422                 if (encoder->type == type)
423                         return true;
424
425         return false;
426 }
427
428 /**
429  * Returns whether any output on the specified pipe will have the specified
430  * type after a staged modeset is complete, i.e., the same as
431  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
432  * encoder->crtc.
433  */
434 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
435                                       int type)
436 {
437         struct drm_atomic_state *state = crtc_state->base.state;
438         struct drm_connector_state *connector_state;
439         struct intel_encoder *encoder;
440         int i, num_connectors = 0;
441
442         for (i = 0; i < state->num_connector; i++) {
443                 if (!state->connectors[i])
444                         continue;
445
446                 connector_state = state->connector_states[i];
447                 if (connector_state->crtc != crtc_state->base.crtc)
448                         continue;
449
450                 num_connectors++;
451
452                 encoder = to_intel_encoder(connector_state->best_encoder);
453                 if (encoder->type == type)
454                         return true;
455         }
456
457         WARN_ON(num_connectors == 0);
458
459         return false;
460 }
461
462 static const intel_limit_t *
463 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
464 {
465         struct drm_device *dev = crtc_state->base.crtc->dev;
466         const intel_limit_t *limit;
467
468         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
469                 if (intel_is_dual_link_lvds(dev)) {
470                         if (refclk == 100000)
471                                 limit = &intel_limits_ironlake_dual_lvds_100m;
472                         else
473                                 limit = &intel_limits_ironlake_dual_lvds;
474                 } else {
475                         if (refclk == 100000)
476                                 limit = &intel_limits_ironlake_single_lvds_100m;
477                         else
478                                 limit = &intel_limits_ironlake_single_lvds;
479                 }
480         } else
481                 limit = &intel_limits_ironlake_dac;
482
483         return limit;
484 }
485
486 static const intel_limit_t *
487 intel_g4x_limit(struct intel_crtc_state *crtc_state)
488 {
489         struct drm_device *dev = crtc_state->base.crtc->dev;
490         const intel_limit_t *limit;
491
492         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
493                 if (intel_is_dual_link_lvds(dev))
494                         limit = &intel_limits_g4x_dual_channel_lvds;
495                 else
496                         limit = &intel_limits_g4x_single_channel_lvds;
497         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
498                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
499                 limit = &intel_limits_g4x_hdmi;
500         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
501                 limit = &intel_limits_g4x_sdvo;
502         } else /* The option is for other outputs */
503                 limit = &intel_limits_i9xx_sdvo;
504
505         return limit;
506 }
507
508 static const intel_limit_t *
509 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
510 {
511         struct drm_device *dev = crtc_state->base.crtc->dev;
512         const intel_limit_t *limit;
513
514         if (HAS_PCH_SPLIT(dev))
515                 limit = intel_ironlake_limit(crtc_state, refclk);
516         else if (IS_G4X(dev)) {
517                 limit = intel_g4x_limit(crtc_state);
518         } else if (IS_PINEVIEW(dev)) {
519                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
520                         limit = &intel_limits_pineview_lvds;
521                 else
522                         limit = &intel_limits_pineview_sdvo;
523         } else if (IS_CHERRYVIEW(dev)) {
524                 limit = &intel_limits_chv;
525         } else if (IS_VALLEYVIEW(dev)) {
526                 limit = &intel_limits_vlv;
527         } else if (!IS_GEN2(dev)) {
528                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
529                         limit = &intel_limits_i9xx_lvds;
530                 else
531                         limit = &intel_limits_i9xx_sdvo;
532         } else {
533                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
534                         limit = &intel_limits_i8xx_lvds;
535                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
536                         limit = &intel_limits_i8xx_dvo;
537                 else
538                         limit = &intel_limits_i8xx_dac;
539         }
540         return limit;
541 }
542
543 /* m1 is reserved as 0 in Pineview, n is a ring counter */
544 static void pineview_clock(int refclk, intel_clock_t *clock)
545 {
546         clock->m = clock->m2 + 2;
547         clock->p = clock->p1 * clock->p2;
548         if (WARN_ON(clock->n == 0 || clock->p == 0))
549                 return;
550         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
551         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
552 }
553
554 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
555 {
556         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
557 }
558
559 static void i9xx_clock(int refclk, intel_clock_t *clock)
560 {
561         clock->m = i9xx_dpll_compute_m(clock);
562         clock->p = clock->p1 * clock->p2;
563         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
564                 return;
565         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
566         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
567 }
568
569 static void chv_clock(int refclk, intel_clock_t *clock)
570 {
571         clock->m = clock->m1 * clock->m2;
572         clock->p = clock->p1 * clock->p2;
573         if (WARN_ON(clock->n == 0 || clock->p == 0))
574                 return;
575         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
576                         clock->n << 22);
577         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
578 }
579
580 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
581 /**
582  * Returns whether the given set of divisors are valid for a given refclk with
583  * the given connectors.
584  */
585
586 static bool intel_PLL_is_valid(struct drm_device *dev,
587                                const intel_limit_t *limit,
588                                const intel_clock_t *clock)
589 {
590         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
591                 INTELPllInvalid("n out of range\n");
592         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
593                 INTELPllInvalid("p1 out of range\n");
594         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
595                 INTELPllInvalid("m2 out of range\n");
596         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
597                 INTELPllInvalid("m1 out of range\n");
598
599         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
600                 if (clock->m1 <= clock->m2)
601                         INTELPllInvalid("m1 <= m2\n");
602
603         if (!IS_VALLEYVIEW(dev)) {
604                 if (clock->p < limit->p.min || limit->p.max < clock->p)
605                         INTELPllInvalid("p out of range\n");
606                 if (clock->m < limit->m.min || limit->m.max < clock->m)
607                         INTELPllInvalid("m out of range\n");
608         }
609
610         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
611                 INTELPllInvalid("vco out of range\n");
612         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
613          * connector, etc., rather than just a single range.
614          */
615         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
616                 INTELPllInvalid("dot out of range\n");
617
618         return true;
619 }
620
621 static bool
622 i9xx_find_best_dpll(const intel_limit_t *limit,
623                     struct intel_crtc_state *crtc_state,
624                     int target, int refclk, intel_clock_t *match_clock,
625                     intel_clock_t *best_clock)
626 {
627         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
628         struct drm_device *dev = crtc->base.dev;
629         intel_clock_t clock;
630         int err = target;
631
632         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
633                 /*
634                  * For LVDS just rely on its current settings for dual-channel.
635                  * We haven't figured out how to reliably set up different
636                  * single/dual channel state, if we even can.
637                  */
638                 if (intel_is_dual_link_lvds(dev))
639                         clock.p2 = limit->p2.p2_fast;
640                 else
641                         clock.p2 = limit->p2.p2_slow;
642         } else {
643                 if (target < limit->p2.dot_limit)
644                         clock.p2 = limit->p2.p2_slow;
645                 else
646                         clock.p2 = limit->p2.p2_fast;
647         }
648
649         memset(best_clock, 0, sizeof(*best_clock));
650
651         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
652              clock.m1++) {
653                 for (clock.m2 = limit->m2.min;
654                      clock.m2 <= limit->m2.max; clock.m2++) {
655                         if (clock.m2 >= clock.m1)
656                                 break;
657                         for (clock.n = limit->n.min;
658                              clock.n <= limit->n.max; clock.n++) {
659                                 for (clock.p1 = limit->p1.min;
660                                         clock.p1 <= limit->p1.max; clock.p1++) {
661                                         int this_err;
662
663                                         i9xx_clock(refclk, &clock);
664                                         if (!intel_PLL_is_valid(dev, limit,
665                                                                 &clock))
666                                                 continue;
667                                         if (match_clock &&
668                                             clock.p != match_clock->p)
669                                                 continue;
670
671                                         this_err = abs(clock.dot - target);
672                                         if (this_err < err) {
673                                                 *best_clock = clock;
674                                                 err = this_err;
675                                         }
676                                 }
677                         }
678                 }
679         }
680
681         return (err != target);
682 }
683
684 static bool
685 pnv_find_best_dpll(const intel_limit_t *limit,
686                    struct intel_crtc_state *crtc_state,
687                    int target, int refclk, intel_clock_t *match_clock,
688                    intel_clock_t *best_clock)
689 {
690         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
691         struct drm_device *dev = crtc->base.dev;
692         intel_clock_t clock;
693         int err = target;
694
695         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
696                 /*
697                  * For LVDS just rely on its current settings for dual-channel.
698                  * We haven't figured out how to reliably set up different
699                  * single/dual channel state, if we even can.
700                  */
701                 if (intel_is_dual_link_lvds(dev))
702                         clock.p2 = limit->p2.p2_fast;
703                 else
704                         clock.p2 = limit->p2.p2_slow;
705         } else {
706                 if (target < limit->p2.dot_limit)
707                         clock.p2 = limit->p2.p2_slow;
708                 else
709                         clock.p2 = limit->p2.p2_fast;
710         }
711
712         memset(best_clock, 0, sizeof(*best_clock));
713
714         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
715              clock.m1++) {
716                 for (clock.m2 = limit->m2.min;
717                      clock.m2 <= limit->m2.max; clock.m2++) {
718                         for (clock.n = limit->n.min;
719                              clock.n <= limit->n.max; clock.n++) {
720                                 for (clock.p1 = limit->p1.min;
721                                         clock.p1 <= limit->p1.max; clock.p1++) {
722                                         int this_err;
723
724                                         pineview_clock(refclk, &clock);
725                                         if (!intel_PLL_is_valid(dev, limit,
726                                                                 &clock))
727                                                 continue;
728                                         if (match_clock &&
729                                             clock.p != match_clock->p)
730                                                 continue;
731
732                                         this_err = abs(clock.dot - target);
733                                         if (this_err < err) {
734                                                 *best_clock = clock;
735                                                 err = this_err;
736                                         }
737                                 }
738                         }
739                 }
740         }
741
742         return (err != target);
743 }
744
745 static bool
746 g4x_find_best_dpll(const intel_limit_t *limit,
747                    struct intel_crtc_state *crtc_state,
748                    int target, int refclk, intel_clock_t *match_clock,
749                    intel_clock_t *best_clock)
750 {
751         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
752         struct drm_device *dev = crtc->base.dev;
753         intel_clock_t clock;
754         int max_n;
755         bool found;
756         /* approximately equals target * 0.00585 */
757         int err_most = (target >> 8) + (target >> 9);
758         found = false;
759
760         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
761                 if (intel_is_dual_link_lvds(dev))
762                         clock.p2 = limit->p2.p2_fast;
763                 else
764                         clock.p2 = limit->p2.p2_slow;
765         } else {
766                 if (target < limit->p2.dot_limit)
767                         clock.p2 = limit->p2.p2_slow;
768                 else
769                         clock.p2 = limit->p2.p2_fast;
770         }
771
772         memset(best_clock, 0, sizeof(*best_clock));
773         max_n = limit->n.max;
774         /* based on hardware requirement, prefer smaller n to precision */
775         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
776                 /* based on hardware requirement, prefere larger m1,m2 */
777                 for (clock.m1 = limit->m1.max;
778                      clock.m1 >= limit->m1.min; clock.m1--) {
779                         for (clock.m2 = limit->m2.max;
780                              clock.m2 >= limit->m2.min; clock.m2--) {
781                                 for (clock.p1 = limit->p1.max;
782                                      clock.p1 >= limit->p1.min; clock.p1--) {
783                                         int this_err;
784
785                                         i9xx_clock(refclk, &clock);
786                                         if (!intel_PLL_is_valid(dev, limit,
787                                                                 &clock))
788                                                 continue;
789
790                                         this_err = abs(clock.dot - target);
791                                         if (this_err < err_most) {
792                                                 *best_clock = clock;
793                                                 err_most = this_err;
794                                                 max_n = clock.n;
795                                                 found = true;
796                                         }
797                                 }
798                         }
799                 }
800         }
801         return found;
802 }
803
804 /*
805  * Check if the calculated PLL configuration is more optimal compared to the
806  * best configuration and error found so far. Return the calculated error.
807  */
808 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
809                                const intel_clock_t *calculated_clock,
810                                const intel_clock_t *best_clock,
811                                unsigned int best_error_ppm,
812                                unsigned int *error_ppm)
813 {
814         /*
815          * For CHV ignore the error and consider only the P value.
816          * Prefer a bigger P value based on HW requirements.
817          */
818         if (IS_CHERRYVIEW(dev)) {
819                 *error_ppm = 0;
820
821                 return calculated_clock->p > best_clock->p;
822         }
823
824         if (WARN_ON_ONCE(!target_freq))
825                 return false;
826
827         *error_ppm = div_u64(1000000ULL *
828                                 abs(target_freq - calculated_clock->dot),
829                              target_freq);
830         /*
831          * Prefer a better P value over a better (smaller) error if the error
832          * is small. Ensure this preference for future configurations too by
833          * setting the error to 0.
834          */
835         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
836                 *error_ppm = 0;
837
838                 return true;
839         }
840
841         return *error_ppm + 10 < best_error_ppm;
842 }
843
844 static bool
845 vlv_find_best_dpll(const intel_limit_t *limit,
846                    struct intel_crtc_state *crtc_state,
847                    int target, int refclk, intel_clock_t *match_clock,
848                    intel_clock_t *best_clock)
849 {
850         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
851         struct drm_device *dev = crtc->base.dev;
852         intel_clock_t clock;
853         unsigned int bestppm = 1000000;
854         /* min update 19.2 MHz */
855         int max_n = min(limit->n.max, refclk / 19200);
856         bool found = false;
857
858         target *= 5; /* fast clock */
859
860         memset(best_clock, 0, sizeof(*best_clock));
861
862         /* based on hardware requirement, prefer smaller n to precision */
863         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
864                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
865                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
866                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
867                                 clock.p = clock.p1 * clock.p2;
868                                 /* based on hardware requirement, prefer bigger m1,m2 values */
869                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
870                                         unsigned int ppm;
871
872                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
873                                                                      refclk * clock.m1);
874
875                                         vlv_clock(refclk, &clock);
876
877                                         if (!intel_PLL_is_valid(dev, limit,
878                                                                 &clock))
879                                                 continue;
880
881                                         if (!vlv_PLL_is_optimal(dev, target,
882                                                                 &clock,
883                                                                 best_clock,
884                                                                 bestppm, &ppm))
885                                                 continue;
886
887                                         *best_clock = clock;
888                                         bestppm = ppm;
889                                         found = true;
890                                 }
891                         }
892                 }
893         }
894
895         return found;
896 }
897
898 static bool
899 chv_find_best_dpll(const intel_limit_t *limit,
900                    struct intel_crtc_state *crtc_state,
901                    int target, int refclk, intel_clock_t *match_clock,
902                    intel_clock_t *best_clock)
903 {
904         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
905         struct drm_device *dev = crtc->base.dev;
906         unsigned int best_error_ppm;
907         intel_clock_t clock;
908         uint64_t m2;
909         int found = false;
910
911         memset(best_clock, 0, sizeof(*best_clock));
912         best_error_ppm = 1000000;
913
914         /*
915          * Based on hardware doc, the n always set to 1, and m1 always
916          * set to 2.  If requires to support 200Mhz refclk, we need to
917          * revisit this because n may not 1 anymore.
918          */
919         clock.n = 1, clock.m1 = 2;
920         target *= 5;    /* fast clock */
921
922         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
923                 for (clock.p2 = limit->p2.p2_fast;
924                                 clock.p2 >= limit->p2.p2_slow;
925                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
926                         unsigned int error_ppm;
927
928                         clock.p = clock.p1 * clock.p2;
929
930                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
931                                         clock.n) << 22, refclk * clock.m1);
932
933                         if (m2 > INT_MAX/clock.m1)
934                                 continue;
935
936                         clock.m2 = m2;
937
938                         chv_clock(refclk, &clock);
939
940                         if (!intel_PLL_is_valid(dev, limit, &clock))
941                                 continue;
942
943                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
944                                                 best_error_ppm, &error_ppm))
945                                 continue;
946
947                         *best_clock = clock;
948                         best_error_ppm = error_ppm;
949                         found = true;
950                 }
951         }
952
953         return found;
954 }
955
956 bool intel_crtc_active(struct drm_crtc *crtc)
957 {
958         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
959
960         /* Be paranoid as we can arrive here with only partial
961          * state retrieved from the hardware during setup.
962          *
963          * We can ditch the adjusted_mode.crtc_clock check as soon
964          * as Haswell has gained clock readout/fastboot support.
965          *
966          * We can ditch the crtc->primary->fb check as soon as we can
967          * properly reconstruct framebuffers.
968          *
969          * FIXME: The intel_crtc->active here should be switched to
970          * crtc->state->active once we have proper CRTC states wired up
971          * for atomic.
972          */
973         return intel_crtc->active && crtc->primary->state->fb &&
974                 intel_crtc->config->base.adjusted_mode.crtc_clock;
975 }
976
977 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
978                                              enum pipe pipe)
979 {
980         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
981         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
982
983         return intel_crtc->config->cpu_transcoder;
984 }
985
986 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
987 {
988         struct drm_i915_private *dev_priv = dev->dev_private;
989         u32 reg = PIPEDSL(pipe);
990         u32 line1, line2;
991         u32 line_mask;
992
993         if (IS_GEN2(dev))
994                 line_mask = DSL_LINEMASK_GEN2;
995         else
996                 line_mask = DSL_LINEMASK_GEN3;
997
998         line1 = I915_READ(reg) & line_mask;
999         mdelay(5);
1000         line2 = I915_READ(reg) & line_mask;
1001
1002         return line1 == line2;
1003 }
1004
1005 /*
1006  * intel_wait_for_pipe_off - wait for pipe to turn off
1007  * @crtc: crtc whose pipe to wait for
1008  *
1009  * After disabling a pipe, we can't wait for vblank in the usual way,
1010  * spinning on the vblank interrupt status bit, since we won't actually
1011  * see an interrupt when the pipe is disabled.
1012  *
1013  * On Gen4 and above:
1014  *   wait for the pipe register state bit to turn off
1015  *
1016  * Otherwise:
1017  *   wait for the display line value to settle (it usually
1018  *   ends up stopping at the start of the next frame).
1019  *
1020  */
1021 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1022 {
1023         struct drm_device *dev = crtc->base.dev;
1024         struct drm_i915_private *dev_priv = dev->dev_private;
1025         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1026         enum pipe pipe = crtc->pipe;
1027
1028         if (INTEL_INFO(dev)->gen >= 4) {
1029                 int reg = PIPECONF(cpu_transcoder);
1030
1031                 /* Wait for the Pipe State to go off */
1032                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1033                              100))
1034                         WARN(1, "pipe_off wait timed out\n");
1035         } else {
1036                 /* Wait for the display line to settle */
1037                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1038                         WARN(1, "pipe_off wait timed out\n");
1039         }
1040 }
1041
1042 /*
1043  * ibx_digital_port_connected - is the specified port connected?
1044  * @dev_priv: i915 private structure
1045  * @port: the port to test
1046  *
1047  * Returns true if @port is connected, false otherwise.
1048  */
1049 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1050                                 struct intel_digital_port *port)
1051 {
1052         u32 bit;
1053
1054         if (HAS_PCH_IBX(dev_priv->dev)) {
1055                 switch (port->port) {
1056                 case PORT_B:
1057                         bit = SDE_PORTB_HOTPLUG;
1058                         break;
1059                 case PORT_C:
1060                         bit = SDE_PORTC_HOTPLUG;
1061                         break;
1062                 case PORT_D:
1063                         bit = SDE_PORTD_HOTPLUG;
1064                         break;
1065                 default:
1066                         return true;
1067                 }
1068         } else {
1069                 switch (port->port) {
1070                 case PORT_B:
1071                         bit = SDE_PORTB_HOTPLUG_CPT;
1072                         break;
1073                 case PORT_C:
1074                         bit = SDE_PORTC_HOTPLUG_CPT;
1075                         break;
1076                 case PORT_D:
1077                         bit = SDE_PORTD_HOTPLUG_CPT;
1078                         break;
1079                 default:
1080                         return true;
1081                 }
1082         }
1083
1084         return I915_READ(SDEISR) & bit;
1085 }
1086
1087 static const char *state_string(bool enabled)
1088 {
1089         return enabled ? "on" : "off";
1090 }
1091
1092 /* Only for pre-ILK configs */
1093 void assert_pll(struct drm_i915_private *dev_priv,
1094                 enum pipe pipe, bool state)
1095 {
1096         int reg;
1097         u32 val;
1098         bool cur_state;
1099
1100         reg = DPLL(pipe);
1101         val = I915_READ(reg);
1102         cur_state = !!(val & DPLL_VCO_ENABLE);
1103         I915_STATE_WARN(cur_state != state,
1104              "PLL state assertion failure (expected %s, current %s)\n",
1105              state_string(state), state_string(cur_state));
1106 }
1107
1108 /* XXX: the dsi pll is shared between MIPI DSI ports */
1109 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1110 {
1111         u32 val;
1112         bool cur_state;
1113
1114         mutex_lock(&dev_priv->dpio_lock);
1115         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1116         mutex_unlock(&dev_priv->dpio_lock);
1117
1118         cur_state = val & DSI_PLL_VCO_EN;
1119         I915_STATE_WARN(cur_state != state,
1120              "DSI PLL state assertion failure (expected %s, current %s)\n",
1121              state_string(state), state_string(cur_state));
1122 }
1123 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1124 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1125
1126 struct intel_shared_dpll *
1127 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1128 {
1129         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1130
1131         if (crtc->config->shared_dpll < 0)
1132                 return NULL;
1133
1134         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1135 }
1136
1137 /* For ILK+ */
1138 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1139                         struct intel_shared_dpll *pll,
1140                         bool state)
1141 {
1142         bool cur_state;
1143         struct intel_dpll_hw_state hw_state;
1144
1145         if (WARN (!pll,
1146                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1147                 return;
1148
1149         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1150         I915_STATE_WARN(cur_state != state,
1151              "%s assertion failure (expected %s, current %s)\n",
1152              pll->name, state_string(state), state_string(cur_state));
1153 }
1154
1155 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1156                           enum pipe pipe, bool state)
1157 {
1158         int reg;
1159         u32 val;
1160         bool cur_state;
1161         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1162                                                                       pipe);
1163
1164         if (HAS_DDI(dev_priv->dev)) {
1165                 /* DDI does not have a specific FDI_TX register */
1166                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1167                 val = I915_READ(reg);
1168                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1169         } else {
1170                 reg = FDI_TX_CTL(pipe);
1171                 val = I915_READ(reg);
1172                 cur_state = !!(val & FDI_TX_ENABLE);
1173         }
1174         I915_STATE_WARN(cur_state != state,
1175              "FDI TX state assertion failure (expected %s, current %s)\n",
1176              state_string(state), state_string(cur_state));
1177 }
1178 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1179 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1180
1181 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1182                           enum pipe pipe, bool state)
1183 {
1184         int reg;
1185         u32 val;
1186         bool cur_state;
1187
1188         reg = FDI_RX_CTL(pipe);
1189         val = I915_READ(reg);
1190         cur_state = !!(val & FDI_RX_ENABLE);
1191         I915_STATE_WARN(cur_state != state,
1192              "FDI RX state assertion failure (expected %s, current %s)\n",
1193              state_string(state), state_string(cur_state));
1194 }
1195 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1196 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1197
1198 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1199                                       enum pipe pipe)
1200 {
1201         int reg;
1202         u32 val;
1203
1204         /* ILK FDI PLL is always enabled */
1205         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1206                 return;
1207
1208         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1209         if (HAS_DDI(dev_priv->dev))
1210                 return;
1211
1212         reg = FDI_TX_CTL(pipe);
1213         val = I915_READ(reg);
1214         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1215 }
1216
1217 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1218                        enum pipe pipe, bool state)
1219 {
1220         int reg;
1221         u32 val;
1222         bool cur_state;
1223
1224         reg = FDI_RX_CTL(pipe);
1225         val = I915_READ(reg);
1226         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1227         I915_STATE_WARN(cur_state != state,
1228              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1229              state_string(state), state_string(cur_state));
1230 }
1231
1232 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1233                            enum pipe pipe)
1234 {
1235         struct drm_device *dev = dev_priv->dev;
1236         int pp_reg;
1237         u32 val;
1238         enum pipe panel_pipe = PIPE_A;
1239         bool locked = true;
1240
1241         if (WARN_ON(HAS_DDI(dev)))
1242                 return;
1243
1244         if (HAS_PCH_SPLIT(dev)) {
1245                 u32 port_sel;
1246
1247                 pp_reg = PCH_PP_CONTROL;
1248                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1249
1250                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1251                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1252                         panel_pipe = PIPE_B;
1253                 /* XXX: else fix for eDP */
1254         } else if (IS_VALLEYVIEW(dev)) {
1255                 /* presumably write lock depends on pipe, not port select */
1256                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1257                 panel_pipe = pipe;
1258         } else {
1259                 pp_reg = PP_CONTROL;
1260                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1261                         panel_pipe = PIPE_B;
1262         }
1263
1264         val = I915_READ(pp_reg);
1265         if (!(val & PANEL_POWER_ON) ||
1266             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1267                 locked = false;
1268
1269         I915_STATE_WARN(panel_pipe == pipe && locked,
1270              "panel assertion failure, pipe %c regs locked\n",
1271              pipe_name(pipe));
1272 }
1273
1274 static void assert_cursor(struct drm_i915_private *dev_priv,
1275                           enum pipe pipe, bool state)
1276 {
1277         struct drm_device *dev = dev_priv->dev;
1278         bool cur_state;
1279
1280         if (IS_845G(dev) || IS_I865G(dev))
1281                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1282         else
1283                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1284
1285         I915_STATE_WARN(cur_state != state,
1286              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1287              pipe_name(pipe), state_string(state), state_string(cur_state));
1288 }
1289 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1290 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1291
1292 void assert_pipe(struct drm_i915_private *dev_priv,
1293                  enum pipe pipe, bool state)
1294 {
1295         int reg;
1296         u32 val;
1297         bool cur_state;
1298         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1299                                                                       pipe);
1300
1301         /* if we need the pipe quirk it must be always on */
1302         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1303             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1304                 state = true;
1305
1306         if (!intel_display_power_is_enabled(dev_priv,
1307                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1308                 cur_state = false;
1309         } else {
1310                 reg = PIPECONF(cpu_transcoder);
1311                 val = I915_READ(reg);
1312                 cur_state = !!(val & PIPECONF_ENABLE);
1313         }
1314
1315         I915_STATE_WARN(cur_state != state,
1316              "pipe %c assertion failure (expected %s, current %s)\n",
1317              pipe_name(pipe), state_string(state), state_string(cur_state));
1318 }
1319
1320 static void assert_plane(struct drm_i915_private *dev_priv,
1321                          enum plane plane, bool state)
1322 {
1323         int reg;
1324         u32 val;
1325         bool cur_state;
1326
1327         reg = DSPCNTR(plane);
1328         val = I915_READ(reg);
1329         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1330         I915_STATE_WARN(cur_state != state,
1331              "plane %c assertion failure (expected %s, current %s)\n",
1332              plane_name(plane), state_string(state), state_string(cur_state));
1333 }
1334
1335 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1336 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1337
1338 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1339                                    enum pipe pipe)
1340 {
1341         struct drm_device *dev = dev_priv->dev;
1342         int reg, i;
1343         u32 val;
1344         int cur_pipe;
1345
1346         /* Primary planes are fixed to pipes on gen4+ */
1347         if (INTEL_INFO(dev)->gen >= 4) {
1348                 reg = DSPCNTR(pipe);
1349                 val = I915_READ(reg);
1350                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1351                      "plane %c assertion failure, should be disabled but not\n",
1352                      plane_name(pipe));
1353                 return;
1354         }
1355
1356         /* Need to check both planes against the pipe */
1357         for_each_pipe(dev_priv, i) {
1358                 reg = DSPCNTR(i);
1359                 val = I915_READ(reg);
1360                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1361                         DISPPLANE_SEL_PIPE_SHIFT;
1362                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1363                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1364                      plane_name(i), pipe_name(pipe));
1365         }
1366 }
1367
1368 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1369                                     enum pipe pipe)
1370 {
1371         struct drm_device *dev = dev_priv->dev;
1372         int reg, sprite;
1373         u32 val;
1374
1375         if (INTEL_INFO(dev)->gen >= 9) {
1376                 for_each_sprite(dev_priv, pipe, sprite) {
1377                         val = I915_READ(PLANE_CTL(pipe, sprite));
1378                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1379                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1380                              sprite, pipe_name(pipe));
1381                 }
1382         } else if (IS_VALLEYVIEW(dev)) {
1383                 for_each_sprite(dev_priv, pipe, sprite) {
1384                         reg = SPCNTR(pipe, sprite);
1385                         val = I915_READ(reg);
1386                         I915_STATE_WARN(val & SP_ENABLE,
1387                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1388                              sprite_name(pipe, sprite), pipe_name(pipe));
1389                 }
1390         } else if (INTEL_INFO(dev)->gen >= 7) {
1391                 reg = SPRCTL(pipe);
1392                 val = I915_READ(reg);
1393                 I915_STATE_WARN(val & SPRITE_ENABLE,
1394                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1395                      plane_name(pipe), pipe_name(pipe));
1396         } else if (INTEL_INFO(dev)->gen >= 5) {
1397                 reg = DVSCNTR(pipe);
1398                 val = I915_READ(reg);
1399                 I915_STATE_WARN(val & DVS_ENABLE,
1400                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1401                      plane_name(pipe), pipe_name(pipe));
1402         }
1403 }
1404
1405 static void assert_vblank_disabled(struct drm_crtc *crtc)
1406 {
1407         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1408                 drm_crtc_vblank_put(crtc);
1409 }
1410
1411 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1412 {
1413         u32 val;
1414         bool enabled;
1415
1416         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1417
1418         val = I915_READ(PCH_DREF_CONTROL);
1419         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1420                             DREF_SUPERSPREAD_SOURCE_MASK));
1421         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1422 }
1423
1424 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1425                                            enum pipe pipe)
1426 {
1427         int reg;
1428         u32 val;
1429         bool enabled;
1430
1431         reg = PCH_TRANSCONF(pipe);
1432         val = I915_READ(reg);
1433         enabled = !!(val & TRANS_ENABLE);
1434         I915_STATE_WARN(enabled,
1435              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1436              pipe_name(pipe));
1437 }
1438
1439 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1440                             enum pipe pipe, u32 port_sel, u32 val)
1441 {
1442         if ((val & DP_PORT_EN) == 0)
1443                 return false;
1444
1445         if (HAS_PCH_CPT(dev_priv->dev)) {
1446                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1447                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1448                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1449                         return false;
1450         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1451                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1452                         return false;
1453         } else {
1454                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1455                         return false;
1456         }
1457         return true;
1458 }
1459
1460 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1461                               enum pipe pipe, u32 val)
1462 {
1463         if ((val & SDVO_ENABLE) == 0)
1464                 return false;
1465
1466         if (HAS_PCH_CPT(dev_priv->dev)) {
1467                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1468                         return false;
1469         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1470                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1471                         return false;
1472         } else {
1473                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1474                         return false;
1475         }
1476         return true;
1477 }
1478
1479 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1480                               enum pipe pipe, u32 val)
1481 {
1482         if ((val & LVDS_PORT_EN) == 0)
1483                 return false;
1484
1485         if (HAS_PCH_CPT(dev_priv->dev)) {
1486                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1487                         return false;
1488         } else {
1489                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1490                         return false;
1491         }
1492         return true;
1493 }
1494
1495 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1496                               enum pipe pipe, u32 val)
1497 {
1498         if ((val & ADPA_DAC_ENABLE) == 0)
1499                 return false;
1500         if (HAS_PCH_CPT(dev_priv->dev)) {
1501                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1502                         return false;
1503         } else {
1504                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1505                         return false;
1506         }
1507         return true;
1508 }
1509
1510 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1511                                    enum pipe pipe, int reg, u32 port_sel)
1512 {
1513         u32 val = I915_READ(reg);
1514         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1515              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1516              reg, pipe_name(pipe));
1517
1518         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1519              && (val & DP_PIPEB_SELECT),
1520              "IBX PCH dp port still using transcoder B\n");
1521 }
1522
1523 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1524                                      enum pipe pipe, int reg)
1525 {
1526         u32 val = I915_READ(reg);
1527         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1528              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1529              reg, pipe_name(pipe));
1530
1531         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1532              && (val & SDVO_PIPE_B_SELECT),
1533              "IBX PCH hdmi port still using transcoder B\n");
1534 }
1535
1536 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1537                                       enum pipe pipe)
1538 {
1539         int reg;
1540         u32 val;
1541
1542         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1543         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1544         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1545
1546         reg = PCH_ADPA;
1547         val = I915_READ(reg);
1548         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1549              "PCH VGA enabled on transcoder %c, should be disabled\n",
1550              pipe_name(pipe));
1551
1552         reg = PCH_LVDS;
1553         val = I915_READ(reg);
1554         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1555              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1556              pipe_name(pipe));
1557
1558         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1559         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1560         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1561 }
1562
1563 static void intel_init_dpio(struct drm_device *dev)
1564 {
1565         struct drm_i915_private *dev_priv = dev->dev_private;
1566
1567         if (!IS_VALLEYVIEW(dev))
1568                 return;
1569
1570         /*
1571          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1572          * CHV x1 PHY (DP/HDMI D)
1573          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1574          */
1575         if (IS_CHERRYVIEW(dev)) {
1576                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1577                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1578         } else {
1579                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1580         }
1581 }
1582
1583 static void vlv_enable_pll(struct intel_crtc *crtc,
1584                            const struct intel_crtc_state *pipe_config)
1585 {
1586         struct drm_device *dev = crtc->base.dev;
1587         struct drm_i915_private *dev_priv = dev->dev_private;
1588         int reg = DPLL(crtc->pipe);
1589         u32 dpll = pipe_config->dpll_hw_state.dpll;
1590
1591         assert_pipe_disabled(dev_priv, crtc->pipe);
1592
1593         /* No really, not for ILK+ */
1594         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1595
1596         /* PLL is protected by panel, make sure we can write it */
1597         if (IS_MOBILE(dev_priv->dev))
1598                 assert_panel_unlocked(dev_priv, crtc->pipe);
1599
1600         I915_WRITE(reg, dpll);
1601         POSTING_READ(reg);
1602         udelay(150);
1603
1604         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1605                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1606
1607         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1608         POSTING_READ(DPLL_MD(crtc->pipe));
1609
1610         /* We do this three times for luck */
1611         I915_WRITE(reg, dpll);
1612         POSTING_READ(reg);
1613         udelay(150); /* wait for warmup */
1614         I915_WRITE(reg, dpll);
1615         POSTING_READ(reg);
1616         udelay(150); /* wait for warmup */
1617         I915_WRITE(reg, dpll);
1618         POSTING_READ(reg);
1619         udelay(150); /* wait for warmup */
1620 }
1621
1622 static void chv_enable_pll(struct intel_crtc *crtc,
1623                            const struct intel_crtc_state *pipe_config)
1624 {
1625         struct drm_device *dev = crtc->base.dev;
1626         struct drm_i915_private *dev_priv = dev->dev_private;
1627         int pipe = crtc->pipe;
1628         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1629         u32 tmp;
1630
1631         assert_pipe_disabled(dev_priv, crtc->pipe);
1632
1633         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1634
1635         mutex_lock(&dev_priv->dpio_lock);
1636
1637         /* Enable back the 10bit clock to display controller */
1638         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1639         tmp |= DPIO_DCLKP_EN;
1640         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1641
1642         /*
1643          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1644          */
1645         udelay(1);
1646
1647         /* Enable PLL */
1648         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1649
1650         /* Check PLL is locked */
1651         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1652                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1653
1654         /* not sure when this should be written */
1655         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1656         POSTING_READ(DPLL_MD(pipe));
1657
1658         mutex_unlock(&dev_priv->dpio_lock);
1659 }
1660
1661 static int intel_num_dvo_pipes(struct drm_device *dev)
1662 {
1663         struct intel_crtc *crtc;
1664         int count = 0;
1665
1666         for_each_intel_crtc(dev, crtc)
1667                 count += crtc->active &&
1668                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1669
1670         return count;
1671 }
1672
1673 static void i9xx_enable_pll(struct intel_crtc *crtc)
1674 {
1675         struct drm_device *dev = crtc->base.dev;
1676         struct drm_i915_private *dev_priv = dev->dev_private;
1677         int reg = DPLL(crtc->pipe);
1678         u32 dpll = crtc->config->dpll_hw_state.dpll;
1679
1680         assert_pipe_disabled(dev_priv, crtc->pipe);
1681
1682         /* No really, not for ILK+ */
1683         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1684
1685         /* PLL is protected by panel, make sure we can write it */
1686         if (IS_MOBILE(dev) && !IS_I830(dev))
1687                 assert_panel_unlocked(dev_priv, crtc->pipe);
1688
1689         /* Enable DVO 2x clock on both PLLs if necessary */
1690         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1691                 /*
1692                  * It appears to be important that we don't enable this
1693                  * for the current pipe before otherwise configuring the
1694                  * PLL. No idea how this should be handled if multiple
1695                  * DVO outputs are enabled simultaneosly.
1696                  */
1697                 dpll |= DPLL_DVO_2X_MODE;
1698                 I915_WRITE(DPLL(!crtc->pipe),
1699                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1700         }
1701
1702         /* Wait for the clocks to stabilize. */
1703         POSTING_READ(reg);
1704         udelay(150);
1705
1706         if (INTEL_INFO(dev)->gen >= 4) {
1707                 I915_WRITE(DPLL_MD(crtc->pipe),
1708                            crtc->config->dpll_hw_state.dpll_md);
1709         } else {
1710                 /* The pixel multiplier can only be updated once the
1711                  * DPLL is enabled and the clocks are stable.
1712                  *
1713                  * So write it again.
1714                  */
1715                 I915_WRITE(reg, dpll);
1716         }
1717
1718         /* We do this three times for luck */
1719         I915_WRITE(reg, dpll);
1720         POSTING_READ(reg);
1721         udelay(150); /* wait for warmup */
1722         I915_WRITE(reg, dpll);
1723         POSTING_READ(reg);
1724         udelay(150); /* wait for warmup */
1725         I915_WRITE(reg, dpll);
1726         POSTING_READ(reg);
1727         udelay(150); /* wait for warmup */
1728 }
1729
1730 /**
1731  * i9xx_disable_pll - disable a PLL
1732  * @dev_priv: i915 private structure
1733  * @pipe: pipe PLL to disable
1734  *
1735  * Disable the PLL for @pipe, making sure the pipe is off first.
1736  *
1737  * Note!  This is for pre-ILK only.
1738  */
1739 static void i9xx_disable_pll(struct intel_crtc *crtc)
1740 {
1741         struct drm_device *dev = crtc->base.dev;
1742         struct drm_i915_private *dev_priv = dev->dev_private;
1743         enum pipe pipe = crtc->pipe;
1744
1745         /* Disable DVO 2x clock on both PLLs if necessary */
1746         if (IS_I830(dev) &&
1747             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1748             intel_num_dvo_pipes(dev) == 1) {
1749                 I915_WRITE(DPLL(PIPE_B),
1750                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1751                 I915_WRITE(DPLL(PIPE_A),
1752                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1753         }
1754
1755         /* Don't disable pipe or pipe PLLs if needed */
1756         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1757             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1758                 return;
1759
1760         /* Make sure the pipe isn't still relying on us */
1761         assert_pipe_disabled(dev_priv, pipe);
1762
1763         I915_WRITE(DPLL(pipe), 0);
1764         POSTING_READ(DPLL(pipe));
1765 }
1766
1767 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1768 {
1769         u32 val = 0;
1770
1771         /* Make sure the pipe isn't still relying on us */
1772         assert_pipe_disabled(dev_priv, pipe);
1773
1774         /*
1775          * Leave integrated clock source and reference clock enabled for pipe B.
1776          * The latter is needed for VGA hotplug / manual detection.
1777          */
1778         if (pipe == PIPE_B)
1779                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1780         I915_WRITE(DPLL(pipe), val);
1781         POSTING_READ(DPLL(pipe));
1782
1783 }
1784
1785 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1786 {
1787         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1788         u32 val;
1789
1790         /* Make sure the pipe isn't still relying on us */
1791         assert_pipe_disabled(dev_priv, pipe);
1792
1793         /* Set PLL en = 0 */
1794         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1795         if (pipe != PIPE_A)
1796                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1797         I915_WRITE(DPLL(pipe), val);
1798         POSTING_READ(DPLL(pipe));
1799
1800         mutex_lock(&dev_priv->dpio_lock);
1801
1802         /* Disable 10bit clock to display controller */
1803         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1804         val &= ~DPIO_DCLKP_EN;
1805         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1806
1807         /* disable left/right clock distribution */
1808         if (pipe != PIPE_B) {
1809                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1810                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1811                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1812         } else {
1813                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1814                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1815                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1816         }
1817
1818         mutex_unlock(&dev_priv->dpio_lock);
1819 }
1820
1821 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1822                 struct intel_digital_port *dport)
1823 {
1824         u32 port_mask;
1825         int dpll_reg;
1826
1827         switch (dport->port) {
1828         case PORT_B:
1829                 port_mask = DPLL_PORTB_READY_MASK;
1830                 dpll_reg = DPLL(0);
1831                 break;
1832         case PORT_C:
1833                 port_mask = DPLL_PORTC_READY_MASK;
1834                 dpll_reg = DPLL(0);
1835                 break;
1836         case PORT_D:
1837                 port_mask = DPLL_PORTD_READY_MASK;
1838                 dpll_reg = DPIO_PHY_STATUS;
1839                 break;
1840         default:
1841                 BUG();
1842         }
1843
1844         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1845                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1846                      port_name(dport->port), I915_READ(dpll_reg));
1847 }
1848
1849 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1850 {
1851         struct drm_device *dev = crtc->base.dev;
1852         struct drm_i915_private *dev_priv = dev->dev_private;
1853         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1854
1855         if (WARN_ON(pll == NULL))
1856                 return;
1857
1858         WARN_ON(!pll->config.crtc_mask);
1859         if (pll->active == 0) {
1860                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1861                 WARN_ON(pll->on);
1862                 assert_shared_dpll_disabled(dev_priv, pll);
1863
1864                 pll->mode_set(dev_priv, pll);
1865         }
1866 }
1867
1868 /**
1869  * intel_enable_shared_dpll - enable PCH PLL
1870  * @dev_priv: i915 private structure
1871  * @pipe: pipe PLL to enable
1872  *
1873  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1874  * drives the transcoder clock.
1875  */
1876 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1877 {
1878         struct drm_device *dev = crtc->base.dev;
1879         struct drm_i915_private *dev_priv = dev->dev_private;
1880         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1881
1882         if (WARN_ON(pll == NULL))
1883                 return;
1884
1885         if (WARN_ON(pll->config.crtc_mask == 0))
1886                 return;
1887
1888         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1889                       pll->name, pll->active, pll->on,
1890                       crtc->base.base.id);
1891
1892         if (pll->active++) {
1893                 WARN_ON(!pll->on);
1894                 assert_shared_dpll_enabled(dev_priv, pll);
1895                 return;
1896         }
1897         WARN_ON(pll->on);
1898
1899         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1900
1901         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1902         pll->enable(dev_priv, pll);
1903         pll->on = true;
1904 }
1905
1906 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1907 {
1908         struct drm_device *dev = crtc->base.dev;
1909         struct drm_i915_private *dev_priv = dev->dev_private;
1910         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1911
1912         /* PCH only available on ILK+ */
1913         BUG_ON(INTEL_INFO(dev)->gen < 5);
1914         if (WARN_ON(pll == NULL))
1915                return;
1916
1917         if (WARN_ON(pll->config.crtc_mask == 0))
1918                 return;
1919
1920         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1921                       pll->name, pll->active, pll->on,
1922                       crtc->base.base.id);
1923
1924         if (WARN_ON(pll->active == 0)) {
1925                 assert_shared_dpll_disabled(dev_priv, pll);
1926                 return;
1927         }
1928
1929         assert_shared_dpll_enabled(dev_priv, pll);
1930         WARN_ON(!pll->on);
1931         if (--pll->active)
1932                 return;
1933
1934         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1935         pll->disable(dev_priv, pll);
1936         pll->on = false;
1937
1938         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1939 }
1940
1941 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1942                                            enum pipe pipe)
1943 {
1944         struct drm_device *dev = dev_priv->dev;
1945         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1946         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1947         uint32_t reg, val, pipeconf_val;
1948
1949         /* PCH only available on ILK+ */
1950         BUG_ON(!HAS_PCH_SPLIT(dev));
1951
1952         /* Make sure PCH DPLL is enabled */
1953         assert_shared_dpll_enabled(dev_priv,
1954                                    intel_crtc_to_shared_dpll(intel_crtc));
1955
1956         /* FDI must be feeding us bits for PCH ports */
1957         assert_fdi_tx_enabled(dev_priv, pipe);
1958         assert_fdi_rx_enabled(dev_priv, pipe);
1959
1960         if (HAS_PCH_CPT(dev)) {
1961                 /* Workaround: Set the timing override bit before enabling the
1962                  * pch transcoder. */
1963                 reg = TRANS_CHICKEN2(pipe);
1964                 val = I915_READ(reg);
1965                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1966                 I915_WRITE(reg, val);
1967         }
1968
1969         reg = PCH_TRANSCONF(pipe);
1970         val = I915_READ(reg);
1971         pipeconf_val = I915_READ(PIPECONF(pipe));
1972
1973         if (HAS_PCH_IBX(dev_priv->dev)) {
1974                 /*
1975                  * make the BPC in transcoder be consistent with
1976                  * that in pipeconf reg.
1977                  */
1978                 val &= ~PIPECONF_BPC_MASK;
1979                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1980         }
1981
1982         val &= ~TRANS_INTERLACE_MASK;
1983         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1984                 if (HAS_PCH_IBX(dev_priv->dev) &&
1985                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1986                         val |= TRANS_LEGACY_INTERLACED_ILK;
1987                 else
1988                         val |= TRANS_INTERLACED;
1989         else
1990                 val |= TRANS_PROGRESSIVE;
1991
1992         I915_WRITE(reg, val | TRANS_ENABLE);
1993         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1994                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1995 }
1996
1997 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1998                                       enum transcoder cpu_transcoder)
1999 {
2000         u32 val, pipeconf_val;
2001
2002         /* PCH only available on ILK+ */
2003         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2004
2005         /* FDI must be feeding us bits for PCH ports */
2006         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2007         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2008
2009         /* Workaround: set timing override bit. */
2010         val = I915_READ(_TRANSA_CHICKEN2);
2011         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2012         I915_WRITE(_TRANSA_CHICKEN2, val);
2013
2014         val = TRANS_ENABLE;
2015         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2016
2017         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2018             PIPECONF_INTERLACED_ILK)
2019                 val |= TRANS_INTERLACED;
2020         else
2021                 val |= TRANS_PROGRESSIVE;
2022
2023         I915_WRITE(LPT_TRANSCONF, val);
2024         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2025                 DRM_ERROR("Failed to enable PCH transcoder\n");
2026 }
2027
2028 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2029                                             enum pipe pipe)
2030 {
2031         struct drm_device *dev = dev_priv->dev;
2032         uint32_t reg, val;
2033
2034         /* FDI relies on the transcoder */
2035         assert_fdi_tx_disabled(dev_priv, pipe);
2036         assert_fdi_rx_disabled(dev_priv, pipe);
2037
2038         /* Ports must be off as well */
2039         assert_pch_ports_disabled(dev_priv, pipe);
2040
2041         reg = PCH_TRANSCONF(pipe);
2042         val = I915_READ(reg);
2043         val &= ~TRANS_ENABLE;
2044         I915_WRITE(reg, val);
2045         /* wait for PCH transcoder off, transcoder state */
2046         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2047                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2048
2049         if (!HAS_PCH_IBX(dev)) {
2050                 /* Workaround: Clear the timing override chicken bit again. */
2051                 reg = TRANS_CHICKEN2(pipe);
2052                 val = I915_READ(reg);
2053                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2054                 I915_WRITE(reg, val);
2055         }
2056 }
2057
2058 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2059 {
2060         u32 val;
2061
2062         val = I915_READ(LPT_TRANSCONF);
2063         val &= ~TRANS_ENABLE;
2064         I915_WRITE(LPT_TRANSCONF, val);
2065         /* wait for PCH transcoder off, transcoder state */
2066         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2067                 DRM_ERROR("Failed to disable PCH transcoder\n");
2068
2069         /* Workaround: clear timing override bit. */
2070         val = I915_READ(_TRANSA_CHICKEN2);
2071         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2072         I915_WRITE(_TRANSA_CHICKEN2, val);
2073 }
2074
2075 /**
2076  * intel_enable_pipe - enable a pipe, asserting requirements
2077  * @crtc: crtc responsible for the pipe
2078  *
2079  * Enable @crtc's pipe, making sure that various hardware specific requirements
2080  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2081  */
2082 static void intel_enable_pipe(struct intel_crtc *crtc)
2083 {
2084         struct drm_device *dev = crtc->base.dev;
2085         struct drm_i915_private *dev_priv = dev->dev_private;
2086         enum pipe pipe = crtc->pipe;
2087         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2088                                                                       pipe);
2089         enum pipe pch_transcoder;
2090         int reg;
2091         u32 val;
2092
2093         assert_planes_disabled(dev_priv, pipe);
2094         assert_cursor_disabled(dev_priv, pipe);
2095         assert_sprites_disabled(dev_priv, pipe);
2096
2097         if (HAS_PCH_LPT(dev_priv->dev))
2098                 pch_transcoder = TRANSCODER_A;
2099         else
2100                 pch_transcoder = pipe;
2101
2102         /*
2103          * A pipe without a PLL won't actually be able to drive bits from
2104          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2105          * need the check.
2106          */
2107         if (!HAS_PCH_SPLIT(dev_priv->dev))
2108                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2109                         assert_dsi_pll_enabled(dev_priv);
2110                 else
2111                         assert_pll_enabled(dev_priv, pipe);
2112         else {
2113                 if (crtc->config->has_pch_encoder) {
2114                         /* if driving the PCH, we need FDI enabled */
2115                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2116                         assert_fdi_tx_pll_enabled(dev_priv,
2117                                                   (enum pipe) cpu_transcoder);
2118                 }
2119                 /* FIXME: assert CPU port conditions for SNB+ */
2120         }
2121
2122         reg = PIPECONF(cpu_transcoder);
2123         val = I915_READ(reg);
2124         if (val & PIPECONF_ENABLE) {
2125                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2126                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2127                 return;
2128         }
2129
2130         I915_WRITE(reg, val | PIPECONF_ENABLE);
2131         POSTING_READ(reg);
2132 }
2133
2134 /**
2135  * intel_disable_pipe - disable a pipe, asserting requirements
2136  * @crtc: crtc whose pipes is to be disabled
2137  *
2138  * Disable the pipe of @crtc, making sure that various hardware
2139  * specific requirements are met, if applicable, e.g. plane
2140  * disabled, panel fitter off, etc.
2141  *
2142  * Will wait until the pipe has shut down before returning.
2143  */
2144 static void intel_disable_pipe(struct intel_crtc *crtc)
2145 {
2146         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2147         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2148         enum pipe pipe = crtc->pipe;
2149         int reg;
2150         u32 val;
2151
2152         /*
2153          * Make sure planes won't keep trying to pump pixels to us,
2154          * or we might hang the display.
2155          */
2156         assert_planes_disabled(dev_priv, pipe);
2157         assert_cursor_disabled(dev_priv, pipe);
2158         assert_sprites_disabled(dev_priv, pipe);
2159
2160         reg = PIPECONF(cpu_transcoder);
2161         val = I915_READ(reg);
2162         if ((val & PIPECONF_ENABLE) == 0)
2163                 return;
2164
2165         /*
2166          * Double wide has implications for planes
2167          * so best keep it disabled when not needed.
2168          */
2169         if (crtc->config->double_wide)
2170                 val &= ~PIPECONF_DOUBLE_WIDE;
2171
2172         /* Don't disable pipe or pipe PLLs if needed */
2173         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2174             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2175                 val &= ~PIPECONF_ENABLE;
2176
2177         I915_WRITE(reg, val);
2178         if ((val & PIPECONF_ENABLE) == 0)
2179                 intel_wait_for_pipe_off(crtc);
2180 }
2181
2182 /*
2183  * Plane regs are double buffered, going from enabled->disabled needs a
2184  * trigger in order to latch.  The display address reg provides this.
2185  */
2186 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2187                                enum plane plane)
2188 {
2189         struct drm_device *dev = dev_priv->dev;
2190         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2191
2192         I915_WRITE(reg, I915_READ(reg));
2193         POSTING_READ(reg);
2194 }
2195
2196 /**
2197  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2198  * @plane:  plane to be enabled
2199  * @crtc: crtc for the plane
2200  *
2201  * Enable @plane on @crtc, making sure that the pipe is running first.
2202  */
2203 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2204                                           struct drm_crtc *crtc)
2205 {
2206         struct drm_device *dev = plane->dev;
2207         struct drm_i915_private *dev_priv = dev->dev_private;
2208         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2209
2210         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2211         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2212
2213         if (intel_crtc->primary_enabled)
2214                 return;
2215
2216         intel_crtc->primary_enabled = true;
2217
2218         dev_priv->display.update_primary_plane(crtc, plane->fb,
2219                                                crtc->x, crtc->y);
2220
2221         /*
2222          * BDW signals flip done immediately if the plane
2223          * is disabled, even if the plane enable is already
2224          * armed to occur at the next vblank :(
2225          */
2226         if (IS_BROADWELL(dev))
2227                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2228 }
2229
2230 /**
2231  * intel_disable_primary_hw_plane - disable the primary hardware plane
2232  * @plane: plane to be disabled
2233  * @crtc: crtc for the plane
2234  *
2235  * Disable @plane on @crtc, making sure that the pipe is running first.
2236  */
2237 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2238                                            struct drm_crtc *crtc)
2239 {
2240         struct drm_device *dev = plane->dev;
2241         struct drm_i915_private *dev_priv = dev->dev_private;
2242         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2243
2244         if (WARN_ON(!intel_crtc->active))
2245                 return;
2246
2247         if (!intel_crtc->primary_enabled)
2248                 return;
2249
2250         intel_crtc->primary_enabled = false;
2251
2252         dev_priv->display.update_primary_plane(crtc, plane->fb,
2253                                                crtc->x, crtc->y);
2254 }
2255
2256 static bool need_vtd_wa(struct drm_device *dev)
2257 {
2258 #ifdef CONFIG_INTEL_IOMMU
2259         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2260                 return true;
2261 #endif
2262         return false;
2263 }
2264
2265 unsigned int
2266 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2267                   uint64_t fb_format_modifier)
2268 {
2269         unsigned int tile_height;
2270         uint32_t pixel_bytes;
2271
2272         switch (fb_format_modifier) {
2273         case DRM_FORMAT_MOD_NONE:
2274                 tile_height = 1;
2275                 break;
2276         case I915_FORMAT_MOD_X_TILED:
2277                 tile_height = IS_GEN2(dev) ? 16 : 8;
2278                 break;
2279         case I915_FORMAT_MOD_Y_TILED:
2280                 tile_height = 32;
2281                 break;
2282         case I915_FORMAT_MOD_Yf_TILED:
2283                 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2284                 switch (pixel_bytes) {
2285                 default:
2286                 case 1:
2287                         tile_height = 64;
2288                         break;
2289                 case 2:
2290                 case 4:
2291                         tile_height = 32;
2292                         break;
2293                 case 8:
2294                         tile_height = 16;
2295                         break;
2296                 case 16:
2297                         WARN_ONCE(1,
2298                                   "128-bit pixels are not supported for display!");
2299                         tile_height = 16;
2300                         break;
2301                 }
2302                 break;
2303         default:
2304                 MISSING_CASE(fb_format_modifier);
2305                 tile_height = 1;
2306                 break;
2307         }
2308
2309         return tile_height;
2310 }
2311
2312 unsigned int
2313 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2314                       uint32_t pixel_format, uint64_t fb_format_modifier)
2315 {
2316         return ALIGN(height, intel_tile_height(dev, pixel_format,
2317                                                fb_format_modifier));
2318 }
2319
2320 static int
2321 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2322                         const struct drm_plane_state *plane_state)
2323 {
2324         struct intel_rotation_info *info = &view->rotation_info;
2325
2326         *view = i915_ggtt_view_normal;
2327
2328         if (!plane_state)
2329                 return 0;
2330
2331         if (!intel_rotation_90_or_270(plane_state->rotation))
2332                 return 0;
2333
2334         *view = i915_ggtt_view_rotated;
2335
2336         info->height = fb->height;
2337         info->pixel_format = fb->pixel_format;
2338         info->pitch = fb->pitches[0];
2339         info->fb_modifier = fb->modifier[0];
2340
2341         if (!(info->fb_modifier == I915_FORMAT_MOD_Y_TILED ||
2342               info->fb_modifier == I915_FORMAT_MOD_Yf_TILED)) {
2343                 DRM_DEBUG_KMS(
2344                               "Y or Yf tiling is needed for 90/270 rotation!\n");
2345                 return -EINVAL;
2346         }
2347
2348         return 0;
2349 }
2350
2351 int
2352 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2353                            struct drm_framebuffer *fb,
2354                            const struct drm_plane_state *plane_state,
2355                            struct intel_engine_cs *pipelined)
2356 {
2357         struct drm_device *dev = fb->dev;
2358         struct drm_i915_private *dev_priv = dev->dev_private;
2359         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2360         struct i915_ggtt_view view;
2361         u32 alignment;
2362         int ret;
2363
2364         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2365
2366         switch (fb->modifier[0]) {
2367         case DRM_FORMAT_MOD_NONE:
2368                 if (INTEL_INFO(dev)->gen >= 9)
2369                         alignment = 256 * 1024;
2370                 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2371                         alignment = 128 * 1024;
2372                 else if (INTEL_INFO(dev)->gen >= 4)
2373                         alignment = 4 * 1024;
2374                 else
2375                         alignment = 64 * 1024;
2376                 break;
2377         case I915_FORMAT_MOD_X_TILED:
2378                 if (INTEL_INFO(dev)->gen >= 9)
2379                         alignment = 256 * 1024;
2380                 else {
2381                         /* pin() will align the object as required by fence */
2382                         alignment = 0;
2383                 }
2384                 break;
2385         case I915_FORMAT_MOD_Y_TILED:
2386         case I915_FORMAT_MOD_Yf_TILED:
2387                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2388                           "Y tiling bo slipped through, driver bug!\n"))
2389                         return -EINVAL;
2390                 alignment = 1 * 1024 * 1024;
2391                 break;
2392         default:
2393                 MISSING_CASE(fb->modifier[0]);
2394                 return -EINVAL;
2395         }
2396
2397         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2398         if (ret)
2399                 return ret;
2400
2401         /* Note that the w/a also requires 64 PTE of padding following the
2402          * bo. We currently fill all unused PTE with the shadow page and so
2403          * we should always have valid PTE following the scanout preventing
2404          * the VT-d warning.
2405          */
2406         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2407                 alignment = 256 * 1024;
2408
2409         /*
2410          * Global gtt pte registers are special registers which actually forward
2411          * writes to a chunk of system memory. Which means that there is no risk
2412          * that the register values disappear as soon as we call
2413          * intel_runtime_pm_put(), so it is correct to wrap only the
2414          * pin/unpin/fence and not more.
2415          */
2416         intel_runtime_pm_get(dev_priv);
2417
2418         dev_priv->mm.interruptible = false;
2419         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2420                                                    &view);
2421         if (ret)
2422                 goto err_interruptible;
2423
2424         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2425          * fence, whereas 965+ only requires a fence if using
2426          * framebuffer compression.  For simplicity, we always install
2427          * a fence as the cost is not that onerous.
2428          */
2429         ret = i915_gem_object_get_fence(obj);
2430         if (ret)
2431                 goto err_unpin;
2432
2433         i915_gem_object_pin_fence(obj);
2434
2435         dev_priv->mm.interruptible = true;
2436         intel_runtime_pm_put(dev_priv);
2437         return 0;
2438
2439 err_unpin:
2440         i915_gem_object_unpin_from_display_plane(obj, &view);
2441 err_interruptible:
2442         dev_priv->mm.interruptible = true;
2443         intel_runtime_pm_put(dev_priv);
2444         return ret;
2445 }
2446
2447 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2448                                const struct drm_plane_state *plane_state)
2449 {
2450         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2451         struct i915_ggtt_view view;
2452         int ret;
2453
2454         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2455
2456         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2457         WARN_ONCE(ret, "Couldn't get view from plane state!");
2458
2459         i915_gem_object_unpin_fence(obj);
2460         i915_gem_object_unpin_from_display_plane(obj, &view);
2461 }
2462
2463 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2464  * is assumed to be a power-of-two. */
2465 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2466                                              unsigned int tiling_mode,
2467                                              unsigned int cpp,
2468                                              unsigned int pitch)
2469 {
2470         if (tiling_mode != I915_TILING_NONE) {
2471                 unsigned int tile_rows, tiles;
2472
2473                 tile_rows = *y / 8;
2474                 *y %= 8;
2475
2476                 tiles = *x / (512/cpp);
2477                 *x %= 512/cpp;
2478
2479                 return tile_rows * pitch * 8 + tiles * 4096;
2480         } else {
2481                 unsigned int offset;
2482
2483                 offset = *y * pitch + *x * cpp;
2484                 *y = 0;
2485                 *x = (offset & 4095) / cpp;
2486                 return offset & -4096;
2487         }
2488 }
2489
2490 static int i9xx_format_to_fourcc(int format)
2491 {
2492         switch (format) {
2493         case DISPPLANE_8BPP:
2494                 return DRM_FORMAT_C8;
2495         case DISPPLANE_BGRX555:
2496                 return DRM_FORMAT_XRGB1555;
2497         case DISPPLANE_BGRX565:
2498                 return DRM_FORMAT_RGB565;
2499         default:
2500         case DISPPLANE_BGRX888:
2501                 return DRM_FORMAT_XRGB8888;
2502         case DISPPLANE_RGBX888:
2503                 return DRM_FORMAT_XBGR8888;
2504         case DISPPLANE_BGRX101010:
2505                 return DRM_FORMAT_XRGB2101010;
2506         case DISPPLANE_RGBX101010:
2507                 return DRM_FORMAT_XBGR2101010;
2508         }
2509 }
2510
2511 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2512 {
2513         switch (format) {
2514         case PLANE_CTL_FORMAT_RGB_565:
2515                 return DRM_FORMAT_RGB565;
2516         default:
2517         case PLANE_CTL_FORMAT_XRGB_8888:
2518                 if (rgb_order) {
2519                         if (alpha)
2520                                 return DRM_FORMAT_ABGR8888;
2521                         else
2522                                 return DRM_FORMAT_XBGR8888;
2523                 } else {
2524                         if (alpha)
2525                                 return DRM_FORMAT_ARGB8888;
2526                         else
2527                                 return DRM_FORMAT_XRGB8888;
2528                 }
2529         case PLANE_CTL_FORMAT_XRGB_2101010:
2530                 if (rgb_order)
2531                         return DRM_FORMAT_XBGR2101010;
2532                 else
2533                         return DRM_FORMAT_XRGB2101010;
2534         }
2535 }
2536
2537 static bool
2538 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2539                               struct intel_initial_plane_config *plane_config)
2540 {
2541         struct drm_device *dev = crtc->base.dev;
2542         struct drm_i915_gem_object *obj = NULL;
2543         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2544         struct drm_framebuffer *fb = &plane_config->fb->base;
2545         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2546         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2547                                     PAGE_SIZE);
2548
2549         size_aligned -= base_aligned;
2550
2551         if (plane_config->size == 0)
2552                 return false;
2553
2554         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2555                                                              base_aligned,
2556                                                              base_aligned,
2557                                                              size_aligned);
2558         if (!obj)
2559                 return false;
2560
2561         obj->tiling_mode = plane_config->tiling;
2562         if (obj->tiling_mode == I915_TILING_X)
2563                 obj->stride = fb->pitches[0];
2564
2565         mode_cmd.pixel_format = fb->pixel_format;
2566         mode_cmd.width = fb->width;
2567         mode_cmd.height = fb->height;
2568         mode_cmd.pitches[0] = fb->pitches[0];
2569         mode_cmd.modifier[0] = fb->modifier[0];
2570         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2571
2572         mutex_lock(&dev->struct_mutex);
2573         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2574                                    &mode_cmd, obj)) {
2575                 DRM_DEBUG_KMS("intel fb init failed\n");
2576                 goto out_unref_obj;
2577         }
2578         mutex_unlock(&dev->struct_mutex);
2579
2580         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2581         return true;
2582
2583 out_unref_obj:
2584         drm_gem_object_unreference(&obj->base);
2585         mutex_unlock(&dev->struct_mutex);
2586         return false;
2587 }
2588
2589 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2590 static void
2591 update_state_fb(struct drm_plane *plane)
2592 {
2593         if (plane->fb == plane->state->fb)
2594                 return;
2595
2596         if (plane->state->fb)
2597                 drm_framebuffer_unreference(plane->state->fb);
2598         plane->state->fb = plane->fb;
2599         if (plane->state->fb)
2600                 drm_framebuffer_reference(plane->state->fb);
2601 }
2602
2603 static void
2604 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2605                              struct intel_initial_plane_config *plane_config)
2606 {
2607         struct drm_device *dev = intel_crtc->base.dev;
2608         struct drm_i915_private *dev_priv = dev->dev_private;
2609         struct drm_crtc *c;
2610         struct intel_crtc *i;
2611         struct drm_i915_gem_object *obj;
2612         struct drm_plane *primary = intel_crtc->base.primary;
2613         struct drm_framebuffer *fb;
2614
2615         if (!plane_config->fb)
2616                 return;
2617
2618         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2619                 fb = &plane_config->fb->base;
2620                 goto valid_fb;
2621         }
2622
2623         kfree(plane_config->fb);
2624
2625         /*
2626          * Failed to alloc the obj, check to see if we should share
2627          * an fb with another CRTC instead
2628          */
2629         for_each_crtc(dev, c) {
2630                 i = to_intel_crtc(c);
2631
2632                 if (c == &intel_crtc->base)
2633                         continue;
2634
2635                 if (!i->active)
2636                         continue;
2637
2638                 fb = c->primary->fb;
2639                 if (!fb)
2640                         continue;
2641
2642                 obj = intel_fb_obj(fb);
2643                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2644                         drm_framebuffer_reference(fb);
2645                         goto valid_fb;
2646                 }
2647         }
2648
2649         return;
2650
2651 valid_fb:
2652         obj = intel_fb_obj(fb);
2653         if (obj->tiling_mode != I915_TILING_NONE)
2654                 dev_priv->preserve_bios_swizzle = true;
2655
2656         primary->fb = fb;
2657         primary->state->crtc = &intel_crtc->base;
2658         primary->crtc = &intel_crtc->base;
2659         update_state_fb(primary);
2660         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2661 }
2662
2663 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2664                                       struct drm_framebuffer *fb,
2665                                       int x, int y)
2666 {
2667         struct drm_device *dev = crtc->dev;
2668         struct drm_i915_private *dev_priv = dev->dev_private;
2669         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2670         struct drm_i915_gem_object *obj;
2671         int plane = intel_crtc->plane;
2672         unsigned long linear_offset;
2673         u32 dspcntr;
2674         u32 reg = DSPCNTR(plane);
2675         int pixel_size;
2676
2677         if (!intel_crtc->primary_enabled) {
2678                 I915_WRITE(reg, 0);
2679                 if (INTEL_INFO(dev)->gen >= 4)
2680                         I915_WRITE(DSPSURF(plane), 0);
2681                 else
2682                         I915_WRITE(DSPADDR(plane), 0);
2683                 POSTING_READ(reg);
2684                 return;
2685         }
2686
2687         obj = intel_fb_obj(fb);
2688         if (WARN_ON(obj == NULL))
2689                 return;
2690
2691         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2692
2693         dspcntr = DISPPLANE_GAMMA_ENABLE;
2694
2695         dspcntr |= DISPLAY_PLANE_ENABLE;
2696
2697         if (INTEL_INFO(dev)->gen < 4) {
2698                 if (intel_crtc->pipe == PIPE_B)
2699                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2700
2701                 /* pipesrc and dspsize control the size that is scaled from,
2702                  * which should always be the user's requested size.
2703                  */
2704                 I915_WRITE(DSPSIZE(plane),
2705                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2706                            (intel_crtc->config->pipe_src_w - 1));
2707                 I915_WRITE(DSPPOS(plane), 0);
2708         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2709                 I915_WRITE(PRIMSIZE(plane),
2710                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2711                            (intel_crtc->config->pipe_src_w - 1));
2712                 I915_WRITE(PRIMPOS(plane), 0);
2713                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2714         }
2715
2716         switch (fb->pixel_format) {
2717         case DRM_FORMAT_C8:
2718                 dspcntr |= DISPPLANE_8BPP;
2719                 break;
2720         case DRM_FORMAT_XRGB1555:
2721         case DRM_FORMAT_ARGB1555:
2722                 dspcntr |= DISPPLANE_BGRX555;
2723                 break;
2724         case DRM_FORMAT_RGB565:
2725                 dspcntr |= DISPPLANE_BGRX565;
2726                 break;
2727         case DRM_FORMAT_XRGB8888:
2728         case DRM_FORMAT_ARGB8888:
2729                 dspcntr |= DISPPLANE_BGRX888;
2730                 break;
2731         case DRM_FORMAT_XBGR8888:
2732         case DRM_FORMAT_ABGR8888:
2733                 dspcntr |= DISPPLANE_RGBX888;
2734                 break;
2735         case DRM_FORMAT_XRGB2101010:
2736         case DRM_FORMAT_ARGB2101010:
2737                 dspcntr |= DISPPLANE_BGRX101010;
2738                 break;
2739         case DRM_FORMAT_XBGR2101010:
2740         case DRM_FORMAT_ABGR2101010:
2741                 dspcntr |= DISPPLANE_RGBX101010;
2742                 break;
2743         default:
2744                 BUG();
2745         }
2746
2747         if (INTEL_INFO(dev)->gen >= 4 &&
2748             obj->tiling_mode != I915_TILING_NONE)
2749                 dspcntr |= DISPPLANE_TILED;
2750
2751         if (IS_G4X(dev))
2752                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2753
2754         linear_offset = y * fb->pitches[0] + x * pixel_size;
2755
2756         if (INTEL_INFO(dev)->gen >= 4) {
2757                 intel_crtc->dspaddr_offset =
2758                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2759                                                        pixel_size,
2760                                                        fb->pitches[0]);
2761                 linear_offset -= intel_crtc->dspaddr_offset;
2762         } else {
2763                 intel_crtc->dspaddr_offset = linear_offset;
2764         }
2765
2766         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2767                 dspcntr |= DISPPLANE_ROTATE_180;
2768
2769                 x += (intel_crtc->config->pipe_src_w - 1);
2770                 y += (intel_crtc->config->pipe_src_h - 1);
2771
2772                 /* Finding the last pixel of the last line of the display
2773                 data and adding to linear_offset*/
2774                 linear_offset +=
2775                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2776                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2777         }
2778
2779         I915_WRITE(reg, dspcntr);
2780
2781         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2782         if (INTEL_INFO(dev)->gen >= 4) {
2783                 I915_WRITE(DSPSURF(plane),
2784                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2785                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2786                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2787         } else
2788                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2789         POSTING_READ(reg);
2790 }
2791
2792 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2793                                           struct drm_framebuffer *fb,
2794                                           int x, int y)
2795 {
2796         struct drm_device *dev = crtc->dev;
2797         struct drm_i915_private *dev_priv = dev->dev_private;
2798         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2799         struct drm_i915_gem_object *obj;
2800         int plane = intel_crtc->plane;
2801         unsigned long linear_offset;
2802         u32 dspcntr;
2803         u32 reg = DSPCNTR(plane);
2804         int pixel_size;
2805
2806         if (!intel_crtc->primary_enabled) {
2807                 I915_WRITE(reg, 0);
2808                 I915_WRITE(DSPSURF(plane), 0);
2809                 POSTING_READ(reg);
2810                 return;
2811         }
2812
2813         obj = intel_fb_obj(fb);
2814         if (WARN_ON(obj == NULL))
2815                 return;
2816
2817         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2818
2819         dspcntr = DISPPLANE_GAMMA_ENABLE;
2820
2821         dspcntr |= DISPLAY_PLANE_ENABLE;
2822
2823         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2824                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2825
2826         switch (fb->pixel_format) {
2827         case DRM_FORMAT_C8:
2828                 dspcntr |= DISPPLANE_8BPP;
2829                 break;
2830         case DRM_FORMAT_RGB565:
2831                 dspcntr |= DISPPLANE_BGRX565;
2832                 break;
2833         case DRM_FORMAT_XRGB8888:
2834         case DRM_FORMAT_ARGB8888:
2835                 dspcntr |= DISPPLANE_BGRX888;
2836                 break;
2837         case DRM_FORMAT_XBGR8888:
2838         case DRM_FORMAT_ABGR8888:
2839                 dspcntr |= DISPPLANE_RGBX888;
2840                 break;
2841         case DRM_FORMAT_XRGB2101010:
2842         case DRM_FORMAT_ARGB2101010:
2843                 dspcntr |= DISPPLANE_BGRX101010;
2844                 break;
2845         case DRM_FORMAT_XBGR2101010:
2846         case DRM_FORMAT_ABGR2101010:
2847                 dspcntr |= DISPPLANE_RGBX101010;
2848                 break;
2849         default:
2850                 BUG();
2851         }
2852
2853         if (obj->tiling_mode != I915_TILING_NONE)
2854                 dspcntr |= DISPPLANE_TILED;
2855
2856         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2857                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2858
2859         linear_offset = y * fb->pitches[0] + x * pixel_size;
2860         intel_crtc->dspaddr_offset =
2861                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2862                                                pixel_size,
2863                                                fb->pitches[0]);
2864         linear_offset -= intel_crtc->dspaddr_offset;
2865         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2866                 dspcntr |= DISPPLANE_ROTATE_180;
2867
2868                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2869                         x += (intel_crtc->config->pipe_src_w - 1);
2870                         y += (intel_crtc->config->pipe_src_h - 1);
2871
2872                         /* Finding the last pixel of the last line of the display
2873                         data and adding to linear_offset*/
2874                         linear_offset +=
2875                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2876                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2877                 }
2878         }
2879
2880         I915_WRITE(reg, dspcntr);
2881
2882         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2883         I915_WRITE(DSPSURF(plane),
2884                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2885         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2886                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2887         } else {
2888                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2889                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2890         }
2891         POSTING_READ(reg);
2892 }
2893
2894 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2895                               uint32_t pixel_format)
2896 {
2897         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2898
2899         /*
2900          * The stride is either expressed as a multiple of 64 bytes
2901          * chunks for linear buffers or in number of tiles for tiled
2902          * buffers.
2903          */
2904         switch (fb_modifier) {
2905         case DRM_FORMAT_MOD_NONE:
2906                 return 64;
2907         case I915_FORMAT_MOD_X_TILED:
2908                 if (INTEL_INFO(dev)->gen == 2)
2909                         return 128;
2910                 return 512;
2911         case I915_FORMAT_MOD_Y_TILED:
2912                 /* No need to check for old gens and Y tiling since this is
2913                  * about the display engine and those will be blocked before
2914                  * we get here.
2915                  */
2916                 return 128;
2917         case I915_FORMAT_MOD_Yf_TILED:
2918                 if (bits_per_pixel == 8)
2919                         return 64;
2920                 else
2921                         return 128;
2922         default:
2923                 MISSING_CASE(fb_modifier);
2924                 return 64;
2925         }
2926 }
2927
2928 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2929                                      struct drm_i915_gem_object *obj)
2930 {
2931         const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2932
2933         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2934                 view = &i915_ggtt_view_rotated;
2935
2936         return i915_gem_obj_ggtt_offset_view(obj, view);
2937 }
2938
2939 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2940                                          struct drm_framebuffer *fb,
2941                                          int x, int y)
2942 {
2943         struct drm_device *dev = crtc->dev;
2944         struct drm_i915_private *dev_priv = dev->dev_private;
2945         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2946         struct drm_i915_gem_object *obj;
2947         int pipe = intel_crtc->pipe;
2948         u32 plane_ctl, stride_div;
2949         unsigned long surf_addr;
2950
2951         if (!intel_crtc->primary_enabled) {
2952                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2953                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2954                 POSTING_READ(PLANE_CTL(pipe, 0));
2955                 return;
2956         }
2957
2958         plane_ctl = PLANE_CTL_ENABLE |
2959                     PLANE_CTL_PIPE_GAMMA_ENABLE |
2960                     PLANE_CTL_PIPE_CSC_ENABLE;
2961
2962         switch (fb->pixel_format) {
2963         case DRM_FORMAT_RGB565:
2964                 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2965                 break;
2966         case DRM_FORMAT_XRGB8888:
2967                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2968                 break;
2969         case DRM_FORMAT_ARGB8888:
2970                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2971                 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2972                 break;
2973         case DRM_FORMAT_XBGR8888:
2974                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2975                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2976                 break;
2977         case DRM_FORMAT_ABGR8888:
2978                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2979                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2980                 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2981                 break;
2982         case DRM_FORMAT_XRGB2101010:
2983                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2984                 break;
2985         case DRM_FORMAT_XBGR2101010:
2986                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2987                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2988                 break;
2989         default:
2990                 BUG();
2991         }
2992
2993         switch (fb->modifier[0]) {
2994         case DRM_FORMAT_MOD_NONE:
2995                 break;
2996         case I915_FORMAT_MOD_X_TILED:
2997                 plane_ctl |= PLANE_CTL_TILED_X;
2998                 break;
2999         case I915_FORMAT_MOD_Y_TILED:
3000                 plane_ctl |= PLANE_CTL_TILED_Y;
3001                 break;
3002         case I915_FORMAT_MOD_Yf_TILED:
3003                 plane_ctl |= PLANE_CTL_TILED_YF;
3004                 break;
3005         default:
3006                 MISSING_CASE(fb->modifier[0]);
3007         }
3008
3009         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3010         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
3011                 plane_ctl |= PLANE_CTL_ROTATE_180;
3012
3013         obj = intel_fb_obj(fb);
3014         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3015                                                fb->pixel_format);
3016         surf_addr = intel_plane_obj_offset(to_intel_plane(crtc->primary), obj);
3017
3018         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3019         I915_WRITE(PLANE_POS(pipe, 0), 0);
3020         I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
3021         I915_WRITE(PLANE_SIZE(pipe, 0),
3022                    (intel_crtc->config->pipe_src_h - 1) << 16 |
3023                    (intel_crtc->config->pipe_src_w - 1));
3024         I915_WRITE(PLANE_STRIDE(pipe, 0), fb->pitches[0] / stride_div);
3025         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3026
3027         POSTING_READ(PLANE_SURF(pipe, 0));
3028 }
3029
3030 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3031 static int
3032 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3033                            int x, int y, enum mode_set_atomic state)
3034 {
3035         struct drm_device *dev = crtc->dev;
3036         struct drm_i915_private *dev_priv = dev->dev_private;
3037
3038         if (dev_priv->display.disable_fbc)
3039                 dev_priv->display.disable_fbc(dev);
3040
3041         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3042
3043         return 0;
3044 }
3045
3046 static void intel_complete_page_flips(struct drm_device *dev)
3047 {
3048         struct drm_crtc *crtc;
3049
3050         for_each_crtc(dev, crtc) {
3051                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3052                 enum plane plane = intel_crtc->plane;
3053
3054                 intel_prepare_page_flip(dev, plane);
3055                 intel_finish_page_flip_plane(dev, plane);
3056         }
3057 }
3058
3059 static void intel_update_primary_planes(struct drm_device *dev)
3060 {
3061         struct drm_i915_private *dev_priv = dev->dev_private;
3062         struct drm_crtc *crtc;
3063
3064         for_each_crtc(dev, crtc) {
3065                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3066
3067                 drm_modeset_lock(&crtc->mutex, NULL);
3068                 /*
3069                  * FIXME: Once we have proper support for primary planes (and
3070                  * disabling them without disabling the entire crtc) allow again
3071                  * a NULL crtc->primary->fb.
3072                  */
3073                 if (intel_crtc->active && crtc->primary->fb)
3074                         dev_priv->display.update_primary_plane(crtc,
3075                                                                crtc->primary->fb,
3076                                                                crtc->x,
3077                                                                crtc->y);
3078                 drm_modeset_unlock(&crtc->mutex);
3079         }
3080 }
3081
3082 void intel_prepare_reset(struct drm_device *dev)
3083 {
3084         struct drm_i915_private *dev_priv = to_i915(dev);
3085         struct intel_crtc *crtc;
3086
3087         /* no reset support for gen2 */
3088         if (IS_GEN2(dev))
3089                 return;
3090
3091         /* reset doesn't touch the display */
3092         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3093                 return;
3094
3095         drm_modeset_lock_all(dev);
3096
3097         /*
3098          * Disabling the crtcs gracefully seems nicer. Also the
3099          * g33 docs say we should at least disable all the planes.
3100          */
3101         for_each_intel_crtc(dev, crtc) {
3102                 if (crtc->active)
3103                         dev_priv->display.crtc_disable(&crtc->base);
3104         }
3105 }
3106
3107 void intel_finish_reset(struct drm_device *dev)
3108 {
3109         struct drm_i915_private *dev_priv = to_i915(dev);
3110
3111         /*
3112          * Flips in the rings will be nuked by the reset,
3113          * so complete all pending flips so that user space
3114          * will get its events and not get stuck.
3115          */
3116         intel_complete_page_flips(dev);
3117
3118         /* no reset support for gen2 */
3119         if (IS_GEN2(dev))
3120                 return;
3121
3122         /* reset doesn't touch the display */
3123         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3124                 /*
3125                  * Flips in the rings have been nuked by the reset,
3126                  * so update the base address of all primary
3127                  * planes to the the last fb to make sure we're
3128                  * showing the correct fb after a reset.
3129                  */
3130                 intel_update_primary_planes(dev);
3131                 return;
3132         }
3133
3134         /*
3135          * The display has been reset as well,
3136          * so need a full re-initialization.
3137          */
3138         intel_runtime_pm_disable_interrupts(dev_priv);
3139         intel_runtime_pm_enable_interrupts(dev_priv);
3140
3141         intel_modeset_init_hw(dev);
3142
3143         spin_lock_irq(&dev_priv->irq_lock);
3144         if (dev_priv->display.hpd_irq_setup)
3145                 dev_priv->display.hpd_irq_setup(dev);
3146         spin_unlock_irq(&dev_priv->irq_lock);
3147
3148         intel_modeset_setup_hw_state(dev, true);
3149
3150         intel_hpd_init(dev_priv);
3151
3152         drm_modeset_unlock_all(dev);
3153 }
3154
3155 static int
3156 intel_finish_fb(struct drm_framebuffer *old_fb)
3157 {
3158         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3159         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3160         bool was_interruptible = dev_priv->mm.interruptible;
3161         int ret;
3162
3163         /* Big Hammer, we also need to ensure that any pending
3164          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3165          * current scanout is retired before unpinning the old
3166          * framebuffer.
3167          *
3168          * This should only fail upon a hung GPU, in which case we
3169          * can safely continue.
3170          */
3171         dev_priv->mm.interruptible = false;
3172         ret = i915_gem_object_finish_gpu(obj);
3173         dev_priv->mm.interruptible = was_interruptible;
3174
3175         return ret;
3176 }
3177
3178 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3179 {
3180         struct drm_device *dev = crtc->dev;
3181         struct drm_i915_private *dev_priv = dev->dev_private;
3182         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3183         bool pending;
3184
3185         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3186             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3187                 return false;
3188
3189         spin_lock_irq(&dev->event_lock);
3190         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3191         spin_unlock_irq(&dev->event_lock);
3192
3193         return pending;
3194 }
3195
3196 static void intel_update_pipe_size(struct intel_crtc *crtc)
3197 {
3198         struct drm_device *dev = crtc->base.dev;
3199         struct drm_i915_private *dev_priv = dev->dev_private;
3200         const struct drm_display_mode *adjusted_mode;
3201
3202         if (!i915.fastboot)
3203                 return;
3204
3205         /*
3206          * Update pipe size and adjust fitter if needed: the reason for this is
3207          * that in compute_mode_changes we check the native mode (not the pfit
3208          * mode) to see if we can flip rather than do a full mode set. In the
3209          * fastboot case, we'll flip, but if we don't update the pipesrc and
3210          * pfit state, we'll end up with a big fb scanned out into the wrong
3211          * sized surface.
3212          *
3213          * To fix this properly, we need to hoist the checks up into
3214          * compute_mode_changes (or above), check the actual pfit state and
3215          * whether the platform allows pfit disable with pipe active, and only
3216          * then update the pipesrc and pfit state, even on the flip path.
3217          */
3218
3219         adjusted_mode = &crtc->config->base.adjusted_mode;
3220
3221         I915_WRITE(PIPESRC(crtc->pipe),
3222                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3223                    (adjusted_mode->crtc_vdisplay - 1));
3224         if (!crtc->config->pch_pfit.enabled &&
3225             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3226              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3227                 I915_WRITE(PF_CTL(crtc->pipe), 0);
3228                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3229                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3230         }
3231         crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3232         crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3233 }
3234
3235 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3236 {
3237         struct drm_device *dev = crtc->dev;
3238         struct drm_i915_private *dev_priv = dev->dev_private;
3239         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3240         int pipe = intel_crtc->pipe;
3241         u32 reg, temp;
3242
3243         /* enable normal train */
3244         reg = FDI_TX_CTL(pipe);
3245         temp = I915_READ(reg);
3246         if (IS_IVYBRIDGE(dev)) {
3247                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3248                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3249         } else {
3250                 temp &= ~FDI_LINK_TRAIN_NONE;
3251                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3252         }
3253         I915_WRITE(reg, temp);
3254
3255         reg = FDI_RX_CTL(pipe);
3256         temp = I915_READ(reg);
3257         if (HAS_PCH_CPT(dev)) {
3258                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3259                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3260         } else {
3261                 temp &= ~FDI_LINK_TRAIN_NONE;
3262                 temp |= FDI_LINK_TRAIN_NONE;
3263         }
3264         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3265
3266         /* wait one idle pattern time */
3267         POSTING_READ(reg);
3268         udelay(1000);
3269
3270         /* IVB wants error correction enabled */
3271         if (IS_IVYBRIDGE(dev))
3272                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3273                            FDI_FE_ERRC_ENABLE);
3274 }
3275
3276 /* The FDI link training functions for ILK/Ibexpeak. */
3277 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3278 {
3279         struct drm_device *dev = crtc->dev;
3280         struct drm_i915_private *dev_priv = dev->dev_private;
3281         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3282         int pipe = intel_crtc->pipe;
3283         u32 reg, temp, tries;
3284
3285         /* FDI needs bits from pipe first */
3286         assert_pipe_enabled(dev_priv, pipe);
3287
3288         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3289            for train result */
3290         reg = FDI_RX_IMR(pipe);
3291         temp = I915_READ(reg);
3292         temp &= ~FDI_RX_SYMBOL_LOCK;
3293         temp &= ~FDI_RX_BIT_LOCK;
3294         I915_WRITE(reg, temp);
3295         I915_READ(reg);
3296         udelay(150);
3297
3298         /* enable CPU FDI TX and PCH FDI RX */
3299         reg = FDI_TX_CTL(pipe);
3300         temp = I915_READ(reg);
3301         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3302         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3303         temp &= ~FDI_LINK_TRAIN_NONE;
3304         temp |= FDI_LINK_TRAIN_PATTERN_1;
3305         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3306
3307         reg = FDI_RX_CTL(pipe);
3308         temp = I915_READ(reg);
3309         temp &= ~FDI_LINK_TRAIN_NONE;
3310         temp |= FDI_LINK_TRAIN_PATTERN_1;
3311         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3312
3313         POSTING_READ(reg);
3314         udelay(150);
3315
3316         /* Ironlake workaround, enable clock pointer after FDI enable*/
3317         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3318         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3319                    FDI_RX_PHASE_SYNC_POINTER_EN);
3320
3321         reg = FDI_RX_IIR(pipe);
3322         for (tries = 0; tries < 5; tries++) {
3323                 temp = I915_READ(reg);
3324                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3325
3326                 if ((temp & FDI_RX_BIT_LOCK)) {
3327                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3328                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3329                         break;
3330                 }
3331         }
3332         if (tries == 5)
3333                 DRM_ERROR("FDI train 1 fail!\n");
3334
3335         /* Train 2 */
3336         reg = FDI_TX_CTL(pipe);
3337         temp = I915_READ(reg);
3338         temp &= ~FDI_LINK_TRAIN_NONE;
3339         temp |= FDI_LINK_TRAIN_PATTERN_2;
3340         I915_WRITE(reg, temp);
3341
3342         reg = FDI_RX_CTL(pipe);
3343         temp = I915_READ(reg);
3344         temp &= ~FDI_LINK_TRAIN_NONE;
3345         temp |= FDI_LINK_TRAIN_PATTERN_2;
3346         I915_WRITE(reg, temp);
3347
3348         POSTING_READ(reg);
3349         udelay(150);
3350
3351         reg = FDI_RX_IIR(pipe);
3352         for (tries = 0; tries < 5; tries++) {
3353                 temp = I915_READ(reg);
3354                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3355
3356                 if (temp & FDI_RX_SYMBOL_LOCK) {
3357                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3358                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3359                         break;
3360                 }
3361         }
3362         if (tries == 5)
3363                 DRM_ERROR("FDI train 2 fail!\n");
3364
3365         DRM_DEBUG_KMS("FDI train done\n");
3366
3367 }
3368
3369 static const int snb_b_fdi_train_param[] = {
3370         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3371         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3372         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3373         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3374 };
3375
3376 /* The FDI link training functions for SNB/Cougarpoint. */
3377 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3378 {
3379         struct drm_device *dev = crtc->dev;
3380         struct drm_i915_private *dev_priv = dev->dev_private;
3381         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3382         int pipe = intel_crtc->pipe;
3383         u32 reg, temp, i, retry;
3384
3385         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3386            for train result */
3387         reg = FDI_RX_IMR(pipe);
3388         temp = I915_READ(reg);
3389         temp &= ~FDI_RX_SYMBOL_LOCK;
3390         temp &= ~FDI_RX_BIT_LOCK;
3391         I915_WRITE(reg, temp);
3392
3393         POSTING_READ(reg);
3394         udelay(150);
3395
3396         /* enable CPU FDI TX and PCH FDI RX */
3397         reg = FDI_TX_CTL(pipe);
3398         temp = I915_READ(reg);
3399         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3400         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3401         temp &= ~FDI_LINK_TRAIN_NONE;
3402         temp |= FDI_LINK_TRAIN_PATTERN_1;
3403         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3404         /* SNB-B */
3405         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3406         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3407
3408         I915_WRITE(FDI_RX_MISC(pipe),
3409                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3410
3411         reg = FDI_RX_CTL(pipe);
3412         temp = I915_READ(reg);
3413         if (HAS_PCH_CPT(dev)) {
3414                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3415                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3416         } else {
3417                 temp &= ~FDI_LINK_TRAIN_NONE;
3418                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3419         }
3420         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3421
3422         POSTING_READ(reg);
3423         udelay(150);
3424
3425         for (i = 0; i < 4; i++) {
3426                 reg = FDI_TX_CTL(pipe);
3427                 temp = I915_READ(reg);
3428                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3429                 temp |= snb_b_fdi_train_param[i];
3430                 I915_WRITE(reg, temp);
3431
3432                 POSTING_READ(reg);
3433                 udelay(500);
3434
3435                 for (retry = 0; retry < 5; retry++) {
3436                         reg = FDI_RX_IIR(pipe);
3437                         temp = I915_READ(reg);
3438                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3439                         if (temp & FDI_RX_BIT_LOCK) {
3440                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3441                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3442                                 break;
3443                         }
3444                         udelay(50);
3445                 }
3446                 if (retry < 5)
3447                         break;
3448         }
3449         if (i == 4)
3450                 DRM_ERROR("FDI train 1 fail!\n");
3451
3452         /* Train 2 */
3453         reg = FDI_TX_CTL(pipe);
3454         temp = I915_READ(reg);
3455         temp &= ~FDI_LINK_TRAIN_NONE;
3456         temp |= FDI_LINK_TRAIN_PATTERN_2;
3457         if (IS_GEN6(dev)) {
3458                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3459                 /* SNB-B */
3460                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3461         }
3462         I915_WRITE(reg, temp);
3463
3464         reg = FDI_RX_CTL(pipe);
3465         temp = I915_READ(reg);
3466         if (HAS_PCH_CPT(dev)) {
3467                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3468                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3469         } else {
3470                 temp &= ~FDI_LINK_TRAIN_NONE;
3471                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3472         }
3473         I915_WRITE(reg, temp);
3474
3475         POSTING_READ(reg);
3476         udelay(150);
3477
3478         for (i = 0; i < 4; i++) {
3479                 reg = FDI_TX_CTL(pipe);
3480                 temp = I915_READ(reg);
3481                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3482                 temp |= snb_b_fdi_train_param[i];
3483                 I915_WRITE(reg, temp);
3484
3485                 POSTING_READ(reg);
3486                 udelay(500);
3487
3488                 for (retry = 0; retry < 5; retry++) {
3489                         reg = FDI_RX_IIR(pipe);
3490                         temp = I915_READ(reg);
3491                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3492                         if (temp & FDI_RX_SYMBOL_LOCK) {
3493                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3494                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3495                                 break;
3496                         }
3497                         udelay(50);
3498                 }
3499                 if (retry < 5)
3500                         break;
3501         }
3502         if (i == 4)
3503                 DRM_ERROR("FDI train 2 fail!\n");
3504
3505         DRM_DEBUG_KMS("FDI train done.\n");
3506 }
3507
3508 /* Manual link training for Ivy Bridge A0 parts */
3509 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3510 {
3511         struct drm_device *dev = crtc->dev;
3512         struct drm_i915_private *dev_priv = dev->dev_private;
3513         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3514         int pipe = intel_crtc->pipe;
3515         u32 reg, temp, i, j;
3516
3517         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3518            for train result */
3519         reg = FDI_RX_IMR(pipe);
3520         temp = I915_READ(reg);
3521         temp &= ~FDI_RX_SYMBOL_LOCK;
3522         temp &= ~FDI_RX_BIT_LOCK;
3523         I915_WRITE(reg, temp);
3524
3525         POSTING_READ(reg);
3526         udelay(150);
3527
3528         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3529                       I915_READ(FDI_RX_IIR(pipe)));
3530
3531         /* Try each vswing and preemphasis setting twice before moving on */
3532         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3533                 /* disable first in case we need to retry */
3534                 reg = FDI_TX_CTL(pipe);
3535                 temp = I915_READ(reg);
3536                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3537                 temp &= ~FDI_TX_ENABLE;
3538                 I915_WRITE(reg, temp);
3539
3540                 reg = FDI_RX_CTL(pipe);
3541                 temp = I915_READ(reg);
3542                 temp &= ~FDI_LINK_TRAIN_AUTO;
3543                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3544                 temp &= ~FDI_RX_ENABLE;
3545                 I915_WRITE(reg, temp);
3546
3547                 /* enable CPU FDI TX and PCH FDI RX */
3548                 reg = FDI_TX_CTL(pipe);
3549                 temp = I915_READ(reg);
3550                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3551                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3552                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3553                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3554                 temp |= snb_b_fdi_train_param[j/2];
3555                 temp |= FDI_COMPOSITE_SYNC;
3556                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3557
3558                 I915_WRITE(FDI_RX_MISC(pipe),
3559                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3560
3561                 reg = FDI_RX_CTL(pipe);
3562                 temp = I915_READ(reg);
3563                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3564                 temp |= FDI_COMPOSITE_SYNC;
3565                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3566
3567                 POSTING_READ(reg);
3568                 udelay(1); /* should be 0.5us */
3569
3570                 for (i = 0; i < 4; i++) {
3571                         reg = FDI_RX_IIR(pipe);
3572                         temp = I915_READ(reg);
3573                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3574
3575                         if (temp & FDI_RX_BIT_LOCK ||
3576                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3577                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3578                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3579                                               i);
3580                                 break;
3581                         }
3582                         udelay(1); /* should be 0.5us */
3583                 }
3584                 if (i == 4) {
3585                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3586                         continue;
3587                 }
3588
3589                 /* Train 2 */
3590                 reg = FDI_TX_CTL(pipe);
3591                 temp = I915_READ(reg);
3592                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3593                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3594                 I915_WRITE(reg, temp);
3595
3596                 reg = FDI_RX_CTL(pipe);
3597                 temp = I915_READ(reg);
3598                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3599                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3600                 I915_WRITE(reg, temp);
3601
3602                 POSTING_READ(reg);
3603                 udelay(2); /* should be 1.5us */
3604
3605                 for (i = 0; i < 4; i++) {
3606                         reg = FDI_RX_IIR(pipe);
3607                         temp = I915_READ(reg);
3608                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3609
3610                         if (temp & FDI_RX_SYMBOL_LOCK ||
3611                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3612                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3613                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3614                                               i);
3615                                 goto train_done;
3616                         }
3617                         udelay(2); /* should be 1.5us */
3618                 }
3619                 if (i == 4)
3620                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3621         }
3622
3623 train_done:
3624         DRM_DEBUG_KMS("FDI train done.\n");
3625 }
3626
3627 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3628 {
3629         struct drm_device *dev = intel_crtc->base.dev;
3630         struct drm_i915_private *dev_priv = dev->dev_private;
3631         int pipe = intel_crtc->pipe;
3632         u32 reg, temp;
3633
3634
3635         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3636         reg = FDI_RX_CTL(pipe);
3637         temp = I915_READ(reg);
3638         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3639         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3640         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3641         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3642
3643         POSTING_READ(reg);
3644         udelay(200);
3645
3646         /* Switch from Rawclk to PCDclk */
3647         temp = I915_READ(reg);
3648         I915_WRITE(reg, temp | FDI_PCDCLK);
3649
3650         POSTING_READ(reg);
3651         udelay(200);
3652
3653         /* Enable CPU FDI TX PLL, always on for Ironlake */
3654         reg = FDI_TX_CTL(pipe);
3655         temp = I915_READ(reg);
3656         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3657                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3658
3659                 POSTING_READ(reg);
3660                 udelay(100);
3661         }
3662 }
3663
3664 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3665 {
3666         struct drm_device *dev = intel_crtc->base.dev;
3667         struct drm_i915_private *dev_priv = dev->dev_private;
3668         int pipe = intel_crtc->pipe;
3669         u32 reg, temp;
3670
3671         /* Switch from PCDclk to Rawclk */
3672         reg = FDI_RX_CTL(pipe);
3673         temp = I915_READ(reg);
3674         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3675
3676         /* Disable CPU FDI TX PLL */
3677         reg = FDI_TX_CTL(pipe);
3678         temp = I915_READ(reg);
3679         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3680
3681         POSTING_READ(reg);
3682         udelay(100);
3683
3684         reg = FDI_RX_CTL(pipe);
3685         temp = I915_READ(reg);
3686         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3687
3688         /* Wait for the clocks to turn off. */
3689         POSTING_READ(reg);
3690         udelay(100);
3691 }
3692
3693 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3694 {
3695         struct drm_device *dev = crtc->dev;
3696         struct drm_i915_private *dev_priv = dev->dev_private;
3697         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3698         int pipe = intel_crtc->pipe;
3699         u32 reg, temp;
3700
3701         /* disable CPU FDI tx and PCH FDI rx */
3702         reg = FDI_TX_CTL(pipe);
3703         temp = I915_READ(reg);
3704         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3705         POSTING_READ(reg);
3706
3707         reg = FDI_RX_CTL(pipe);
3708         temp = I915_READ(reg);
3709         temp &= ~(0x7 << 16);
3710         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3711         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3712
3713         POSTING_READ(reg);
3714         udelay(100);
3715
3716         /* Ironlake workaround, disable clock pointer after downing FDI */
3717         if (HAS_PCH_IBX(dev))
3718                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3719
3720         /* still set train pattern 1 */
3721         reg = FDI_TX_CTL(pipe);
3722         temp = I915_READ(reg);
3723         temp &= ~FDI_LINK_TRAIN_NONE;
3724         temp |= FDI_LINK_TRAIN_PATTERN_1;
3725         I915_WRITE(reg, temp);
3726
3727         reg = FDI_RX_CTL(pipe);
3728         temp = I915_READ(reg);
3729         if (HAS_PCH_CPT(dev)) {
3730                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3731                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3732         } else {
3733                 temp &= ~FDI_LINK_TRAIN_NONE;
3734                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3735         }
3736         /* BPC in FDI rx is consistent with that in PIPECONF */
3737         temp &= ~(0x07 << 16);
3738         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3739         I915_WRITE(reg, temp);
3740
3741         POSTING_READ(reg);
3742         udelay(100);
3743 }
3744
3745 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3746 {
3747         struct intel_crtc *crtc;
3748
3749         /* Note that we don't need to be called with mode_config.lock here
3750          * as our list of CRTC objects is static for the lifetime of the
3751          * device and so cannot disappear as we iterate. Similarly, we can
3752          * happily treat the predicates as racy, atomic checks as userspace
3753          * cannot claim and pin a new fb without at least acquring the
3754          * struct_mutex and so serialising with us.
3755          */
3756         for_each_intel_crtc(dev, crtc) {
3757                 if (atomic_read(&crtc->unpin_work_count) == 0)
3758                         continue;
3759
3760                 if (crtc->unpin_work)
3761                         intel_wait_for_vblank(dev, crtc->pipe);
3762
3763                 return true;
3764         }
3765
3766         return false;
3767 }
3768
3769 static void page_flip_completed(struct intel_crtc *intel_crtc)
3770 {
3771         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3772         struct intel_unpin_work *work = intel_crtc->unpin_work;
3773
3774         /* ensure that the unpin work is consistent wrt ->pending. */
3775         smp_rmb();
3776         intel_crtc->unpin_work = NULL;
3777
3778         if (work->event)
3779                 drm_send_vblank_event(intel_crtc->base.dev,
3780                                       intel_crtc->pipe,
3781                                       work->event);
3782
3783         drm_crtc_vblank_put(&intel_crtc->base);
3784
3785         wake_up_all(&dev_priv->pending_flip_queue);
3786         queue_work(dev_priv->wq, &work->work);
3787
3788         trace_i915_flip_complete(intel_crtc->plane,
3789                                  work->pending_flip_obj);
3790 }
3791
3792 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3793 {
3794         struct drm_device *dev = crtc->dev;
3795         struct drm_i915_private *dev_priv = dev->dev_private;
3796
3797         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3798         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3799                                        !intel_crtc_has_pending_flip(crtc),
3800                                        60*HZ) == 0)) {
3801                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3802
3803                 spin_lock_irq(&dev->event_lock);
3804                 if (intel_crtc->unpin_work) {
3805                         WARN_ONCE(1, "Removing stuck page flip\n");
3806                         page_flip_completed(intel_crtc);
3807                 }
3808                 spin_unlock_irq(&dev->event_lock);
3809         }
3810
3811         if (crtc->primary->fb) {
3812                 mutex_lock(&dev->struct_mutex);
3813                 intel_finish_fb(crtc->primary->fb);
3814                 mutex_unlock(&dev->struct_mutex);
3815         }
3816 }
3817
3818 /* Program iCLKIP clock to the desired frequency */
3819 static void lpt_program_iclkip(struct drm_crtc *crtc)
3820 {
3821         struct drm_device *dev = crtc->dev;
3822         struct drm_i915_private *dev_priv = dev->dev_private;
3823         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3824         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3825         u32 temp;
3826
3827         mutex_lock(&dev_priv->dpio_lock);
3828
3829         /* It is necessary to ungate the pixclk gate prior to programming
3830          * the divisors, and gate it back when it is done.
3831          */
3832         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3833
3834         /* Disable SSCCTL */
3835         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3836                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3837                                 SBI_SSCCTL_DISABLE,
3838                         SBI_ICLK);
3839
3840         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3841         if (clock == 20000) {
3842                 auxdiv = 1;
3843                 divsel = 0x41;
3844                 phaseinc = 0x20;
3845         } else {
3846                 /* The iCLK virtual clock root frequency is in MHz,
3847                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3848                  * divisors, it is necessary to divide one by another, so we
3849                  * convert the virtual clock precision to KHz here for higher
3850                  * precision.
3851                  */
3852                 u32 iclk_virtual_root_freq = 172800 * 1000;
3853                 u32 iclk_pi_range = 64;
3854                 u32 desired_divisor, msb_divisor_value, pi_value;
3855
3856                 desired_divisor = (iclk_virtual_root_freq / clock);
3857                 msb_divisor_value = desired_divisor / iclk_pi_range;
3858                 pi_value = desired_divisor % iclk_pi_range;
3859
3860                 auxdiv = 0;
3861                 divsel = msb_divisor_value - 2;
3862                 phaseinc = pi_value;
3863         }
3864
3865         /* This should not happen with any sane values */
3866         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3867                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3868         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3869                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3870
3871         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3872                         clock,
3873                         auxdiv,
3874                         divsel,
3875                         phasedir,
3876                         phaseinc);
3877
3878         /* Program SSCDIVINTPHASE6 */
3879         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3880         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3881         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3882         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3883         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3884         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3885         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3886         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3887
3888         /* Program SSCAUXDIV */
3889         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3890         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3891         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3892         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3893
3894         /* Enable modulator and associated divider */
3895         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3896         temp &= ~SBI_SSCCTL_DISABLE;
3897         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3898
3899         /* Wait for initialization time */
3900         udelay(24);
3901
3902         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3903
3904         mutex_unlock(&dev_priv->dpio_lock);
3905 }
3906
3907 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3908                                                 enum pipe pch_transcoder)
3909 {
3910         struct drm_device *dev = crtc->base.dev;
3911         struct drm_i915_private *dev_priv = dev->dev_private;
3912         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3913
3914         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3915                    I915_READ(HTOTAL(cpu_transcoder)));
3916         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3917                    I915_READ(HBLANK(cpu_transcoder)));
3918         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3919                    I915_READ(HSYNC(cpu_transcoder)));
3920
3921         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3922                    I915_READ(VTOTAL(cpu_transcoder)));
3923         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3924                    I915_READ(VBLANK(cpu_transcoder)));
3925         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3926                    I915_READ(VSYNC(cpu_transcoder)));
3927         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3928                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3929 }
3930
3931 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
3932 {
3933         struct drm_i915_private *dev_priv = dev->dev_private;
3934         uint32_t temp;
3935
3936         temp = I915_READ(SOUTH_CHICKEN1);
3937         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
3938                 return;
3939
3940         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3941         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3942
3943         temp &= ~FDI_BC_BIFURCATION_SELECT;
3944         if (enable)
3945                 temp |= FDI_BC_BIFURCATION_SELECT;
3946
3947         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
3948         I915_WRITE(SOUTH_CHICKEN1, temp);
3949         POSTING_READ(SOUTH_CHICKEN1);
3950 }
3951
3952 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3953 {
3954         struct drm_device *dev = intel_crtc->base.dev;
3955
3956         switch (intel_crtc->pipe) {
3957         case PIPE_A:
3958                 break;
3959         case PIPE_B:
3960                 if (intel_crtc->config->fdi_lanes > 2)
3961                         cpt_set_fdi_bc_bifurcation(dev, false);
3962                 else
3963                         cpt_set_fdi_bc_bifurcation(dev, true);
3964
3965                 break;
3966         case PIPE_C:
3967                 cpt_set_fdi_bc_bifurcation(dev, true);
3968
3969                 break;
3970         default:
3971                 BUG();
3972         }
3973 }
3974
3975 /*
3976  * Enable PCH resources required for PCH ports:
3977  *   - PCH PLLs
3978  *   - FDI training & RX/TX
3979  *   - update transcoder timings
3980  *   - DP transcoding bits
3981  *   - transcoder
3982  */
3983 static void ironlake_pch_enable(struct drm_crtc *crtc)
3984 {
3985         struct drm_device *dev = crtc->dev;
3986         struct drm_i915_private *dev_priv = dev->dev_private;
3987         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3988         int pipe = intel_crtc->pipe;
3989         u32 reg, temp;
3990
3991         assert_pch_transcoder_disabled(dev_priv, pipe);
3992
3993         if (IS_IVYBRIDGE(dev))
3994                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3995
3996         /* Write the TU size bits before fdi link training, so that error
3997          * detection works. */
3998         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3999                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4000
4001         /* For PCH output, training FDI link */
4002         dev_priv->display.fdi_link_train(crtc);
4003
4004         /* We need to program the right clock selection before writing the pixel
4005          * mutliplier into the DPLL. */
4006         if (HAS_PCH_CPT(dev)) {
4007                 u32 sel;
4008
4009                 temp = I915_READ(PCH_DPLL_SEL);
4010                 temp |= TRANS_DPLL_ENABLE(pipe);
4011                 sel = TRANS_DPLLB_SEL(pipe);
4012                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4013                         temp |= sel;
4014                 else
4015                         temp &= ~sel;
4016                 I915_WRITE(PCH_DPLL_SEL, temp);
4017         }
4018
4019         /* XXX: pch pll's can be enabled any time before we enable the PCH
4020          * transcoder, and we actually should do this to not upset any PCH
4021          * transcoder that already use the clock when we share it.
4022          *
4023          * Note that enable_shared_dpll tries to do the right thing, but
4024          * get_shared_dpll unconditionally resets the pll - we need that to have
4025          * the right LVDS enable sequence. */
4026         intel_enable_shared_dpll(intel_crtc);
4027
4028         /* set transcoder timing, panel must allow it */
4029         assert_panel_unlocked(dev_priv, pipe);
4030         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4031
4032         intel_fdi_normal_train(crtc);
4033
4034         /* For PCH DP, enable TRANS_DP_CTL */
4035         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4036                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4037                 reg = TRANS_DP_CTL(pipe);
4038                 temp = I915_READ(reg);
4039                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4040                           TRANS_DP_SYNC_MASK |
4041                           TRANS_DP_BPC_MASK);
4042                 temp |= (TRANS_DP_OUTPUT_ENABLE |
4043                          TRANS_DP_ENH_FRAMING);
4044                 temp |= bpc << 9; /* same format but at 11:9 */
4045
4046                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4047                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4048                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4049                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4050
4051                 switch (intel_trans_dp_port_sel(crtc)) {
4052                 case PCH_DP_B:
4053                         temp |= TRANS_DP_PORT_SEL_B;
4054                         break;
4055                 case PCH_DP_C:
4056                         temp |= TRANS_DP_PORT_SEL_C;
4057                         break;
4058                 case PCH_DP_D:
4059                         temp |= TRANS_DP_PORT_SEL_D;
4060                         break;
4061                 default:
4062                         BUG();
4063                 }
4064
4065                 I915_WRITE(reg, temp);
4066         }
4067
4068         ironlake_enable_pch_transcoder(dev_priv, pipe);
4069 }
4070
4071 static void lpt_pch_enable(struct drm_crtc *crtc)
4072 {
4073         struct drm_device *dev = crtc->dev;
4074         struct drm_i915_private *dev_priv = dev->dev_private;
4075         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4076         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4077
4078         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4079
4080         lpt_program_iclkip(crtc);
4081
4082         /* Set transcoder timing. */
4083         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4084
4085         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4086 }
4087
4088 void intel_put_shared_dpll(struct intel_crtc *crtc)
4089 {
4090         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4091
4092         if (pll == NULL)
4093                 return;
4094
4095         if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
4096                 WARN(1, "bad %s crtc mask\n", pll->name);
4097                 return;
4098         }
4099
4100         pll->config.crtc_mask &= ~(1 << crtc->pipe);
4101         if (pll->config.crtc_mask == 0) {
4102                 WARN_ON(pll->on);
4103                 WARN_ON(pll->active);
4104         }
4105
4106         crtc->config->shared_dpll = DPLL_ID_PRIVATE;
4107 }
4108
4109 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4110                                                 struct intel_crtc_state *crtc_state)
4111 {
4112         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4113         struct intel_shared_dpll *pll;
4114         enum intel_dpll_id i;
4115
4116         if (HAS_PCH_IBX(dev_priv->dev)) {
4117                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4118                 i = (enum intel_dpll_id) crtc->pipe;
4119                 pll = &dev_priv->shared_dplls[i];
4120
4121                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4122                               crtc->base.base.id, pll->name);
4123
4124                 WARN_ON(pll->new_config->crtc_mask);
4125
4126                 goto found;
4127         }
4128
4129         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4130                 pll = &dev_priv->shared_dplls[i];
4131
4132                 /* Only want to check enabled timings first */
4133                 if (pll->new_config->crtc_mask == 0)
4134                         continue;
4135
4136                 if (memcmp(&crtc_state->dpll_hw_state,
4137                            &pll->new_config->hw_state,
4138                            sizeof(pll->new_config->hw_state)) == 0) {
4139                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4140                                       crtc->base.base.id, pll->name,
4141                                       pll->new_config->crtc_mask,
4142                                       pll->active);
4143                         goto found;
4144                 }
4145         }
4146
4147         /* Ok no matching timings, maybe there's a free one? */
4148         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4149                 pll = &dev_priv->shared_dplls[i];
4150                 if (pll->new_config->crtc_mask == 0) {
4151                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4152                                       crtc->base.base.id, pll->name);
4153                         goto found;
4154                 }
4155         }
4156
4157         return NULL;
4158
4159 found:
4160         if (pll->new_config->crtc_mask == 0)
4161                 pll->new_config->hw_state = crtc_state->dpll_hw_state;
4162
4163         crtc_state->shared_dpll = i;
4164         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4165                          pipe_name(crtc->pipe));
4166
4167         pll->new_config->crtc_mask |= 1 << crtc->pipe;
4168
4169         return pll;
4170 }
4171
4172 /**
4173  * intel_shared_dpll_start_config - start a new PLL staged config
4174  * @dev_priv: DRM device
4175  * @clear_pipes: mask of pipes that will have their PLLs freed
4176  *
4177  * Starts a new PLL staged config, copying the current config but
4178  * releasing the references of pipes specified in clear_pipes.
4179  */
4180 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4181                                           unsigned clear_pipes)
4182 {
4183         struct intel_shared_dpll *pll;
4184         enum intel_dpll_id i;
4185
4186         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4187                 pll = &dev_priv->shared_dplls[i];
4188
4189                 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4190                                           GFP_KERNEL);
4191                 if (!pll->new_config)
4192                         goto cleanup;
4193
4194                 pll->new_config->crtc_mask &= ~clear_pipes;
4195         }
4196
4197         return 0;
4198
4199 cleanup:
4200         while (--i >= 0) {
4201                 pll = &dev_priv->shared_dplls[i];
4202                 kfree(pll->new_config);
4203                 pll->new_config = NULL;
4204         }
4205
4206         return -ENOMEM;
4207 }
4208
4209 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4210 {
4211         struct intel_shared_dpll *pll;
4212         enum intel_dpll_id i;
4213
4214         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4215                 pll = &dev_priv->shared_dplls[i];
4216
4217                 WARN_ON(pll->new_config == &pll->config);
4218
4219                 pll->config = *pll->new_config;
4220                 kfree(pll->new_config);
4221                 pll->new_config = NULL;
4222         }
4223 }
4224
4225 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4226 {
4227         struct intel_shared_dpll *pll;
4228         enum intel_dpll_id i;
4229
4230         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4231                 pll = &dev_priv->shared_dplls[i];
4232
4233                 WARN_ON(pll->new_config == &pll->config);
4234
4235                 kfree(pll->new_config);
4236                 pll->new_config = NULL;
4237         }
4238 }
4239
4240 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4241 {
4242         struct drm_i915_private *dev_priv = dev->dev_private;
4243         int dslreg = PIPEDSL(pipe);
4244         u32 temp;
4245
4246         temp = I915_READ(dslreg);
4247         udelay(500);
4248         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4249                 if (wait_for(I915_READ(dslreg) != temp, 5))
4250                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4251         }
4252 }
4253
4254 static void skylake_pfit_enable(struct intel_crtc *crtc)
4255 {
4256         struct drm_device *dev = crtc->base.dev;
4257         struct drm_i915_private *dev_priv = dev->dev_private;
4258         int pipe = crtc->pipe;
4259
4260         if (crtc->config->pch_pfit.enabled) {
4261                 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4262                 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4263                 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4264         }
4265 }
4266
4267 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4268 {
4269         struct drm_device *dev = crtc->base.dev;
4270         struct drm_i915_private *dev_priv = dev->dev_private;
4271         int pipe = crtc->pipe;
4272
4273         if (crtc->config->pch_pfit.enabled) {
4274                 /* Force use of hard-coded filter coefficients
4275                  * as some pre-programmed values are broken,
4276                  * e.g. x201.
4277                  */
4278                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4279                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4280                                                  PF_PIPE_SEL_IVB(pipe));
4281                 else
4282                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4283                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4284                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4285         }
4286 }
4287
4288 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4289 {
4290         struct drm_device *dev = crtc->dev;
4291         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4292         struct drm_plane *plane;
4293         struct intel_plane *intel_plane;
4294
4295         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4296                 intel_plane = to_intel_plane(plane);
4297                 if (intel_plane->pipe == pipe)
4298                         intel_plane_restore(&intel_plane->base);
4299         }
4300 }
4301
4302 /*
4303  * Disable a plane internally without actually modifying the plane's state.
4304  * This will allow us to easily restore the plane later by just reprogramming
4305  * its state.
4306  */
4307 static void disable_plane_internal(struct drm_plane *plane)
4308 {
4309         struct intel_plane *intel_plane = to_intel_plane(plane);
4310         struct drm_plane_state *state =
4311                 plane->funcs->atomic_duplicate_state(plane);
4312         struct intel_plane_state *intel_state = to_intel_plane_state(state);
4313
4314         intel_state->visible = false;
4315         intel_plane->commit_plane(plane, intel_state);
4316
4317         intel_plane_destroy_state(plane, state);
4318 }
4319
4320 static void intel_disable_sprite_planes(struct drm_crtc *crtc)
4321 {
4322         struct drm_device *dev = crtc->dev;
4323         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4324         struct drm_plane *plane;
4325         struct intel_plane *intel_plane;
4326
4327         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4328                 intel_plane = to_intel_plane(plane);
4329                 if (plane->fb && intel_plane->pipe == pipe)
4330                         disable_plane_internal(plane);
4331         }
4332 }
4333
4334 void hsw_enable_ips(struct intel_crtc *crtc)
4335 {
4336         struct drm_device *dev = crtc->base.dev;
4337         struct drm_i915_private *dev_priv = dev->dev_private;
4338
4339         if (!crtc->config->ips_enabled)
4340                 return;
4341
4342         /* We can only enable IPS after we enable a plane and wait for a vblank */
4343         intel_wait_for_vblank(dev, crtc->pipe);
4344
4345         assert_plane_enabled(dev_priv, crtc->plane);
4346         if (IS_BROADWELL(dev)) {
4347                 mutex_lock(&dev_priv->rps.hw_lock);
4348                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4349                 mutex_unlock(&dev_priv->rps.hw_lock);
4350                 /* Quoting Art Runyan: "its not safe to expect any particular
4351                  * value in IPS_CTL bit 31 after enabling IPS through the
4352                  * mailbox." Moreover, the mailbox may return a bogus state,
4353                  * so we need to just enable it and continue on.
4354                  */
4355         } else {
4356                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4357                 /* The bit only becomes 1 in the next vblank, so this wait here
4358                  * is essentially intel_wait_for_vblank. If we don't have this
4359                  * and don't wait for vblanks until the end of crtc_enable, then
4360                  * the HW state readout code will complain that the expected
4361                  * IPS_CTL value is not the one we read. */
4362                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4363                         DRM_ERROR("Timed out waiting for IPS enable\n");
4364         }
4365 }
4366
4367 void hsw_disable_ips(struct intel_crtc *crtc)
4368 {
4369         struct drm_device *dev = crtc->base.dev;
4370         struct drm_i915_private *dev_priv = dev->dev_private;
4371
4372         if (!crtc->config->ips_enabled)
4373                 return;
4374
4375         assert_plane_enabled(dev_priv, crtc->plane);
4376         if (IS_BROADWELL(dev)) {
4377                 mutex_lock(&dev_priv->rps.hw_lock);
4378                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4379                 mutex_unlock(&dev_priv->rps.hw_lock);
4380                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4381                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4382                         DRM_ERROR("Timed out waiting for IPS disable\n");
4383         } else {
4384                 I915_WRITE(IPS_CTL, 0);
4385                 POSTING_READ(IPS_CTL);
4386         }
4387
4388         /* We need to wait for a vblank before we can disable the plane. */
4389         intel_wait_for_vblank(dev, crtc->pipe);
4390 }
4391
4392 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4393 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4394 {
4395         struct drm_device *dev = crtc->dev;
4396         struct drm_i915_private *dev_priv = dev->dev_private;
4397         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4398         enum pipe pipe = intel_crtc->pipe;
4399         int palreg = PALETTE(pipe);
4400         int i;
4401         bool reenable_ips = false;
4402
4403         /* The clocks have to be on to load the palette. */
4404         if (!crtc->state->enable || !intel_crtc->active)
4405                 return;
4406
4407         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4408                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4409                         assert_dsi_pll_enabled(dev_priv);
4410                 else
4411                         assert_pll_enabled(dev_priv, pipe);
4412         }
4413
4414         /* use legacy palette for Ironlake */
4415         if (!HAS_GMCH_DISPLAY(dev))
4416                 palreg = LGC_PALETTE(pipe);
4417
4418         /* Workaround : Do not read or write the pipe palette/gamma data while
4419          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4420          */
4421         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4422             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4423              GAMMA_MODE_MODE_SPLIT)) {
4424                 hsw_disable_ips(intel_crtc);
4425                 reenable_ips = true;
4426         }
4427
4428         for (i = 0; i < 256; i++) {
4429                 I915_WRITE(palreg + 4 * i,
4430                            (intel_crtc->lut_r[i] << 16) |
4431                            (intel_crtc->lut_g[i] << 8) |
4432                            intel_crtc->lut_b[i]);
4433         }
4434
4435         if (reenable_ips)
4436                 hsw_enable_ips(intel_crtc);
4437 }
4438
4439 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4440 {
4441         if (!enable && intel_crtc->overlay) {
4442                 struct drm_device *dev = intel_crtc->base.dev;
4443                 struct drm_i915_private *dev_priv = dev->dev_private;
4444
4445                 mutex_lock(&dev->struct_mutex);
4446                 dev_priv->mm.interruptible = false;
4447                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4448                 dev_priv->mm.interruptible = true;
4449                 mutex_unlock(&dev->struct_mutex);
4450         }
4451
4452         /* Let userspace switch the overlay on again. In most cases userspace
4453          * has to recompute where to put it anyway.
4454          */
4455 }
4456
4457 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4458 {
4459         struct drm_device *dev = crtc->dev;
4460         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4461         int pipe = intel_crtc->pipe;
4462
4463         intel_enable_primary_hw_plane(crtc->primary, crtc);
4464         intel_enable_sprite_planes(crtc);
4465         intel_crtc_update_cursor(crtc, true);
4466         intel_crtc_dpms_overlay(intel_crtc, true);
4467
4468         hsw_enable_ips(intel_crtc);
4469
4470         mutex_lock(&dev->struct_mutex);
4471         intel_fbc_update(dev);
4472         mutex_unlock(&dev->struct_mutex);
4473
4474         /*
4475          * FIXME: Once we grow proper nuclear flip support out of this we need
4476          * to compute the mask of flip planes precisely. For the time being
4477          * consider this a flip from a NULL plane.
4478          */
4479         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4480 }
4481
4482 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4483 {
4484         struct drm_device *dev = crtc->dev;
4485         struct drm_i915_private *dev_priv = dev->dev_private;
4486         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4487         int pipe = intel_crtc->pipe;
4488
4489         intel_crtc_wait_for_pending_flips(crtc);
4490
4491         if (dev_priv->fbc.crtc == intel_crtc)
4492                 intel_fbc_disable(dev);
4493
4494         hsw_disable_ips(intel_crtc);
4495
4496         intel_crtc_dpms_overlay(intel_crtc, false);
4497         intel_crtc_update_cursor(crtc, false);
4498         intel_disable_sprite_planes(crtc);
4499         intel_disable_primary_hw_plane(crtc->primary, crtc);
4500
4501         /*
4502          * FIXME: Once we grow proper nuclear flip support out of this we need
4503          * to compute the mask of flip planes precisely. For the time being
4504          * consider this a flip to a NULL plane.
4505          */
4506         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4507 }
4508
4509 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4510 {
4511         struct drm_device *dev = crtc->dev;
4512         struct drm_i915_private *dev_priv = dev->dev_private;
4513         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4514         struct intel_encoder *encoder;
4515         int pipe = intel_crtc->pipe;
4516
4517         WARN_ON(!crtc->state->enable);
4518
4519         if (intel_crtc->active)
4520                 return;
4521
4522         if (intel_crtc->config->has_pch_encoder)
4523                 intel_prepare_shared_dpll(intel_crtc);
4524
4525         if (intel_crtc->config->has_dp_encoder)
4526                 intel_dp_set_m_n(intel_crtc, M1_N1);
4527
4528         intel_set_pipe_timings(intel_crtc);
4529
4530         if (intel_crtc->config->has_pch_encoder) {
4531                 intel_cpu_transcoder_set_m_n(intel_crtc,
4532                                      &intel_crtc->config->fdi_m_n, NULL);
4533         }
4534
4535         ironlake_set_pipeconf(crtc);
4536
4537         intel_crtc->active = true;
4538
4539         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4540         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4541
4542         for_each_encoder_on_crtc(dev, crtc, encoder)
4543                 if (encoder->pre_enable)
4544                         encoder->pre_enable(encoder);
4545
4546         if (intel_crtc->config->has_pch_encoder) {
4547                 /* Note: FDI PLL enabling _must_ be done before we enable the
4548                  * cpu pipes, hence this is separate from all the other fdi/pch
4549                  * enabling. */
4550                 ironlake_fdi_pll_enable(intel_crtc);
4551         } else {
4552                 assert_fdi_tx_disabled(dev_priv, pipe);
4553                 assert_fdi_rx_disabled(dev_priv, pipe);
4554         }
4555
4556         ironlake_pfit_enable(intel_crtc);
4557
4558         /*
4559          * On ILK+ LUT must be loaded before the pipe is running but with
4560          * clocks enabled
4561          */
4562         intel_crtc_load_lut(crtc);
4563
4564         intel_update_watermarks(crtc);
4565         intel_enable_pipe(intel_crtc);
4566
4567         if (intel_crtc->config->has_pch_encoder)
4568                 ironlake_pch_enable(crtc);
4569
4570         assert_vblank_disabled(crtc);
4571         drm_crtc_vblank_on(crtc);
4572
4573         for_each_encoder_on_crtc(dev, crtc, encoder)
4574                 encoder->enable(encoder);
4575
4576         if (HAS_PCH_CPT(dev))
4577                 cpt_verify_modeset(dev, intel_crtc->pipe);
4578
4579         intel_crtc_enable_planes(crtc);
4580 }
4581
4582 /* IPS only exists on ULT machines and is tied to pipe A. */
4583 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4584 {
4585         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4586 }
4587
4588 /*
4589  * This implements the workaround described in the "notes" section of the mode
4590  * set sequence documentation. When going from no pipes or single pipe to
4591  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4592  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4593  */
4594 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4595 {
4596         struct drm_device *dev = crtc->base.dev;
4597         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4598
4599         /* We want to get the other_active_crtc only if there's only 1 other
4600          * active crtc. */
4601         for_each_intel_crtc(dev, crtc_it) {
4602                 if (!crtc_it->active || crtc_it == crtc)
4603                         continue;
4604
4605                 if (other_active_crtc)
4606                         return;
4607
4608                 other_active_crtc = crtc_it;
4609         }
4610         if (!other_active_crtc)
4611                 return;
4612
4613         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4614         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4615 }
4616
4617 static void haswell_crtc_enable(struct drm_crtc *crtc)
4618 {
4619         struct drm_device *dev = crtc->dev;
4620         struct drm_i915_private *dev_priv = dev->dev_private;
4621         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4622         struct intel_encoder *encoder;
4623         int pipe = intel_crtc->pipe;
4624
4625         WARN_ON(!crtc->state->enable);
4626
4627         if (intel_crtc->active)
4628                 return;
4629
4630         if (intel_crtc_to_shared_dpll(intel_crtc))
4631                 intel_enable_shared_dpll(intel_crtc);
4632
4633         if (intel_crtc->config->has_dp_encoder)
4634                 intel_dp_set_m_n(intel_crtc, M1_N1);
4635
4636         intel_set_pipe_timings(intel_crtc);
4637
4638         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4639                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4640                            intel_crtc->config->pixel_multiplier - 1);
4641         }
4642
4643         if (intel_crtc->config->has_pch_encoder) {
4644                 intel_cpu_transcoder_set_m_n(intel_crtc,
4645                                      &intel_crtc->config->fdi_m_n, NULL);
4646         }
4647
4648         haswell_set_pipeconf(crtc);
4649
4650         intel_set_pipe_csc(crtc);
4651
4652         intel_crtc->active = true;
4653
4654         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4655         for_each_encoder_on_crtc(dev, crtc, encoder)
4656                 if (encoder->pre_enable)
4657                         encoder->pre_enable(encoder);
4658
4659         if (intel_crtc->config->has_pch_encoder) {
4660                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4661                                                       true);
4662                 dev_priv->display.fdi_link_train(crtc);
4663         }
4664
4665         intel_ddi_enable_pipe_clock(intel_crtc);
4666
4667         if (IS_SKYLAKE(dev))
4668                 skylake_pfit_enable(intel_crtc);
4669         else
4670                 ironlake_pfit_enable(intel_crtc);
4671
4672         /*
4673          * On ILK+ LUT must be loaded before the pipe is running but with
4674          * clocks enabled
4675          */
4676         intel_crtc_load_lut(crtc);
4677
4678         intel_ddi_set_pipe_settings(crtc);
4679         intel_ddi_enable_transcoder_func(crtc);
4680
4681         intel_update_watermarks(crtc);
4682         intel_enable_pipe(intel_crtc);
4683
4684         if (intel_crtc->config->has_pch_encoder)
4685                 lpt_pch_enable(crtc);
4686
4687         if (intel_crtc->config->dp_encoder_is_mst)
4688                 intel_ddi_set_vc_payload_alloc(crtc, true);
4689
4690         assert_vblank_disabled(crtc);
4691         drm_crtc_vblank_on(crtc);
4692
4693         for_each_encoder_on_crtc(dev, crtc, encoder) {
4694                 encoder->enable(encoder);
4695                 intel_opregion_notify_encoder(encoder, true);
4696         }
4697
4698         /* If we change the relative order between pipe/planes enabling, we need
4699          * to change the workaround. */
4700         haswell_mode_set_planes_workaround(intel_crtc);
4701         intel_crtc_enable_planes(crtc);
4702 }
4703
4704 static void skylake_pfit_disable(struct intel_crtc *crtc)
4705 {
4706         struct drm_device *dev = crtc->base.dev;
4707         struct drm_i915_private *dev_priv = dev->dev_private;
4708         int pipe = crtc->pipe;
4709
4710         /* To avoid upsetting the power well on haswell only disable the pfit if
4711          * it's in use. The hw state code will make sure we get this right. */
4712         if (crtc->config->pch_pfit.enabled) {
4713                 I915_WRITE(PS_CTL(pipe), 0);
4714                 I915_WRITE(PS_WIN_POS(pipe), 0);
4715                 I915_WRITE(PS_WIN_SZ(pipe), 0);
4716         }
4717 }
4718
4719 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4720 {
4721         struct drm_device *dev = crtc->base.dev;
4722         struct drm_i915_private *dev_priv = dev->dev_private;
4723         int pipe = crtc->pipe;
4724
4725         /* To avoid upsetting the power well on haswell only disable the pfit if
4726          * it's in use. The hw state code will make sure we get this right. */
4727         if (crtc->config->pch_pfit.enabled) {
4728                 I915_WRITE(PF_CTL(pipe), 0);
4729                 I915_WRITE(PF_WIN_POS(pipe), 0);
4730                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4731         }
4732 }
4733
4734 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4735 {
4736         struct drm_device *dev = crtc->dev;
4737         struct drm_i915_private *dev_priv = dev->dev_private;
4738         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4739         struct intel_encoder *encoder;
4740         int pipe = intel_crtc->pipe;
4741         u32 reg, temp;
4742
4743         if (!intel_crtc->active)
4744                 return;
4745
4746         intel_crtc_disable_planes(crtc);
4747
4748         for_each_encoder_on_crtc(dev, crtc, encoder)
4749                 encoder->disable(encoder);
4750
4751         drm_crtc_vblank_off(crtc);
4752         assert_vblank_disabled(crtc);
4753
4754         if (intel_crtc->config->has_pch_encoder)
4755                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4756
4757         intel_disable_pipe(intel_crtc);
4758
4759         ironlake_pfit_disable(intel_crtc);
4760
4761         for_each_encoder_on_crtc(dev, crtc, encoder)
4762                 if (encoder->post_disable)
4763                         encoder->post_disable(encoder);
4764
4765         if (intel_crtc->config->has_pch_encoder) {
4766                 ironlake_fdi_disable(crtc);
4767
4768                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4769
4770                 if (HAS_PCH_CPT(dev)) {
4771                         /* disable TRANS_DP_CTL */
4772                         reg = TRANS_DP_CTL(pipe);
4773                         temp = I915_READ(reg);
4774                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4775                                   TRANS_DP_PORT_SEL_MASK);
4776                         temp |= TRANS_DP_PORT_SEL_NONE;
4777                         I915_WRITE(reg, temp);
4778
4779                         /* disable DPLL_SEL */
4780                         temp = I915_READ(PCH_DPLL_SEL);
4781                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4782                         I915_WRITE(PCH_DPLL_SEL, temp);
4783                 }
4784
4785                 /* disable PCH DPLL */
4786                 intel_disable_shared_dpll(intel_crtc);
4787
4788                 ironlake_fdi_pll_disable(intel_crtc);
4789         }
4790
4791         intel_crtc->active = false;
4792         intel_update_watermarks(crtc);
4793
4794         mutex_lock(&dev->struct_mutex);
4795         intel_fbc_update(dev);
4796         mutex_unlock(&dev->struct_mutex);
4797 }
4798
4799 static void haswell_crtc_disable(struct drm_crtc *crtc)
4800 {
4801         struct drm_device *dev = crtc->dev;
4802         struct drm_i915_private *dev_priv = dev->dev_private;
4803         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4804         struct intel_encoder *encoder;
4805         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4806
4807         if (!intel_crtc->active)
4808                 return;
4809
4810         intel_crtc_disable_planes(crtc);
4811
4812         for_each_encoder_on_crtc(dev, crtc, encoder) {
4813                 intel_opregion_notify_encoder(encoder, false);
4814                 encoder->disable(encoder);
4815         }
4816
4817         drm_crtc_vblank_off(crtc);
4818         assert_vblank_disabled(crtc);
4819
4820         if (intel_crtc->config->has_pch_encoder)
4821                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4822                                                       false);
4823         intel_disable_pipe(intel_crtc);
4824
4825         if (intel_crtc->config->dp_encoder_is_mst)
4826                 intel_ddi_set_vc_payload_alloc(crtc, false);
4827
4828         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4829
4830         if (IS_SKYLAKE(dev))
4831                 skylake_pfit_disable(intel_crtc);
4832         else
4833                 ironlake_pfit_disable(intel_crtc);
4834
4835         intel_ddi_disable_pipe_clock(intel_crtc);
4836
4837         if (intel_crtc->config->has_pch_encoder) {
4838                 lpt_disable_pch_transcoder(dev_priv);
4839                 intel_ddi_fdi_disable(crtc);
4840         }
4841
4842         for_each_encoder_on_crtc(dev, crtc, encoder)
4843                 if (encoder->post_disable)
4844                         encoder->post_disable(encoder);
4845
4846         intel_crtc->active = false;
4847         intel_update_watermarks(crtc);
4848
4849         mutex_lock(&dev->struct_mutex);
4850         intel_fbc_update(dev);
4851         mutex_unlock(&dev->struct_mutex);
4852
4853         if (intel_crtc_to_shared_dpll(intel_crtc))
4854                 intel_disable_shared_dpll(intel_crtc);
4855 }
4856
4857 static void ironlake_crtc_off(struct drm_crtc *crtc)
4858 {
4859         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4860         intel_put_shared_dpll(intel_crtc);
4861 }
4862
4863
4864 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4865 {
4866         struct drm_device *dev = crtc->base.dev;
4867         struct drm_i915_private *dev_priv = dev->dev_private;
4868         struct intel_crtc_state *pipe_config = crtc->config;
4869
4870         if (!pipe_config->gmch_pfit.control)
4871                 return;
4872
4873         /*
4874          * The panel fitter should only be adjusted whilst the pipe is disabled,
4875          * according to register description and PRM.
4876          */
4877         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4878         assert_pipe_disabled(dev_priv, crtc->pipe);
4879
4880         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4881         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4882
4883         /* Border color in case we don't scale up to the full screen. Black by
4884          * default, change to something else for debugging. */
4885         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4886 }
4887
4888 static enum intel_display_power_domain port_to_power_domain(enum port port)
4889 {
4890         switch (port) {
4891         case PORT_A:
4892                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4893         case PORT_B:
4894                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4895         case PORT_C:
4896                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4897         case PORT_D:
4898                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4899         default:
4900                 WARN_ON_ONCE(1);
4901                 return POWER_DOMAIN_PORT_OTHER;
4902         }
4903 }
4904
4905 #define for_each_power_domain(domain, mask)                             \
4906         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4907                 if ((1 << (domain)) & (mask))
4908
4909 enum intel_display_power_domain
4910 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4911 {
4912         struct drm_device *dev = intel_encoder->base.dev;
4913         struct intel_digital_port *intel_dig_port;
4914
4915         switch (intel_encoder->type) {
4916         case INTEL_OUTPUT_UNKNOWN:
4917                 /* Only DDI platforms should ever use this output type */
4918                 WARN_ON_ONCE(!HAS_DDI(dev));
4919         case INTEL_OUTPUT_DISPLAYPORT:
4920         case INTEL_OUTPUT_HDMI:
4921         case INTEL_OUTPUT_EDP:
4922                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4923                 return port_to_power_domain(intel_dig_port->port);
4924         case INTEL_OUTPUT_DP_MST:
4925                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4926                 return port_to_power_domain(intel_dig_port->port);
4927         case INTEL_OUTPUT_ANALOG:
4928                 return POWER_DOMAIN_PORT_CRT;
4929         case INTEL_OUTPUT_DSI:
4930                 return POWER_DOMAIN_PORT_DSI;
4931         default:
4932                 return POWER_DOMAIN_PORT_OTHER;
4933         }
4934 }
4935
4936 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4937 {
4938         struct drm_device *dev = crtc->dev;
4939         struct intel_encoder *intel_encoder;
4940         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4941         enum pipe pipe = intel_crtc->pipe;
4942         unsigned long mask;
4943         enum transcoder transcoder;
4944
4945         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4946
4947         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4948         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4949         if (intel_crtc->config->pch_pfit.enabled ||
4950             intel_crtc->config->pch_pfit.force_thru)
4951                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4952
4953         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4954                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4955
4956         return mask;
4957 }
4958
4959 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
4960 {
4961         struct drm_device *dev = state->dev;
4962         struct drm_i915_private *dev_priv = dev->dev_private;
4963         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4964         struct intel_crtc *crtc;
4965
4966         /*
4967          * First get all needed power domains, then put all unneeded, to avoid
4968          * any unnecessary toggling of the power wells.
4969          */
4970         for_each_intel_crtc(dev, crtc) {
4971                 enum intel_display_power_domain domain;
4972
4973                 if (!crtc->base.state->enable)
4974                         continue;
4975
4976                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4977
4978                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4979                         intel_display_power_get(dev_priv, domain);
4980         }
4981
4982         if (dev_priv->display.modeset_global_resources)
4983                 dev_priv->display.modeset_global_resources(state);
4984
4985         for_each_intel_crtc(dev, crtc) {
4986                 enum intel_display_power_domain domain;
4987
4988                 for_each_power_domain(domain, crtc->enabled_power_domains)
4989                         intel_display_power_put(dev_priv, domain);
4990
4991                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4992         }
4993
4994         intel_display_set_init_power(dev_priv, false);
4995 }
4996
4997 /* returns HPLL frequency in kHz */
4998 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4999 {
5000         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5001
5002         /* Obtain SKU information */
5003         mutex_lock(&dev_priv->dpio_lock);
5004         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5005                 CCK_FUSE_HPLL_FREQ_MASK;
5006         mutex_unlock(&dev_priv->dpio_lock);
5007
5008         return vco_freq[hpll_freq] * 1000;
5009 }
5010
5011 static void vlv_update_cdclk(struct drm_device *dev)
5012 {
5013         struct drm_i915_private *dev_priv = dev->dev_private;
5014
5015         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5016         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5017                          dev_priv->vlv_cdclk_freq);
5018
5019         /*
5020          * Program the gmbus_freq based on the cdclk frequency.
5021          * BSpec erroneously claims we should aim for 4MHz, but
5022          * in fact 1MHz is the correct frequency.
5023          */
5024         I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
5025 }
5026
5027 /* Adjust CDclk dividers to allow high res or save power if possible */
5028 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5029 {
5030         struct drm_i915_private *dev_priv = dev->dev_private;
5031         u32 val, cmd;
5032
5033         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5034
5035         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5036                 cmd = 2;
5037         else if (cdclk == 266667)
5038                 cmd = 1;
5039         else
5040                 cmd = 0;
5041
5042         mutex_lock(&dev_priv->rps.hw_lock);
5043         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5044         val &= ~DSPFREQGUAR_MASK;
5045         val |= (cmd << DSPFREQGUAR_SHIFT);
5046         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5047         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5048                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5049                      50)) {
5050                 DRM_ERROR("timed out waiting for CDclk change\n");
5051         }
5052         mutex_unlock(&dev_priv->rps.hw_lock);
5053
5054         if (cdclk == 400000) {
5055                 u32 divider;
5056
5057                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5058
5059                 mutex_lock(&dev_priv->dpio_lock);
5060                 /* adjust cdclk divider */
5061                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5062                 val &= ~DISPLAY_FREQUENCY_VALUES;
5063                 val |= divider;
5064                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5065
5066                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5067                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5068                              50))
5069                         DRM_ERROR("timed out waiting for CDclk change\n");
5070                 mutex_unlock(&dev_priv->dpio_lock);
5071         }
5072
5073         mutex_lock(&dev_priv->dpio_lock);
5074         /* adjust self-refresh exit latency value */
5075         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5076         val &= ~0x7f;
5077
5078         /*
5079          * For high bandwidth configs, we set a higher latency in the bunit
5080          * so that the core display fetch happens in time to avoid underruns.
5081          */
5082         if (cdclk == 400000)
5083                 val |= 4500 / 250; /* 4.5 usec */
5084         else
5085                 val |= 3000 / 250; /* 3.0 usec */
5086         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5087         mutex_unlock(&dev_priv->dpio_lock);
5088
5089         vlv_update_cdclk(dev);
5090 }
5091
5092 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5093 {
5094         struct drm_i915_private *dev_priv = dev->dev_private;
5095         u32 val, cmd;
5096
5097         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5098
5099         switch (cdclk) {
5100         case 333333:
5101         case 320000:
5102         case 266667:
5103         case 200000:
5104                 break;
5105         default:
5106                 MISSING_CASE(cdclk);
5107                 return;
5108         }
5109
5110         /*
5111          * Specs are full of misinformation, but testing on actual
5112          * hardware has shown that we just need to write the desired
5113          * CCK divider into the Punit register.
5114          */
5115         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5116
5117         mutex_lock(&dev_priv->rps.hw_lock);
5118         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5119         val &= ~DSPFREQGUAR_MASK_CHV;
5120         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5121         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5122         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5123                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5124                      50)) {
5125                 DRM_ERROR("timed out waiting for CDclk change\n");
5126         }
5127         mutex_unlock(&dev_priv->rps.hw_lock);
5128
5129         vlv_update_cdclk(dev);
5130 }
5131
5132 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5133                                  int max_pixclk)
5134 {
5135         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5136         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5137
5138         /*
5139          * Really only a few cases to deal with, as only 4 CDclks are supported:
5140          *   200MHz
5141          *   267MHz
5142          *   320/333MHz (depends on HPLL freq)
5143          *   400MHz (VLV only)
5144          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5145          * of the lower bin and adjust if needed.
5146          *
5147          * We seem to get an unstable or solid color picture at 200MHz.
5148          * Not sure what's wrong. For now use 200MHz only when all pipes
5149          * are off.
5150          */
5151         if (!IS_CHERRYVIEW(dev_priv) &&
5152             max_pixclk > freq_320*limit/100)
5153                 return 400000;
5154         else if (max_pixclk > 266667*limit/100)
5155                 return freq_320;
5156         else if (max_pixclk > 0)
5157                 return 266667;
5158         else
5159                 return 200000;
5160 }
5161
5162 /* compute the max pixel clock for new configuration */
5163 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
5164 {
5165         struct drm_device *dev = dev_priv->dev;
5166         struct intel_crtc *intel_crtc;
5167         int max_pixclk = 0;
5168
5169         for_each_intel_crtc(dev, intel_crtc) {
5170                 if (intel_crtc->new_enabled)
5171                         max_pixclk = max(max_pixclk,
5172                                          intel_crtc->new_config->base.adjusted_mode.crtc_clock);
5173         }
5174
5175         return max_pixclk;
5176 }
5177
5178 static void valleyview_modeset_global_pipes(struct drm_device *dev,
5179                                             unsigned *prepare_pipes)
5180 {
5181         struct drm_i915_private *dev_priv = dev->dev_private;
5182         struct intel_crtc *intel_crtc;
5183         int max_pixclk = intel_mode_max_pixclk(dev_priv);
5184
5185         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
5186             dev_priv->vlv_cdclk_freq)
5187                 return;
5188
5189         /* disable/enable all currently active pipes while we change cdclk */
5190         for_each_intel_crtc(dev, intel_crtc)
5191                 if (intel_crtc->base.state->enable)
5192                         *prepare_pipes |= (1 << intel_crtc->pipe);
5193 }
5194
5195 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5196 {
5197         unsigned int credits, default_credits;
5198
5199         if (IS_CHERRYVIEW(dev_priv))
5200                 default_credits = PFI_CREDIT(12);
5201         else
5202                 default_credits = PFI_CREDIT(8);
5203
5204         if (DIV_ROUND_CLOSEST(dev_priv->vlv_cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5205                 /* CHV suggested value is 31 or 63 */
5206                 if (IS_CHERRYVIEW(dev_priv))
5207                         credits = PFI_CREDIT_31;
5208                 else
5209                         credits = PFI_CREDIT(15);
5210         } else {
5211                 credits = default_credits;
5212         }
5213
5214         /*
5215          * WA - write default credits before re-programming
5216          * FIXME: should we also set the resend bit here?
5217          */
5218         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5219                    default_credits);
5220
5221         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5222                    credits | PFI_CREDIT_RESEND);
5223
5224         /*
5225          * FIXME is this guaranteed to clear
5226          * immediately or should we poll for it?
5227          */
5228         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5229 }
5230
5231 static void valleyview_modeset_global_resources(struct drm_atomic_state *state)
5232 {
5233         struct drm_device *dev = state->dev;
5234         struct drm_i915_private *dev_priv = dev->dev_private;
5235         int max_pixclk = intel_mode_max_pixclk(dev_priv);
5236         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5237
5238         if (req_cdclk != dev_priv->vlv_cdclk_freq) {
5239                 /*
5240                  * FIXME: We can end up here with all power domains off, yet
5241                  * with a CDCLK frequency other than the minimum. To account
5242                  * for this take the PIPE-A power domain, which covers the HW
5243                  * blocks needed for the following programming. This can be
5244                  * removed once it's guaranteed that we get here either with
5245                  * the minimum CDCLK set, or the required power domains
5246                  * enabled.
5247                  */
5248                 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5249
5250                 if (IS_CHERRYVIEW(dev))
5251                         cherryview_set_cdclk(dev, req_cdclk);
5252                 else
5253                         valleyview_set_cdclk(dev, req_cdclk);
5254
5255                 vlv_program_pfi_credits(dev_priv);
5256
5257                 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5258         }
5259 }
5260
5261 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5262 {
5263         struct drm_device *dev = crtc->dev;
5264         struct drm_i915_private *dev_priv = to_i915(dev);
5265         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5266         struct intel_encoder *encoder;
5267         int pipe = intel_crtc->pipe;
5268         bool is_dsi;
5269
5270         WARN_ON(!crtc->state->enable);
5271
5272         if (intel_crtc->active)
5273                 return;
5274
5275         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5276
5277         if (!is_dsi) {
5278                 if (IS_CHERRYVIEW(dev))
5279                         chv_prepare_pll(intel_crtc, intel_crtc->config);
5280                 else
5281                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
5282         }
5283
5284         if (intel_crtc->config->has_dp_encoder)
5285                 intel_dp_set_m_n(intel_crtc, M1_N1);
5286
5287         intel_set_pipe_timings(intel_crtc);
5288
5289         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5290                 struct drm_i915_private *dev_priv = dev->dev_private;
5291
5292                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5293                 I915_WRITE(CHV_CANVAS(pipe), 0);
5294         }
5295
5296         i9xx_set_pipeconf(intel_crtc);
5297
5298         intel_crtc->active = true;
5299
5300         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5301
5302         for_each_encoder_on_crtc(dev, crtc, encoder)
5303                 if (encoder->pre_pll_enable)
5304                         encoder->pre_pll_enable(encoder);
5305
5306         if (!is_dsi) {
5307                 if (IS_CHERRYVIEW(dev))
5308                         chv_enable_pll(intel_crtc, intel_crtc->config);
5309                 else
5310                         vlv_enable_pll(intel_crtc, intel_crtc->config);
5311         }
5312
5313         for_each_encoder_on_crtc(dev, crtc, encoder)
5314                 if (encoder->pre_enable)
5315                         encoder->pre_enable(encoder);
5316
5317         i9xx_pfit_enable(intel_crtc);
5318
5319         intel_crtc_load_lut(crtc);
5320
5321         intel_update_watermarks(crtc);
5322         intel_enable_pipe(intel_crtc);
5323
5324         assert_vblank_disabled(crtc);
5325         drm_crtc_vblank_on(crtc);
5326
5327         for_each_encoder_on_crtc(dev, crtc, encoder)
5328                 encoder->enable(encoder);
5329
5330         intel_crtc_enable_planes(crtc);
5331
5332         /* Underruns don't raise interrupts, so check manually. */
5333         i9xx_check_fifo_underruns(dev_priv);
5334 }
5335
5336 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5337 {
5338         struct drm_device *dev = crtc->base.dev;
5339         struct drm_i915_private *dev_priv = dev->dev_private;
5340
5341         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5342         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5343 }
5344
5345 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5346 {
5347         struct drm_device *dev = crtc->dev;
5348         struct drm_i915_private *dev_priv = to_i915(dev);
5349         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5350         struct intel_encoder *encoder;
5351         int pipe = intel_crtc->pipe;
5352
5353         WARN_ON(!crtc->state->enable);
5354
5355         if (intel_crtc->active)
5356                 return;
5357
5358         i9xx_set_pll_dividers(intel_crtc);
5359
5360         if (intel_crtc->config->has_dp_encoder)
5361                 intel_dp_set_m_n(intel_crtc, M1_N1);
5362
5363         intel_set_pipe_timings(intel_crtc);
5364
5365         i9xx_set_pipeconf(intel_crtc);
5366
5367         intel_crtc->active = true;
5368
5369         if (!IS_GEN2(dev))
5370                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5371
5372         for_each_encoder_on_crtc(dev, crtc, encoder)
5373                 if (encoder->pre_enable)
5374                         encoder->pre_enable(encoder);
5375
5376         i9xx_enable_pll(intel_crtc);
5377
5378         i9xx_pfit_enable(intel_crtc);
5379
5380         intel_crtc_load_lut(crtc);
5381
5382         intel_update_watermarks(crtc);
5383         intel_enable_pipe(intel_crtc);
5384
5385         assert_vblank_disabled(crtc);
5386         drm_crtc_vblank_on(crtc);
5387
5388         for_each_encoder_on_crtc(dev, crtc, encoder)
5389                 encoder->enable(encoder);
5390
5391         intel_crtc_enable_planes(crtc);
5392
5393         /*
5394          * Gen2 reports pipe underruns whenever all planes are disabled.
5395          * So don't enable underrun reporting before at least some planes
5396          * are enabled.
5397          * FIXME: Need to fix the logic to work when we turn off all planes
5398          * but leave the pipe running.
5399          */
5400         if (IS_GEN2(dev))
5401                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5402
5403         /* Underruns don't raise interrupts, so check manually. */
5404         i9xx_check_fifo_underruns(dev_priv);
5405 }
5406
5407 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5408 {
5409         struct drm_device *dev = crtc->base.dev;
5410         struct drm_i915_private *dev_priv = dev->dev_private;
5411
5412         if (!crtc->config->gmch_pfit.control)
5413                 return;
5414
5415         assert_pipe_disabled(dev_priv, crtc->pipe);
5416
5417         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5418                          I915_READ(PFIT_CONTROL));
5419         I915_WRITE(PFIT_CONTROL, 0);
5420 }
5421
5422 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5423 {
5424         struct drm_device *dev = crtc->dev;
5425         struct drm_i915_private *dev_priv = dev->dev_private;
5426         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5427         struct intel_encoder *encoder;
5428         int pipe = intel_crtc->pipe;
5429
5430         if (!intel_crtc->active)
5431                 return;
5432
5433         /*
5434          * Gen2 reports pipe underruns whenever all planes are disabled.
5435          * So diasble underrun reporting before all the planes get disabled.
5436          * FIXME: Need to fix the logic to work when we turn off all planes
5437          * but leave the pipe running.
5438          */
5439         if (IS_GEN2(dev))
5440                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5441
5442         /*
5443          * Vblank time updates from the shadow to live plane control register
5444          * are blocked if the memory self-refresh mode is active at that
5445          * moment. So to make sure the plane gets truly disabled, disable
5446          * first the self-refresh mode. The self-refresh enable bit in turn
5447          * will be checked/applied by the HW only at the next frame start
5448          * event which is after the vblank start event, so we need to have a
5449          * wait-for-vblank between disabling the plane and the pipe.
5450          */
5451         intel_set_memory_cxsr(dev_priv, false);
5452         intel_crtc_disable_planes(crtc);
5453
5454         /*
5455          * On gen2 planes are double buffered but the pipe isn't, so we must
5456          * wait for planes to fully turn off before disabling the pipe.
5457          * We also need to wait on all gmch platforms because of the
5458          * self-refresh mode constraint explained above.
5459          */
5460         intel_wait_for_vblank(dev, pipe);
5461
5462         for_each_encoder_on_crtc(dev, crtc, encoder)
5463                 encoder->disable(encoder);
5464
5465         drm_crtc_vblank_off(crtc);
5466         assert_vblank_disabled(crtc);
5467
5468         intel_disable_pipe(intel_crtc);
5469
5470         i9xx_pfit_disable(intel_crtc);
5471
5472         for_each_encoder_on_crtc(dev, crtc, encoder)
5473                 if (encoder->post_disable)
5474                         encoder->post_disable(encoder);
5475
5476         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5477                 if (IS_CHERRYVIEW(dev))
5478                         chv_disable_pll(dev_priv, pipe);
5479                 else if (IS_VALLEYVIEW(dev))
5480                         vlv_disable_pll(dev_priv, pipe);
5481                 else
5482                         i9xx_disable_pll(intel_crtc);
5483         }
5484
5485         if (!IS_GEN2(dev))
5486                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5487
5488         intel_crtc->active = false;
5489         intel_update_watermarks(crtc);
5490
5491         mutex_lock(&dev->struct_mutex);
5492         intel_fbc_update(dev);
5493         mutex_unlock(&dev->struct_mutex);
5494 }
5495
5496 static void i9xx_crtc_off(struct drm_crtc *crtc)
5497 {
5498 }
5499
5500 /* Master function to enable/disable CRTC and corresponding power wells */
5501 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5502 {
5503         struct drm_device *dev = crtc->dev;
5504         struct drm_i915_private *dev_priv = dev->dev_private;
5505         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5506         enum intel_display_power_domain domain;
5507         unsigned long domains;
5508
5509         if (enable) {
5510                 if (!intel_crtc->active) {
5511                         domains = get_crtc_power_domains(crtc);
5512                         for_each_power_domain(domain, domains)
5513                                 intel_display_power_get(dev_priv, domain);
5514                         intel_crtc->enabled_power_domains = domains;
5515
5516                         dev_priv->display.crtc_enable(crtc);
5517                 }
5518         } else {
5519                 if (intel_crtc->active) {
5520                         dev_priv->display.crtc_disable(crtc);
5521
5522                         domains = intel_crtc->enabled_power_domains;
5523                         for_each_power_domain(domain, domains)
5524                                 intel_display_power_put(dev_priv, domain);
5525                         intel_crtc->enabled_power_domains = 0;
5526                 }
5527         }
5528 }
5529
5530 /**
5531  * Sets the power management mode of the pipe and plane.
5532  */
5533 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5534 {
5535         struct drm_device *dev = crtc->dev;
5536         struct intel_encoder *intel_encoder;
5537         bool enable = false;
5538
5539         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5540                 enable |= intel_encoder->connectors_active;
5541
5542         intel_crtc_control(crtc, enable);
5543 }
5544
5545 static void intel_crtc_disable(struct drm_crtc *crtc)
5546 {
5547         struct drm_device *dev = crtc->dev;
5548         struct drm_connector *connector;
5549         struct drm_i915_private *dev_priv = dev->dev_private;
5550
5551         /* crtc should still be enabled when we disable it. */
5552         WARN_ON(!crtc->state->enable);
5553
5554         dev_priv->display.crtc_disable(crtc);
5555         dev_priv->display.off(crtc);
5556
5557         crtc->primary->funcs->disable_plane(crtc->primary);
5558
5559         /* Update computed state. */
5560         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5561                 if (!connector->encoder || !connector->encoder->crtc)
5562                         continue;
5563
5564                 if (connector->encoder->crtc != crtc)
5565                         continue;
5566
5567                 connector->dpms = DRM_MODE_DPMS_OFF;
5568                 to_intel_encoder(connector->encoder)->connectors_active = false;
5569         }
5570 }
5571
5572 void intel_encoder_destroy(struct drm_encoder *encoder)
5573 {
5574         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5575
5576         drm_encoder_cleanup(encoder);
5577         kfree(intel_encoder);
5578 }
5579
5580 /* Simple dpms helper for encoders with just one connector, no cloning and only
5581  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5582  * state of the entire output pipe. */
5583 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5584 {
5585         if (mode == DRM_MODE_DPMS_ON) {
5586                 encoder->connectors_active = true;
5587
5588                 intel_crtc_update_dpms(encoder->base.crtc);
5589         } else {
5590                 encoder->connectors_active = false;
5591
5592                 intel_crtc_update_dpms(encoder->base.crtc);
5593         }
5594 }
5595
5596 /* Cross check the actual hw state with our own modeset state tracking (and it's
5597  * internal consistency). */
5598 static void intel_connector_check_state(struct intel_connector *connector)
5599 {
5600         if (connector->get_hw_state(connector)) {
5601                 struct intel_encoder *encoder = connector->encoder;
5602                 struct drm_crtc *crtc;
5603                 bool encoder_enabled;
5604                 enum pipe pipe;
5605
5606                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5607                               connector->base.base.id,
5608                               connector->base.name);
5609
5610                 /* there is no real hw state for MST connectors */
5611                 if (connector->mst_port)
5612                         return;
5613
5614                 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5615                      "wrong connector dpms state\n");
5616                 I915_STATE_WARN(connector->base.encoder != &encoder->base,
5617                      "active connector not linked to encoder\n");
5618
5619                 if (encoder) {
5620                         I915_STATE_WARN(!encoder->connectors_active,
5621                              "encoder->connectors_active not set\n");
5622
5623                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5624                         I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5625                         if (I915_STATE_WARN_ON(!encoder->base.crtc))
5626                                 return;
5627
5628                         crtc = encoder->base.crtc;
5629
5630                         I915_STATE_WARN(!crtc->state->enable,
5631                                         "crtc not enabled\n");
5632                         I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5633                         I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
5634                              "encoder active on the wrong pipe\n");
5635                 }
5636         }
5637 }
5638
5639 int intel_connector_init(struct intel_connector *connector)
5640 {
5641         struct drm_connector_state *connector_state;
5642
5643         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
5644         if (!connector_state)
5645                 return -ENOMEM;
5646
5647         connector->base.state = connector_state;
5648         return 0;
5649 }
5650
5651 struct intel_connector *intel_connector_alloc(void)
5652 {
5653         struct intel_connector *connector;
5654
5655         connector = kzalloc(sizeof *connector, GFP_KERNEL);
5656         if (!connector)
5657                 return NULL;
5658
5659         if (intel_connector_init(connector) < 0) {
5660                 kfree(connector);
5661                 return NULL;
5662         }
5663
5664         return connector;
5665 }
5666
5667 /* Even simpler default implementation, if there's really no special case to
5668  * consider. */
5669 void intel_connector_dpms(struct drm_connector *connector, int mode)
5670 {
5671         /* All the simple cases only support two dpms states. */
5672         if (mode != DRM_MODE_DPMS_ON)
5673                 mode = DRM_MODE_DPMS_OFF;
5674
5675         if (mode == connector->dpms)
5676                 return;
5677
5678         connector->dpms = mode;
5679
5680         /* Only need to change hw state when actually enabled */
5681         if (connector->encoder)
5682                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5683
5684         intel_modeset_check_state(connector->dev);
5685 }
5686
5687 /* Simple connector->get_hw_state implementation for encoders that support only
5688  * one connector and no cloning and hence the encoder state determines the state
5689  * of the connector. */
5690 bool intel_connector_get_hw_state(struct intel_connector *connector)
5691 {
5692         enum pipe pipe = 0;
5693         struct intel_encoder *encoder = connector->encoder;
5694
5695         return encoder->get_hw_state(encoder, &pipe);
5696 }
5697
5698 static int pipe_required_fdi_lanes(struct drm_device *dev, enum pipe pipe)
5699 {
5700         struct intel_crtc *crtc =
5701                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5702
5703         if (crtc->base.state->enable &&
5704             crtc->config->has_pch_encoder)
5705                 return crtc->config->fdi_lanes;
5706
5707         return 0;
5708 }
5709
5710 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5711                                      struct intel_crtc_state *pipe_config)
5712 {
5713         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5714                       pipe_name(pipe), pipe_config->fdi_lanes);
5715         if (pipe_config->fdi_lanes > 4) {
5716                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5717                               pipe_name(pipe), pipe_config->fdi_lanes);
5718                 return false;
5719         }
5720
5721         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5722                 if (pipe_config->fdi_lanes > 2) {
5723                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5724                                       pipe_config->fdi_lanes);
5725                         return false;
5726                 } else {
5727                         return true;
5728                 }
5729         }
5730
5731         if (INTEL_INFO(dev)->num_pipes == 2)
5732                 return true;
5733
5734         /* Ivybridge 3 pipe is really complicated */
5735         switch (pipe) {
5736         case PIPE_A:
5737                 return true;
5738         case PIPE_B:
5739                 if (pipe_config->fdi_lanes > 2 &&
5740                     pipe_required_fdi_lanes(dev, PIPE_C) > 0) {
5741                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5742                                       pipe_name(pipe), pipe_config->fdi_lanes);
5743                         return false;
5744                 }
5745                 return true;
5746         case PIPE_C:
5747                 if (pipe_config->fdi_lanes > 2) {
5748                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
5749                                       pipe_name(pipe), pipe_config->fdi_lanes);
5750                         return false;
5751                 }
5752                 if (pipe_required_fdi_lanes(dev, PIPE_B) > 2) {
5753                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5754                         return false;
5755                 }
5756                 return true;
5757         default:
5758                 BUG();
5759         }
5760 }
5761
5762 #define RETRY 1
5763 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5764                                        struct intel_crtc_state *pipe_config)
5765 {
5766         struct drm_device *dev = intel_crtc->base.dev;
5767         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5768         int lane, link_bw, fdi_dotclock;
5769         bool setup_ok, needs_recompute = false;
5770
5771 retry:
5772         /* FDI is a binary signal running at ~2.7GHz, encoding
5773          * each output octet as 10 bits. The actual frequency
5774          * is stored as a divider into a 100MHz clock, and the
5775          * mode pixel clock is stored in units of 1KHz.
5776          * Hence the bw of each lane in terms of the mode signal
5777          * is:
5778          */
5779         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5780
5781         fdi_dotclock = adjusted_mode->crtc_clock;
5782
5783         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5784                                            pipe_config->pipe_bpp);
5785
5786         pipe_config->fdi_lanes = lane;
5787
5788         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5789                                link_bw, &pipe_config->fdi_m_n);
5790
5791         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5792                                             intel_crtc->pipe, pipe_config);
5793         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5794                 pipe_config->pipe_bpp -= 2*3;
5795                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5796                               pipe_config->pipe_bpp);
5797                 needs_recompute = true;
5798                 pipe_config->bw_constrained = true;
5799
5800                 goto retry;
5801         }
5802
5803         if (needs_recompute)
5804                 return RETRY;
5805
5806         return setup_ok ? 0 : -EINVAL;
5807 }
5808
5809 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5810                                    struct intel_crtc_state *pipe_config)
5811 {
5812         pipe_config->ips_enabled = i915.enable_ips &&
5813                                    hsw_crtc_supports_ips(crtc) &&
5814                                    pipe_config->pipe_bpp <= 24;
5815 }
5816
5817 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5818                                      struct intel_crtc_state *pipe_config)
5819 {
5820         struct drm_device *dev = crtc->base.dev;
5821         struct drm_i915_private *dev_priv = dev->dev_private;
5822         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5823
5824         /* FIXME should check pixel clock limits on all platforms */
5825         if (INTEL_INFO(dev)->gen < 4) {
5826                 int clock_limit =
5827                         dev_priv->display.get_display_clock_speed(dev);
5828
5829                 /*
5830                  * Enable pixel doubling when the dot clock
5831                  * is > 90% of the (display) core speed.
5832                  *
5833                  * GDG double wide on either pipe,
5834                  * otherwise pipe A only.
5835                  */
5836                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5837                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5838                         clock_limit *= 2;
5839                         pipe_config->double_wide = true;
5840                 }
5841
5842                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5843                         return -EINVAL;
5844         }
5845
5846         /*
5847          * Pipe horizontal size must be even in:
5848          * - DVO ganged mode
5849          * - LVDS dual channel mode
5850          * - Double wide pipe
5851          */
5852         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
5853              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5854                 pipe_config->pipe_src_w &= ~1;
5855
5856         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5857          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5858          */
5859         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5860                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5861                 return -EINVAL;
5862
5863         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5864                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5865         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5866                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5867                  * for lvds. */
5868                 pipe_config->pipe_bpp = 8*3;
5869         }
5870
5871         if (HAS_IPS(dev))
5872                 hsw_compute_ips_config(crtc, pipe_config);
5873
5874         if (pipe_config->has_pch_encoder)
5875                 return ironlake_fdi_compute_config(crtc, pipe_config);
5876
5877         return 0;
5878 }
5879
5880 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5881 {
5882         struct drm_i915_private *dev_priv = dev->dev_private;
5883         u32 val;
5884         int divider;
5885
5886         if (dev_priv->hpll_freq == 0)
5887                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5888
5889         mutex_lock(&dev_priv->dpio_lock);
5890         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5891         mutex_unlock(&dev_priv->dpio_lock);
5892
5893         divider = val & DISPLAY_FREQUENCY_VALUES;
5894
5895         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5896              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5897              "cdclk change in progress\n");
5898
5899         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5900 }
5901
5902 static int i945_get_display_clock_speed(struct drm_device *dev)
5903 {
5904         return 400000;
5905 }
5906
5907 static int i915_get_display_clock_speed(struct drm_device *dev)
5908 {
5909         return 333000;
5910 }
5911
5912 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5913 {
5914         return 200000;
5915 }
5916
5917 static int pnv_get_display_clock_speed(struct drm_device *dev)
5918 {
5919         u16 gcfgc = 0;
5920
5921         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5922
5923         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5924         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5925                 return 267000;
5926         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5927                 return 333000;
5928         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5929                 return 444000;
5930         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5931                 return 200000;
5932         default:
5933                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5934         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5935                 return 133000;
5936         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5937                 return 167000;
5938         }
5939 }
5940
5941 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5942 {
5943         u16 gcfgc = 0;
5944
5945         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5946
5947         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5948                 return 133000;
5949         else {
5950                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5951                 case GC_DISPLAY_CLOCK_333_MHZ:
5952                         return 333000;
5953                 default:
5954                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5955                         return 190000;
5956                 }
5957         }
5958 }
5959
5960 static int i865_get_display_clock_speed(struct drm_device *dev)
5961 {
5962         return 266000;
5963 }
5964
5965 static int i855_get_display_clock_speed(struct drm_device *dev)
5966 {
5967         u16 hpllcc = 0;
5968         /* Assume that the hardware is in the high speed state.  This
5969          * should be the default.
5970          */
5971         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5972         case GC_CLOCK_133_200:
5973         case GC_CLOCK_100_200:
5974                 return 200000;
5975         case GC_CLOCK_166_250:
5976                 return 250000;
5977         case GC_CLOCK_100_133:
5978                 return 133000;
5979         }
5980
5981         /* Shouldn't happen */
5982         return 0;
5983 }
5984
5985 static int i830_get_display_clock_speed(struct drm_device *dev)
5986 {
5987         return 133000;
5988 }
5989
5990 static void
5991 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5992 {
5993         while (*num > DATA_LINK_M_N_MASK ||
5994                *den > DATA_LINK_M_N_MASK) {
5995                 *num >>= 1;
5996                 *den >>= 1;
5997         }
5998 }
5999
6000 static void compute_m_n(unsigned int m, unsigned int n,
6001                         uint32_t *ret_m, uint32_t *ret_n)
6002 {
6003         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6004         *ret_m = div_u64((uint64_t) m * *ret_n, n);
6005         intel_reduce_m_n_ratio(ret_m, ret_n);
6006 }
6007
6008 void
6009 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6010                        int pixel_clock, int link_clock,
6011                        struct intel_link_m_n *m_n)
6012 {
6013         m_n->tu = 64;
6014
6015         compute_m_n(bits_per_pixel * pixel_clock,
6016                     link_clock * nlanes * 8,
6017                     &m_n->gmch_m, &m_n->gmch_n);
6018
6019         compute_m_n(pixel_clock, link_clock,
6020                     &m_n->link_m, &m_n->link_n);
6021 }
6022
6023 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6024 {
6025         if (i915.panel_use_ssc >= 0)
6026                 return i915.panel_use_ssc != 0;
6027         return dev_priv->vbt.lvds_use_ssc
6028                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6029 }
6030
6031 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
6032                            int num_connectors)
6033 {
6034         struct drm_device *dev = crtc_state->base.crtc->dev;
6035         struct drm_i915_private *dev_priv = dev->dev_private;
6036         int refclk;
6037
6038         WARN_ON(!crtc_state->base.state);
6039
6040         if (IS_VALLEYVIEW(dev)) {
6041                 refclk = 100000;
6042         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6043             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6044                 refclk = dev_priv->vbt.lvds_ssc_freq;
6045                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
6046         } else if (!IS_GEN2(dev)) {
6047                 refclk = 96000;
6048         } else {
6049                 refclk = 48000;
6050         }
6051
6052         return refclk;
6053 }
6054
6055 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6056 {
6057         return (1 << dpll->n) << 16 | dpll->m2;
6058 }
6059
6060 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6061 {
6062         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6063 }
6064
6065 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6066                                      struct intel_crtc_state *crtc_state,
6067                                      intel_clock_t *reduced_clock)
6068 {
6069         struct drm_device *dev = crtc->base.dev;
6070         u32 fp, fp2 = 0;
6071
6072         if (IS_PINEVIEW(dev)) {
6073                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6074                 if (reduced_clock)
6075                         fp2 = pnv_dpll_compute_fp(reduced_clock);
6076         } else {
6077                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6078                 if (reduced_clock)
6079                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
6080         }
6081
6082         crtc_state->dpll_hw_state.fp0 = fp;
6083
6084         crtc->lowfreq_avail = false;
6085         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6086             reduced_clock) {
6087                 crtc_state->dpll_hw_state.fp1 = fp2;
6088                 crtc->lowfreq_avail = true;
6089         } else {
6090                 crtc_state->dpll_hw_state.fp1 = fp;
6091         }
6092 }
6093
6094 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6095                 pipe)
6096 {
6097         u32 reg_val;
6098
6099         /*
6100          * PLLB opamp always calibrates to max value of 0x3f, force enable it
6101          * and set it to a reasonable value instead.
6102          */
6103         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6104         reg_val &= 0xffffff00;
6105         reg_val |= 0x00000030;
6106         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6107
6108         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6109         reg_val &= 0x8cffffff;
6110         reg_val = 0x8c000000;
6111         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6112
6113         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6114         reg_val &= 0xffffff00;
6115         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6116
6117         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6118         reg_val &= 0x00ffffff;
6119         reg_val |= 0xb0000000;
6120         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6121 }
6122
6123 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6124                                          struct intel_link_m_n *m_n)
6125 {
6126         struct drm_device *dev = crtc->base.dev;
6127         struct drm_i915_private *dev_priv = dev->dev_private;
6128         int pipe = crtc->pipe;
6129
6130         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6131         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6132         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6133         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6134 }
6135
6136 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6137                                          struct intel_link_m_n *m_n,
6138                                          struct intel_link_m_n *m2_n2)
6139 {
6140         struct drm_device *dev = crtc->base.dev;
6141         struct drm_i915_private *dev_priv = dev->dev_private;
6142         int pipe = crtc->pipe;
6143         enum transcoder transcoder = crtc->config->cpu_transcoder;
6144
6145         if (INTEL_INFO(dev)->gen >= 5) {
6146                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6147                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6148                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6149                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6150                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6151                  * for gen < 8) and if DRRS is supported (to make sure the
6152                  * registers are not unnecessarily accessed).
6153                  */
6154                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6155                         crtc->config->has_drrs) {
6156                         I915_WRITE(PIPE_DATA_M2(transcoder),
6157                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6158                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6159                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6160                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6161                 }
6162         } else {
6163                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6164                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6165                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6166                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6167         }
6168 }
6169
6170 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6171 {
6172         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6173
6174         if (m_n == M1_N1) {
6175                 dp_m_n = &crtc->config->dp_m_n;
6176                 dp_m2_n2 = &crtc->config->dp_m2_n2;
6177         } else if (m_n == M2_N2) {
6178
6179                 /*
6180                  * M2_N2 registers are not supported. Hence m2_n2 divider value
6181                  * needs to be programmed into M1_N1.
6182                  */
6183                 dp_m_n = &crtc->config->dp_m2_n2;
6184         } else {
6185                 DRM_ERROR("Unsupported divider value\n");
6186                 return;
6187         }
6188
6189         if (crtc->config->has_pch_encoder)
6190                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6191         else
6192                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6193 }
6194
6195 static void vlv_update_pll(struct intel_crtc *crtc,
6196                            struct intel_crtc_state *pipe_config)
6197 {
6198         u32 dpll, dpll_md;
6199
6200         /*
6201          * Enable DPIO clock input. We should never disable the reference
6202          * clock for pipe B, since VGA hotplug / manual detection depends
6203          * on it.
6204          */
6205         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6206                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6207         /* We should never disable this, set it here for state tracking */
6208         if (crtc->pipe == PIPE_B)
6209                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6210         dpll |= DPLL_VCO_ENABLE;
6211         pipe_config->dpll_hw_state.dpll = dpll;
6212
6213         dpll_md = (pipe_config->pixel_multiplier - 1)
6214                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6215         pipe_config->dpll_hw_state.dpll_md = dpll_md;
6216 }
6217
6218 static void vlv_prepare_pll(struct intel_crtc *crtc,
6219                             const struct intel_crtc_state *pipe_config)
6220 {
6221         struct drm_device *dev = crtc->base.dev;
6222         struct drm_i915_private *dev_priv = dev->dev_private;
6223         int pipe = crtc->pipe;
6224         u32 mdiv;
6225         u32 bestn, bestm1, bestm2, bestp1, bestp2;
6226         u32 coreclk, reg_val;
6227
6228         mutex_lock(&dev_priv->dpio_lock);
6229
6230         bestn = pipe_config->dpll.n;
6231         bestm1 = pipe_config->dpll.m1;
6232         bestm2 = pipe_config->dpll.m2;
6233         bestp1 = pipe_config->dpll.p1;
6234         bestp2 = pipe_config->dpll.p2;
6235
6236         /* See eDP HDMI DPIO driver vbios notes doc */
6237
6238         /* PLL B needs special handling */
6239         if (pipe == PIPE_B)
6240                 vlv_pllb_recal_opamp(dev_priv, pipe);
6241
6242         /* Set up Tx target for periodic Rcomp update */
6243         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6244
6245         /* Disable target IRef on PLL */
6246         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6247         reg_val &= 0x00ffffff;
6248         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6249
6250         /* Disable fast lock */
6251         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6252
6253         /* Set idtafcrecal before PLL is enabled */
6254         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6255         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6256         mdiv |= ((bestn << DPIO_N_SHIFT));
6257         mdiv |= (1 << DPIO_K_SHIFT);
6258
6259         /*
6260          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6261          * but we don't support that).
6262          * Note: don't use the DAC post divider as it seems unstable.
6263          */
6264         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6265         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6266
6267         mdiv |= DPIO_ENABLE_CALIBRATION;
6268         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6269
6270         /* Set HBR and RBR LPF coefficients */
6271         if (pipe_config->port_clock == 162000 ||
6272             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6273             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
6274                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6275                                  0x009f0003);
6276         else
6277                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6278                                  0x00d0000f);
6279
6280         if (pipe_config->has_dp_encoder) {
6281                 /* Use SSC source */
6282                 if (pipe == PIPE_A)
6283                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6284                                          0x0df40000);
6285                 else
6286                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6287                                          0x0df70000);
6288         } else { /* HDMI or VGA */
6289                 /* Use bend source */
6290                 if (pipe == PIPE_A)
6291                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6292                                          0x0df70000);
6293                 else
6294                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6295                                          0x0df40000);
6296         }
6297
6298         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6299         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6300         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6301             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6302                 coreclk |= 0x01000000;
6303         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6304
6305         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6306         mutex_unlock(&dev_priv->dpio_lock);
6307 }
6308
6309 static void chv_update_pll(struct intel_crtc *crtc,
6310                            struct intel_crtc_state *pipe_config)
6311 {
6312         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6313                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6314                 DPLL_VCO_ENABLE;
6315         if (crtc->pipe != PIPE_A)
6316                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6317
6318         pipe_config->dpll_hw_state.dpll_md =
6319                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6320 }
6321
6322 static void chv_prepare_pll(struct intel_crtc *crtc,
6323                             const struct intel_crtc_state *pipe_config)
6324 {
6325         struct drm_device *dev = crtc->base.dev;
6326         struct drm_i915_private *dev_priv = dev->dev_private;
6327         int pipe = crtc->pipe;
6328         int dpll_reg = DPLL(crtc->pipe);
6329         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6330         u32 loopfilter, tribuf_calcntr;
6331         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6332         u32 dpio_val;
6333         int vco;
6334
6335         bestn = pipe_config->dpll.n;
6336         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6337         bestm1 = pipe_config->dpll.m1;
6338         bestm2 = pipe_config->dpll.m2 >> 22;
6339         bestp1 = pipe_config->dpll.p1;
6340         bestp2 = pipe_config->dpll.p2;
6341         vco = pipe_config->dpll.vco;
6342         dpio_val = 0;
6343         loopfilter = 0;
6344
6345         /*
6346          * Enable Refclk and SSC
6347          */
6348         I915_WRITE(dpll_reg,
6349                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6350
6351         mutex_lock(&dev_priv->dpio_lock);
6352
6353         /* p1 and p2 divider */
6354         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6355                         5 << DPIO_CHV_S1_DIV_SHIFT |
6356                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6357                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6358                         1 << DPIO_CHV_K_DIV_SHIFT);
6359
6360         /* Feedback post-divider - m2 */
6361         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6362
6363         /* Feedback refclk divider - n and m1 */
6364         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6365                         DPIO_CHV_M1_DIV_BY_2 |
6366                         1 << DPIO_CHV_N_DIV_SHIFT);
6367
6368         /* M2 fraction division */
6369         if (bestm2_frac)
6370                 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6371
6372         /* M2 fraction division enable */
6373         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6374         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6375         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6376         if (bestm2_frac)
6377                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6378         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6379
6380         /* Program digital lock detect threshold */
6381         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6382         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6383                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6384         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6385         if (!bestm2_frac)
6386                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6387         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6388
6389         /* Loop filter */
6390         if (vco == 5400000) {
6391                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6392                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6393                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6394                 tribuf_calcntr = 0x9;
6395         } else if (vco <= 6200000) {
6396                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6397                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6398                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6399                 tribuf_calcntr = 0x9;
6400         } else if (vco <= 6480000) {
6401                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6402                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6403                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6404                 tribuf_calcntr = 0x8;
6405         } else {
6406                 /* Not supported. Apply the same limits as in the max case */
6407                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6408                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6409                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6410                 tribuf_calcntr = 0;
6411         }
6412         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6413
6414         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6415         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6416         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6417         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6418
6419         /* AFC Recal */
6420         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6421                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6422                         DPIO_AFC_RECAL);
6423
6424         mutex_unlock(&dev_priv->dpio_lock);
6425 }
6426
6427 /**
6428  * vlv_force_pll_on - forcibly enable just the PLL
6429  * @dev_priv: i915 private structure
6430  * @pipe: pipe PLL to enable
6431  * @dpll: PLL configuration
6432  *
6433  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6434  * in cases where we need the PLL enabled even when @pipe is not going to
6435  * be enabled.
6436  */
6437 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6438                       const struct dpll *dpll)
6439 {
6440         struct intel_crtc *crtc =
6441                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6442         struct intel_crtc_state pipe_config = {
6443                 .base.crtc = &crtc->base,
6444                 .pixel_multiplier = 1,
6445                 .dpll = *dpll,
6446         };
6447
6448         if (IS_CHERRYVIEW(dev)) {
6449                 chv_update_pll(crtc, &pipe_config);
6450                 chv_prepare_pll(crtc, &pipe_config);
6451                 chv_enable_pll(crtc, &pipe_config);
6452         } else {
6453                 vlv_update_pll(crtc, &pipe_config);
6454                 vlv_prepare_pll(crtc, &pipe_config);
6455                 vlv_enable_pll(crtc, &pipe_config);
6456         }
6457 }
6458
6459 /**
6460  * vlv_force_pll_off - forcibly disable just the PLL
6461  * @dev_priv: i915 private structure
6462  * @pipe: pipe PLL to disable
6463  *
6464  * Disable the PLL for @pipe. To be used in cases where we need
6465  * the PLL enabled even when @pipe is not going to be enabled.
6466  */
6467 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6468 {
6469         if (IS_CHERRYVIEW(dev))
6470                 chv_disable_pll(to_i915(dev), pipe);
6471         else
6472                 vlv_disable_pll(to_i915(dev), pipe);
6473 }
6474
6475 static void i9xx_update_pll(struct intel_crtc *crtc,
6476                             struct intel_crtc_state *crtc_state,
6477                             intel_clock_t *reduced_clock,
6478                             int num_connectors)
6479 {
6480         struct drm_device *dev = crtc->base.dev;
6481         struct drm_i915_private *dev_priv = dev->dev_private;
6482         u32 dpll;
6483         bool is_sdvo;
6484         struct dpll *clock = &crtc_state->dpll;
6485
6486         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6487
6488         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
6489                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
6490
6491         dpll = DPLL_VGA_MODE_DIS;
6492
6493         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
6494                 dpll |= DPLLB_MODE_LVDS;
6495         else
6496                 dpll |= DPLLB_MODE_DAC_SERIAL;
6497
6498         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6499                 dpll |= (crtc_state->pixel_multiplier - 1)
6500                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6501         }
6502
6503         if (is_sdvo)
6504                 dpll |= DPLL_SDVO_HIGH_SPEED;
6505
6506         if (crtc_state->has_dp_encoder)
6507                 dpll |= DPLL_SDVO_HIGH_SPEED;
6508
6509         /* compute bitmask from p1 value */
6510         if (IS_PINEVIEW(dev))
6511                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6512         else {
6513                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6514                 if (IS_G4X(dev) && reduced_clock)
6515                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6516         }
6517         switch (clock->p2) {
6518         case 5:
6519                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6520                 break;
6521         case 7:
6522                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6523                 break;
6524         case 10:
6525                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6526                 break;
6527         case 14:
6528                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6529                 break;
6530         }
6531         if (INTEL_INFO(dev)->gen >= 4)
6532                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6533
6534         if (crtc_state->sdvo_tv_clock)
6535                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6536         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6537                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6538                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6539         else
6540                 dpll |= PLL_REF_INPUT_DREFCLK;
6541
6542         dpll |= DPLL_VCO_ENABLE;
6543         crtc_state->dpll_hw_state.dpll = dpll;
6544
6545         if (INTEL_INFO(dev)->gen >= 4) {
6546                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6547                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6548                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6549         }
6550 }
6551
6552 static void i8xx_update_pll(struct intel_crtc *crtc,
6553                             struct intel_crtc_state *crtc_state,
6554                             intel_clock_t *reduced_clock,
6555                             int num_connectors)
6556 {
6557         struct drm_device *dev = crtc->base.dev;
6558         struct drm_i915_private *dev_priv = dev->dev_private;
6559         u32 dpll;
6560         struct dpll *clock = &crtc_state->dpll;
6561
6562         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6563
6564         dpll = DPLL_VGA_MODE_DIS;
6565
6566         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
6567                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6568         } else {
6569                 if (clock->p1 == 2)
6570                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6571                 else
6572                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6573                 if (clock->p2 == 4)
6574                         dpll |= PLL_P2_DIVIDE_BY_4;
6575         }
6576
6577         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
6578                 dpll |= DPLL_DVO_2X_MODE;
6579
6580         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6581                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6582                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6583         else
6584                 dpll |= PLL_REF_INPUT_DREFCLK;
6585
6586         dpll |= DPLL_VCO_ENABLE;
6587         crtc_state->dpll_hw_state.dpll = dpll;
6588 }
6589
6590 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6591 {
6592         struct drm_device *dev = intel_crtc->base.dev;
6593         struct drm_i915_private *dev_priv = dev->dev_private;
6594         enum pipe pipe = intel_crtc->pipe;
6595         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6596         struct drm_display_mode *adjusted_mode =
6597                 &intel_crtc->config->base.adjusted_mode;
6598         uint32_t crtc_vtotal, crtc_vblank_end;
6599         int vsyncshift = 0;
6600
6601         /* We need to be careful not to changed the adjusted mode, for otherwise
6602          * the hw state checker will get angry at the mismatch. */
6603         crtc_vtotal = adjusted_mode->crtc_vtotal;
6604         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6605
6606         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6607                 /* the chip adds 2 halflines automatically */
6608                 crtc_vtotal -= 1;
6609                 crtc_vblank_end -= 1;
6610
6611                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6612                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6613                 else
6614                         vsyncshift = adjusted_mode->crtc_hsync_start -
6615                                 adjusted_mode->crtc_htotal / 2;
6616                 if (vsyncshift < 0)
6617                         vsyncshift += adjusted_mode->crtc_htotal;
6618         }
6619
6620         if (INTEL_INFO(dev)->gen > 3)
6621                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6622
6623         I915_WRITE(HTOTAL(cpu_transcoder),
6624                    (adjusted_mode->crtc_hdisplay - 1) |
6625                    ((adjusted_mode->crtc_htotal - 1) << 16));
6626         I915_WRITE(HBLANK(cpu_transcoder),
6627                    (adjusted_mode->crtc_hblank_start - 1) |
6628                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6629         I915_WRITE(HSYNC(cpu_transcoder),
6630                    (adjusted_mode->crtc_hsync_start - 1) |
6631                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6632
6633         I915_WRITE(VTOTAL(cpu_transcoder),
6634                    (adjusted_mode->crtc_vdisplay - 1) |
6635                    ((crtc_vtotal - 1) << 16));
6636         I915_WRITE(VBLANK(cpu_transcoder),
6637                    (adjusted_mode->crtc_vblank_start - 1) |
6638                    ((crtc_vblank_end - 1) << 16));
6639         I915_WRITE(VSYNC(cpu_transcoder),
6640                    (adjusted_mode->crtc_vsync_start - 1) |
6641                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6642
6643         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6644          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6645          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6646          * bits. */
6647         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6648             (pipe == PIPE_B || pipe == PIPE_C))
6649                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6650
6651         /* pipesrc controls the size that is scaled from, which should
6652          * always be the user's requested size.
6653          */
6654         I915_WRITE(PIPESRC(pipe),
6655                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
6656                    (intel_crtc->config->pipe_src_h - 1));
6657 }
6658
6659 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6660                                    struct intel_crtc_state *pipe_config)
6661 {
6662         struct drm_device *dev = crtc->base.dev;
6663         struct drm_i915_private *dev_priv = dev->dev_private;
6664         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6665         uint32_t tmp;
6666
6667         tmp = I915_READ(HTOTAL(cpu_transcoder));
6668         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6669         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6670         tmp = I915_READ(HBLANK(cpu_transcoder));
6671         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6672         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6673         tmp = I915_READ(HSYNC(cpu_transcoder));
6674         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6675         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6676
6677         tmp = I915_READ(VTOTAL(cpu_transcoder));
6678         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6679         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6680         tmp = I915_READ(VBLANK(cpu_transcoder));
6681         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6682         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6683         tmp = I915_READ(VSYNC(cpu_transcoder));
6684         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6685         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6686
6687         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6688                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6689                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6690                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6691         }
6692
6693         tmp = I915_READ(PIPESRC(crtc->pipe));
6694         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6695         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6696
6697         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6698         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
6699 }
6700
6701 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6702                                  struct intel_crtc_state *pipe_config)
6703 {
6704         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6705         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6706         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6707         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
6708
6709         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6710         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6711         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6712         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
6713
6714         mode->flags = pipe_config->base.adjusted_mode.flags;
6715
6716         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6717         mode->flags |= pipe_config->base.adjusted_mode.flags;
6718 }
6719
6720 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6721 {
6722         struct drm_device *dev = intel_crtc->base.dev;
6723         struct drm_i915_private *dev_priv = dev->dev_private;
6724         uint32_t pipeconf;
6725
6726         pipeconf = 0;
6727
6728         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6729             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6730                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6731
6732         if (intel_crtc->config->double_wide)
6733                 pipeconf |= PIPECONF_DOUBLE_WIDE;
6734
6735         /* only g4x and later have fancy bpc/dither controls */
6736         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6737                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6738                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
6739                         pipeconf |= PIPECONF_DITHER_EN |
6740                                     PIPECONF_DITHER_TYPE_SP;
6741
6742                 switch (intel_crtc->config->pipe_bpp) {
6743                 case 18:
6744                         pipeconf |= PIPECONF_6BPC;
6745                         break;
6746                 case 24:
6747                         pipeconf |= PIPECONF_8BPC;
6748                         break;
6749                 case 30:
6750                         pipeconf |= PIPECONF_10BPC;
6751                         break;
6752                 default:
6753                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6754                         BUG();
6755                 }
6756         }
6757
6758         if (HAS_PIPE_CXSR(dev)) {
6759                 if (intel_crtc->lowfreq_avail) {
6760                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6761                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6762                 } else {
6763                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6764                 }
6765         }
6766
6767         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6768                 if (INTEL_INFO(dev)->gen < 4 ||
6769                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6770                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6771                 else
6772                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6773         } else
6774                 pipeconf |= PIPECONF_PROGRESSIVE;
6775
6776         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
6777                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6778
6779         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6780         POSTING_READ(PIPECONF(intel_crtc->pipe));
6781 }
6782
6783 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6784                                    struct intel_crtc_state *crtc_state)
6785 {
6786         struct drm_device *dev = crtc->base.dev;
6787         struct drm_i915_private *dev_priv = dev->dev_private;
6788         int refclk, num_connectors = 0;
6789         intel_clock_t clock, reduced_clock;
6790         bool ok, has_reduced_clock = false;
6791         bool is_lvds = false, is_dsi = false;
6792         struct intel_encoder *encoder;
6793         const intel_limit_t *limit;
6794         struct drm_atomic_state *state = crtc_state->base.state;
6795         struct drm_connector_state *connector_state;
6796         int i;
6797
6798         for (i = 0; i < state->num_connector; i++) {
6799                 if (!state->connectors[i])
6800                         continue;
6801
6802                 connector_state = state->connector_states[i];
6803                 if (connector_state->crtc != &crtc->base)
6804                         continue;
6805
6806                 encoder = to_intel_encoder(connector_state->best_encoder);
6807
6808                 switch (encoder->type) {
6809                 case INTEL_OUTPUT_LVDS:
6810                         is_lvds = true;
6811                         break;
6812                 case INTEL_OUTPUT_DSI:
6813                         is_dsi = true;
6814                         break;
6815                 default:
6816                         break;
6817                 }
6818
6819                 num_connectors++;
6820         }
6821
6822         if (is_dsi)
6823                 return 0;
6824
6825         if (!crtc_state->clock_set) {
6826                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
6827
6828                 /*
6829                  * Returns a set of divisors for the desired target clock with
6830                  * the given refclk, or FALSE.  The returned values represent
6831                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6832                  * 2) / p1 / p2.
6833                  */
6834                 limit = intel_limit(crtc_state, refclk);
6835                 ok = dev_priv->display.find_dpll(limit, crtc_state,
6836                                                  crtc_state->port_clock,
6837                                                  refclk, NULL, &clock);
6838                 if (!ok) {
6839                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6840                         return -EINVAL;
6841                 }
6842
6843                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6844                         /*
6845                          * Ensure we match the reduced clock's P to the target
6846                          * clock.  If the clocks don't match, we can't switch
6847                          * the display clock by using the FP0/FP1. In such case
6848                          * we will disable the LVDS downclock feature.
6849                          */
6850                         has_reduced_clock =
6851                                 dev_priv->display.find_dpll(limit, crtc_state,
6852                                                             dev_priv->lvds_downclock,
6853                                                             refclk, &clock,
6854                                                             &reduced_clock);
6855                 }
6856                 /* Compat-code for transition, will disappear. */
6857                 crtc_state->dpll.n = clock.n;
6858                 crtc_state->dpll.m1 = clock.m1;
6859                 crtc_state->dpll.m2 = clock.m2;
6860                 crtc_state->dpll.p1 = clock.p1;
6861                 crtc_state->dpll.p2 = clock.p2;
6862         }
6863
6864         if (IS_GEN2(dev)) {
6865                 i8xx_update_pll(crtc, crtc_state,
6866                                 has_reduced_clock ? &reduced_clock : NULL,
6867                                 num_connectors);
6868         } else if (IS_CHERRYVIEW(dev)) {
6869                 chv_update_pll(crtc, crtc_state);
6870         } else if (IS_VALLEYVIEW(dev)) {
6871                 vlv_update_pll(crtc, crtc_state);
6872         } else {
6873                 i9xx_update_pll(crtc, crtc_state,
6874                                 has_reduced_clock ? &reduced_clock : NULL,
6875                                 num_connectors);
6876         }
6877
6878         return 0;
6879 }
6880
6881 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6882                                  struct intel_crtc_state *pipe_config)
6883 {
6884         struct drm_device *dev = crtc->base.dev;
6885         struct drm_i915_private *dev_priv = dev->dev_private;
6886         uint32_t tmp;
6887
6888         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6889                 return;
6890
6891         tmp = I915_READ(PFIT_CONTROL);
6892         if (!(tmp & PFIT_ENABLE))
6893                 return;
6894
6895         /* Check whether the pfit is attached to our pipe. */
6896         if (INTEL_INFO(dev)->gen < 4) {
6897                 if (crtc->pipe != PIPE_B)
6898                         return;
6899         } else {
6900                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6901                         return;
6902         }
6903
6904         pipe_config->gmch_pfit.control = tmp;
6905         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6906         if (INTEL_INFO(dev)->gen < 5)
6907                 pipe_config->gmch_pfit.lvds_border_bits =
6908                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6909 }
6910
6911 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6912                                struct intel_crtc_state *pipe_config)
6913 {
6914         struct drm_device *dev = crtc->base.dev;
6915         struct drm_i915_private *dev_priv = dev->dev_private;
6916         int pipe = pipe_config->cpu_transcoder;
6917         intel_clock_t clock;
6918         u32 mdiv;
6919         int refclk = 100000;
6920
6921         /* In case of MIPI DPLL will not even be used */
6922         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6923                 return;
6924
6925         mutex_lock(&dev_priv->dpio_lock);
6926         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6927         mutex_unlock(&dev_priv->dpio_lock);
6928
6929         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6930         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6931         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6932         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6933         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6934
6935         vlv_clock(refclk, &clock);
6936
6937         /* clock.dot is the fast clock */
6938         pipe_config->port_clock = clock.dot / 5;
6939 }
6940
6941 static void
6942 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6943                               struct intel_initial_plane_config *plane_config)
6944 {
6945         struct drm_device *dev = crtc->base.dev;
6946         struct drm_i915_private *dev_priv = dev->dev_private;
6947         u32 val, base, offset;
6948         int pipe = crtc->pipe, plane = crtc->plane;
6949         int fourcc, pixel_format;
6950         unsigned int aligned_height;
6951         struct drm_framebuffer *fb;
6952         struct intel_framebuffer *intel_fb;
6953
6954         val = I915_READ(DSPCNTR(plane));
6955         if (!(val & DISPLAY_PLANE_ENABLE))
6956                 return;
6957
6958         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6959         if (!intel_fb) {
6960                 DRM_DEBUG_KMS("failed to alloc fb\n");
6961                 return;
6962         }
6963
6964         fb = &intel_fb->base;
6965
6966         if (INTEL_INFO(dev)->gen >= 4) {
6967                 if (val & DISPPLANE_TILED) {
6968                         plane_config->tiling = I915_TILING_X;
6969                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
6970                 }
6971         }
6972
6973         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6974         fourcc = i9xx_format_to_fourcc(pixel_format);
6975         fb->pixel_format = fourcc;
6976         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
6977
6978         if (INTEL_INFO(dev)->gen >= 4) {
6979                 if (plane_config->tiling)
6980                         offset = I915_READ(DSPTILEOFF(plane));
6981                 else
6982                         offset = I915_READ(DSPLINOFF(plane));
6983                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6984         } else {
6985                 base = I915_READ(DSPADDR(plane));
6986         }
6987         plane_config->base = base;
6988
6989         val = I915_READ(PIPESRC(pipe));
6990         fb->width = ((val >> 16) & 0xfff) + 1;
6991         fb->height = ((val >> 0) & 0xfff) + 1;
6992
6993         val = I915_READ(DSPSTRIDE(pipe));
6994         fb->pitches[0] = val & 0xffffffc0;
6995
6996         aligned_height = intel_fb_align_height(dev, fb->height,
6997                                                fb->pixel_format,
6998                                                fb->modifier[0]);
6999
7000         plane_config->size = fb->pitches[0] * aligned_height;
7001
7002         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7003                       pipe_name(pipe), plane, fb->width, fb->height,
7004                       fb->bits_per_pixel, base, fb->pitches[0],
7005                       plane_config->size);
7006
7007         plane_config->fb = intel_fb;
7008 }
7009
7010 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7011                                struct intel_crtc_state *pipe_config)
7012 {
7013         struct drm_device *dev = crtc->base.dev;
7014         struct drm_i915_private *dev_priv = dev->dev_private;
7015         int pipe = pipe_config->cpu_transcoder;
7016         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7017         intel_clock_t clock;
7018         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
7019         int refclk = 100000;
7020
7021         mutex_lock(&dev_priv->dpio_lock);
7022         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7023         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7024         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7025         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7026         mutex_unlock(&dev_priv->dpio_lock);
7027
7028         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7029         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
7030         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7031         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7032         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7033
7034         chv_clock(refclk, &clock);
7035
7036         /* clock.dot is the fast clock */
7037         pipe_config->port_clock = clock.dot / 5;
7038 }
7039
7040 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7041                                  struct intel_crtc_state *pipe_config)
7042 {
7043         struct drm_device *dev = crtc->base.dev;
7044         struct drm_i915_private *dev_priv = dev->dev_private;
7045         uint32_t tmp;
7046
7047         if (!intel_display_power_is_enabled(dev_priv,
7048                                             POWER_DOMAIN_PIPE(crtc->pipe)))
7049                 return false;
7050
7051         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7052         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7053
7054         tmp = I915_READ(PIPECONF(crtc->pipe));
7055         if (!(tmp & PIPECONF_ENABLE))
7056                 return false;
7057
7058         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7059                 switch (tmp & PIPECONF_BPC_MASK) {
7060                 case PIPECONF_6BPC:
7061                         pipe_config->pipe_bpp = 18;
7062                         break;
7063                 case PIPECONF_8BPC:
7064                         pipe_config->pipe_bpp = 24;
7065                         break;
7066                 case PIPECONF_10BPC:
7067                         pipe_config->pipe_bpp = 30;
7068                         break;
7069                 default:
7070                         break;
7071                 }
7072         }
7073
7074         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7075                 pipe_config->limited_color_range = true;
7076
7077         if (INTEL_INFO(dev)->gen < 4)
7078                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7079
7080         intel_get_pipe_timings(crtc, pipe_config);
7081
7082         i9xx_get_pfit_config(crtc, pipe_config);
7083
7084         if (INTEL_INFO(dev)->gen >= 4) {
7085                 tmp = I915_READ(DPLL_MD(crtc->pipe));
7086                 pipe_config->pixel_multiplier =
7087                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7088                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7089                 pipe_config->dpll_hw_state.dpll_md = tmp;
7090         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7091                 tmp = I915_READ(DPLL(crtc->pipe));
7092                 pipe_config->pixel_multiplier =
7093                         ((tmp & SDVO_MULTIPLIER_MASK)
7094                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7095         } else {
7096                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7097                  * port and will be fixed up in the encoder->get_config
7098                  * function. */
7099                 pipe_config->pixel_multiplier = 1;
7100         }
7101         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7102         if (!IS_VALLEYVIEW(dev)) {
7103                 /*
7104                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7105                  * on 830. Filter it out here so that we don't
7106                  * report errors due to that.
7107                  */
7108                 if (IS_I830(dev))
7109                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7110
7111                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7112                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7113         } else {
7114                 /* Mask out read-only status bits. */
7115                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7116                                                      DPLL_PORTC_READY_MASK |
7117                                                      DPLL_PORTB_READY_MASK);
7118         }
7119
7120         if (IS_CHERRYVIEW(dev))
7121                 chv_crtc_clock_get(crtc, pipe_config);
7122         else if (IS_VALLEYVIEW(dev))
7123                 vlv_crtc_clock_get(crtc, pipe_config);
7124         else
7125                 i9xx_crtc_clock_get(crtc, pipe_config);
7126
7127         return true;
7128 }
7129
7130 static void ironlake_init_pch_refclk(struct drm_device *dev)
7131 {
7132         struct drm_i915_private *dev_priv = dev->dev_private;
7133         struct intel_encoder *encoder;
7134         u32 val, final;
7135         bool has_lvds = false;
7136         bool has_cpu_edp = false;
7137         bool has_panel = false;
7138         bool has_ck505 = false;
7139         bool can_ssc = false;
7140
7141         /* We need to take the global config into account */
7142         for_each_intel_encoder(dev, encoder) {
7143                 switch (encoder->type) {
7144                 case INTEL_OUTPUT_LVDS:
7145                         has_panel = true;
7146                         has_lvds = true;
7147                         break;
7148                 case INTEL_OUTPUT_EDP:
7149                         has_panel = true;
7150                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7151                                 has_cpu_edp = true;
7152                         break;
7153                 default:
7154                         break;
7155                 }
7156         }
7157
7158         if (HAS_PCH_IBX(dev)) {
7159                 has_ck505 = dev_priv->vbt.display_clock_mode;
7160                 can_ssc = has_ck505;
7161         } else {
7162                 has_ck505 = false;
7163                 can_ssc = true;
7164         }
7165
7166         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
7167                       has_panel, has_lvds, has_ck505);
7168
7169         /* Ironlake: try to setup display ref clock before DPLL
7170          * enabling. This is only under driver's control after
7171          * PCH B stepping, previous chipset stepping should be
7172          * ignoring this setting.
7173          */
7174         val = I915_READ(PCH_DREF_CONTROL);
7175
7176         /* As we must carefully and slowly disable/enable each source in turn,
7177          * compute the final state we want first and check if we need to
7178          * make any changes at all.
7179          */
7180         final = val;
7181         final &= ~DREF_NONSPREAD_SOURCE_MASK;
7182         if (has_ck505)
7183                 final |= DREF_NONSPREAD_CK505_ENABLE;
7184         else
7185                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7186
7187         final &= ~DREF_SSC_SOURCE_MASK;
7188         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7189         final &= ~DREF_SSC1_ENABLE;
7190
7191         if (has_panel) {
7192                 final |= DREF_SSC_SOURCE_ENABLE;
7193
7194                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7195                         final |= DREF_SSC1_ENABLE;
7196
7197                 if (has_cpu_edp) {
7198                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
7199                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7200                         else
7201                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7202                 } else
7203                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7204         } else {
7205                 final |= DREF_SSC_SOURCE_DISABLE;
7206                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7207         }
7208
7209         if (final == val)
7210                 return;
7211
7212         /* Always enable nonspread source */
7213         val &= ~DREF_NONSPREAD_SOURCE_MASK;
7214
7215         if (has_ck505)
7216                 val |= DREF_NONSPREAD_CK505_ENABLE;
7217         else
7218                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7219
7220         if (has_panel) {
7221                 val &= ~DREF_SSC_SOURCE_MASK;
7222                 val |= DREF_SSC_SOURCE_ENABLE;
7223
7224                 /* SSC must be turned on before enabling the CPU output  */
7225                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7226                         DRM_DEBUG_KMS("Using SSC on panel\n");
7227                         val |= DREF_SSC1_ENABLE;
7228                 } else
7229                         val &= ~DREF_SSC1_ENABLE;
7230
7231                 /* Get SSC going before enabling the outputs */
7232                 I915_WRITE(PCH_DREF_CONTROL, val);
7233                 POSTING_READ(PCH_DREF_CONTROL);
7234                 udelay(200);
7235
7236                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7237
7238                 /* Enable CPU source on CPU attached eDP */
7239                 if (has_cpu_edp) {
7240                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7241                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
7242                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7243                         } else
7244                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7245                 } else
7246                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7247
7248                 I915_WRITE(PCH_DREF_CONTROL, val);
7249                 POSTING_READ(PCH_DREF_CONTROL);
7250                 udelay(200);
7251         } else {
7252                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7253
7254                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7255
7256                 /* Turn off CPU output */
7257                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7258
7259                 I915_WRITE(PCH_DREF_CONTROL, val);
7260                 POSTING_READ(PCH_DREF_CONTROL);
7261                 udelay(200);
7262
7263                 /* Turn off the SSC source */
7264                 val &= ~DREF_SSC_SOURCE_MASK;
7265                 val |= DREF_SSC_SOURCE_DISABLE;
7266
7267                 /* Turn off SSC1 */
7268                 val &= ~DREF_SSC1_ENABLE;
7269
7270                 I915_WRITE(PCH_DREF_CONTROL, val);
7271                 POSTING_READ(PCH_DREF_CONTROL);
7272                 udelay(200);
7273         }
7274
7275         BUG_ON(val != final);
7276 }
7277
7278 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7279 {
7280         uint32_t tmp;
7281
7282         tmp = I915_READ(SOUTH_CHICKEN2);
7283         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7284         I915_WRITE(SOUTH_CHICKEN2, tmp);
7285
7286         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7287                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7288                 DRM_ERROR("FDI mPHY reset assert timeout\n");
7289
7290         tmp = I915_READ(SOUTH_CHICKEN2);
7291         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7292         I915_WRITE(SOUTH_CHICKEN2, tmp);
7293
7294         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7295                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7296                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7297 }
7298
7299 /* WaMPhyProgramming:hsw */
7300 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7301 {
7302         uint32_t tmp;
7303
7304         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7305         tmp &= ~(0xFF << 24);
7306         tmp |= (0x12 << 24);
7307         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7308
7309         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7310         tmp |= (1 << 11);
7311         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7312
7313         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7314         tmp |= (1 << 11);
7315         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7316
7317         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7318         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7319         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7320
7321         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7322         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7323         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7324
7325         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7326         tmp &= ~(7 << 13);
7327         tmp |= (5 << 13);
7328         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7329
7330         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7331         tmp &= ~(7 << 13);
7332         tmp |= (5 << 13);
7333         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7334
7335         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7336         tmp &= ~0xFF;
7337         tmp |= 0x1C;
7338         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7339
7340         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7341         tmp &= ~0xFF;
7342         tmp |= 0x1C;
7343         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7344
7345         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7346         tmp &= ~(0xFF << 16);
7347         tmp |= (0x1C << 16);
7348         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7349
7350         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7351         tmp &= ~(0xFF << 16);
7352         tmp |= (0x1C << 16);
7353         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7354
7355         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7356         tmp |= (1 << 27);
7357         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7358
7359         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7360         tmp |= (1 << 27);
7361         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7362
7363         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7364         tmp &= ~(0xF << 28);
7365         tmp |= (4 << 28);
7366         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7367
7368         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7369         tmp &= ~(0xF << 28);
7370         tmp |= (4 << 28);
7371         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7372 }
7373
7374 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7375  * Programming" based on the parameters passed:
7376  * - Sequence to enable CLKOUT_DP
7377  * - Sequence to enable CLKOUT_DP without spread
7378  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7379  */
7380 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7381                                  bool with_fdi)
7382 {
7383         struct drm_i915_private *dev_priv = dev->dev_private;
7384         uint32_t reg, tmp;
7385
7386         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7387                 with_spread = true;
7388         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7389                  with_fdi, "LP PCH doesn't have FDI\n"))
7390                 with_fdi = false;
7391
7392         mutex_lock(&dev_priv->dpio_lock);
7393
7394         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7395         tmp &= ~SBI_SSCCTL_DISABLE;
7396         tmp |= SBI_SSCCTL_PATHALT;
7397         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7398
7399         udelay(24);
7400
7401         if (with_spread) {
7402                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7403                 tmp &= ~SBI_SSCCTL_PATHALT;
7404                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7405
7406                 if (with_fdi) {
7407                         lpt_reset_fdi_mphy(dev_priv);
7408                         lpt_program_fdi_mphy(dev_priv);
7409                 }
7410         }
7411
7412         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7413                SBI_GEN0 : SBI_DBUFF0;
7414         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7415         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7416         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7417
7418         mutex_unlock(&dev_priv->dpio_lock);
7419 }
7420
7421 /* Sequence to disable CLKOUT_DP */
7422 static void lpt_disable_clkout_dp(struct drm_device *dev)
7423 {
7424         struct drm_i915_private *dev_priv = dev->dev_private;
7425         uint32_t reg, tmp;
7426
7427         mutex_lock(&dev_priv->dpio_lock);
7428
7429         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7430                SBI_GEN0 : SBI_DBUFF0;
7431         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7432         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7433         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7434
7435         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7436         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7437                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7438                         tmp |= SBI_SSCCTL_PATHALT;
7439                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7440                         udelay(32);
7441                 }
7442                 tmp |= SBI_SSCCTL_DISABLE;
7443                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7444         }
7445
7446         mutex_unlock(&dev_priv->dpio_lock);
7447 }
7448
7449 static void lpt_init_pch_refclk(struct drm_device *dev)
7450 {
7451         struct intel_encoder *encoder;
7452         bool has_vga = false;
7453
7454         for_each_intel_encoder(dev, encoder) {
7455                 switch (encoder->type) {
7456                 case INTEL_OUTPUT_ANALOG:
7457                         has_vga = true;
7458                         break;
7459                 default:
7460                         break;
7461                 }
7462         }
7463
7464         if (has_vga)
7465                 lpt_enable_clkout_dp(dev, true, true);
7466         else
7467                 lpt_disable_clkout_dp(dev);
7468 }
7469
7470 /*
7471  * Initialize reference clocks when the driver loads
7472  */
7473 void intel_init_pch_refclk(struct drm_device *dev)
7474 {
7475         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7476                 ironlake_init_pch_refclk(dev);
7477         else if (HAS_PCH_LPT(dev))
7478                 lpt_init_pch_refclk(dev);
7479 }
7480
7481 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
7482 {
7483         struct drm_device *dev = crtc_state->base.crtc->dev;
7484         struct drm_i915_private *dev_priv = dev->dev_private;
7485         struct drm_atomic_state *state = crtc_state->base.state;
7486         struct drm_connector_state *connector_state;
7487         struct intel_encoder *encoder;
7488         int num_connectors = 0, i;
7489         bool is_lvds = false;
7490
7491         for (i = 0; i < state->num_connector; i++) {
7492                 if (!state->connectors[i])
7493                         continue;
7494
7495                 connector_state = state->connector_states[i];
7496                 if (connector_state->crtc != crtc_state->base.crtc)
7497                         continue;
7498
7499                 encoder = to_intel_encoder(connector_state->best_encoder);
7500
7501                 switch (encoder->type) {
7502                 case INTEL_OUTPUT_LVDS:
7503                         is_lvds = true;
7504                         break;
7505                 default:
7506                         break;
7507                 }
7508                 num_connectors++;
7509         }
7510
7511         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7512                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7513                               dev_priv->vbt.lvds_ssc_freq);
7514                 return dev_priv->vbt.lvds_ssc_freq;
7515         }
7516
7517         return 120000;
7518 }
7519
7520 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7521 {
7522         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7523         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7524         int pipe = intel_crtc->pipe;
7525         uint32_t val;
7526
7527         val = 0;
7528
7529         switch (intel_crtc->config->pipe_bpp) {
7530         case 18:
7531                 val |= PIPECONF_6BPC;
7532                 break;
7533         case 24:
7534                 val |= PIPECONF_8BPC;
7535                 break;
7536         case 30:
7537                 val |= PIPECONF_10BPC;
7538                 break;
7539         case 36:
7540                 val |= PIPECONF_12BPC;
7541                 break;
7542         default:
7543                 /* Case prevented by intel_choose_pipe_bpp_dither. */
7544                 BUG();
7545         }
7546
7547         if (intel_crtc->config->dither)
7548                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7549
7550         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7551                 val |= PIPECONF_INTERLACED_ILK;
7552         else
7553                 val |= PIPECONF_PROGRESSIVE;
7554
7555         if (intel_crtc->config->limited_color_range)
7556                 val |= PIPECONF_COLOR_RANGE_SELECT;
7557
7558         I915_WRITE(PIPECONF(pipe), val);
7559         POSTING_READ(PIPECONF(pipe));
7560 }
7561
7562 /*
7563  * Set up the pipe CSC unit.
7564  *
7565  * Currently only full range RGB to limited range RGB conversion
7566  * is supported, but eventually this should handle various
7567  * RGB<->YCbCr scenarios as well.
7568  */
7569 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7570 {
7571         struct drm_device *dev = crtc->dev;
7572         struct drm_i915_private *dev_priv = dev->dev_private;
7573         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7574         int pipe = intel_crtc->pipe;
7575         uint16_t coeff = 0x7800; /* 1.0 */
7576
7577         /*
7578          * TODO: Check what kind of values actually come out of the pipe
7579          * with these coeff/postoff values and adjust to get the best
7580          * accuracy. Perhaps we even need to take the bpc value into
7581          * consideration.
7582          */
7583
7584         if (intel_crtc->config->limited_color_range)
7585                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7586
7587         /*
7588          * GY/GU and RY/RU should be the other way around according
7589          * to BSpec, but reality doesn't agree. Just set them up in
7590          * a way that results in the correct picture.
7591          */
7592         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7593         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7594
7595         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7596         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7597
7598         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7599         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7600
7601         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7602         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7603         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7604
7605         if (INTEL_INFO(dev)->gen > 6) {
7606                 uint16_t postoff = 0;
7607
7608                 if (intel_crtc->config->limited_color_range)
7609                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
7610
7611                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7612                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7613                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7614
7615                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7616         } else {
7617                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7618
7619                 if (intel_crtc->config->limited_color_range)
7620                         mode |= CSC_BLACK_SCREEN_OFFSET;
7621
7622                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7623         }
7624 }
7625
7626 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7627 {
7628         struct drm_device *dev = crtc->dev;
7629         struct drm_i915_private *dev_priv = dev->dev_private;
7630         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7631         enum pipe pipe = intel_crtc->pipe;
7632         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7633         uint32_t val;
7634
7635         val = 0;
7636
7637         if (IS_HASWELL(dev) && intel_crtc->config->dither)
7638                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7639
7640         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7641                 val |= PIPECONF_INTERLACED_ILK;
7642         else
7643                 val |= PIPECONF_PROGRESSIVE;
7644
7645         I915_WRITE(PIPECONF(cpu_transcoder), val);
7646         POSTING_READ(PIPECONF(cpu_transcoder));
7647
7648         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7649         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7650
7651         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7652                 val = 0;
7653
7654                 switch (intel_crtc->config->pipe_bpp) {
7655                 case 18:
7656                         val |= PIPEMISC_DITHER_6_BPC;
7657                         break;
7658                 case 24:
7659                         val |= PIPEMISC_DITHER_8_BPC;
7660                         break;
7661                 case 30:
7662                         val |= PIPEMISC_DITHER_10_BPC;
7663                         break;
7664                 case 36:
7665                         val |= PIPEMISC_DITHER_12_BPC;
7666                         break;
7667                 default:
7668                         /* Case prevented by pipe_config_set_bpp. */
7669                         BUG();
7670                 }
7671
7672                 if (intel_crtc->config->dither)
7673                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7674
7675                 I915_WRITE(PIPEMISC(pipe), val);
7676         }
7677 }
7678
7679 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7680                                     struct intel_crtc_state *crtc_state,
7681                                     intel_clock_t *clock,
7682                                     bool *has_reduced_clock,
7683                                     intel_clock_t *reduced_clock)
7684 {
7685         struct drm_device *dev = crtc->dev;
7686         struct drm_i915_private *dev_priv = dev->dev_private;
7687         int refclk;
7688         const intel_limit_t *limit;
7689         bool ret, is_lvds = false;
7690
7691         is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
7692
7693         refclk = ironlake_get_refclk(crtc_state);
7694
7695         /*
7696          * Returns a set of divisors for the desired target clock with the given
7697          * refclk, or FALSE.  The returned values represent the clock equation:
7698          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7699          */
7700         limit = intel_limit(crtc_state, refclk);
7701         ret = dev_priv->display.find_dpll(limit, crtc_state,
7702                                           crtc_state->port_clock,
7703                                           refclk, NULL, clock);
7704         if (!ret)
7705                 return false;
7706
7707         if (is_lvds && dev_priv->lvds_downclock_avail) {
7708                 /*
7709                  * Ensure we match the reduced clock's P to the target clock.
7710                  * If the clocks don't match, we can't switch the display clock
7711                  * by using the FP0/FP1. In such case we will disable the LVDS
7712                  * downclock feature.
7713                 */
7714                 *has_reduced_clock =
7715                         dev_priv->display.find_dpll(limit, crtc_state,
7716                                                     dev_priv->lvds_downclock,
7717                                                     refclk, clock,
7718                                                     reduced_clock);
7719         }
7720
7721         return true;
7722 }
7723
7724 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7725 {
7726         /*
7727          * Account for spread spectrum to avoid
7728          * oversubscribing the link. Max center spread
7729          * is 2.5%; use 5% for safety's sake.
7730          */
7731         u32 bps = target_clock * bpp * 21 / 20;
7732         return DIV_ROUND_UP(bps, link_bw * 8);
7733 }
7734
7735 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7736 {
7737         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7738 }
7739
7740 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7741                                       struct intel_crtc_state *crtc_state,
7742                                       u32 *fp,
7743                                       intel_clock_t *reduced_clock, u32 *fp2)
7744 {
7745         struct drm_crtc *crtc = &intel_crtc->base;
7746         struct drm_device *dev = crtc->dev;
7747         struct drm_i915_private *dev_priv = dev->dev_private;
7748         struct drm_atomic_state *state = crtc_state->base.state;
7749         struct drm_connector_state *connector_state;
7750         struct intel_encoder *encoder;
7751         uint32_t dpll;
7752         int factor, num_connectors = 0, i;
7753         bool is_lvds = false, is_sdvo = false;
7754
7755         for (i = 0; i < state->num_connector; i++) {
7756                 if (!state->connectors[i])
7757                         continue;
7758
7759                 connector_state = state->connector_states[i];
7760                 if (connector_state->crtc != crtc_state->base.crtc)
7761                         continue;
7762
7763                 encoder = to_intel_encoder(connector_state->best_encoder);
7764
7765                 switch (encoder->type) {
7766                 case INTEL_OUTPUT_LVDS:
7767                         is_lvds = true;
7768                         break;
7769                 case INTEL_OUTPUT_SDVO:
7770                 case INTEL_OUTPUT_HDMI:
7771                         is_sdvo = true;
7772                         break;
7773                 default:
7774                         break;
7775                 }
7776
7777                 num_connectors++;
7778         }
7779
7780         /* Enable autotuning of the PLL clock (if permissible) */
7781         factor = 21;
7782         if (is_lvds) {
7783                 if ((intel_panel_use_ssc(dev_priv) &&
7784                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7785                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7786                         factor = 25;
7787         } else if (crtc_state->sdvo_tv_clock)
7788                 factor = 20;
7789
7790         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7791                 *fp |= FP_CB_TUNE;
7792
7793         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7794                 *fp2 |= FP_CB_TUNE;
7795
7796         dpll = 0;
7797
7798         if (is_lvds)
7799                 dpll |= DPLLB_MODE_LVDS;
7800         else
7801                 dpll |= DPLLB_MODE_DAC_SERIAL;
7802
7803         dpll |= (crtc_state->pixel_multiplier - 1)
7804                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7805
7806         if (is_sdvo)
7807                 dpll |= DPLL_SDVO_HIGH_SPEED;
7808         if (crtc_state->has_dp_encoder)
7809                 dpll |= DPLL_SDVO_HIGH_SPEED;
7810
7811         /* compute bitmask from p1 value */
7812         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7813         /* also FPA1 */
7814         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7815
7816         switch (crtc_state->dpll.p2) {
7817         case 5:
7818                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7819                 break;
7820         case 7:
7821                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7822                 break;
7823         case 10:
7824                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7825                 break;
7826         case 14:
7827                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7828                 break;
7829         }
7830
7831         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7832                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7833         else
7834                 dpll |= PLL_REF_INPUT_DREFCLK;
7835
7836         return dpll | DPLL_VCO_ENABLE;
7837 }
7838
7839 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7840                                        struct intel_crtc_state *crtc_state)
7841 {
7842         struct drm_device *dev = crtc->base.dev;
7843         intel_clock_t clock, reduced_clock;
7844         u32 dpll = 0, fp = 0, fp2 = 0;
7845         bool ok, has_reduced_clock = false;
7846         bool is_lvds = false;
7847         struct intel_shared_dpll *pll;
7848
7849         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7850
7851         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7852              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7853
7854         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
7855                                      &has_reduced_clock, &reduced_clock);
7856         if (!ok && !crtc_state->clock_set) {
7857                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7858                 return -EINVAL;
7859         }
7860         /* Compat-code for transition, will disappear. */
7861         if (!crtc_state->clock_set) {
7862                 crtc_state->dpll.n = clock.n;
7863                 crtc_state->dpll.m1 = clock.m1;
7864                 crtc_state->dpll.m2 = clock.m2;
7865                 crtc_state->dpll.p1 = clock.p1;
7866                 crtc_state->dpll.p2 = clock.p2;
7867         }
7868
7869         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7870         if (crtc_state->has_pch_encoder) {
7871                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7872                 if (has_reduced_clock)
7873                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7874
7875                 dpll = ironlake_compute_dpll(crtc, crtc_state,
7876                                              &fp, &reduced_clock,
7877                                              has_reduced_clock ? &fp2 : NULL);
7878
7879                 crtc_state->dpll_hw_state.dpll = dpll;
7880                 crtc_state->dpll_hw_state.fp0 = fp;
7881                 if (has_reduced_clock)
7882                         crtc_state->dpll_hw_state.fp1 = fp2;
7883                 else
7884                         crtc_state->dpll_hw_state.fp1 = fp;
7885
7886                 pll = intel_get_shared_dpll(crtc, crtc_state);
7887                 if (pll == NULL) {
7888                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7889                                          pipe_name(crtc->pipe));
7890                         return -EINVAL;
7891                 }
7892         }
7893
7894         if (is_lvds && has_reduced_clock)
7895                 crtc->lowfreq_avail = true;
7896         else
7897                 crtc->lowfreq_avail = false;
7898
7899         return 0;
7900 }
7901
7902 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7903                                          struct intel_link_m_n *m_n)
7904 {
7905         struct drm_device *dev = crtc->base.dev;
7906         struct drm_i915_private *dev_priv = dev->dev_private;
7907         enum pipe pipe = crtc->pipe;
7908
7909         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7910         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7911         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7912                 & ~TU_SIZE_MASK;
7913         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7914         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7915                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7916 }
7917
7918 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7919                                          enum transcoder transcoder,
7920                                          struct intel_link_m_n *m_n,
7921                                          struct intel_link_m_n *m2_n2)
7922 {
7923         struct drm_device *dev = crtc->base.dev;
7924         struct drm_i915_private *dev_priv = dev->dev_private;
7925         enum pipe pipe = crtc->pipe;
7926
7927         if (INTEL_INFO(dev)->gen >= 5) {
7928                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7929                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7930                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7931                         & ~TU_SIZE_MASK;
7932                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7933                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7934                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7935                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7936                  * gen < 8) and if DRRS is supported (to make sure the
7937                  * registers are not unnecessarily read).
7938                  */
7939                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7940                         crtc->config->has_drrs) {
7941                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7942                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7943                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7944                                         & ~TU_SIZE_MASK;
7945                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7946                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7947                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7948                 }
7949         } else {
7950                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7951                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7952                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7953                         & ~TU_SIZE_MASK;
7954                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7955                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7956                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7957         }
7958 }
7959
7960 void intel_dp_get_m_n(struct intel_crtc *crtc,
7961                       struct intel_crtc_state *pipe_config)
7962 {
7963         if (pipe_config->has_pch_encoder)
7964                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7965         else
7966                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7967                                              &pipe_config->dp_m_n,
7968                                              &pipe_config->dp_m2_n2);
7969 }
7970
7971 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7972                                         struct intel_crtc_state *pipe_config)
7973 {
7974         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7975                                      &pipe_config->fdi_m_n, NULL);
7976 }
7977
7978 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7979                                     struct intel_crtc_state *pipe_config)
7980 {
7981         struct drm_device *dev = crtc->base.dev;
7982         struct drm_i915_private *dev_priv = dev->dev_private;
7983         uint32_t tmp;
7984
7985         tmp = I915_READ(PS_CTL(crtc->pipe));
7986
7987         if (tmp & PS_ENABLE) {
7988                 pipe_config->pch_pfit.enabled = true;
7989                 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7990                 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7991         }
7992 }
7993
7994 static void
7995 skylake_get_initial_plane_config(struct intel_crtc *crtc,
7996                                  struct intel_initial_plane_config *plane_config)
7997 {
7998         struct drm_device *dev = crtc->base.dev;
7999         struct drm_i915_private *dev_priv = dev->dev_private;
8000         u32 val, base, offset, stride_mult, tiling;
8001         int pipe = crtc->pipe;
8002         int fourcc, pixel_format;
8003         unsigned int aligned_height;
8004         struct drm_framebuffer *fb;
8005         struct intel_framebuffer *intel_fb;
8006
8007         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8008         if (!intel_fb) {
8009                 DRM_DEBUG_KMS("failed to alloc fb\n");
8010                 return;
8011         }
8012
8013         fb = &intel_fb->base;
8014
8015         val = I915_READ(PLANE_CTL(pipe, 0));
8016         if (!(val & PLANE_CTL_ENABLE))
8017                 goto error;
8018
8019         pixel_format = val & PLANE_CTL_FORMAT_MASK;
8020         fourcc = skl_format_to_fourcc(pixel_format,
8021                                       val & PLANE_CTL_ORDER_RGBX,
8022                                       val & PLANE_CTL_ALPHA_MASK);
8023         fb->pixel_format = fourcc;
8024         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8025
8026         tiling = val & PLANE_CTL_TILED_MASK;
8027         switch (tiling) {
8028         case PLANE_CTL_TILED_LINEAR:
8029                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
8030                 break;
8031         case PLANE_CTL_TILED_X:
8032                 plane_config->tiling = I915_TILING_X;
8033                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8034                 break;
8035         case PLANE_CTL_TILED_Y:
8036                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
8037                 break;
8038         case PLANE_CTL_TILED_YF:
8039                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
8040                 break;
8041         default:
8042                 MISSING_CASE(tiling);
8043                 goto error;
8044         }
8045
8046         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8047         plane_config->base = base;
8048
8049         offset = I915_READ(PLANE_OFFSET(pipe, 0));
8050
8051         val = I915_READ(PLANE_SIZE(pipe, 0));
8052         fb->height = ((val >> 16) & 0xfff) + 1;
8053         fb->width = ((val >> 0) & 0x1fff) + 1;
8054
8055         val = I915_READ(PLANE_STRIDE(pipe, 0));
8056         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
8057                                                 fb->pixel_format);
8058         fb->pitches[0] = (val & 0x3ff) * stride_mult;
8059
8060         aligned_height = intel_fb_align_height(dev, fb->height,
8061                                                fb->pixel_format,
8062                                                fb->modifier[0]);
8063
8064         plane_config->size = fb->pitches[0] * aligned_height;
8065
8066         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8067                       pipe_name(pipe), fb->width, fb->height,
8068                       fb->bits_per_pixel, base, fb->pitches[0],
8069                       plane_config->size);
8070
8071         plane_config->fb = intel_fb;
8072         return;
8073
8074 error:
8075         kfree(fb);
8076 }
8077
8078 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8079                                      struct intel_crtc_state *pipe_config)
8080 {
8081         struct drm_device *dev = crtc->base.dev;
8082         struct drm_i915_private *dev_priv = dev->dev_private;
8083         uint32_t tmp;
8084
8085         tmp = I915_READ(PF_CTL(crtc->pipe));
8086
8087         if (tmp & PF_ENABLE) {
8088                 pipe_config->pch_pfit.enabled = true;
8089                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8090                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8091
8092                 /* We currently do not free assignements of panel fitters on
8093                  * ivb/hsw (since we don't use the higher upscaling modes which
8094                  * differentiates them) so just WARN about this case for now. */
8095                 if (IS_GEN7(dev)) {
8096                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8097                                 PF_PIPE_SEL_IVB(crtc->pipe));
8098                 }
8099         }
8100 }
8101
8102 static void
8103 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8104                                   struct intel_initial_plane_config *plane_config)
8105 {
8106         struct drm_device *dev = crtc->base.dev;
8107         struct drm_i915_private *dev_priv = dev->dev_private;
8108         u32 val, base, offset;
8109         int pipe = crtc->pipe;
8110         int fourcc, pixel_format;
8111         unsigned int aligned_height;
8112         struct drm_framebuffer *fb;
8113         struct intel_framebuffer *intel_fb;
8114
8115         val = I915_READ(DSPCNTR(pipe));
8116         if (!(val & DISPLAY_PLANE_ENABLE))
8117                 return;
8118
8119         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8120         if (!intel_fb) {
8121                 DRM_DEBUG_KMS("failed to alloc fb\n");
8122                 return;
8123         }
8124
8125         fb = &intel_fb->base;
8126
8127         if (INTEL_INFO(dev)->gen >= 4) {
8128                 if (val & DISPPLANE_TILED) {
8129                         plane_config->tiling = I915_TILING_X;
8130                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8131                 }
8132         }
8133
8134         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8135         fourcc = i9xx_format_to_fourcc(pixel_format);
8136         fb->pixel_format = fourcc;
8137         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8138
8139         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8140         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
8141                 offset = I915_READ(DSPOFFSET(pipe));
8142         } else {
8143                 if (plane_config->tiling)
8144                         offset = I915_READ(DSPTILEOFF(pipe));
8145                 else
8146                         offset = I915_READ(DSPLINOFF(pipe));
8147         }
8148         plane_config->base = base;
8149
8150         val = I915_READ(PIPESRC(pipe));
8151         fb->width = ((val >> 16) & 0xfff) + 1;
8152         fb->height = ((val >> 0) & 0xfff) + 1;
8153
8154         val = I915_READ(DSPSTRIDE(pipe));
8155         fb->pitches[0] = val & 0xffffffc0;
8156
8157         aligned_height = intel_fb_align_height(dev, fb->height,
8158                                                fb->pixel_format,
8159                                                fb->modifier[0]);
8160
8161         plane_config->size = fb->pitches[0] * aligned_height;
8162
8163         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8164                       pipe_name(pipe), fb->width, fb->height,
8165                       fb->bits_per_pixel, base, fb->pitches[0],
8166                       plane_config->size);
8167
8168         plane_config->fb = intel_fb;
8169 }
8170
8171 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8172                                      struct intel_crtc_state *pipe_config)
8173 {
8174         struct drm_device *dev = crtc->base.dev;
8175         struct drm_i915_private *dev_priv = dev->dev_private;
8176         uint32_t tmp;
8177
8178         if (!intel_display_power_is_enabled(dev_priv,
8179                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8180                 return false;
8181
8182         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8183         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8184
8185         tmp = I915_READ(PIPECONF(crtc->pipe));
8186         if (!(tmp & PIPECONF_ENABLE))
8187                 return false;
8188
8189         switch (tmp & PIPECONF_BPC_MASK) {
8190         case PIPECONF_6BPC:
8191                 pipe_config->pipe_bpp = 18;
8192                 break;
8193         case PIPECONF_8BPC:
8194                 pipe_config->pipe_bpp = 24;
8195                 break;
8196         case PIPECONF_10BPC:
8197                 pipe_config->pipe_bpp = 30;
8198                 break;
8199         case PIPECONF_12BPC:
8200                 pipe_config->pipe_bpp = 36;
8201                 break;
8202         default:
8203                 break;
8204         }
8205
8206         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8207                 pipe_config->limited_color_range = true;
8208
8209         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8210                 struct intel_shared_dpll *pll;
8211
8212                 pipe_config->has_pch_encoder = true;
8213
8214                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8215                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8216                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8217
8218                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8219
8220                 if (HAS_PCH_IBX(dev_priv->dev)) {
8221                         pipe_config->shared_dpll =
8222                                 (enum intel_dpll_id) crtc->pipe;
8223                 } else {
8224                         tmp = I915_READ(PCH_DPLL_SEL);
8225                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8226                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8227                         else
8228                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8229                 }
8230
8231                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8232
8233                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8234                                            &pipe_config->dpll_hw_state));
8235
8236                 tmp = pipe_config->dpll_hw_state.dpll;
8237                 pipe_config->pixel_multiplier =
8238                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8239                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8240
8241                 ironlake_pch_clock_get(crtc, pipe_config);
8242         } else {
8243                 pipe_config->pixel_multiplier = 1;
8244         }
8245
8246         intel_get_pipe_timings(crtc, pipe_config);
8247
8248         ironlake_get_pfit_config(crtc, pipe_config);
8249
8250         return true;
8251 }
8252
8253 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8254 {
8255         struct drm_device *dev = dev_priv->dev;
8256         struct intel_crtc *crtc;
8257
8258         for_each_intel_crtc(dev, crtc)
8259                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8260                      pipe_name(crtc->pipe));
8261
8262         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8263         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8264         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8265         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8266         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8267         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8268              "CPU PWM1 enabled\n");
8269         if (IS_HASWELL(dev))
8270                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8271                      "CPU PWM2 enabled\n");
8272         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8273              "PCH PWM1 enabled\n");
8274         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8275              "Utility pin enabled\n");
8276         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8277
8278         /*
8279          * In theory we can still leave IRQs enabled, as long as only the HPD
8280          * interrupts remain enabled. We used to check for that, but since it's
8281          * gen-specific and since we only disable LCPLL after we fully disable
8282          * the interrupts, the check below should be enough.
8283          */
8284         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8285 }
8286
8287 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8288 {
8289         struct drm_device *dev = dev_priv->dev;
8290
8291         if (IS_HASWELL(dev))
8292                 return I915_READ(D_COMP_HSW);
8293         else
8294                 return I915_READ(D_COMP_BDW);
8295 }
8296
8297 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8298 {
8299         struct drm_device *dev = dev_priv->dev;
8300
8301         if (IS_HASWELL(dev)) {
8302                 mutex_lock(&dev_priv->rps.hw_lock);
8303                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8304                                             val))
8305                         DRM_ERROR("Failed to write to D_COMP\n");
8306                 mutex_unlock(&dev_priv->rps.hw_lock);
8307         } else {
8308                 I915_WRITE(D_COMP_BDW, val);
8309                 POSTING_READ(D_COMP_BDW);
8310         }
8311 }
8312
8313 /*
8314  * This function implements pieces of two sequences from BSpec:
8315  * - Sequence for display software to disable LCPLL
8316  * - Sequence for display software to allow package C8+
8317  * The steps implemented here are just the steps that actually touch the LCPLL
8318  * register. Callers should take care of disabling all the display engine
8319  * functions, doing the mode unset, fixing interrupts, etc.
8320  */
8321 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8322                               bool switch_to_fclk, bool allow_power_down)
8323 {
8324         uint32_t val;
8325
8326         assert_can_disable_lcpll(dev_priv);
8327
8328         val = I915_READ(LCPLL_CTL);
8329
8330         if (switch_to_fclk) {
8331                 val |= LCPLL_CD_SOURCE_FCLK;
8332                 I915_WRITE(LCPLL_CTL, val);
8333
8334                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
8335                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
8336                         DRM_ERROR("Switching to FCLK failed\n");
8337
8338                 val = I915_READ(LCPLL_CTL);
8339         }
8340
8341         val |= LCPLL_PLL_DISABLE;
8342         I915_WRITE(LCPLL_CTL, val);
8343         POSTING_READ(LCPLL_CTL);
8344
8345         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
8346                 DRM_ERROR("LCPLL still locked\n");
8347
8348         val = hsw_read_dcomp(dev_priv);
8349         val |= D_COMP_COMP_DISABLE;
8350         hsw_write_dcomp(dev_priv, val);
8351         ndelay(100);
8352
8353         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8354                      1))
8355                 DRM_ERROR("D_COMP RCOMP still in progress\n");
8356
8357         if (allow_power_down) {
8358                 val = I915_READ(LCPLL_CTL);
8359                 val |= LCPLL_POWER_DOWN_ALLOW;
8360                 I915_WRITE(LCPLL_CTL, val);
8361                 POSTING_READ(LCPLL_CTL);
8362         }
8363 }
8364
8365 /*
8366  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8367  * source.
8368  */
8369 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8370 {
8371         uint32_t val;
8372
8373         val = I915_READ(LCPLL_CTL);
8374
8375         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8376                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8377                 return;
8378
8379         /*
8380          * Make sure we're not on PC8 state before disabling PC8, otherwise
8381          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8382          */
8383         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8384
8385         if (val & LCPLL_POWER_DOWN_ALLOW) {
8386                 val &= ~LCPLL_POWER_DOWN_ALLOW;
8387                 I915_WRITE(LCPLL_CTL, val);
8388                 POSTING_READ(LCPLL_CTL);
8389         }
8390
8391         val = hsw_read_dcomp(dev_priv);
8392         val |= D_COMP_COMP_FORCE;
8393         val &= ~D_COMP_COMP_DISABLE;
8394         hsw_write_dcomp(dev_priv, val);
8395
8396         val = I915_READ(LCPLL_CTL);
8397         val &= ~LCPLL_PLL_DISABLE;
8398         I915_WRITE(LCPLL_CTL, val);
8399
8400         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8401                 DRM_ERROR("LCPLL not locked yet\n");
8402
8403         if (val & LCPLL_CD_SOURCE_FCLK) {
8404                 val = I915_READ(LCPLL_CTL);
8405                 val &= ~LCPLL_CD_SOURCE_FCLK;
8406                 I915_WRITE(LCPLL_CTL, val);
8407
8408                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8409                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8410                         DRM_ERROR("Switching back to LCPLL failed\n");
8411         }
8412
8413         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8414 }
8415
8416 /*
8417  * Package states C8 and deeper are really deep PC states that can only be
8418  * reached when all the devices on the system allow it, so even if the graphics
8419  * device allows PC8+, it doesn't mean the system will actually get to these
8420  * states. Our driver only allows PC8+ when going into runtime PM.
8421  *
8422  * The requirements for PC8+ are that all the outputs are disabled, the power
8423  * well is disabled and most interrupts are disabled, and these are also
8424  * requirements for runtime PM. When these conditions are met, we manually do
8425  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8426  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8427  * hang the machine.
8428  *
8429  * When we really reach PC8 or deeper states (not just when we allow it) we lose
8430  * the state of some registers, so when we come back from PC8+ we need to
8431  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8432  * need to take care of the registers kept by RC6. Notice that this happens even
8433  * if we don't put the device in PCI D3 state (which is what currently happens
8434  * because of the runtime PM support).
8435  *
8436  * For more, read "Display Sequences for Package C8" on the hardware
8437  * documentation.
8438  */
8439 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8440 {
8441         struct drm_device *dev = dev_priv->dev;
8442         uint32_t val;
8443
8444         DRM_DEBUG_KMS("Enabling package C8+\n");
8445
8446         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8447                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8448                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8449                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8450         }
8451
8452         lpt_disable_clkout_dp(dev);
8453         hsw_disable_lcpll(dev_priv, true, true);
8454 }
8455
8456 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8457 {
8458         struct drm_device *dev = dev_priv->dev;
8459         uint32_t val;
8460
8461         DRM_DEBUG_KMS("Disabling package C8+\n");
8462
8463         hsw_restore_lcpll(dev_priv);
8464         lpt_init_pch_refclk(dev);
8465
8466         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8467                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8468                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8469                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8470         }
8471
8472         intel_prepare_ddi(dev);
8473 }
8474
8475 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8476                                       struct intel_crtc_state *crtc_state)
8477 {
8478         if (!intel_ddi_pll_select(crtc, crtc_state))
8479                 return -EINVAL;
8480
8481         crtc->lowfreq_avail = false;
8482
8483         return 0;
8484 }
8485
8486 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8487                                 enum port port,
8488                                 struct intel_crtc_state *pipe_config)
8489 {
8490         u32 temp, dpll_ctl1;
8491
8492         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8493         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8494
8495         switch (pipe_config->ddi_pll_sel) {
8496         case SKL_DPLL0:
8497                 /*
8498                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8499                  * of the shared DPLL framework and thus needs to be read out
8500                  * separately
8501                  */
8502                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8503                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8504                 break;
8505         case SKL_DPLL1:
8506                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8507                 break;
8508         case SKL_DPLL2:
8509                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8510                 break;
8511         case SKL_DPLL3:
8512                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8513                 break;
8514         }
8515 }
8516
8517 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8518                                 enum port port,
8519                                 struct intel_crtc_state *pipe_config)
8520 {
8521         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8522
8523         switch (pipe_config->ddi_pll_sel) {
8524         case PORT_CLK_SEL_WRPLL1:
8525                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8526                 break;
8527         case PORT_CLK_SEL_WRPLL2:
8528                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8529                 break;
8530         }
8531 }
8532
8533 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8534                                        struct intel_crtc_state *pipe_config)
8535 {
8536         struct drm_device *dev = crtc->base.dev;
8537         struct drm_i915_private *dev_priv = dev->dev_private;
8538         struct intel_shared_dpll *pll;
8539         enum port port;
8540         uint32_t tmp;
8541
8542         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8543
8544         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8545
8546         if (IS_SKYLAKE(dev))
8547                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8548         else
8549                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8550
8551         if (pipe_config->shared_dpll >= 0) {
8552                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8553
8554                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8555                                            &pipe_config->dpll_hw_state));
8556         }
8557
8558         /*
8559          * Haswell has only FDI/PCH transcoder A. It is which is connected to
8560          * DDI E. So just check whether this pipe is wired to DDI E and whether
8561          * the PCH transcoder is on.
8562          */
8563         if (INTEL_INFO(dev)->gen < 9 &&
8564             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8565                 pipe_config->has_pch_encoder = true;
8566
8567                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8568                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8569                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8570
8571                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8572         }
8573 }
8574
8575 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8576                                     struct intel_crtc_state *pipe_config)
8577 {
8578         struct drm_device *dev = crtc->base.dev;
8579         struct drm_i915_private *dev_priv = dev->dev_private;
8580         enum intel_display_power_domain pfit_domain;
8581         uint32_t tmp;
8582
8583         if (!intel_display_power_is_enabled(dev_priv,
8584                                          POWER_DOMAIN_PIPE(crtc->pipe)))
8585                 return false;
8586
8587         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8588         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8589
8590         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8591         if (tmp & TRANS_DDI_FUNC_ENABLE) {
8592                 enum pipe trans_edp_pipe;
8593                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8594                 default:
8595                         WARN(1, "unknown pipe linked to edp transcoder\n");
8596                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8597                 case TRANS_DDI_EDP_INPUT_A_ON:
8598                         trans_edp_pipe = PIPE_A;
8599                         break;
8600                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8601                         trans_edp_pipe = PIPE_B;
8602                         break;
8603                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8604                         trans_edp_pipe = PIPE_C;
8605                         break;
8606                 }
8607
8608                 if (trans_edp_pipe == crtc->pipe)
8609                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
8610         }
8611
8612         if (!intel_display_power_is_enabled(dev_priv,
8613                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8614                 return false;
8615
8616         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8617         if (!(tmp & PIPECONF_ENABLE))
8618                 return false;
8619
8620         haswell_get_ddi_port_state(crtc, pipe_config);
8621
8622         intel_get_pipe_timings(crtc, pipe_config);
8623
8624         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8625         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8626                 if (IS_SKYLAKE(dev))
8627                         skylake_get_pfit_config(crtc, pipe_config);
8628                 else
8629                         ironlake_get_pfit_config(crtc, pipe_config);
8630         }
8631
8632         if (IS_HASWELL(dev))
8633                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8634                         (I915_READ(IPS_CTL) & IPS_ENABLE);
8635
8636         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8637                 pipe_config->pixel_multiplier =
8638                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8639         } else {
8640                 pipe_config->pixel_multiplier = 1;
8641         }
8642
8643         return true;
8644 }
8645
8646 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8647 {
8648         struct drm_device *dev = crtc->dev;
8649         struct drm_i915_private *dev_priv = dev->dev_private;
8650         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8651         uint32_t cntl = 0, size = 0;
8652
8653         if (base) {
8654                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
8655                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
8656                 unsigned int stride = roundup_pow_of_two(width) * 4;
8657
8658                 switch (stride) {
8659                 default:
8660                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8661                                   width, stride);
8662                         stride = 256;
8663                         /* fallthrough */
8664                 case 256:
8665                 case 512:
8666                 case 1024:
8667                 case 2048:
8668                         break;
8669                 }
8670
8671                 cntl |= CURSOR_ENABLE |
8672                         CURSOR_GAMMA_ENABLE |
8673                         CURSOR_FORMAT_ARGB |
8674                         CURSOR_STRIDE(stride);
8675
8676                 size = (height << 12) | width;
8677         }
8678
8679         if (intel_crtc->cursor_cntl != 0 &&
8680             (intel_crtc->cursor_base != base ||
8681              intel_crtc->cursor_size != size ||
8682              intel_crtc->cursor_cntl != cntl)) {
8683                 /* On these chipsets we can only modify the base/size/stride
8684                  * whilst the cursor is disabled.
8685                  */
8686                 I915_WRITE(_CURACNTR, 0);
8687                 POSTING_READ(_CURACNTR);
8688                 intel_crtc->cursor_cntl = 0;
8689         }
8690
8691         if (intel_crtc->cursor_base != base) {
8692                 I915_WRITE(_CURABASE, base);
8693                 intel_crtc->cursor_base = base;
8694         }
8695
8696         if (intel_crtc->cursor_size != size) {
8697                 I915_WRITE(CURSIZE, size);
8698                 intel_crtc->cursor_size = size;
8699         }
8700
8701         if (intel_crtc->cursor_cntl != cntl) {
8702                 I915_WRITE(_CURACNTR, cntl);
8703                 POSTING_READ(_CURACNTR);
8704                 intel_crtc->cursor_cntl = cntl;
8705         }
8706 }
8707
8708 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8709 {
8710         struct drm_device *dev = crtc->dev;
8711         struct drm_i915_private *dev_priv = dev->dev_private;
8712         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8713         int pipe = intel_crtc->pipe;
8714         uint32_t cntl;
8715
8716         cntl = 0;
8717         if (base) {
8718                 cntl = MCURSOR_GAMMA_ENABLE;
8719                 switch (intel_crtc->base.cursor->state->crtc_w) {
8720                         case 64:
8721                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8722                                 break;
8723                         case 128:
8724                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8725                                 break;
8726                         case 256:
8727                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8728                                 break;
8729                         default:
8730                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
8731                                 return;
8732                 }
8733                 cntl |= pipe << 28; /* Connect to correct pipe */
8734
8735                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8736                         cntl |= CURSOR_PIPE_CSC_ENABLE;
8737         }
8738
8739         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
8740                 cntl |= CURSOR_ROTATE_180;
8741
8742         if (intel_crtc->cursor_cntl != cntl) {
8743                 I915_WRITE(CURCNTR(pipe), cntl);
8744                 POSTING_READ(CURCNTR(pipe));
8745                 intel_crtc->cursor_cntl = cntl;
8746         }
8747
8748         /* and commit changes on next vblank */
8749         I915_WRITE(CURBASE(pipe), base);
8750         POSTING_READ(CURBASE(pipe));
8751
8752         intel_crtc->cursor_base = base;
8753 }
8754
8755 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8756 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8757                                      bool on)
8758 {
8759         struct drm_device *dev = crtc->dev;
8760         struct drm_i915_private *dev_priv = dev->dev_private;
8761         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8762         int pipe = intel_crtc->pipe;
8763         int x = crtc->cursor_x;
8764         int y = crtc->cursor_y;
8765         u32 base = 0, pos = 0;
8766
8767         if (on)
8768                 base = intel_crtc->cursor_addr;
8769
8770         if (x >= intel_crtc->config->pipe_src_w)
8771                 base = 0;
8772
8773         if (y >= intel_crtc->config->pipe_src_h)
8774                 base = 0;
8775
8776         if (x < 0) {
8777                 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
8778                         base = 0;
8779
8780                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8781                 x = -x;
8782         }
8783         pos |= x << CURSOR_X_SHIFT;
8784
8785         if (y < 0) {
8786                 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
8787                         base = 0;
8788
8789                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8790                 y = -y;
8791         }
8792         pos |= y << CURSOR_Y_SHIFT;
8793
8794         if (base == 0 && intel_crtc->cursor_base == 0)
8795                 return;
8796
8797         I915_WRITE(CURPOS(pipe), pos);
8798
8799         /* ILK+ do this automagically */
8800         if (HAS_GMCH_DISPLAY(dev) &&
8801             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
8802                 base += (intel_crtc->base.cursor->state->crtc_h *
8803                         intel_crtc->base.cursor->state->crtc_w - 1) * 4;
8804         }
8805
8806         if (IS_845G(dev) || IS_I865G(dev))
8807                 i845_update_cursor(crtc, base);
8808         else
8809                 i9xx_update_cursor(crtc, base);
8810 }
8811
8812 static bool cursor_size_ok(struct drm_device *dev,
8813                            uint32_t width, uint32_t height)
8814 {
8815         if (width == 0 || height == 0)
8816                 return false;
8817
8818         /*
8819          * 845g/865g are special in that they are only limited by
8820          * the width of their cursors, the height is arbitrary up to
8821          * the precision of the register. Everything else requires
8822          * square cursors, limited to a few power-of-two sizes.
8823          */
8824         if (IS_845G(dev) || IS_I865G(dev)) {
8825                 if ((width & 63) != 0)
8826                         return false;
8827
8828                 if (width > (IS_845G(dev) ? 64 : 512))
8829                         return false;
8830
8831                 if (height > 1023)
8832                         return false;
8833         } else {
8834                 switch (width | height) {
8835                 case 256:
8836                 case 128:
8837                         if (IS_GEN2(dev))
8838                                 return false;
8839                 case 64:
8840                         break;
8841                 default:
8842                         return false;
8843                 }
8844         }
8845
8846         return true;
8847 }
8848
8849 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8850                                  u16 *blue, uint32_t start, uint32_t size)
8851 {
8852         int end = (start + size > 256) ? 256 : start + size, i;
8853         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8854
8855         for (i = start; i < end; i++) {
8856                 intel_crtc->lut_r[i] = red[i] >> 8;
8857                 intel_crtc->lut_g[i] = green[i] >> 8;
8858                 intel_crtc->lut_b[i] = blue[i] >> 8;
8859         }
8860
8861         intel_crtc_load_lut(crtc);
8862 }
8863
8864 /* VESA 640x480x72Hz mode to set on the pipe */
8865 static struct drm_display_mode load_detect_mode = {
8866         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8867                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8868 };
8869
8870 struct drm_framebuffer *
8871 __intel_framebuffer_create(struct drm_device *dev,
8872                            struct drm_mode_fb_cmd2 *mode_cmd,
8873                            struct drm_i915_gem_object *obj)
8874 {
8875         struct intel_framebuffer *intel_fb;
8876         int ret;
8877
8878         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8879         if (!intel_fb) {
8880                 drm_gem_object_unreference(&obj->base);
8881                 return ERR_PTR(-ENOMEM);
8882         }
8883
8884         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8885         if (ret)
8886                 goto err;
8887
8888         return &intel_fb->base;
8889 err:
8890         drm_gem_object_unreference(&obj->base);
8891         kfree(intel_fb);
8892
8893         return ERR_PTR(ret);
8894 }
8895
8896 static struct drm_framebuffer *
8897 intel_framebuffer_create(struct drm_device *dev,
8898                          struct drm_mode_fb_cmd2 *mode_cmd,
8899                          struct drm_i915_gem_object *obj)
8900 {
8901         struct drm_framebuffer *fb;
8902         int ret;
8903
8904         ret = i915_mutex_lock_interruptible(dev);
8905         if (ret)
8906                 return ERR_PTR(ret);
8907         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8908         mutex_unlock(&dev->struct_mutex);
8909
8910         return fb;
8911 }
8912
8913 static u32
8914 intel_framebuffer_pitch_for_width(int width, int bpp)
8915 {
8916         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8917         return ALIGN(pitch, 64);
8918 }
8919
8920 static u32
8921 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8922 {
8923         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8924         return PAGE_ALIGN(pitch * mode->vdisplay);
8925 }
8926
8927 static struct drm_framebuffer *
8928 intel_framebuffer_create_for_mode(struct drm_device *dev,
8929                                   struct drm_display_mode *mode,
8930                                   int depth, int bpp)
8931 {
8932         struct drm_i915_gem_object *obj;
8933         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8934
8935         obj = i915_gem_alloc_object(dev,
8936                                     intel_framebuffer_size_for_mode(mode, bpp));
8937         if (obj == NULL)
8938                 return ERR_PTR(-ENOMEM);
8939
8940         mode_cmd.width = mode->hdisplay;
8941         mode_cmd.height = mode->vdisplay;
8942         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8943                                                                 bpp);
8944         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8945
8946         return intel_framebuffer_create(dev, &mode_cmd, obj);
8947 }
8948
8949 static struct drm_framebuffer *
8950 mode_fits_in_fbdev(struct drm_device *dev,
8951                    struct drm_display_mode *mode)
8952 {
8953 #ifdef CONFIG_DRM_I915_FBDEV
8954         struct drm_i915_private *dev_priv = dev->dev_private;
8955         struct drm_i915_gem_object *obj;
8956         struct drm_framebuffer *fb;
8957
8958         if (!dev_priv->fbdev)
8959                 return NULL;
8960
8961         if (!dev_priv->fbdev->fb)
8962                 return NULL;
8963
8964         obj = dev_priv->fbdev->fb->obj;
8965         BUG_ON(!obj);
8966
8967         fb = &dev_priv->fbdev->fb->base;
8968         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8969                                                                fb->bits_per_pixel))
8970                 return NULL;
8971
8972         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8973                 return NULL;
8974
8975         return fb;
8976 #else
8977         return NULL;
8978 #endif
8979 }
8980
8981 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8982                                 struct drm_display_mode *mode,
8983                                 struct intel_load_detect_pipe *old,
8984                                 struct drm_modeset_acquire_ctx *ctx)
8985 {
8986         struct intel_crtc *intel_crtc;
8987         struct intel_encoder *intel_encoder =
8988                 intel_attached_encoder(connector);
8989         struct drm_crtc *possible_crtc;
8990         struct drm_encoder *encoder = &intel_encoder->base;
8991         struct drm_crtc *crtc = NULL;
8992         struct drm_device *dev = encoder->dev;
8993         struct drm_framebuffer *fb;
8994         struct drm_mode_config *config = &dev->mode_config;
8995         struct drm_atomic_state *state = NULL;
8996         struct drm_connector_state *connector_state;
8997         int ret, i = -1;
8998
8999         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9000                       connector->base.id, connector->name,
9001                       encoder->base.id, encoder->name);
9002
9003 retry:
9004         ret = drm_modeset_lock(&config->connection_mutex, ctx);
9005         if (ret)
9006                 goto fail_unlock;
9007
9008         /*
9009          * Algorithm gets a little messy:
9010          *
9011          *   - if the connector already has an assigned crtc, use it (but make
9012          *     sure it's on first)
9013          *
9014          *   - try to find the first unused crtc that can drive this connector,
9015          *     and use that if we find one
9016          */
9017
9018         /* See if we already have a CRTC for this connector */
9019         if (encoder->crtc) {
9020                 crtc = encoder->crtc;
9021
9022                 ret = drm_modeset_lock(&crtc->mutex, ctx);
9023                 if (ret)
9024                         goto fail_unlock;
9025                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9026                 if (ret)
9027                         goto fail_unlock;
9028
9029                 old->dpms_mode = connector->dpms;
9030                 old->load_detect_temp = false;
9031
9032                 /* Make sure the crtc and connector are running */
9033                 if (connector->dpms != DRM_MODE_DPMS_ON)
9034                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
9035
9036                 return true;
9037         }
9038
9039         /* Find an unused one (if possible) */
9040         for_each_crtc(dev, possible_crtc) {
9041                 i++;
9042                 if (!(encoder->possible_crtcs & (1 << i)))
9043                         continue;
9044                 if (possible_crtc->state->enable)
9045                         continue;
9046                 /* This can occur when applying the pipe A quirk on resume. */
9047                 if (to_intel_crtc(possible_crtc)->new_enabled)
9048                         continue;
9049
9050                 crtc = possible_crtc;
9051                 break;
9052         }
9053
9054         /*
9055          * If we didn't find an unused CRTC, don't use any.
9056          */
9057         if (!crtc) {
9058                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9059                 goto fail_unlock;
9060         }
9061
9062         ret = drm_modeset_lock(&crtc->mutex, ctx);
9063         if (ret)
9064                 goto fail_unlock;
9065         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9066         if (ret)
9067                 goto fail_unlock;
9068         intel_encoder->new_crtc = to_intel_crtc(crtc);
9069         to_intel_connector(connector)->new_encoder = intel_encoder;
9070
9071         intel_crtc = to_intel_crtc(crtc);
9072         intel_crtc->new_enabled = true;
9073         intel_crtc->new_config = intel_crtc->config;
9074         old->dpms_mode = connector->dpms;
9075         old->load_detect_temp = true;
9076         old->release_fb = NULL;
9077
9078         state = drm_atomic_state_alloc(dev);
9079         if (!state)
9080                 return false;
9081
9082         state->acquire_ctx = ctx;
9083
9084         connector_state = drm_atomic_get_connector_state(state, connector);
9085         if (IS_ERR(connector_state)) {
9086                 ret = PTR_ERR(connector_state);
9087                 goto fail;
9088         }
9089
9090         connector_state->crtc = crtc;
9091         connector_state->best_encoder = &intel_encoder->base;
9092
9093         if (!mode)
9094                 mode = &load_detect_mode;
9095
9096         /* We need a framebuffer large enough to accommodate all accesses
9097          * that the plane may generate whilst we perform load detection.
9098          * We can not rely on the fbcon either being present (we get called
9099          * during its initialisation to detect all boot displays, or it may
9100          * not even exist) or that it is large enough to satisfy the
9101          * requested mode.
9102          */
9103         fb = mode_fits_in_fbdev(dev, mode);
9104         if (fb == NULL) {
9105                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9106                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9107                 old->release_fb = fb;
9108         } else
9109                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9110         if (IS_ERR(fb)) {
9111                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9112                 goto fail;
9113         }
9114
9115         if (intel_set_mode(crtc, mode, 0, 0, fb, state)) {
9116                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9117                 if (old->release_fb)
9118                         old->release_fb->funcs->destroy(old->release_fb);
9119                 goto fail;
9120         }
9121         crtc->primary->crtc = crtc;
9122
9123         /* let the connector get through one full cycle before testing */
9124         intel_wait_for_vblank(dev, intel_crtc->pipe);
9125         return true;
9126
9127  fail:
9128         intel_crtc->new_enabled = crtc->state->enable;
9129         if (intel_crtc->new_enabled)
9130                 intel_crtc->new_config = intel_crtc->config;
9131         else
9132                 intel_crtc->new_config = NULL;
9133 fail_unlock:
9134         if (state) {
9135                 drm_atomic_state_free(state);
9136                 state = NULL;
9137         }
9138
9139         if (ret == -EDEADLK) {
9140                 drm_modeset_backoff(ctx);
9141                 goto retry;
9142         }
9143
9144         return false;
9145 }
9146
9147 void intel_release_load_detect_pipe(struct drm_connector *connector,
9148                                     struct intel_load_detect_pipe *old,
9149                                     struct drm_modeset_acquire_ctx *ctx)
9150 {
9151         struct drm_device *dev = connector->dev;
9152         struct intel_encoder *intel_encoder =
9153                 intel_attached_encoder(connector);
9154         struct drm_encoder *encoder = &intel_encoder->base;
9155         struct drm_crtc *crtc = encoder->crtc;
9156         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9157         struct drm_atomic_state *state;
9158         struct drm_connector_state *connector_state;
9159
9160         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9161                       connector->base.id, connector->name,
9162                       encoder->base.id, encoder->name);
9163
9164         if (old->load_detect_temp) {
9165                 state = drm_atomic_state_alloc(dev);
9166                 if (!state)
9167                         goto fail;
9168
9169                 state->acquire_ctx = ctx;
9170
9171                 connector_state = drm_atomic_get_connector_state(state, connector);
9172                 if (IS_ERR(connector_state))
9173                         goto fail;
9174
9175                 to_intel_connector(connector)->new_encoder = NULL;
9176                 intel_encoder->new_crtc = NULL;
9177                 intel_crtc->new_enabled = false;
9178                 intel_crtc->new_config = NULL;
9179
9180                 connector_state->best_encoder = NULL;
9181                 connector_state->crtc = NULL;
9182
9183                 intel_set_mode(crtc, NULL, 0, 0, NULL, state);
9184
9185                 drm_atomic_state_free(state);
9186
9187                 if (old->release_fb) {
9188                         drm_framebuffer_unregister_private(old->release_fb);
9189                         drm_framebuffer_unreference(old->release_fb);
9190                 }
9191
9192                 return;
9193         }
9194
9195         /* Switch crtc and encoder back off if necessary */
9196         if (old->dpms_mode != DRM_MODE_DPMS_ON)
9197                 connector->funcs->dpms(connector, old->dpms_mode);
9198
9199         return;
9200 fail:
9201         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
9202         drm_atomic_state_free(state);
9203 }
9204
9205 static int i9xx_pll_refclk(struct drm_device *dev,
9206                            const struct intel_crtc_state *pipe_config)
9207 {
9208         struct drm_i915_private *dev_priv = dev->dev_private;
9209         u32 dpll = pipe_config->dpll_hw_state.dpll;
9210
9211         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9212                 return dev_priv->vbt.lvds_ssc_freq;
9213         else if (HAS_PCH_SPLIT(dev))
9214                 return 120000;
9215         else if (!IS_GEN2(dev))
9216                 return 96000;
9217         else
9218                 return 48000;
9219 }
9220
9221 /* Returns the clock of the currently programmed mode of the given pipe. */
9222 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9223                                 struct intel_crtc_state *pipe_config)
9224 {
9225         struct drm_device *dev = crtc->base.dev;
9226         struct drm_i915_private *dev_priv = dev->dev_private;
9227         int pipe = pipe_config->cpu_transcoder;
9228         u32 dpll = pipe_config->dpll_hw_state.dpll;
9229         u32 fp;
9230         intel_clock_t clock;
9231         int refclk = i9xx_pll_refclk(dev, pipe_config);
9232
9233         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9234                 fp = pipe_config->dpll_hw_state.fp0;
9235         else
9236                 fp = pipe_config->dpll_hw_state.fp1;
9237
9238         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9239         if (IS_PINEVIEW(dev)) {
9240                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9241                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9242         } else {
9243                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9244                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9245         }
9246
9247         if (!IS_GEN2(dev)) {
9248                 if (IS_PINEVIEW(dev))
9249                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9250                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9251                 else
9252                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9253                                DPLL_FPA01_P1_POST_DIV_SHIFT);
9254
9255                 switch (dpll & DPLL_MODE_MASK) {
9256                 case DPLLB_MODE_DAC_SERIAL:
9257                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9258                                 5 : 10;
9259                         break;
9260                 case DPLLB_MODE_LVDS:
9261                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9262                                 7 : 14;
9263                         break;
9264                 default:
9265                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9266                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
9267                         return;
9268                 }
9269
9270                 if (IS_PINEVIEW(dev))
9271                         pineview_clock(refclk, &clock);
9272                 else
9273                         i9xx_clock(refclk, &clock);
9274         } else {
9275                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
9276                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
9277
9278                 if (is_lvds) {
9279                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9280                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
9281
9282                         if (lvds & LVDS_CLKB_POWER_UP)
9283                                 clock.p2 = 7;
9284                         else
9285                                 clock.p2 = 14;
9286                 } else {
9287                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
9288                                 clock.p1 = 2;
9289                         else {
9290                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9291                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9292                         }
9293                         if (dpll & PLL_P2_DIVIDE_BY_4)
9294                                 clock.p2 = 4;
9295                         else
9296                                 clock.p2 = 2;
9297                 }
9298
9299                 i9xx_clock(refclk, &clock);
9300         }
9301
9302         /*
9303          * This value includes pixel_multiplier. We will use
9304          * port_clock to compute adjusted_mode.crtc_clock in the
9305          * encoder's get_config() function.
9306          */
9307         pipe_config->port_clock = clock.dot;
9308 }
9309
9310 int intel_dotclock_calculate(int link_freq,
9311                              const struct intel_link_m_n *m_n)
9312 {
9313         /*
9314          * The calculation for the data clock is:
9315          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
9316          * But we want to avoid losing precison if possible, so:
9317          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
9318          *
9319          * and the link clock is simpler:
9320          * link_clock = (m * link_clock) / n
9321          */
9322
9323         if (!m_n->link_n)
9324                 return 0;
9325
9326         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9327 }
9328
9329 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
9330                                    struct intel_crtc_state *pipe_config)
9331 {
9332         struct drm_device *dev = crtc->base.dev;
9333
9334         /* read out port_clock from the DPLL */
9335         i9xx_crtc_clock_get(crtc, pipe_config);
9336
9337         /*
9338          * This value does not include pixel_multiplier.
9339          * We will check that port_clock and adjusted_mode.crtc_clock
9340          * agree once we know their relationship in the encoder's
9341          * get_config() function.
9342          */
9343         pipe_config->base.adjusted_mode.crtc_clock =
9344                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
9345                                          &pipe_config->fdi_m_n);
9346 }
9347
9348 /** Returns the currently programmed mode of the given pipe. */
9349 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9350                                              struct drm_crtc *crtc)
9351 {
9352         struct drm_i915_private *dev_priv = dev->dev_private;
9353         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9354         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9355         struct drm_display_mode *mode;
9356         struct intel_crtc_state pipe_config;
9357         int htot = I915_READ(HTOTAL(cpu_transcoder));
9358         int hsync = I915_READ(HSYNC(cpu_transcoder));
9359         int vtot = I915_READ(VTOTAL(cpu_transcoder));
9360         int vsync = I915_READ(VSYNC(cpu_transcoder));
9361         enum pipe pipe = intel_crtc->pipe;
9362
9363         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9364         if (!mode)
9365                 return NULL;
9366
9367         /*
9368          * Construct a pipe_config sufficient for getting the clock info
9369          * back out of crtc_clock_get.
9370          *
9371          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9372          * to use a real value here instead.
9373          */
9374         pipe_config.cpu_transcoder = (enum transcoder) pipe;
9375         pipe_config.pixel_multiplier = 1;
9376         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9377         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9378         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
9379         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9380
9381         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
9382         mode->hdisplay = (htot & 0xffff) + 1;
9383         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9384         mode->hsync_start = (hsync & 0xffff) + 1;
9385         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9386         mode->vdisplay = (vtot & 0xffff) + 1;
9387         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9388         mode->vsync_start = (vsync & 0xffff) + 1;
9389         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9390
9391         drm_mode_set_name(mode);
9392
9393         return mode;
9394 }
9395
9396 static void intel_decrease_pllclock(struct drm_crtc *crtc)
9397 {
9398         struct drm_device *dev = crtc->dev;
9399         struct drm_i915_private *dev_priv = dev->dev_private;
9400         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9401
9402         if (!HAS_GMCH_DISPLAY(dev))
9403                 return;
9404
9405         if (!dev_priv->lvds_downclock_avail)
9406                 return;
9407
9408         /*
9409          * Since this is called by a timer, we should never get here in
9410          * the manual case.
9411          */
9412         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9413                 int pipe = intel_crtc->pipe;
9414                 int dpll_reg = DPLL(pipe);
9415                 int dpll;
9416
9417                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9418
9419                 assert_panel_unlocked(dev_priv, pipe);
9420
9421                 dpll = I915_READ(dpll_reg);
9422                 dpll |= DISPLAY_RATE_SELECT_FPA1;
9423                 I915_WRITE(dpll_reg, dpll);
9424                 intel_wait_for_vblank(dev, pipe);
9425                 dpll = I915_READ(dpll_reg);
9426                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9427                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9428         }
9429
9430 }
9431
9432 void intel_mark_busy(struct drm_device *dev)
9433 {
9434         struct drm_i915_private *dev_priv = dev->dev_private;
9435
9436         if (dev_priv->mm.busy)
9437                 return;
9438
9439         intel_runtime_pm_get(dev_priv);
9440         i915_update_gfx_val(dev_priv);
9441         if (INTEL_INFO(dev)->gen >= 6)
9442                 gen6_rps_busy(dev_priv);
9443         dev_priv->mm.busy = true;
9444 }
9445
9446 void intel_mark_idle(struct drm_device *dev)
9447 {
9448         struct drm_i915_private *dev_priv = dev->dev_private;
9449         struct drm_crtc *crtc;
9450
9451         if (!dev_priv->mm.busy)
9452                 return;
9453
9454         dev_priv->mm.busy = false;
9455
9456         for_each_crtc(dev, crtc) {
9457                 if (!crtc->primary->fb)
9458                         continue;
9459
9460                 intel_decrease_pllclock(crtc);
9461         }
9462
9463         if (INTEL_INFO(dev)->gen >= 6)
9464                 gen6_rps_idle(dev->dev_private);
9465
9466         intel_runtime_pm_put(dev_priv);
9467 }
9468
9469 static void intel_crtc_set_state(struct intel_crtc *crtc,
9470                                  struct intel_crtc_state *crtc_state)
9471 {
9472         kfree(crtc->config);
9473         crtc->config = crtc_state;
9474         crtc->base.state = &crtc_state->base;
9475 }
9476
9477 static void intel_crtc_destroy(struct drm_crtc *crtc)
9478 {
9479         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9480         struct drm_device *dev = crtc->dev;
9481         struct intel_unpin_work *work;
9482
9483         spin_lock_irq(&dev->event_lock);
9484         work = intel_crtc->unpin_work;
9485         intel_crtc->unpin_work = NULL;
9486         spin_unlock_irq(&dev->event_lock);
9487
9488         if (work) {
9489                 cancel_work_sync(&work->work);
9490                 kfree(work);
9491         }
9492
9493         intel_crtc_set_state(intel_crtc, NULL);
9494         drm_crtc_cleanup(crtc);
9495
9496         kfree(intel_crtc);
9497 }
9498
9499 static void intel_unpin_work_fn(struct work_struct *__work)
9500 {
9501         struct intel_unpin_work *work =
9502                 container_of(__work, struct intel_unpin_work, work);
9503         struct drm_device *dev = work->crtc->dev;
9504         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9505
9506         mutex_lock(&dev->struct_mutex);
9507         intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
9508         drm_gem_object_unreference(&work->pending_flip_obj->base);
9509
9510         intel_fbc_update(dev);
9511
9512         if (work->flip_queued_req)
9513                 i915_gem_request_assign(&work->flip_queued_req, NULL);
9514         mutex_unlock(&dev->struct_mutex);
9515
9516         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9517         drm_framebuffer_unreference(work->old_fb);
9518
9519         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9520         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9521
9522         kfree(work);
9523 }
9524
9525 static void do_intel_finish_page_flip(struct drm_device *dev,
9526                                       struct drm_crtc *crtc)
9527 {
9528         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9529         struct intel_unpin_work *work;
9530         unsigned long flags;
9531
9532         /* Ignore early vblank irqs */
9533         if (intel_crtc == NULL)
9534                 return;
9535
9536         /*
9537          * This is called both by irq handlers and the reset code (to complete
9538          * lost pageflips) so needs the full irqsave spinlocks.
9539          */
9540         spin_lock_irqsave(&dev->event_lock, flags);
9541         work = intel_crtc->unpin_work;
9542
9543         /* Ensure we don't miss a work->pending update ... */
9544         smp_rmb();
9545
9546         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9547                 spin_unlock_irqrestore(&dev->event_lock, flags);
9548                 return;
9549         }
9550
9551         page_flip_completed(intel_crtc);
9552
9553         spin_unlock_irqrestore(&dev->event_lock, flags);
9554 }
9555
9556 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9557 {
9558         struct drm_i915_private *dev_priv = dev->dev_private;
9559         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9560
9561         do_intel_finish_page_flip(dev, crtc);
9562 }
9563
9564 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9565 {
9566         struct drm_i915_private *dev_priv = dev->dev_private;
9567         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9568
9569         do_intel_finish_page_flip(dev, crtc);
9570 }
9571
9572 /* Is 'a' after or equal to 'b'? */
9573 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9574 {
9575         return !((a - b) & 0x80000000);
9576 }
9577
9578 static bool page_flip_finished(struct intel_crtc *crtc)
9579 {
9580         struct drm_device *dev = crtc->base.dev;
9581         struct drm_i915_private *dev_priv = dev->dev_private;
9582
9583         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9584             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9585                 return true;
9586
9587         /*
9588          * The relevant registers doen't exist on pre-ctg.
9589          * As the flip done interrupt doesn't trigger for mmio
9590          * flips on gmch platforms, a flip count check isn't
9591          * really needed there. But since ctg has the registers,
9592          * include it in the check anyway.
9593          */
9594         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9595                 return true;
9596
9597         /*
9598          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9599          * used the same base address. In that case the mmio flip might
9600          * have completed, but the CS hasn't even executed the flip yet.
9601          *
9602          * A flip count check isn't enough as the CS might have updated
9603          * the base address just after start of vblank, but before we
9604          * managed to process the interrupt. This means we'd complete the
9605          * CS flip too soon.
9606          *
9607          * Combining both checks should get us a good enough result. It may
9608          * still happen that the CS flip has been executed, but has not
9609          * yet actually completed. But in case the base address is the same
9610          * anyway, we don't really care.
9611          */
9612         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9613                 crtc->unpin_work->gtt_offset &&
9614                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9615                                     crtc->unpin_work->flip_count);
9616 }
9617
9618 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9619 {
9620         struct drm_i915_private *dev_priv = dev->dev_private;
9621         struct intel_crtc *intel_crtc =
9622                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9623         unsigned long flags;
9624
9625
9626         /*
9627          * This is called both by irq handlers and the reset code (to complete
9628          * lost pageflips) so needs the full irqsave spinlocks.
9629          *
9630          * NB: An MMIO update of the plane base pointer will also
9631          * generate a page-flip completion irq, i.e. every modeset
9632          * is also accompanied by a spurious intel_prepare_page_flip().
9633          */
9634         spin_lock_irqsave(&dev->event_lock, flags);
9635         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9636                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9637         spin_unlock_irqrestore(&dev->event_lock, flags);
9638 }
9639
9640 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9641 {
9642         /* Ensure that the work item is consistent when activating it ... */
9643         smp_wmb();
9644         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9645         /* and that it is marked active as soon as the irq could fire. */
9646         smp_wmb();
9647 }
9648
9649 static int intel_gen2_queue_flip(struct drm_device *dev,
9650                                  struct drm_crtc *crtc,
9651                                  struct drm_framebuffer *fb,
9652                                  struct drm_i915_gem_object *obj,
9653                                  struct intel_engine_cs *ring,
9654                                  uint32_t flags)
9655 {
9656         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9657         u32 flip_mask;
9658         int ret;
9659
9660         ret = intel_ring_begin(ring, 6);
9661         if (ret)
9662                 return ret;
9663
9664         /* Can't queue multiple flips, so wait for the previous
9665          * one to finish before executing the next.
9666          */
9667         if (intel_crtc->plane)
9668                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9669         else
9670                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9671         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9672         intel_ring_emit(ring, MI_NOOP);
9673         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9674                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9675         intel_ring_emit(ring, fb->pitches[0]);
9676         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9677         intel_ring_emit(ring, 0); /* aux display base address, unused */
9678
9679         intel_mark_page_flip_active(intel_crtc);
9680         __intel_ring_advance(ring);
9681         return 0;
9682 }
9683
9684 static int intel_gen3_queue_flip(struct drm_device *dev,
9685                                  struct drm_crtc *crtc,
9686                                  struct drm_framebuffer *fb,
9687                                  struct drm_i915_gem_object *obj,
9688                                  struct intel_engine_cs *ring,
9689                                  uint32_t flags)
9690 {
9691         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9692         u32 flip_mask;
9693         int ret;
9694
9695         ret = intel_ring_begin(ring, 6);
9696         if (ret)
9697                 return ret;
9698
9699         if (intel_crtc->plane)
9700                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9701         else
9702                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9703         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9704         intel_ring_emit(ring, MI_NOOP);
9705         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9706                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9707         intel_ring_emit(ring, fb->pitches[0]);
9708         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9709         intel_ring_emit(ring, MI_NOOP);
9710
9711         intel_mark_page_flip_active(intel_crtc);
9712         __intel_ring_advance(ring);
9713         return 0;
9714 }
9715
9716 static int intel_gen4_queue_flip(struct drm_device *dev,
9717                                  struct drm_crtc *crtc,
9718                                  struct drm_framebuffer *fb,
9719                                  struct drm_i915_gem_object *obj,
9720                                  struct intel_engine_cs *ring,
9721                                  uint32_t flags)
9722 {
9723         struct drm_i915_private *dev_priv = dev->dev_private;
9724         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9725         uint32_t pf, pipesrc;
9726         int ret;
9727
9728         ret = intel_ring_begin(ring, 4);
9729         if (ret)
9730                 return ret;
9731
9732         /* i965+ uses the linear or tiled offsets from the
9733          * Display Registers (which do not change across a page-flip)
9734          * so we need only reprogram the base address.
9735          */
9736         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9737                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9738         intel_ring_emit(ring, fb->pitches[0]);
9739         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9740                         obj->tiling_mode);
9741
9742         /* XXX Enabling the panel-fitter across page-flip is so far
9743          * untested on non-native modes, so ignore it for now.
9744          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9745          */
9746         pf = 0;
9747         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9748         intel_ring_emit(ring, pf | pipesrc);
9749
9750         intel_mark_page_flip_active(intel_crtc);
9751         __intel_ring_advance(ring);
9752         return 0;
9753 }
9754
9755 static int intel_gen6_queue_flip(struct drm_device *dev,
9756                                  struct drm_crtc *crtc,
9757                                  struct drm_framebuffer *fb,
9758                                  struct drm_i915_gem_object *obj,
9759                                  struct intel_engine_cs *ring,
9760                                  uint32_t flags)
9761 {
9762         struct drm_i915_private *dev_priv = dev->dev_private;
9763         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9764         uint32_t pf, pipesrc;
9765         int ret;
9766
9767         ret = intel_ring_begin(ring, 4);
9768         if (ret)
9769                 return ret;
9770
9771         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9772                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9773         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9774         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9775
9776         /* Contrary to the suggestions in the documentation,
9777          * "Enable Panel Fitter" does not seem to be required when page
9778          * flipping with a non-native mode, and worse causes a normal
9779          * modeset to fail.
9780          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9781          */
9782         pf = 0;
9783         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9784         intel_ring_emit(ring, pf | pipesrc);
9785
9786         intel_mark_page_flip_active(intel_crtc);
9787         __intel_ring_advance(ring);
9788         return 0;
9789 }
9790
9791 static int intel_gen7_queue_flip(struct drm_device *dev,
9792                                  struct drm_crtc *crtc,
9793                                  struct drm_framebuffer *fb,
9794                                  struct drm_i915_gem_object *obj,
9795                                  struct intel_engine_cs *ring,
9796                                  uint32_t flags)
9797 {
9798         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9799         uint32_t plane_bit = 0;
9800         int len, ret;
9801
9802         switch (intel_crtc->plane) {
9803         case PLANE_A:
9804                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9805                 break;
9806         case PLANE_B:
9807                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9808                 break;
9809         case PLANE_C:
9810                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9811                 break;
9812         default:
9813                 WARN_ONCE(1, "unknown plane in flip command\n");
9814                 return -ENODEV;
9815         }
9816
9817         len = 4;
9818         if (ring->id == RCS) {
9819                 len += 6;
9820                 /*
9821                  * On Gen 8, SRM is now taking an extra dword to accommodate
9822                  * 48bits addresses, and we need a NOOP for the batch size to
9823                  * stay even.
9824                  */
9825                 if (IS_GEN8(dev))
9826                         len += 2;
9827         }
9828
9829         /*
9830          * BSpec MI_DISPLAY_FLIP for IVB:
9831          * "The full packet must be contained within the same cache line."
9832          *
9833          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9834          * cacheline, if we ever start emitting more commands before
9835          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9836          * then do the cacheline alignment, and finally emit the
9837          * MI_DISPLAY_FLIP.
9838          */
9839         ret = intel_ring_cacheline_align(ring);
9840         if (ret)
9841                 return ret;
9842
9843         ret = intel_ring_begin(ring, len);
9844         if (ret)
9845                 return ret;
9846
9847         /* Unmask the flip-done completion message. Note that the bspec says that
9848          * we should do this for both the BCS and RCS, and that we must not unmask
9849          * more than one flip event at any time (or ensure that one flip message
9850          * can be sent by waiting for flip-done prior to queueing new flips).
9851          * Experimentation says that BCS works despite DERRMR masking all
9852          * flip-done completion events and that unmasking all planes at once
9853          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9854          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9855          */
9856         if (ring->id == RCS) {
9857                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9858                 intel_ring_emit(ring, DERRMR);
9859                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9860                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9861                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9862                 if (IS_GEN8(dev))
9863                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9864                                               MI_SRM_LRM_GLOBAL_GTT);
9865                 else
9866                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9867                                               MI_SRM_LRM_GLOBAL_GTT);
9868                 intel_ring_emit(ring, DERRMR);
9869                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9870                 if (IS_GEN8(dev)) {
9871                         intel_ring_emit(ring, 0);
9872                         intel_ring_emit(ring, MI_NOOP);
9873                 }
9874         }
9875
9876         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9877         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9878         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9879         intel_ring_emit(ring, (MI_NOOP));
9880
9881         intel_mark_page_flip_active(intel_crtc);
9882         __intel_ring_advance(ring);
9883         return 0;
9884 }
9885
9886 static bool use_mmio_flip(struct intel_engine_cs *ring,
9887                           struct drm_i915_gem_object *obj)
9888 {
9889         /*
9890          * This is not being used for older platforms, because
9891          * non-availability of flip done interrupt forces us to use
9892          * CS flips. Older platforms derive flip done using some clever
9893          * tricks involving the flip_pending status bits and vblank irqs.
9894          * So using MMIO flips there would disrupt this mechanism.
9895          */
9896
9897         if (ring == NULL)
9898                 return true;
9899
9900         if (INTEL_INFO(ring->dev)->gen < 5)
9901                 return false;
9902
9903         if (i915.use_mmio_flip < 0)
9904                 return false;
9905         else if (i915.use_mmio_flip > 0)
9906                 return true;
9907         else if (i915.enable_execlists)
9908                 return true;
9909         else
9910                 return ring != i915_gem_request_get_ring(obj->last_read_req);
9911 }
9912
9913 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9914 {
9915         struct drm_device *dev = intel_crtc->base.dev;
9916         struct drm_i915_private *dev_priv = dev->dev_private;
9917         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9918         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9919         struct drm_i915_gem_object *obj = intel_fb->obj;
9920         const enum pipe pipe = intel_crtc->pipe;
9921         u32 ctl, stride;
9922
9923         ctl = I915_READ(PLANE_CTL(pipe, 0));
9924         ctl &= ~PLANE_CTL_TILED_MASK;
9925         if (obj->tiling_mode == I915_TILING_X)
9926                 ctl |= PLANE_CTL_TILED_X;
9927
9928         /*
9929          * The stride is either expressed as a multiple of 64 bytes chunks for
9930          * linear buffers or in number of tiles for tiled buffers.
9931          */
9932         stride = fb->pitches[0] >> 6;
9933         if (obj->tiling_mode == I915_TILING_X)
9934                 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9935
9936         /*
9937          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9938          * PLANE_SURF updates, the update is then guaranteed to be atomic.
9939          */
9940         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9941         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9942
9943         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9944         POSTING_READ(PLANE_SURF(pipe, 0));
9945 }
9946
9947 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9948 {
9949         struct drm_device *dev = intel_crtc->base.dev;
9950         struct drm_i915_private *dev_priv = dev->dev_private;
9951         struct intel_framebuffer *intel_fb =
9952                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9953         struct drm_i915_gem_object *obj = intel_fb->obj;
9954         u32 dspcntr;
9955         u32 reg;
9956
9957         reg = DSPCNTR(intel_crtc->plane);
9958         dspcntr = I915_READ(reg);
9959
9960         if (obj->tiling_mode != I915_TILING_NONE)
9961                 dspcntr |= DISPPLANE_TILED;
9962         else
9963                 dspcntr &= ~DISPPLANE_TILED;
9964
9965         I915_WRITE(reg, dspcntr);
9966
9967         I915_WRITE(DSPSURF(intel_crtc->plane),
9968                    intel_crtc->unpin_work->gtt_offset);
9969         POSTING_READ(DSPSURF(intel_crtc->plane));
9970
9971 }
9972
9973 /*
9974  * XXX: This is the temporary way to update the plane registers until we get
9975  * around to using the usual plane update functions for MMIO flips
9976  */
9977 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9978 {
9979         struct drm_device *dev = intel_crtc->base.dev;
9980         bool atomic_update;
9981         u32 start_vbl_count;
9982
9983         intel_mark_page_flip_active(intel_crtc);
9984
9985         atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9986
9987         if (INTEL_INFO(dev)->gen >= 9)
9988                 skl_do_mmio_flip(intel_crtc);
9989         else
9990                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9991                 ilk_do_mmio_flip(intel_crtc);
9992
9993         if (atomic_update)
9994                 intel_pipe_update_end(intel_crtc, start_vbl_count);
9995 }
9996
9997 static void intel_mmio_flip_work_func(struct work_struct *work)
9998 {
9999         struct intel_crtc *crtc =
10000                 container_of(work, struct intel_crtc, mmio_flip.work);
10001         struct intel_mmio_flip *mmio_flip;
10002
10003         mmio_flip = &crtc->mmio_flip;
10004         if (mmio_flip->req)
10005                 WARN_ON(__i915_wait_request(mmio_flip->req,
10006                                             crtc->reset_counter,
10007                                             false, NULL, NULL) != 0);
10008
10009         intel_do_mmio_flip(crtc);
10010         if (mmio_flip->req) {
10011                 mutex_lock(&crtc->base.dev->struct_mutex);
10012                 i915_gem_request_assign(&mmio_flip->req, NULL);
10013                 mutex_unlock(&crtc->base.dev->struct_mutex);
10014         }
10015 }
10016
10017 static int intel_queue_mmio_flip(struct drm_device *dev,
10018                                  struct drm_crtc *crtc,
10019                                  struct drm_framebuffer *fb,
10020                                  struct drm_i915_gem_object *obj,
10021                                  struct intel_engine_cs *ring,
10022                                  uint32_t flags)
10023 {
10024         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10025
10026         i915_gem_request_assign(&intel_crtc->mmio_flip.req,
10027                                 obj->last_write_req);
10028
10029         schedule_work(&intel_crtc->mmio_flip.work);
10030
10031         return 0;
10032 }
10033
10034 static int intel_default_queue_flip(struct drm_device *dev,
10035                                     struct drm_crtc *crtc,
10036                                     struct drm_framebuffer *fb,
10037                                     struct drm_i915_gem_object *obj,
10038                                     struct intel_engine_cs *ring,
10039                                     uint32_t flags)
10040 {
10041         return -ENODEV;
10042 }
10043
10044 static bool __intel_pageflip_stall_check(struct drm_device *dev,
10045                                          struct drm_crtc *crtc)
10046 {
10047         struct drm_i915_private *dev_priv = dev->dev_private;
10048         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10049         struct intel_unpin_work *work = intel_crtc->unpin_work;
10050         u32 addr;
10051
10052         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
10053                 return true;
10054
10055         if (!work->enable_stall_check)
10056                 return false;
10057
10058         if (work->flip_ready_vblank == 0) {
10059                 if (work->flip_queued_req &&
10060                     !i915_gem_request_completed(work->flip_queued_req, true))
10061                         return false;
10062
10063                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
10064         }
10065
10066         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
10067                 return false;
10068
10069         /* Potential stall - if we see that the flip has happened,
10070          * assume a missed interrupt. */
10071         if (INTEL_INFO(dev)->gen >= 4)
10072                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10073         else
10074                 addr = I915_READ(DSPADDR(intel_crtc->plane));
10075
10076         /* There is a potential issue here with a false positive after a flip
10077          * to the same address. We could address this by checking for a
10078          * non-incrementing frame counter.
10079          */
10080         return addr == work->gtt_offset;
10081 }
10082
10083 void intel_check_page_flip(struct drm_device *dev, int pipe)
10084 {
10085         struct drm_i915_private *dev_priv = dev->dev_private;
10086         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10087         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10088
10089         WARN_ON_NONRT(!in_interrupt());
10090
10091         if (crtc == NULL)
10092                 return;
10093
10094         spin_lock(&dev->event_lock);
10095         if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
10096                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
10097                          intel_crtc->unpin_work->flip_queued_vblank,
10098                          drm_vblank_count(dev, pipe));
10099                 page_flip_completed(intel_crtc);
10100         }
10101         spin_unlock(&dev->event_lock);
10102 }
10103
10104 static int intel_crtc_page_flip(struct drm_crtc *crtc,
10105                                 struct drm_framebuffer *fb,
10106                                 struct drm_pending_vblank_event *event,
10107                                 uint32_t page_flip_flags)
10108 {
10109         struct drm_device *dev = crtc->dev;
10110         struct drm_i915_private *dev_priv = dev->dev_private;
10111         struct drm_framebuffer *old_fb = crtc->primary->fb;
10112         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10113         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10114         struct drm_plane *primary = crtc->primary;
10115         enum pipe pipe = intel_crtc->pipe;
10116         struct intel_unpin_work *work;
10117         struct intel_engine_cs *ring;
10118         int ret;
10119
10120         /*
10121          * drm_mode_page_flip_ioctl() should already catch this, but double
10122          * check to be safe.  In the future we may enable pageflipping from
10123          * a disabled primary plane.
10124          */
10125         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10126                 return -EBUSY;
10127
10128         /* Can't change pixel format via MI display flips. */
10129         if (fb->pixel_format != crtc->primary->fb->pixel_format)
10130                 return -EINVAL;
10131
10132         /*
10133          * TILEOFF/LINOFF registers can't be changed via MI display flips.
10134          * Note that pitch changes could also affect these register.
10135          */
10136         if (INTEL_INFO(dev)->gen > 3 &&
10137             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10138              fb->pitches[0] != crtc->primary->fb->pitches[0]))
10139                 return -EINVAL;
10140
10141         if (i915_terminally_wedged(&dev_priv->gpu_error))
10142                 goto out_hang;
10143
10144         work = kzalloc(sizeof(*work), GFP_KERNEL);
10145         if (work == NULL)
10146                 return -ENOMEM;
10147
10148         work->event = event;
10149         work->crtc = crtc;
10150         work->old_fb = old_fb;
10151         INIT_WORK(&work->work, intel_unpin_work_fn);
10152
10153         ret = drm_crtc_vblank_get(crtc);
10154         if (ret)
10155                 goto free_work;
10156
10157         /* We borrow the event spin lock for protecting unpin_work */
10158         spin_lock_irq(&dev->event_lock);
10159         if (intel_crtc->unpin_work) {
10160                 /* Before declaring the flip queue wedged, check if
10161                  * the hardware completed the operation behind our backs.
10162                  */
10163                 if (__intel_pageflip_stall_check(dev, crtc)) {
10164                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10165                         page_flip_completed(intel_crtc);
10166                 } else {
10167                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10168                         spin_unlock_irq(&dev->event_lock);
10169
10170                         drm_crtc_vblank_put(crtc);
10171                         kfree(work);
10172                         return -EBUSY;
10173                 }
10174         }
10175         intel_crtc->unpin_work = work;
10176         spin_unlock_irq(&dev->event_lock);
10177
10178         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10179                 flush_workqueue(dev_priv->wq);
10180
10181         /* Reference the objects for the scheduled work. */
10182         drm_framebuffer_reference(work->old_fb);
10183         drm_gem_object_reference(&obj->base);
10184
10185         crtc->primary->fb = fb;
10186         update_state_fb(crtc->primary);
10187
10188         work->pending_flip_obj = obj;
10189
10190         ret = i915_mutex_lock_interruptible(dev);
10191         if (ret)
10192                 goto cleanup;
10193
10194         atomic_inc(&intel_crtc->unpin_work_count);
10195         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
10196
10197         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
10198                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
10199
10200         if (IS_VALLEYVIEW(dev)) {
10201                 ring = &dev_priv->ring[BCS];
10202                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
10203                         /* vlv: DISPLAY_FLIP fails to change tiling */
10204                         ring = NULL;
10205         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
10206                 ring = &dev_priv->ring[BCS];
10207         } else if (INTEL_INFO(dev)->gen >= 7) {
10208                 ring = i915_gem_request_get_ring(obj->last_read_req);
10209                 if (ring == NULL || ring->id != RCS)
10210                         ring = &dev_priv->ring[BCS];
10211         } else {
10212                 ring = &dev_priv->ring[RCS];
10213         }
10214
10215         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
10216                                          crtc->primary->state, ring);
10217         if (ret)
10218                 goto cleanup_pending;
10219
10220         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
10221                                                   + intel_crtc->dspaddr_offset;
10222
10223         if (use_mmio_flip(ring, obj)) {
10224                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10225                                             page_flip_flags);
10226                 if (ret)
10227                         goto cleanup_unpin;
10228
10229                 i915_gem_request_assign(&work->flip_queued_req,
10230                                         obj->last_write_req);
10231         } else {
10232                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
10233                                                    page_flip_flags);
10234                 if (ret)
10235                         goto cleanup_unpin;
10236
10237                 i915_gem_request_assign(&work->flip_queued_req,
10238                                         intel_ring_get_request(ring));
10239         }
10240
10241         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
10242         work->enable_stall_check = true;
10243
10244         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
10245                           INTEL_FRONTBUFFER_PRIMARY(pipe));
10246
10247         intel_fbc_disable(dev);
10248         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10249         mutex_unlock(&dev->struct_mutex);
10250
10251         trace_i915_flip_request(intel_crtc->plane, obj);
10252
10253         return 0;
10254
10255 cleanup_unpin:
10256         intel_unpin_fb_obj(fb, crtc->primary->state);
10257 cleanup_pending:
10258         atomic_dec(&intel_crtc->unpin_work_count);
10259         mutex_unlock(&dev->struct_mutex);
10260 cleanup:
10261         crtc->primary->fb = old_fb;
10262         update_state_fb(crtc->primary);
10263
10264         drm_gem_object_unreference_unlocked(&obj->base);
10265         drm_framebuffer_unreference(work->old_fb);
10266
10267         spin_lock_irq(&dev->event_lock);
10268         intel_crtc->unpin_work = NULL;
10269         spin_unlock_irq(&dev->event_lock);
10270
10271         drm_crtc_vblank_put(crtc);
10272 free_work:
10273         kfree(work);
10274
10275         if (ret == -EIO) {
10276 out_hang:
10277                 ret = intel_plane_restore(primary);
10278                 if (ret == 0 && event) {
10279                         spin_lock_irq(&dev->event_lock);
10280                         drm_send_vblank_event(dev, pipe, event);
10281                         spin_unlock_irq(&dev->event_lock);
10282                 }
10283         }
10284         return ret;
10285 }
10286
10287 static struct drm_crtc_helper_funcs intel_helper_funcs = {
10288         .mode_set_base_atomic = intel_pipe_set_base_atomic,
10289         .load_lut = intel_crtc_load_lut,
10290         .atomic_begin = intel_begin_crtc_commit,
10291         .atomic_flush = intel_finish_crtc_commit,
10292 };
10293
10294 /**
10295  * intel_modeset_update_staged_output_state
10296  *
10297  * Updates the staged output configuration state, e.g. after we've read out the
10298  * current hw state.
10299  */
10300 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
10301 {
10302         struct intel_crtc *crtc;
10303         struct intel_encoder *encoder;
10304         struct intel_connector *connector;
10305
10306         for_each_intel_connector(dev, connector) {
10307                 connector->new_encoder =
10308                         to_intel_encoder(connector->base.encoder);
10309         }
10310
10311         for_each_intel_encoder(dev, encoder) {
10312                 encoder->new_crtc =
10313                         to_intel_crtc(encoder->base.crtc);
10314         }
10315
10316         for_each_intel_crtc(dev, crtc) {
10317                 crtc->new_enabled = crtc->base.state->enable;
10318
10319                 if (crtc->new_enabled)
10320                         crtc->new_config = crtc->config;
10321                 else
10322                         crtc->new_config = NULL;
10323         }
10324 }
10325
10326 /* Transitional helper to copy current connector/encoder state to
10327  * connector->state. This is needed so that code that is partially
10328  * converted to atomic does the right thing.
10329  */
10330 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
10331 {
10332         struct intel_connector *connector;
10333
10334         for_each_intel_connector(dev, connector) {
10335                 if (connector->base.encoder) {
10336                         connector->base.state->best_encoder =
10337                                 connector->base.encoder;
10338                         connector->base.state->crtc =
10339                                 connector->base.encoder->crtc;
10340                 } else {
10341                         connector->base.state->best_encoder = NULL;
10342                         connector->base.state->crtc = NULL;
10343                 }
10344         }
10345 }
10346
10347 /**
10348  * intel_modeset_commit_output_state
10349  *
10350  * This function copies the stage display pipe configuration to the real one.
10351  */
10352 static void intel_modeset_commit_output_state(struct drm_device *dev)
10353 {
10354         struct intel_crtc *crtc;
10355         struct intel_encoder *encoder;
10356         struct intel_connector *connector;
10357
10358         for_each_intel_connector(dev, connector) {
10359                 connector->base.encoder = &connector->new_encoder->base;
10360         }
10361
10362         for_each_intel_encoder(dev, encoder) {
10363                 encoder->base.crtc = &encoder->new_crtc->base;
10364         }
10365
10366         for_each_intel_crtc(dev, crtc) {
10367                 crtc->base.state->enable = crtc->new_enabled;
10368                 crtc->base.enabled = crtc->new_enabled;
10369         }
10370
10371         intel_modeset_update_connector_atomic_state(dev);
10372 }
10373
10374 static void
10375 connected_sink_compute_bpp(struct intel_connector *connector,
10376                            struct intel_crtc_state *pipe_config)
10377 {
10378         int bpp = pipe_config->pipe_bpp;
10379
10380         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10381                 connector->base.base.id,
10382                 connector->base.name);
10383
10384         /* Don't use an invalid EDID bpc value */
10385         if (connector->base.display_info.bpc &&
10386             connector->base.display_info.bpc * 3 < bpp) {
10387                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10388                               bpp, connector->base.display_info.bpc*3);
10389                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10390         }
10391
10392         /* Clamp bpp to 8 on screens without EDID 1.4 */
10393         if (connector->base.display_info.bpc == 0 && bpp > 24) {
10394                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10395                               bpp);
10396                 pipe_config->pipe_bpp = 24;
10397         }
10398 }
10399
10400 static int
10401 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10402                           struct drm_framebuffer *fb,
10403                           struct intel_crtc_state *pipe_config)
10404 {
10405         struct drm_device *dev = crtc->base.dev;
10406         struct drm_atomic_state *state;
10407         struct intel_connector *connector;
10408         int bpp, i;
10409
10410         switch (fb->pixel_format) {
10411         case DRM_FORMAT_C8:
10412                 bpp = 8*3; /* since we go through a colormap */
10413                 break;
10414         case DRM_FORMAT_XRGB1555:
10415         case DRM_FORMAT_ARGB1555:
10416                 /* checked in intel_framebuffer_init already */
10417                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10418                         return -EINVAL;
10419         case DRM_FORMAT_RGB565:
10420                 bpp = 6*3; /* min is 18bpp */
10421                 break;
10422         case DRM_FORMAT_XBGR8888:
10423         case DRM_FORMAT_ABGR8888:
10424                 /* checked in intel_framebuffer_init already */
10425                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10426                         return -EINVAL;
10427         case DRM_FORMAT_XRGB8888:
10428         case DRM_FORMAT_ARGB8888:
10429                 bpp = 8*3;
10430                 break;
10431         case DRM_FORMAT_XRGB2101010:
10432         case DRM_FORMAT_ARGB2101010:
10433         case DRM_FORMAT_XBGR2101010:
10434         case DRM_FORMAT_ABGR2101010:
10435                 /* checked in intel_framebuffer_init already */
10436                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10437                         return -EINVAL;
10438                 bpp = 10*3;
10439                 break;
10440         /* TODO: gen4+ supports 16 bpc floating point, too. */
10441         default:
10442                 DRM_DEBUG_KMS("unsupported depth\n");
10443                 return -EINVAL;
10444         }
10445
10446         pipe_config->pipe_bpp = bpp;
10447
10448         state = pipe_config->base.state;
10449
10450         /* Clamp display bpp to EDID value */
10451         for (i = 0; i < state->num_connector; i++) {
10452                 if (!state->connectors[i])
10453                         continue;
10454
10455                 connector = to_intel_connector(state->connectors[i]);
10456                 if (state->connector_states[i]->crtc != &crtc->base)
10457                         continue;
10458
10459                 connected_sink_compute_bpp(connector, pipe_config);
10460         }
10461
10462         return bpp;
10463 }
10464
10465 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10466 {
10467         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10468                         "type: 0x%x flags: 0x%x\n",
10469                 mode->crtc_clock,
10470                 mode->crtc_hdisplay, mode->crtc_hsync_start,
10471                 mode->crtc_hsync_end, mode->crtc_htotal,
10472                 mode->crtc_vdisplay, mode->crtc_vsync_start,
10473                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10474 }
10475
10476 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10477                                    struct intel_crtc_state *pipe_config,
10478                                    const char *context)
10479 {
10480         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10481                       context, pipe_name(crtc->pipe));
10482
10483         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10484         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10485                       pipe_config->pipe_bpp, pipe_config->dither);
10486         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10487                       pipe_config->has_pch_encoder,
10488                       pipe_config->fdi_lanes,
10489                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10490                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10491                       pipe_config->fdi_m_n.tu);
10492         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10493                       pipe_config->has_dp_encoder,
10494                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10495                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10496                       pipe_config->dp_m_n.tu);
10497
10498         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10499                       pipe_config->has_dp_encoder,
10500                       pipe_config->dp_m2_n2.gmch_m,
10501                       pipe_config->dp_m2_n2.gmch_n,
10502                       pipe_config->dp_m2_n2.link_m,
10503                       pipe_config->dp_m2_n2.link_n,
10504                       pipe_config->dp_m2_n2.tu);
10505
10506         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10507                       pipe_config->has_audio,
10508                       pipe_config->has_infoframe);
10509
10510         DRM_DEBUG_KMS("requested mode:\n");
10511         drm_mode_debug_printmodeline(&pipe_config->base.mode);
10512         DRM_DEBUG_KMS("adjusted mode:\n");
10513         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10514         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
10515         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10516         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10517                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10518         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10519                       pipe_config->gmch_pfit.control,
10520                       pipe_config->gmch_pfit.pgm_ratios,
10521                       pipe_config->gmch_pfit.lvds_border_bits);
10522         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10523                       pipe_config->pch_pfit.pos,
10524                       pipe_config->pch_pfit.size,
10525                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10526         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10527         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10528 }
10529
10530 static bool encoders_cloneable(const struct intel_encoder *a,
10531                                const struct intel_encoder *b)
10532 {
10533         /* masks could be asymmetric, so check both ways */
10534         return a == b || (a->cloneable & (1 << b->type) &&
10535                           b->cloneable & (1 << a->type));
10536 }
10537
10538 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10539                                          struct intel_encoder *encoder)
10540 {
10541         struct drm_device *dev = crtc->base.dev;
10542         struct intel_encoder *source_encoder;
10543
10544         for_each_intel_encoder(dev, source_encoder) {
10545                 if (source_encoder->new_crtc != crtc)
10546                         continue;
10547
10548                 if (!encoders_cloneable(encoder, source_encoder))
10549                         return false;
10550         }
10551
10552         return true;
10553 }
10554
10555 static bool check_encoder_cloning(struct intel_crtc *crtc)
10556 {
10557         struct drm_device *dev = crtc->base.dev;
10558         struct intel_encoder *encoder;
10559
10560         for_each_intel_encoder(dev, encoder) {
10561                 if (encoder->new_crtc != crtc)
10562                         continue;
10563
10564                 if (!check_single_encoder_cloning(crtc, encoder))
10565                         return false;
10566         }
10567
10568         return true;
10569 }
10570
10571 static bool check_digital_port_conflicts(struct drm_device *dev)
10572 {
10573         struct intel_connector *connector;
10574         unsigned int used_ports = 0;
10575
10576         /*
10577          * Walk the connector list instead of the encoder
10578          * list to detect the problem on ddi platforms
10579          * where there's just one encoder per digital port.
10580          */
10581         for_each_intel_connector(dev, connector) {
10582                 struct intel_encoder *encoder = connector->new_encoder;
10583
10584                 if (!encoder)
10585                         continue;
10586
10587                 WARN_ON(!encoder->new_crtc);
10588
10589                 switch (encoder->type) {
10590                         unsigned int port_mask;
10591                 case INTEL_OUTPUT_UNKNOWN:
10592                         if (WARN_ON(!HAS_DDI(dev)))
10593                                 break;
10594                 case INTEL_OUTPUT_DISPLAYPORT:
10595                 case INTEL_OUTPUT_HDMI:
10596                 case INTEL_OUTPUT_EDP:
10597                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10598
10599                         /* the same port mustn't appear more than once */
10600                         if (used_ports & port_mask)
10601                                 return false;
10602
10603                         used_ports |= port_mask;
10604                 default:
10605                         break;
10606                 }
10607         }
10608
10609         return true;
10610 }
10611
10612 static void
10613 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
10614 {
10615         struct drm_crtc_state tmp_state;
10616
10617         /* Clear only the intel specific part of the crtc state */
10618         tmp_state = crtc_state->base;
10619         memset(crtc_state, 0, sizeof *crtc_state);
10620         crtc_state->base = tmp_state;
10621 }
10622
10623 static struct intel_crtc_state *
10624 intel_modeset_pipe_config(struct drm_crtc *crtc,
10625                           struct drm_framebuffer *fb,
10626                           struct drm_display_mode *mode,
10627                           struct drm_atomic_state *state)
10628 {
10629         struct drm_device *dev = crtc->dev;
10630         struct intel_encoder *encoder;
10631         struct intel_connector *connector;
10632         struct drm_connector_state *connector_state;
10633         struct intel_crtc_state *pipe_config;
10634         int plane_bpp, ret = -EINVAL;
10635         int i;
10636         bool retry = true;
10637
10638         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10639                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10640                 return ERR_PTR(-EINVAL);
10641         }
10642
10643         if (!check_digital_port_conflicts(dev)) {
10644                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10645                 return ERR_PTR(-EINVAL);
10646         }
10647
10648         pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
10649         if (IS_ERR(pipe_config))
10650                 return pipe_config;
10651
10652         clear_intel_crtc_state(pipe_config);
10653
10654         pipe_config->base.crtc = crtc;
10655         drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10656         drm_mode_copy(&pipe_config->base.mode, mode);
10657
10658         pipe_config->cpu_transcoder =
10659                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10660         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10661
10662         /*
10663          * Sanitize sync polarity flags based on requested ones. If neither
10664          * positive or negative polarity is requested, treat this as meaning
10665          * negative polarity.
10666          */
10667         if (!(pipe_config->base.adjusted_mode.flags &
10668               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10669                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10670
10671         if (!(pipe_config->base.adjusted_mode.flags &
10672               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10673                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10674
10675         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10676          * plane pixel format and any sink constraints into account. Returns the
10677          * source plane bpp so that dithering can be selected on mismatches
10678          * after encoders and crtc also have had their say. */
10679         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10680                                               fb, pipe_config);
10681         if (plane_bpp < 0)
10682                 goto fail;
10683
10684         /*
10685          * Determine the real pipe dimensions. Note that stereo modes can
10686          * increase the actual pipe size due to the frame doubling and
10687          * insertion of additional space for blanks between the frame. This
10688          * is stored in the crtc timings. We use the requested mode to do this
10689          * computation to clearly distinguish it from the adjusted mode, which
10690          * can be changed by the connectors in the below retry loop.
10691          */
10692         drm_crtc_get_hv_timing(&pipe_config->base.mode,
10693                                &pipe_config->pipe_src_w,
10694                                &pipe_config->pipe_src_h);
10695
10696 encoder_retry:
10697         /* Ensure the port clock defaults are reset when retrying. */
10698         pipe_config->port_clock = 0;
10699         pipe_config->pixel_multiplier = 1;
10700
10701         /* Fill in default crtc timings, allow encoders to overwrite them. */
10702         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10703                               CRTC_STEREO_DOUBLE);
10704
10705         /* Pass our mode to the connectors and the CRTC to give them a chance to
10706          * adjust it according to limitations or connector properties, and also
10707          * a chance to reject the mode entirely.
10708          */
10709         for (i = 0; i < state->num_connector; i++) {
10710                 connector = to_intel_connector(state->connectors[i]);
10711                 if (!connector)
10712                         continue;
10713
10714                 connector_state = state->connector_states[i];
10715                 if (connector_state->crtc != crtc)
10716                         continue;
10717
10718                 encoder = to_intel_encoder(connector_state->best_encoder);
10719
10720                 if (!(encoder->compute_config(encoder, pipe_config))) {
10721                         DRM_DEBUG_KMS("Encoder config failure\n");
10722                         goto fail;
10723                 }
10724         }
10725
10726         /* Set default port clock if not overwritten by the encoder. Needs to be
10727          * done afterwards in case the encoder adjusts the mode. */
10728         if (!pipe_config->port_clock)
10729                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
10730                         * pipe_config->pixel_multiplier;
10731
10732         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10733         if (ret < 0) {
10734                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10735                 goto fail;
10736         }
10737
10738         if (ret == RETRY) {
10739                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10740                         ret = -EINVAL;
10741                         goto fail;
10742                 }
10743
10744                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10745                 retry = false;
10746                 goto encoder_retry;
10747         }
10748
10749         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10750         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10751                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10752
10753         return pipe_config;
10754 fail:
10755         return ERR_PTR(ret);
10756 }
10757
10758 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10759  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10760 static void
10761 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10762                              unsigned *prepare_pipes, unsigned *disable_pipes)
10763 {
10764         struct intel_crtc *intel_crtc;
10765         struct drm_device *dev = crtc->dev;
10766         struct intel_encoder *encoder;
10767         struct intel_connector *connector;
10768         struct drm_crtc *tmp_crtc;
10769
10770         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10771
10772         /* Check which crtcs have changed outputs connected to them, these need
10773          * to be part of the prepare_pipes mask. We don't (yet) support global
10774          * modeset across multiple crtcs, so modeset_pipes will only have one
10775          * bit set at most. */
10776         for_each_intel_connector(dev, connector) {
10777                 if (connector->base.encoder == &connector->new_encoder->base)
10778                         continue;
10779
10780                 if (connector->base.encoder) {
10781                         tmp_crtc = connector->base.encoder->crtc;
10782
10783                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10784                 }
10785
10786                 if (connector->new_encoder)
10787                         *prepare_pipes |=
10788                                 1 << connector->new_encoder->new_crtc->pipe;
10789         }
10790
10791         for_each_intel_encoder(dev, encoder) {
10792                 if (encoder->base.crtc == &encoder->new_crtc->base)
10793                         continue;
10794
10795                 if (encoder->base.crtc) {
10796                         tmp_crtc = encoder->base.crtc;
10797
10798                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10799                 }
10800
10801                 if (encoder->new_crtc)
10802                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10803         }
10804
10805         /* Check for pipes that will be enabled/disabled ... */
10806         for_each_intel_crtc(dev, intel_crtc) {
10807                 if (intel_crtc->base.state->enable == intel_crtc->new_enabled)
10808                         continue;
10809
10810                 if (!intel_crtc->new_enabled)
10811                         *disable_pipes |= 1 << intel_crtc->pipe;
10812                 else
10813                         *prepare_pipes |= 1 << intel_crtc->pipe;
10814         }
10815
10816
10817         /* set_mode is also used to update properties on life display pipes. */
10818         intel_crtc = to_intel_crtc(crtc);
10819         if (intel_crtc->new_enabled)
10820                 *prepare_pipes |= 1 << intel_crtc->pipe;
10821
10822         /*
10823          * For simplicity do a full modeset on any pipe where the output routing
10824          * changed. We could be more clever, but that would require us to be
10825          * more careful with calling the relevant encoder->mode_set functions.
10826          */
10827         if (*prepare_pipes)
10828                 *modeset_pipes = *prepare_pipes;
10829
10830         /* ... and mask these out. */
10831         *modeset_pipes &= ~(*disable_pipes);
10832         *prepare_pipes &= ~(*disable_pipes);
10833
10834         /*
10835          * HACK: We don't (yet) fully support global modesets. intel_set_config
10836          * obies this rule, but the modeset restore mode of
10837          * intel_modeset_setup_hw_state does not.
10838          */
10839         *modeset_pipes &= 1 << intel_crtc->pipe;
10840         *prepare_pipes &= 1 << intel_crtc->pipe;
10841
10842         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10843                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10844 }
10845
10846 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10847 {
10848         struct drm_encoder *encoder;
10849         struct drm_device *dev = crtc->dev;
10850
10851         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10852                 if (encoder->crtc == crtc)
10853                         return true;
10854
10855         return false;
10856 }
10857
10858 static void
10859 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10860 {
10861         struct drm_i915_private *dev_priv = dev->dev_private;
10862         struct intel_encoder *intel_encoder;
10863         struct intel_crtc *intel_crtc;
10864         struct drm_connector *connector;
10865
10866         intel_shared_dpll_commit(dev_priv);
10867
10868         for_each_intel_encoder(dev, intel_encoder) {
10869                 if (!intel_encoder->base.crtc)
10870                         continue;
10871
10872                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10873
10874                 if (prepare_pipes & (1 << intel_crtc->pipe))
10875                         intel_encoder->connectors_active = false;
10876         }
10877
10878         intel_modeset_commit_output_state(dev);
10879
10880         /* Double check state. */
10881         for_each_intel_crtc(dev, intel_crtc) {
10882                 WARN_ON(intel_crtc->base.state->enable != intel_crtc_in_use(&intel_crtc->base));
10883                 WARN_ON(intel_crtc->new_config &&
10884                         intel_crtc->new_config != intel_crtc->config);
10885                 WARN_ON(intel_crtc->base.state->enable != !!intel_crtc->new_config);
10886         }
10887
10888         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10889                 if (!connector->encoder || !connector->encoder->crtc)
10890                         continue;
10891
10892                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10893
10894                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10895                         struct drm_property *dpms_property =
10896                                 dev->mode_config.dpms_property;
10897
10898                         connector->dpms = DRM_MODE_DPMS_ON;
10899                         drm_object_property_set_value(&connector->base,
10900                                                          dpms_property,
10901                                                          DRM_MODE_DPMS_ON);
10902
10903                         intel_encoder = to_intel_encoder(connector->encoder);
10904                         intel_encoder->connectors_active = true;
10905                 }
10906         }
10907
10908 }
10909
10910 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10911 {
10912         int diff;
10913
10914         if (clock1 == clock2)
10915                 return true;
10916
10917         if (!clock1 || !clock2)
10918                 return false;
10919
10920         diff = abs(clock1 - clock2);
10921
10922         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10923                 return true;
10924
10925         return false;
10926 }
10927
10928 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10929         list_for_each_entry((intel_crtc), \
10930                             &(dev)->mode_config.crtc_list, \
10931                             base.head) \
10932                 if (mask & (1 <<(intel_crtc)->pipe))
10933
10934 static bool
10935 intel_pipe_config_compare(struct drm_device *dev,
10936                           struct intel_crtc_state *current_config,
10937                           struct intel_crtc_state *pipe_config)
10938 {
10939 #define PIPE_CONF_CHECK_X(name) \
10940         if (current_config->name != pipe_config->name) { \
10941                 DRM_ERROR("mismatch in " #name " " \
10942                           "(expected 0x%08x, found 0x%08x)\n", \
10943                           current_config->name, \
10944                           pipe_config->name); \
10945                 return false; \
10946         }
10947
10948 #define PIPE_CONF_CHECK_I(name) \
10949         if (current_config->name != pipe_config->name) { \
10950                 DRM_ERROR("mismatch in " #name " " \
10951                           "(expected %i, found %i)\n", \
10952                           current_config->name, \
10953                           pipe_config->name); \
10954                 return false; \
10955         }
10956
10957 /* This is required for BDW+ where there is only one set of registers for
10958  * switching between high and low RR.
10959  * This macro can be used whenever a comparison has to be made between one
10960  * hw state and multiple sw state variables.
10961  */
10962 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10963         if ((current_config->name != pipe_config->name) && \
10964                 (current_config->alt_name != pipe_config->name)) { \
10965                         DRM_ERROR("mismatch in " #name " " \
10966                                   "(expected %i or %i, found %i)\n", \
10967                                   current_config->name, \
10968                                   current_config->alt_name, \
10969                                   pipe_config->name); \
10970                         return false; \
10971         }
10972
10973 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10974         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10975                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10976                           "(expected %i, found %i)\n", \
10977                           current_config->name & (mask), \
10978                           pipe_config->name & (mask)); \
10979                 return false; \
10980         }
10981
10982 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10983         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10984                 DRM_ERROR("mismatch in " #name " " \
10985                           "(expected %i, found %i)\n", \
10986                           current_config->name, \
10987                           pipe_config->name); \
10988                 return false; \
10989         }
10990
10991 #define PIPE_CONF_QUIRK(quirk)  \
10992         ((current_config->quirks | pipe_config->quirks) & (quirk))
10993
10994         PIPE_CONF_CHECK_I(cpu_transcoder);
10995
10996         PIPE_CONF_CHECK_I(has_pch_encoder);
10997         PIPE_CONF_CHECK_I(fdi_lanes);
10998         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10999         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
11000         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
11001         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
11002         PIPE_CONF_CHECK_I(fdi_m_n.tu);
11003
11004         PIPE_CONF_CHECK_I(has_dp_encoder);
11005
11006         if (INTEL_INFO(dev)->gen < 8) {
11007                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
11008                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
11009                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
11010                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
11011                 PIPE_CONF_CHECK_I(dp_m_n.tu);
11012
11013                 if (current_config->has_drrs) {
11014                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
11015                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
11016                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
11017                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
11018                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
11019                 }
11020         } else {
11021                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
11022                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
11023                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
11024                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
11025                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
11026         }
11027
11028         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11029         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11030         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11031         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11032         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11033         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11034
11035         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11036         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11037         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11038         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11039         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11040         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11041
11042         PIPE_CONF_CHECK_I(pixel_multiplier);
11043         PIPE_CONF_CHECK_I(has_hdmi_sink);
11044         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
11045             IS_VALLEYVIEW(dev))
11046                 PIPE_CONF_CHECK_I(limited_color_range);
11047         PIPE_CONF_CHECK_I(has_infoframe);
11048
11049         PIPE_CONF_CHECK_I(has_audio);
11050
11051         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11052                               DRM_MODE_FLAG_INTERLACE);
11053
11054         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11055                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11056                                       DRM_MODE_FLAG_PHSYNC);
11057                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11058                                       DRM_MODE_FLAG_NHSYNC);
11059                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11060                                       DRM_MODE_FLAG_PVSYNC);
11061                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11062                                       DRM_MODE_FLAG_NVSYNC);
11063         }
11064
11065         PIPE_CONF_CHECK_I(pipe_src_w);
11066         PIPE_CONF_CHECK_I(pipe_src_h);
11067
11068         /*
11069          * FIXME: BIOS likes to set up a cloned config with lvds+external
11070          * screen. Since we don't yet re-compute the pipe config when moving
11071          * just the lvds port away to another pipe the sw tracking won't match.
11072          *
11073          * Proper atomic modesets with recomputed global state will fix this.
11074          * Until then just don't check gmch state for inherited modes.
11075          */
11076         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
11077                 PIPE_CONF_CHECK_I(gmch_pfit.control);
11078                 /* pfit ratios are autocomputed by the hw on gen4+ */
11079                 if (INTEL_INFO(dev)->gen < 4)
11080                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
11081                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
11082         }
11083
11084         PIPE_CONF_CHECK_I(pch_pfit.enabled);
11085         if (current_config->pch_pfit.enabled) {
11086                 PIPE_CONF_CHECK_I(pch_pfit.pos);
11087                 PIPE_CONF_CHECK_I(pch_pfit.size);
11088         }
11089
11090         /* BDW+ don't expose a synchronous way to read the state */
11091         if (IS_HASWELL(dev))
11092                 PIPE_CONF_CHECK_I(ips_enabled);
11093
11094         PIPE_CONF_CHECK_I(double_wide);
11095
11096         PIPE_CONF_CHECK_X(ddi_pll_sel);
11097
11098         PIPE_CONF_CHECK_I(shared_dpll);
11099         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11100         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11101         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11102         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11103         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11104         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11105         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11106         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11107
11108         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
11109                 PIPE_CONF_CHECK_I(pipe_bpp);
11110
11111         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11112         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11113
11114 #undef PIPE_CONF_CHECK_X
11115 #undef PIPE_CONF_CHECK_I
11116 #undef PIPE_CONF_CHECK_I_ALT
11117 #undef PIPE_CONF_CHECK_FLAGS
11118 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11119 #undef PIPE_CONF_QUIRK
11120
11121         return true;
11122 }
11123
11124 static void check_wm_state(struct drm_device *dev)
11125 {
11126         struct drm_i915_private *dev_priv = dev->dev_private;
11127         struct skl_ddb_allocation hw_ddb, *sw_ddb;
11128         struct intel_crtc *intel_crtc;
11129         int plane;
11130
11131         if (INTEL_INFO(dev)->gen < 9)
11132                 return;
11133
11134         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11135         sw_ddb = &dev_priv->wm.skl_hw.ddb;
11136
11137         for_each_intel_crtc(dev, intel_crtc) {
11138                 struct skl_ddb_entry *hw_entry, *sw_entry;
11139                 const enum pipe pipe = intel_crtc->pipe;
11140
11141                 if (!intel_crtc->active)
11142                         continue;
11143
11144                 /* planes */
11145                 for_each_plane(dev_priv, pipe, plane) {
11146                         hw_entry = &hw_ddb.plane[pipe][plane];
11147                         sw_entry = &sw_ddb->plane[pipe][plane];
11148
11149                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
11150                                 continue;
11151
11152                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
11153                                   "(expected (%u,%u), found (%u,%u))\n",
11154                                   pipe_name(pipe), plane + 1,
11155                                   sw_entry->start, sw_entry->end,
11156                                   hw_entry->start, hw_entry->end);
11157                 }
11158
11159                 /* cursor */
11160                 hw_entry = &hw_ddb.cursor[pipe];
11161                 sw_entry = &sw_ddb->cursor[pipe];
11162
11163                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11164                         continue;
11165
11166                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
11167                           "(expected (%u,%u), found (%u,%u))\n",
11168                           pipe_name(pipe),
11169                           sw_entry->start, sw_entry->end,
11170                           hw_entry->start, hw_entry->end);
11171         }
11172 }
11173
11174 static void
11175 check_connector_state(struct drm_device *dev)
11176 {
11177         struct intel_connector *connector;
11178
11179         for_each_intel_connector(dev, connector) {
11180                 /* This also checks the encoder/connector hw state with the
11181                  * ->get_hw_state callbacks. */
11182                 intel_connector_check_state(connector);
11183
11184                 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
11185                      "connector's staged encoder doesn't match current encoder\n");
11186         }
11187 }
11188
11189 static void
11190 check_encoder_state(struct drm_device *dev)
11191 {
11192         struct intel_encoder *encoder;
11193         struct intel_connector *connector;
11194
11195         for_each_intel_encoder(dev, encoder) {
11196                 bool enabled = false;
11197                 bool active = false;
11198                 enum pipe pipe, tracked_pipe;
11199
11200                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11201                               encoder->base.base.id,
11202                               encoder->base.name);
11203
11204                 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
11205                      "encoder's stage crtc doesn't match current crtc\n");
11206                 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
11207                      "encoder's active_connectors set, but no crtc\n");
11208
11209                 for_each_intel_connector(dev, connector) {
11210                         if (connector->base.encoder != &encoder->base)
11211                                 continue;
11212                         enabled = true;
11213                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
11214                                 active = true;
11215                 }
11216                 /*
11217                  * for MST connectors if we unplug the connector is gone
11218                  * away but the encoder is still connected to a crtc
11219                  * until a modeset happens in response to the hotplug.
11220                  */
11221                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
11222                         continue;
11223
11224                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
11225                      "encoder's enabled state mismatch "
11226                      "(expected %i, found %i)\n",
11227                      !!encoder->base.crtc, enabled);
11228                 I915_STATE_WARN(active && !encoder->base.crtc,
11229                      "active encoder with no crtc\n");
11230
11231                 I915_STATE_WARN(encoder->connectors_active != active,
11232                      "encoder's computed active state doesn't match tracked active state "
11233                      "(expected %i, found %i)\n", active, encoder->connectors_active);
11234
11235                 active = encoder->get_hw_state(encoder, &pipe);
11236                 I915_STATE_WARN(active != encoder->connectors_active,
11237                      "encoder's hw state doesn't match sw tracking "
11238                      "(expected %i, found %i)\n",
11239                      encoder->connectors_active, active);
11240
11241                 if (!encoder->base.crtc)
11242                         continue;
11243
11244                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
11245                 I915_STATE_WARN(active && pipe != tracked_pipe,
11246                      "active encoder's pipe doesn't match"
11247                      "(expected %i, found %i)\n",
11248                      tracked_pipe, pipe);
11249
11250         }
11251 }
11252
11253 static void
11254 check_crtc_state(struct drm_device *dev)
11255 {
11256         struct drm_i915_private *dev_priv = dev->dev_private;
11257         struct intel_crtc *crtc;
11258         struct intel_encoder *encoder;
11259         struct intel_crtc_state pipe_config;
11260
11261         for_each_intel_crtc(dev, crtc) {
11262                 bool enabled = false;
11263                 bool active = false;
11264
11265                 memset(&pipe_config, 0, sizeof(pipe_config));
11266
11267                 DRM_DEBUG_KMS("[CRTC:%d]\n",
11268                               crtc->base.base.id);
11269
11270                 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
11271                      "active crtc, but not enabled in sw tracking\n");
11272
11273                 for_each_intel_encoder(dev, encoder) {
11274                         if (encoder->base.crtc != &crtc->base)
11275                                 continue;
11276                         enabled = true;
11277                         if (encoder->connectors_active)
11278                                 active = true;
11279                 }
11280
11281                 I915_STATE_WARN(active != crtc->active,
11282                      "crtc's computed active state doesn't match tracked active state "
11283                      "(expected %i, found %i)\n", active, crtc->active);
11284                 I915_STATE_WARN(enabled != crtc->base.state->enable,
11285                      "crtc's computed enabled state doesn't match tracked enabled state "
11286                      "(expected %i, found %i)\n", enabled,
11287                                 crtc->base.state->enable);
11288
11289                 active = dev_priv->display.get_pipe_config(crtc,
11290                                                            &pipe_config);
11291
11292                 /* hw state is inconsistent with the pipe quirk */
11293                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
11294                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
11295                         active = crtc->active;
11296
11297                 for_each_intel_encoder(dev, encoder) {
11298                         enum pipe pipe;
11299                         if (encoder->base.crtc != &crtc->base)
11300                                 continue;
11301                         if (encoder->get_hw_state(encoder, &pipe))
11302                                 encoder->get_config(encoder, &pipe_config);
11303                 }
11304
11305                 I915_STATE_WARN(crtc->active != active,
11306                      "crtc active state doesn't match with hw state "
11307                      "(expected %i, found %i)\n", crtc->active, active);
11308
11309                 if (active &&
11310                     !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
11311                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
11312                         intel_dump_pipe_config(crtc, &pipe_config,
11313                                                "[hw state]");
11314                         intel_dump_pipe_config(crtc, crtc->config,
11315                                                "[sw state]");
11316                 }
11317         }
11318 }
11319
11320 static void
11321 check_shared_dpll_state(struct drm_device *dev)
11322 {
11323         struct drm_i915_private *dev_priv = dev->dev_private;
11324         struct intel_crtc *crtc;
11325         struct intel_dpll_hw_state dpll_hw_state;
11326         int i;
11327
11328         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11329                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11330                 int enabled_crtcs = 0, active_crtcs = 0;
11331                 bool active;
11332
11333                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11334
11335                 DRM_DEBUG_KMS("%s\n", pll->name);
11336
11337                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
11338
11339                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
11340                      "more active pll users than references: %i vs %i\n",
11341                      pll->active, hweight32(pll->config.crtc_mask));
11342                 I915_STATE_WARN(pll->active && !pll->on,
11343                      "pll in active use but not on in sw tracking\n");
11344                 I915_STATE_WARN(pll->on && !pll->active,
11345                      "pll in on but not on in use in sw tracking\n");
11346                 I915_STATE_WARN(pll->on != active,
11347                      "pll on state mismatch (expected %i, found %i)\n",
11348                      pll->on, active);
11349
11350                 for_each_intel_crtc(dev, crtc) {
11351                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
11352                                 enabled_crtcs++;
11353                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11354                                 active_crtcs++;
11355                 }
11356                 I915_STATE_WARN(pll->active != active_crtcs,
11357                      "pll active crtcs mismatch (expected %i, found %i)\n",
11358                      pll->active, active_crtcs);
11359                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
11360                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
11361                      hweight32(pll->config.crtc_mask), enabled_crtcs);
11362
11363                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
11364                                        sizeof(dpll_hw_state)),
11365                      "pll hw state mismatch\n");
11366         }
11367 }
11368
11369 void
11370 intel_modeset_check_state(struct drm_device *dev)
11371 {
11372         check_wm_state(dev);
11373         check_connector_state(dev);
11374         check_encoder_state(dev);
11375         check_crtc_state(dev);
11376         check_shared_dpll_state(dev);
11377 }
11378
11379 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
11380                                      int dotclock)
11381 {
11382         /*
11383          * FDI already provided one idea for the dotclock.
11384          * Yell if the encoder disagrees.
11385          */
11386         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
11387              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11388              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
11389 }
11390
11391 static void update_scanline_offset(struct intel_crtc *crtc)
11392 {
11393         struct drm_device *dev = crtc->base.dev;
11394
11395         /*
11396          * The scanline counter increments at the leading edge of hsync.
11397          *
11398          * On most platforms it starts counting from vtotal-1 on the
11399          * first active line. That means the scanline counter value is
11400          * always one less than what we would expect. Ie. just after
11401          * start of vblank, which also occurs at start of hsync (on the
11402          * last active line), the scanline counter will read vblank_start-1.
11403          *
11404          * On gen2 the scanline counter starts counting from 1 instead
11405          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11406          * to keep the value positive), instead of adding one.
11407          *
11408          * On HSW+ the behaviour of the scanline counter depends on the output
11409          * type. For DP ports it behaves like most other platforms, but on HDMI
11410          * there's an extra 1 line difference. So we need to add two instead of
11411          * one to the value.
11412          */
11413         if (IS_GEN2(dev)) {
11414                 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
11415                 int vtotal;
11416
11417                 vtotal = mode->crtc_vtotal;
11418                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11419                         vtotal /= 2;
11420
11421                 crtc->scanline_offset = vtotal - 1;
11422         } else if (HAS_DDI(dev) &&
11423                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
11424                 crtc->scanline_offset = 2;
11425         } else
11426                 crtc->scanline_offset = 1;
11427 }
11428
11429 static struct intel_crtc_state *
11430 intel_modeset_compute_config(struct drm_crtc *crtc,
11431                              struct drm_display_mode *mode,
11432                              struct drm_framebuffer *fb,
11433                              struct drm_atomic_state *state,
11434                              unsigned *modeset_pipes,
11435                              unsigned *prepare_pipes,
11436                              unsigned *disable_pipes)
11437 {
11438         struct drm_device *dev = crtc->dev;
11439         struct intel_crtc_state *pipe_config = NULL;
11440         struct intel_crtc *intel_crtc;
11441         int ret = 0;
11442
11443         ret = drm_atomic_add_affected_connectors(state, crtc);
11444         if (ret)
11445                 return ERR_PTR(ret);
11446
11447         intel_modeset_affected_pipes(crtc, modeset_pipes,
11448                                      prepare_pipes, disable_pipes);
11449
11450         for_each_intel_crtc_masked(dev, *disable_pipes, intel_crtc) {
11451                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
11452                 if (IS_ERR(pipe_config))
11453                         return pipe_config;
11454
11455                 pipe_config->base.enable = false;
11456         }
11457
11458         /*
11459          * Note this needs changes when we start tracking multiple modes
11460          * and crtcs.  At that point we'll need to compute the whole config
11461          * (i.e. one pipe_config for each crtc) rather than just the one
11462          * for this crtc.
11463          */
11464         for_each_intel_crtc_masked(dev, *modeset_pipes, intel_crtc) {
11465                 /* FIXME: For now we still expect modeset_pipes has at most
11466                  * one bit set. */
11467                 if (WARN_ON(&intel_crtc->base != crtc))
11468                         continue;
11469
11470                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode, state);
11471                 if (IS_ERR(pipe_config))
11472                         return pipe_config;
11473
11474                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11475                                        "[modeset]");
11476         }
11477
11478         return intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));;
11479 }
11480
11481 static int __intel_set_mode_setup_plls(struct drm_device *dev,
11482                                        unsigned modeset_pipes,
11483                                        unsigned disable_pipes)
11484 {
11485         struct drm_i915_private *dev_priv = to_i915(dev);
11486         unsigned clear_pipes = modeset_pipes | disable_pipes;
11487         struct intel_crtc *intel_crtc;
11488         int ret = 0;
11489
11490         if (!dev_priv->display.crtc_compute_clock)
11491                 return 0;
11492
11493         ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11494         if (ret)
11495                 goto done;
11496
11497         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11498                 struct intel_crtc_state *state = intel_crtc->new_config;
11499                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11500                                                            state);
11501                 if (ret) {
11502                         intel_shared_dpll_abort_config(dev_priv);
11503                         goto done;
11504                 }
11505         }
11506
11507 done:
11508         return ret;
11509 }
11510
11511 static int __intel_set_mode(struct drm_crtc *crtc,
11512                             struct drm_display_mode *mode,
11513                             int x, int y, struct drm_framebuffer *fb,
11514                             struct intel_crtc_state *pipe_config,
11515                             unsigned modeset_pipes,
11516                             unsigned prepare_pipes,
11517                             unsigned disable_pipes)
11518 {
11519         struct drm_device *dev = crtc->dev;
11520         struct drm_i915_private *dev_priv = dev->dev_private;
11521         struct drm_display_mode *saved_mode;
11522         struct intel_crtc_state *crtc_state_copy = NULL;
11523         struct intel_crtc *intel_crtc;
11524         int ret = 0;
11525
11526         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11527         if (!saved_mode)
11528                 return -ENOMEM;
11529
11530         crtc_state_copy = kmalloc(sizeof(*crtc_state_copy), GFP_KERNEL);
11531         if (!crtc_state_copy) {
11532                 ret = -ENOMEM;
11533                 goto done;
11534         }
11535
11536         *saved_mode = crtc->mode;
11537
11538         if (modeset_pipes)
11539                 to_intel_crtc(crtc)->new_config = pipe_config;
11540
11541         /*
11542          * See if the config requires any additional preparation, e.g.
11543          * to adjust global state with pipes off.  We need to do this
11544          * here so we can get the modeset_pipe updated config for the new
11545          * mode set on this crtc.  For other crtcs we need to use the
11546          * adjusted_mode bits in the crtc directly.
11547          */
11548         if (IS_VALLEYVIEW(dev)) {
11549                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11550
11551                 /* may have added more to prepare_pipes than we should */
11552                 prepare_pipes &= ~disable_pipes;
11553         }
11554
11555         ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11556         if (ret)
11557                 goto done;
11558
11559         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11560                 intel_crtc_disable(&intel_crtc->base);
11561
11562         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11563                 if (intel_crtc->base.state->enable)
11564                         dev_priv->display.crtc_disable(&intel_crtc->base);
11565         }
11566
11567         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11568          * to set it here already despite that we pass it down the callchain.
11569          *
11570          * Note we'll need to fix this up when we start tracking multiple
11571          * pipes; here we assume a single modeset_pipe and only track the
11572          * single crtc and mode.
11573          */
11574         if (modeset_pipes) {
11575                 crtc->mode = *mode;
11576                 /* mode_set/enable/disable functions rely on a correct pipe
11577                  * config. */
11578                 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
11579
11580                 /*
11581                  * Calculate and store various constants which
11582                  * are later needed by vblank and swap-completion
11583                  * timestamping. They are derived from true hwmode.
11584                  */
11585                 drm_calc_timestamping_constants(crtc,
11586                                                 &pipe_config->base.adjusted_mode);
11587         }
11588
11589         /* Only after disabling all output pipelines that will be changed can we
11590          * update the the output configuration. */
11591         intel_modeset_update_state(dev, prepare_pipes);
11592
11593         modeset_update_crtc_power_domains(pipe_config->base.state);
11594
11595         /* Set up the DPLL and any encoders state that needs to adjust or depend
11596          * on the DPLL.
11597          */
11598         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11599                 struct drm_plane *primary = intel_crtc->base.primary;
11600                 int vdisplay, hdisplay;
11601
11602                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11603                 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11604                                                    fb, 0, 0,
11605                                                    hdisplay, vdisplay,
11606                                                    x << 16, y << 16,
11607                                                    hdisplay << 16, vdisplay << 16);
11608         }
11609
11610         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11611         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11612                 update_scanline_offset(intel_crtc);
11613
11614                 dev_priv->display.crtc_enable(&intel_crtc->base);
11615         }
11616
11617         /* FIXME: add subpixel order */
11618 done:
11619         if (ret && crtc->state->enable)
11620                 crtc->mode = *saved_mode;
11621
11622         if (ret == 0 && pipe_config) {
11623                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11624
11625                 /* The pipe_config will be freed with the atomic state, so
11626                  * make a copy. */
11627                 memcpy(crtc_state_copy, intel_crtc->config,
11628                        sizeof *crtc_state_copy);
11629                 intel_crtc->config = crtc_state_copy;
11630                 intel_crtc->base.state = &crtc_state_copy->base;
11631
11632                 if (modeset_pipes)
11633                         intel_crtc->new_config = intel_crtc->config;
11634         } else {
11635                 kfree(crtc_state_copy);
11636         }
11637
11638         kfree(saved_mode);
11639         return ret;
11640 }
11641
11642 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11643                                 struct drm_display_mode *mode,
11644                                 int x, int y, struct drm_framebuffer *fb,
11645                                 struct intel_crtc_state *pipe_config,
11646                                 unsigned modeset_pipes,
11647                                 unsigned prepare_pipes,
11648                                 unsigned disable_pipes)
11649 {
11650         int ret;
11651
11652         ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11653                                prepare_pipes, disable_pipes);
11654
11655         if (ret == 0)
11656                 intel_modeset_check_state(crtc->dev);
11657
11658         return ret;
11659 }
11660
11661 static int intel_set_mode(struct drm_crtc *crtc,
11662                           struct drm_display_mode *mode,
11663                           int x, int y, struct drm_framebuffer *fb,
11664                           struct drm_atomic_state *state)
11665 {
11666         struct intel_crtc_state *pipe_config;
11667         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11668         int ret = 0;
11669
11670         pipe_config = intel_modeset_compute_config(crtc, mode, fb, state,
11671                                                    &modeset_pipes,
11672                                                    &prepare_pipes,
11673                                                    &disable_pipes);
11674
11675         if (IS_ERR(pipe_config)) {
11676                 ret = PTR_ERR(pipe_config);
11677                 goto out;
11678         }
11679
11680         ret = intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11681                                    modeset_pipes, prepare_pipes,
11682                                    disable_pipes);
11683         if (ret)
11684                 goto out;
11685
11686 out:
11687         return ret;
11688 }
11689
11690 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11691 {
11692         struct drm_device *dev = crtc->dev;
11693         struct drm_atomic_state *state;
11694         struct intel_encoder *encoder;
11695         struct intel_connector *connector;
11696         struct drm_connector_state *connector_state;
11697
11698         state = drm_atomic_state_alloc(dev);
11699         if (!state) {
11700                 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
11701                               crtc->base.id);
11702                 return;
11703         }
11704
11705         state->acquire_ctx = dev->mode_config.acquire_ctx;
11706
11707         /* The force restore path in the HW readout code relies on the staged
11708          * config still keeping the user requested config while the actual
11709          * state has been overwritten by the configuration read from HW. We
11710          * need to copy the staged config to the atomic state, otherwise the
11711          * mode set will just reapply the state the HW is already in. */
11712         for_each_intel_encoder(dev, encoder) {
11713                 if (&encoder->new_crtc->base != crtc)
11714                         continue;
11715
11716                 for_each_intel_connector(dev, connector) {
11717                         if (connector->new_encoder != encoder)
11718                                 continue;
11719
11720                         connector_state = drm_atomic_get_connector_state(state, &connector->base);
11721                         if (IS_ERR(connector_state)) {
11722                                 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
11723                                               connector->base.base.id,
11724                                               connector->base.name,
11725                                               PTR_ERR(connector_state));
11726                                 continue;
11727                         }
11728
11729                         connector_state->crtc = crtc;
11730                         connector_state->best_encoder = &encoder->base;
11731                 }
11732         }
11733
11734         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb,
11735                        state);
11736
11737         drm_atomic_state_free(state);
11738 }
11739
11740 #undef for_each_intel_crtc_masked
11741
11742 static void intel_set_config_free(struct intel_set_config *config)
11743 {
11744         if (!config)
11745                 return;
11746
11747         kfree(config->save_connector_encoders);
11748         kfree(config->save_encoder_crtcs);
11749         kfree(config->save_crtc_enabled);
11750         kfree(config);
11751 }
11752
11753 static int intel_set_config_save_state(struct drm_device *dev,
11754                                        struct intel_set_config *config)
11755 {
11756         struct drm_crtc *crtc;
11757         struct drm_encoder *encoder;
11758         struct drm_connector *connector;
11759         int count;
11760
11761         config->save_crtc_enabled =
11762                 kcalloc(dev->mode_config.num_crtc,
11763                         sizeof(bool), GFP_KERNEL);
11764         if (!config->save_crtc_enabled)
11765                 return -ENOMEM;
11766
11767         config->save_encoder_crtcs =
11768                 kcalloc(dev->mode_config.num_encoder,
11769                         sizeof(struct drm_crtc *), GFP_KERNEL);
11770         if (!config->save_encoder_crtcs)
11771                 return -ENOMEM;
11772
11773         config->save_connector_encoders =
11774                 kcalloc(dev->mode_config.num_connector,
11775                         sizeof(struct drm_encoder *), GFP_KERNEL);
11776         if (!config->save_connector_encoders)
11777                 return -ENOMEM;
11778
11779         /* Copy data. Note that driver private data is not affected.
11780          * Should anything bad happen only the expected state is
11781          * restored, not the drivers personal bookkeeping.
11782          */
11783         count = 0;
11784         for_each_crtc(dev, crtc) {
11785                 config->save_crtc_enabled[count++] = crtc->state->enable;
11786         }
11787
11788         count = 0;
11789         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11790                 config->save_encoder_crtcs[count++] = encoder->crtc;
11791         }
11792
11793         count = 0;
11794         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11795                 config->save_connector_encoders[count++] = connector->encoder;
11796         }
11797
11798         return 0;
11799 }
11800
11801 static void intel_set_config_restore_state(struct drm_device *dev,
11802                                            struct intel_set_config *config)
11803 {
11804         struct intel_crtc *crtc;
11805         struct intel_encoder *encoder;
11806         struct intel_connector *connector;
11807         int count;
11808
11809         count = 0;
11810         for_each_intel_crtc(dev, crtc) {
11811                 crtc->new_enabled = config->save_crtc_enabled[count++];
11812
11813                 if (crtc->new_enabled)
11814                         crtc->new_config = crtc->config;
11815                 else
11816                         crtc->new_config = NULL;
11817         }
11818
11819         count = 0;
11820         for_each_intel_encoder(dev, encoder) {
11821                 encoder->new_crtc =
11822                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11823         }
11824
11825         count = 0;
11826         for_each_intel_connector(dev, connector) {
11827                 connector->new_encoder =
11828                         to_intel_encoder(config->save_connector_encoders[count++]);
11829         }
11830 }
11831
11832 static bool
11833 is_crtc_connector_off(struct drm_mode_set *set)
11834 {
11835         int i;
11836
11837         if (set->num_connectors == 0)
11838                 return false;
11839
11840         if (WARN_ON(set->connectors == NULL))
11841                 return false;
11842
11843         for (i = 0; i < set->num_connectors; i++)
11844                 if (set->connectors[i]->encoder &&
11845                     set->connectors[i]->encoder->crtc == set->crtc &&
11846                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11847                         return true;
11848
11849         return false;
11850 }
11851
11852 static void
11853 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11854                                       struct intel_set_config *config)
11855 {
11856
11857         /* We should be able to check here if the fb has the same properties
11858          * and then just flip_or_move it */
11859         if (is_crtc_connector_off(set)) {
11860                 config->mode_changed = true;
11861         } else if (set->crtc->primary->fb != set->fb) {
11862                 /*
11863                  * If we have no fb, we can only flip as long as the crtc is
11864                  * active, otherwise we need a full mode set.  The crtc may
11865                  * be active if we've only disabled the primary plane, or
11866                  * in fastboot situations.
11867                  */
11868                 if (set->crtc->primary->fb == NULL) {
11869                         struct intel_crtc *intel_crtc =
11870                                 to_intel_crtc(set->crtc);
11871
11872                         if (intel_crtc->active) {
11873                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11874                                 config->fb_changed = true;
11875                         } else {
11876                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11877                                 config->mode_changed = true;
11878                         }
11879                 } else if (set->fb == NULL) {
11880                         config->mode_changed = true;
11881                 } else if (set->fb->pixel_format !=
11882                            set->crtc->primary->fb->pixel_format) {
11883                         config->mode_changed = true;
11884                 } else {
11885                         config->fb_changed = true;
11886                 }
11887         }
11888
11889         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11890                 config->fb_changed = true;
11891
11892         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11893                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11894                 drm_mode_debug_printmodeline(&set->crtc->mode);
11895                 drm_mode_debug_printmodeline(set->mode);
11896                 config->mode_changed = true;
11897         }
11898
11899         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11900                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11901 }
11902
11903 static int
11904 intel_modeset_stage_output_state(struct drm_device *dev,
11905                                  struct drm_mode_set *set,
11906                                  struct intel_set_config *config,
11907                                  struct drm_atomic_state *state)
11908 {
11909         struct intel_connector *connector;
11910         struct drm_connector_state *connector_state;
11911         struct intel_encoder *encoder;
11912         struct intel_crtc *crtc;
11913         int ro;
11914
11915         /* The upper layers ensure that we either disable a crtc or have a list
11916          * of connectors. For paranoia, double-check this. */
11917         WARN_ON(!set->fb && (set->num_connectors != 0));
11918         WARN_ON(set->fb && (set->num_connectors == 0));
11919
11920         for_each_intel_connector(dev, connector) {
11921                 /* Otherwise traverse passed in connector list and get encoders
11922                  * for them. */
11923                 for (ro = 0; ro < set->num_connectors; ro++) {
11924                         if (set->connectors[ro] == &connector->base) {
11925                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11926                                 break;
11927                         }
11928                 }
11929
11930                 /* If we disable the crtc, disable all its connectors. Also, if
11931                  * the connector is on the changing crtc but not on the new
11932                  * connector list, disable it. */
11933                 if ((!set->fb || ro == set->num_connectors) &&
11934                     connector->base.encoder &&
11935                     connector->base.encoder->crtc == set->crtc) {
11936                         connector->new_encoder = NULL;
11937
11938                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11939                                 connector->base.base.id,
11940                                 connector->base.name);
11941                 }
11942
11943
11944                 if (&connector->new_encoder->base != connector->base.encoder) {
11945                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] encoder changed, full mode switch\n",
11946                                       connector->base.base.id,
11947                                       connector->base.name);
11948                         config->mode_changed = true;
11949                 }
11950         }
11951         /* connector->new_encoder is now updated for all connectors. */
11952
11953         /* Update crtc of enabled connectors. */
11954         for_each_intel_connector(dev, connector) {
11955                 struct drm_crtc *new_crtc;
11956
11957                 if (!connector->new_encoder)
11958                         continue;
11959
11960                 new_crtc = connector->new_encoder->base.crtc;
11961
11962                 for (ro = 0; ro < set->num_connectors; ro++) {
11963                         if (set->connectors[ro] == &connector->base)
11964                                 new_crtc = set->crtc;
11965                 }
11966
11967                 /* Make sure the new CRTC will work with the encoder */
11968                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11969                                          new_crtc)) {
11970                         return -EINVAL;
11971                 }
11972                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11973
11974                 connector_state =
11975                         drm_atomic_get_connector_state(state, &connector->base);
11976                 if (IS_ERR(connector_state))
11977                         return PTR_ERR(connector_state);
11978
11979                 connector_state->crtc = new_crtc;
11980                 connector_state->best_encoder = &connector->new_encoder->base;
11981
11982                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11983                         connector->base.base.id,
11984                         connector->base.name,
11985                         new_crtc->base.id);
11986         }
11987
11988         /* Check for any encoders that needs to be disabled. */
11989         for_each_intel_encoder(dev, encoder) {
11990                 int num_connectors = 0;
11991                 for_each_intel_connector(dev, connector) {
11992                         if (connector->new_encoder == encoder) {
11993                                 WARN_ON(!connector->new_encoder->new_crtc);
11994                                 num_connectors++;
11995                         }
11996                 }
11997
11998                 if (num_connectors == 0)
11999                         encoder->new_crtc = NULL;
12000                 else if (num_connectors > 1)
12001                         return -EINVAL;
12002
12003                 /* Only now check for crtc changes so we don't miss encoders
12004                  * that will be disabled. */
12005                 if (&encoder->new_crtc->base != encoder->base.crtc) {
12006                         DRM_DEBUG_KMS("[ENCODER:%d:%s] crtc changed, full mode switch\n",
12007                                       encoder->base.base.id,
12008                                       encoder->base.name);
12009                         config->mode_changed = true;
12010                 }
12011         }
12012         /* Now we've also updated encoder->new_crtc for all encoders. */
12013         for_each_intel_connector(dev, connector) {
12014                 connector_state =
12015                         drm_atomic_get_connector_state(state, &connector->base);
12016                 if (IS_ERR(connector_state))
12017                         return PTR_ERR(connector_state);
12018
12019                 if (connector->new_encoder) {
12020                         if (connector->new_encoder != connector->encoder)
12021                                 connector->encoder = connector->new_encoder;
12022                 } else {
12023                         connector_state->crtc = NULL;
12024                 }
12025         }
12026         for_each_intel_crtc(dev, crtc) {
12027                 crtc->new_enabled = false;
12028
12029                 for_each_intel_encoder(dev, encoder) {
12030                         if (encoder->new_crtc == crtc) {
12031                                 crtc->new_enabled = true;
12032                                 break;
12033                         }
12034                 }
12035
12036                 if (crtc->new_enabled != crtc->base.state->enable) {
12037                         DRM_DEBUG_KMS("[CRTC:%d] %sabled, full mode switch\n",
12038                                       crtc->base.base.id,
12039                                       crtc->new_enabled ? "en" : "dis");
12040                         config->mode_changed = true;
12041                 }
12042
12043                 if (crtc->new_enabled)
12044                         crtc->new_config = crtc->config;
12045                 else
12046                         crtc->new_config = NULL;
12047         }
12048
12049         return 0;
12050 }
12051
12052 static void disable_crtc_nofb(struct intel_crtc *crtc)
12053 {
12054         struct drm_device *dev = crtc->base.dev;
12055         struct intel_encoder *encoder;
12056         struct intel_connector *connector;
12057
12058         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
12059                       pipe_name(crtc->pipe));
12060
12061         for_each_intel_connector(dev, connector) {
12062                 if (connector->new_encoder &&
12063                     connector->new_encoder->new_crtc == crtc)
12064                         connector->new_encoder = NULL;
12065         }
12066
12067         for_each_intel_encoder(dev, encoder) {
12068                 if (encoder->new_crtc == crtc)
12069                         encoder->new_crtc = NULL;
12070         }
12071
12072         crtc->new_enabled = false;
12073         crtc->new_config = NULL;
12074 }
12075
12076 static int intel_crtc_set_config(struct drm_mode_set *set)
12077 {
12078         struct drm_device *dev;
12079         struct drm_mode_set save_set;
12080         struct drm_atomic_state *state = NULL;
12081         struct intel_set_config *config;
12082         struct intel_crtc_state *pipe_config;
12083         unsigned modeset_pipes, prepare_pipes, disable_pipes;
12084         int ret;
12085
12086         BUG_ON(!set);
12087         BUG_ON(!set->crtc);
12088         BUG_ON(!set->crtc->helper_private);
12089
12090         /* Enforce sane interface api - has been abused by the fb helper. */
12091         BUG_ON(!set->mode && set->fb);
12092         BUG_ON(set->fb && set->num_connectors == 0);
12093
12094         if (set->fb) {
12095                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
12096                                 set->crtc->base.id, set->fb->base.id,
12097                                 (int)set->num_connectors, set->x, set->y);
12098         } else {
12099                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
12100         }
12101
12102         dev = set->crtc->dev;
12103
12104         ret = -ENOMEM;
12105         config = kzalloc(sizeof(*config), GFP_KERNEL);
12106         if (!config)
12107                 goto out_config;
12108
12109         ret = intel_set_config_save_state(dev, config);
12110         if (ret)
12111                 goto out_config;
12112
12113         save_set.crtc = set->crtc;
12114         save_set.mode = &set->crtc->mode;
12115         save_set.x = set->crtc->x;
12116         save_set.y = set->crtc->y;
12117         save_set.fb = set->crtc->primary->fb;
12118
12119         /* Compute whether we need a full modeset, only an fb base update or no
12120          * change at all. In the future we might also check whether only the
12121          * mode changed, e.g. for LVDS where we only change the panel fitter in
12122          * such cases. */
12123         intel_set_config_compute_mode_changes(set, config);
12124
12125         state = drm_atomic_state_alloc(dev);
12126         if (!state) {
12127                 ret = -ENOMEM;
12128                 goto out_config;
12129         }
12130
12131         state->acquire_ctx = dev->mode_config.acquire_ctx;
12132
12133         ret = intel_modeset_stage_output_state(dev, set, config, state);
12134         if (ret)
12135                 goto fail;
12136
12137         pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
12138                                                    set->fb, state,
12139                                                    &modeset_pipes,
12140                                                    &prepare_pipes,
12141                                                    &disable_pipes);
12142         if (IS_ERR(pipe_config)) {
12143                 ret = PTR_ERR(pipe_config);
12144                 goto fail;
12145         } else if (pipe_config) {
12146                 if (pipe_config->has_audio !=
12147                     to_intel_crtc(set->crtc)->config->has_audio)
12148                         config->mode_changed = true;
12149
12150                 /*
12151                  * Note we have an issue here with infoframes: current code
12152                  * only updates them on the full mode set path per hw
12153                  * requirements.  So here we should be checking for any
12154                  * required changes and forcing a mode set.
12155                  */
12156         }
12157
12158         intel_update_pipe_size(to_intel_crtc(set->crtc));
12159
12160         if (config->mode_changed) {
12161                 ret = intel_set_mode_pipes(set->crtc, set->mode,
12162                                            set->x, set->y, set->fb, pipe_config,
12163                                            modeset_pipes, prepare_pipes,
12164                                            disable_pipes);
12165         } else if (config->fb_changed) {
12166                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
12167                 struct drm_plane *primary = set->crtc->primary;
12168                 int vdisplay, hdisplay;
12169
12170                 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
12171                 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
12172                                                    0, 0, hdisplay, vdisplay,
12173                                                    set->x << 16, set->y << 16,
12174                                                    hdisplay << 16, vdisplay << 16);
12175
12176                 /*
12177                  * We need to make sure the primary plane is re-enabled if it
12178                  * has previously been turned off.
12179                  */
12180                 if (!intel_crtc->primary_enabled && ret == 0) {
12181                         WARN_ON(!intel_crtc->active);
12182                         intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
12183                 }
12184
12185                 /*
12186                  * In the fastboot case this may be our only check of the
12187                  * state after boot.  It would be better to only do it on
12188                  * the first update, but we don't have a nice way of doing that
12189                  * (and really, set_config isn't used much for high freq page
12190                  * flipping, so increasing its cost here shouldn't be a big
12191                  * deal).
12192                  */
12193                 if (i915.fastboot && ret == 0)
12194                         intel_modeset_check_state(set->crtc->dev);
12195         }
12196
12197         if (ret) {
12198                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12199                               set->crtc->base.id, ret);
12200 fail:
12201                 intel_set_config_restore_state(dev, config);
12202
12203                 drm_atomic_state_clear(state);
12204
12205                 /*
12206                  * HACK: if the pipe was on, but we didn't have a framebuffer,
12207                  * force the pipe off to avoid oopsing in the modeset code
12208                  * due to fb==NULL. This should only happen during boot since
12209                  * we don't yet reconstruct the FB from the hardware state.
12210                  */
12211                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
12212                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
12213
12214                 /* Try to restore the config */
12215                 if (config->mode_changed &&
12216                     intel_set_mode(save_set.crtc, save_set.mode,
12217                                    save_set.x, save_set.y, save_set.fb,
12218                                    state))
12219                         DRM_ERROR("failed to restore config after modeset failure\n");
12220         }
12221
12222 out_config:
12223         if (state)
12224                 drm_atomic_state_free(state);
12225
12226         intel_set_config_free(config);
12227         return ret;
12228 }
12229
12230 static const struct drm_crtc_funcs intel_crtc_funcs = {
12231         .gamma_set = intel_crtc_gamma_set,
12232         .set_config = intel_crtc_set_config,
12233         .destroy = intel_crtc_destroy,
12234         .page_flip = intel_crtc_page_flip,
12235         .atomic_duplicate_state = intel_crtc_duplicate_state,
12236         .atomic_destroy_state = intel_crtc_destroy_state,
12237 };
12238
12239 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
12240                                       struct intel_shared_dpll *pll,
12241                                       struct intel_dpll_hw_state *hw_state)
12242 {
12243         uint32_t val;
12244
12245         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
12246                 return false;
12247
12248         val = I915_READ(PCH_DPLL(pll->id));
12249         hw_state->dpll = val;
12250         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
12251         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
12252
12253         return val & DPLL_VCO_ENABLE;
12254 }
12255
12256 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
12257                                   struct intel_shared_dpll *pll)
12258 {
12259         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
12260         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
12261 }
12262
12263 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
12264                                 struct intel_shared_dpll *pll)
12265 {
12266         /* PCH refclock must be enabled first */
12267         ibx_assert_pch_refclk_enabled(dev_priv);
12268
12269         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
12270
12271         /* Wait for the clocks to stabilize. */
12272         POSTING_READ(PCH_DPLL(pll->id));
12273         udelay(150);
12274
12275         /* The pixel multiplier can only be updated once the
12276          * DPLL is enabled and the clocks are stable.
12277          *
12278          * So write it again.
12279          */
12280         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
12281         POSTING_READ(PCH_DPLL(pll->id));
12282         udelay(200);
12283 }
12284
12285 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
12286                                  struct intel_shared_dpll *pll)
12287 {
12288         struct drm_device *dev = dev_priv->dev;
12289         struct intel_crtc *crtc;
12290
12291         /* Make sure no transcoder isn't still depending on us. */
12292         for_each_intel_crtc(dev, crtc) {
12293                 if (intel_crtc_to_shared_dpll(crtc) == pll)
12294                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
12295         }
12296
12297         I915_WRITE(PCH_DPLL(pll->id), 0);
12298         POSTING_READ(PCH_DPLL(pll->id));
12299         udelay(200);
12300 }
12301
12302 static char *ibx_pch_dpll_names[] = {
12303         "PCH DPLL A",
12304         "PCH DPLL B",
12305 };
12306
12307 static void ibx_pch_dpll_init(struct drm_device *dev)
12308 {
12309         struct drm_i915_private *dev_priv = dev->dev_private;
12310         int i;
12311
12312         dev_priv->num_shared_dpll = 2;
12313
12314         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12315                 dev_priv->shared_dplls[i].id = i;
12316                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
12317                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
12318                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
12319                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
12320                 dev_priv->shared_dplls[i].get_hw_state =
12321                         ibx_pch_dpll_get_hw_state;
12322         }
12323 }
12324
12325 static void intel_shared_dpll_init(struct drm_device *dev)
12326 {
12327         struct drm_i915_private *dev_priv = dev->dev_private;
12328
12329         if (HAS_DDI(dev))
12330                 intel_ddi_pll_init(dev);
12331         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
12332                 ibx_pch_dpll_init(dev);
12333         else
12334                 dev_priv->num_shared_dpll = 0;
12335
12336         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
12337 }
12338
12339 /**
12340  * intel_wm_need_update - Check whether watermarks need updating
12341  * @plane: drm plane
12342  * @state: new plane state
12343  *
12344  * Check current plane state versus the new one to determine whether
12345  * watermarks need to be recalculated.
12346  *
12347  * Returns true or false.
12348  */
12349 bool intel_wm_need_update(struct drm_plane *plane,
12350                           struct drm_plane_state *state)
12351 {
12352         /* Update watermarks on tiling changes. */
12353         if (!plane->state->fb || !state->fb ||
12354             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
12355             plane->state->rotation != state->rotation)
12356                 return true;
12357
12358         return false;
12359 }
12360
12361 /**
12362  * intel_prepare_plane_fb - Prepare fb for usage on plane
12363  * @plane: drm plane to prepare for
12364  * @fb: framebuffer to prepare for presentation
12365  *
12366  * Prepares a framebuffer for usage on a display plane.  Generally this
12367  * involves pinning the underlying object and updating the frontbuffer tracking
12368  * bits.  Some older platforms need special physical address handling for
12369  * cursor planes.
12370  *
12371  * Returns 0 on success, negative error code on failure.
12372  */
12373 int
12374 intel_prepare_plane_fb(struct drm_plane *plane,
12375                        struct drm_framebuffer *fb,
12376                        const struct drm_plane_state *new_state)
12377 {
12378         struct drm_device *dev = plane->dev;
12379         struct intel_plane *intel_plane = to_intel_plane(plane);
12380         enum pipe pipe = intel_plane->pipe;
12381         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12382         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
12383         unsigned frontbuffer_bits = 0;
12384         int ret = 0;
12385
12386         if (!obj)
12387                 return 0;
12388
12389         switch (plane->type) {
12390         case DRM_PLANE_TYPE_PRIMARY:
12391                 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
12392                 break;
12393         case DRM_PLANE_TYPE_CURSOR:
12394                 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
12395                 break;
12396         case DRM_PLANE_TYPE_OVERLAY:
12397                 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
12398                 break;
12399         }
12400
12401         mutex_lock(&dev->struct_mutex);
12402
12403         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12404             INTEL_INFO(dev)->cursor_needs_physical) {
12405                 int align = IS_I830(dev) ? 16 * 1024 : 256;
12406                 ret = i915_gem_object_attach_phys(obj, align);
12407                 if (ret)
12408                         DRM_DEBUG_KMS("failed to attach phys object\n");
12409         } else {
12410                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
12411         }
12412
12413         if (ret == 0)
12414                 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
12415
12416         mutex_unlock(&dev->struct_mutex);
12417
12418         return ret;
12419 }
12420
12421 /**
12422  * intel_cleanup_plane_fb - Cleans up an fb after plane use
12423  * @plane: drm plane to clean up for
12424  * @fb: old framebuffer that was on plane
12425  *
12426  * Cleans up a framebuffer that has just been removed from a plane.
12427  */
12428 void
12429 intel_cleanup_plane_fb(struct drm_plane *plane,
12430                        struct drm_framebuffer *fb,
12431                        const struct drm_plane_state *old_state)
12432 {
12433         struct drm_device *dev = plane->dev;
12434         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12435
12436         if (WARN_ON(!obj))
12437                 return;
12438
12439         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
12440             !INTEL_INFO(dev)->cursor_needs_physical) {
12441                 mutex_lock(&dev->struct_mutex);
12442                 intel_unpin_fb_obj(fb, old_state);
12443                 mutex_unlock(&dev->struct_mutex);
12444         }
12445 }
12446
12447 static int
12448 intel_check_primary_plane(struct drm_plane *plane,
12449                           struct intel_plane_state *state)
12450 {
12451         struct drm_device *dev = plane->dev;
12452         struct drm_i915_private *dev_priv = dev->dev_private;
12453         struct drm_crtc *crtc = state->base.crtc;
12454         struct intel_crtc *intel_crtc;
12455         struct drm_framebuffer *fb = state->base.fb;
12456         struct drm_rect *dest = &state->dst;
12457         struct drm_rect *src = &state->src;
12458         const struct drm_rect *clip = &state->clip;
12459         int ret;
12460
12461         crtc = crtc ? crtc : plane->crtc;
12462         intel_crtc = to_intel_crtc(crtc);
12463
12464         ret = drm_plane_helper_check_update(plane, crtc, fb,
12465                                             src, dest, clip,
12466                                             DRM_PLANE_HELPER_NO_SCALING,
12467                                             DRM_PLANE_HELPER_NO_SCALING,
12468                                             false, true, &state->visible);
12469         if (ret)
12470                 return ret;
12471
12472         if (intel_crtc->active) {
12473                 intel_crtc->atomic.wait_for_flips = true;
12474
12475                 /*
12476                  * FBC does not work on some platforms for rotated
12477                  * planes, so disable it when rotation is not 0 and
12478                  * update it when rotation is set back to 0.
12479                  *
12480                  * FIXME: This is redundant with the fbc update done in
12481                  * the primary plane enable function except that that
12482                  * one is done too late. We eventually need to unify
12483                  * this.
12484                  */
12485                 if (intel_crtc->primary_enabled &&
12486                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
12487                     dev_priv->fbc.crtc == intel_crtc &&
12488                     state->base.rotation != BIT(DRM_ROTATE_0)) {
12489                         intel_crtc->atomic.disable_fbc = true;
12490                 }
12491
12492                 if (state->visible) {
12493                         /*
12494                          * BDW signals flip done immediately if the plane
12495                          * is disabled, even if the plane enable is already
12496                          * armed to occur at the next vblank :(
12497                          */
12498                         if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
12499                                 intel_crtc->atomic.wait_vblank = true;
12500                 }
12501
12502                 intel_crtc->atomic.fb_bits |=
12503                         INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
12504
12505                 intel_crtc->atomic.update_fbc = true;
12506
12507                 if (intel_wm_need_update(plane, &state->base))
12508                         intel_crtc->atomic.update_wm = true;
12509         }
12510
12511         return 0;
12512 }
12513
12514 static void
12515 intel_commit_primary_plane(struct drm_plane *plane,
12516                            struct intel_plane_state *state)
12517 {
12518         struct drm_crtc *crtc = state->base.crtc;
12519         struct drm_framebuffer *fb = state->base.fb;
12520         struct drm_device *dev = plane->dev;
12521         struct drm_i915_private *dev_priv = dev->dev_private;
12522         struct intel_crtc *intel_crtc;
12523         struct drm_rect *src = &state->src;
12524
12525         crtc = crtc ? crtc : plane->crtc;
12526         intel_crtc = to_intel_crtc(crtc);
12527
12528         plane->fb = fb;
12529         crtc->x = src->x1 >> 16;
12530         crtc->y = src->y1 >> 16;
12531
12532         if (intel_crtc->active) {
12533                 if (state->visible) {
12534                         /* FIXME: kill this fastboot hack */
12535                         intel_update_pipe_size(intel_crtc);
12536
12537                         intel_crtc->primary_enabled = true;
12538
12539                         dev_priv->display.update_primary_plane(crtc, plane->fb,
12540                                         crtc->x, crtc->y);
12541                 } else {
12542                         /*
12543                          * If clipping results in a non-visible primary plane,
12544                          * we'll disable the primary plane.  Note that this is
12545                          * a bit different than what happens if userspace
12546                          * explicitly disables the plane by passing fb=0
12547                          * because plane->fb still gets set and pinned.
12548                          */
12549                         intel_disable_primary_hw_plane(plane, crtc);
12550                 }
12551         }
12552 }
12553
12554 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
12555 {
12556         struct drm_device *dev = crtc->dev;
12557         struct drm_i915_private *dev_priv = dev->dev_private;
12558         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12559         struct intel_plane *intel_plane;
12560         struct drm_plane *p;
12561         unsigned fb_bits = 0;
12562
12563         /* Track fb's for any planes being disabled */
12564         list_for_each_entry(p, &dev->mode_config.plane_list, head) {
12565                 intel_plane = to_intel_plane(p);
12566
12567                 if (intel_crtc->atomic.disabled_planes &
12568                     (1 << drm_plane_index(p))) {
12569                         switch (p->type) {
12570                         case DRM_PLANE_TYPE_PRIMARY:
12571                                 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
12572                                 break;
12573                         case DRM_PLANE_TYPE_CURSOR:
12574                                 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
12575                                 break;
12576                         case DRM_PLANE_TYPE_OVERLAY:
12577                                 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
12578                                 break;
12579                         }
12580
12581                         mutex_lock(&dev->struct_mutex);
12582                         i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
12583                         mutex_unlock(&dev->struct_mutex);
12584                 }
12585         }
12586
12587         if (intel_crtc->atomic.wait_for_flips)
12588                 intel_crtc_wait_for_pending_flips(crtc);
12589
12590         if (intel_crtc->atomic.disable_fbc)
12591                 intel_fbc_disable(dev);
12592
12593         if (intel_crtc->atomic.pre_disable_primary)
12594                 intel_pre_disable_primary(crtc);
12595
12596         if (intel_crtc->atomic.update_wm)
12597                 intel_update_watermarks(crtc);
12598
12599         intel_runtime_pm_get(dev_priv);
12600
12601         /* Perform vblank evasion around commit operation */
12602         if (intel_crtc->active)
12603                 intel_crtc->atomic.evade =
12604                         intel_pipe_update_start(intel_crtc,
12605                                                 &intel_crtc->atomic.start_vbl_count);
12606 }
12607
12608 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12609 {
12610         struct drm_device *dev = crtc->dev;
12611         struct drm_i915_private *dev_priv = dev->dev_private;
12612         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12613         struct drm_plane *p;
12614
12615         if (intel_crtc->atomic.evade)
12616                 intel_pipe_update_end(intel_crtc,
12617                                       intel_crtc->atomic.start_vbl_count);
12618
12619         intel_runtime_pm_put(dev_priv);
12620
12621         if (intel_crtc->atomic.wait_vblank)
12622                 intel_wait_for_vblank(dev, intel_crtc->pipe);
12623
12624         intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12625
12626         if (intel_crtc->atomic.update_fbc) {
12627                 mutex_lock(&dev->struct_mutex);
12628                 intel_fbc_update(dev);
12629                 mutex_unlock(&dev->struct_mutex);
12630         }
12631
12632         if (intel_crtc->atomic.post_enable_primary)
12633                 intel_post_enable_primary(crtc);
12634
12635         drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12636                 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12637                         intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12638                                                        false, false);
12639
12640         memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
12641 }
12642
12643 /**
12644  * intel_plane_destroy - destroy a plane
12645  * @plane: plane to destroy
12646  *
12647  * Common destruction function for all types of planes (primary, cursor,
12648  * sprite).
12649  */
12650 void intel_plane_destroy(struct drm_plane *plane)
12651 {
12652         struct intel_plane *intel_plane = to_intel_plane(plane);
12653         drm_plane_cleanup(plane);
12654         kfree(intel_plane);
12655 }
12656
12657 const struct drm_plane_funcs intel_plane_funcs = {
12658         .update_plane = drm_plane_helper_update,
12659         .disable_plane = drm_plane_helper_disable,
12660         .destroy = intel_plane_destroy,
12661         .set_property = drm_atomic_helper_plane_set_property,
12662         .atomic_get_property = intel_plane_atomic_get_property,
12663         .atomic_set_property = intel_plane_atomic_set_property,
12664         .atomic_duplicate_state = intel_plane_duplicate_state,
12665         .atomic_destroy_state = intel_plane_destroy_state,
12666
12667 };
12668
12669 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12670                                                     int pipe)
12671 {
12672         struct intel_plane *primary;
12673         struct intel_plane_state *state;
12674         const uint32_t *intel_primary_formats;
12675         int num_formats;
12676
12677         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12678         if (primary == NULL)
12679                 return NULL;
12680
12681         state = intel_create_plane_state(&primary->base);
12682         if (!state) {
12683                 kfree(primary);
12684                 return NULL;
12685         }
12686         primary->base.state = &state->base;
12687
12688         primary->can_scale = false;
12689         primary->max_downscale = 1;
12690         primary->pipe = pipe;
12691         primary->plane = pipe;
12692         primary->check_plane = intel_check_primary_plane;
12693         primary->commit_plane = intel_commit_primary_plane;
12694         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12695                 primary->plane = !pipe;
12696
12697         if (INTEL_INFO(dev)->gen <= 3) {
12698                 intel_primary_formats = intel_primary_formats_gen2;
12699                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12700         } else {
12701                 intel_primary_formats = intel_primary_formats_gen4;
12702                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12703         }
12704
12705         drm_universal_plane_init(dev, &primary->base, 0,
12706                                  &intel_plane_funcs,
12707                                  intel_primary_formats, num_formats,
12708                                  DRM_PLANE_TYPE_PRIMARY);
12709
12710         if (INTEL_INFO(dev)->gen >= 4) {
12711                 if (!dev->mode_config.rotation_property)
12712                         dev->mode_config.rotation_property =
12713                                 drm_mode_create_rotation_property(dev,
12714                                                         BIT(DRM_ROTATE_0) |
12715                                                         BIT(DRM_ROTATE_180));
12716                 if (dev->mode_config.rotation_property)
12717                         drm_object_attach_property(&primary->base.base,
12718                                 dev->mode_config.rotation_property,
12719                                 state->base.rotation);
12720         }
12721
12722         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12723
12724         return &primary->base;
12725 }
12726
12727 static int
12728 intel_check_cursor_plane(struct drm_plane *plane,
12729                          struct intel_plane_state *state)
12730 {
12731         struct drm_crtc *crtc = state->base.crtc;
12732         struct drm_device *dev = plane->dev;
12733         struct drm_framebuffer *fb = state->base.fb;
12734         struct drm_rect *dest = &state->dst;
12735         struct drm_rect *src = &state->src;
12736         const struct drm_rect *clip = &state->clip;
12737         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12738         struct intel_crtc *intel_crtc;
12739         unsigned stride;
12740         int ret;
12741
12742         crtc = crtc ? crtc : plane->crtc;
12743         intel_crtc = to_intel_crtc(crtc);
12744
12745         ret = drm_plane_helper_check_update(plane, crtc, fb,
12746                                             src, dest, clip,
12747                                             DRM_PLANE_HELPER_NO_SCALING,
12748                                             DRM_PLANE_HELPER_NO_SCALING,
12749                                             true, true, &state->visible);
12750         if (ret)
12751                 return ret;
12752
12753
12754         /* if we want to turn off the cursor ignore width and height */
12755         if (!obj)
12756                 goto finish;
12757
12758         /* Check for which cursor types we support */
12759         if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12760                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12761                           state->base.crtc_w, state->base.crtc_h);
12762                 return -EINVAL;
12763         }
12764
12765         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12766         if (obj->base.size < stride * state->base.crtc_h) {
12767                 DRM_DEBUG_KMS("buffer is too small\n");
12768                 return -ENOMEM;
12769         }
12770
12771         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
12772                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12773                 ret = -EINVAL;
12774         }
12775
12776 finish:
12777         if (intel_crtc->active) {
12778                 if (plane->state->crtc_w != state->base.crtc_w)
12779                         intel_crtc->atomic.update_wm = true;
12780
12781                 intel_crtc->atomic.fb_bits |=
12782                         INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12783         }
12784
12785         return ret;
12786 }
12787
12788 static void
12789 intel_commit_cursor_plane(struct drm_plane *plane,
12790                           struct intel_plane_state *state)
12791 {
12792         struct drm_crtc *crtc = state->base.crtc;
12793         struct drm_device *dev = plane->dev;
12794         struct intel_crtc *intel_crtc;
12795         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
12796         uint32_t addr;
12797
12798         crtc = crtc ? crtc : plane->crtc;
12799         intel_crtc = to_intel_crtc(crtc);
12800
12801         plane->fb = state->base.fb;
12802         crtc->cursor_x = state->base.crtc_x;
12803         crtc->cursor_y = state->base.crtc_y;
12804
12805         if (intel_crtc->cursor_bo == obj)
12806                 goto update;
12807
12808         if (!obj)
12809                 addr = 0;
12810         else if (!INTEL_INFO(dev)->cursor_needs_physical)
12811                 addr = i915_gem_obj_ggtt_offset(obj);
12812         else
12813                 addr = obj->phys_handle->busaddr;
12814
12815         intel_crtc->cursor_addr = addr;
12816         intel_crtc->cursor_bo = obj;
12817 update:
12818
12819         if (intel_crtc->active)
12820                 intel_crtc_update_cursor(crtc, state->visible);
12821 }
12822
12823 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12824                                                    int pipe)
12825 {
12826         struct intel_plane *cursor;
12827         struct intel_plane_state *state;
12828
12829         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12830         if (cursor == NULL)
12831                 return NULL;
12832
12833         state = intel_create_plane_state(&cursor->base);
12834         if (!state) {
12835                 kfree(cursor);
12836                 return NULL;
12837         }
12838         cursor->base.state = &state->base;
12839
12840         cursor->can_scale = false;
12841         cursor->max_downscale = 1;
12842         cursor->pipe = pipe;
12843         cursor->plane = pipe;
12844         cursor->check_plane = intel_check_cursor_plane;
12845         cursor->commit_plane = intel_commit_cursor_plane;
12846
12847         drm_universal_plane_init(dev, &cursor->base, 0,
12848                                  &intel_plane_funcs,
12849                                  intel_cursor_formats,
12850                                  ARRAY_SIZE(intel_cursor_formats),
12851                                  DRM_PLANE_TYPE_CURSOR);
12852
12853         if (INTEL_INFO(dev)->gen >= 4) {
12854                 if (!dev->mode_config.rotation_property)
12855                         dev->mode_config.rotation_property =
12856                                 drm_mode_create_rotation_property(dev,
12857                                                         BIT(DRM_ROTATE_0) |
12858                                                         BIT(DRM_ROTATE_180));
12859                 if (dev->mode_config.rotation_property)
12860                         drm_object_attach_property(&cursor->base.base,
12861                                 dev->mode_config.rotation_property,
12862                                 state->base.rotation);
12863         }
12864
12865         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12866
12867         return &cursor->base;
12868 }
12869
12870 static void intel_crtc_init(struct drm_device *dev, int pipe)
12871 {
12872         struct drm_i915_private *dev_priv = dev->dev_private;
12873         struct intel_crtc *intel_crtc;
12874         struct intel_crtc_state *crtc_state = NULL;
12875         struct drm_plane *primary = NULL;
12876         struct drm_plane *cursor = NULL;
12877         int i, ret;
12878
12879         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12880         if (intel_crtc == NULL)
12881                 return;
12882
12883         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12884         if (!crtc_state)
12885                 goto fail;
12886         intel_crtc_set_state(intel_crtc, crtc_state);
12887         crtc_state->base.crtc = &intel_crtc->base;
12888
12889         primary = intel_primary_plane_create(dev, pipe);
12890         if (!primary)
12891                 goto fail;
12892
12893         cursor = intel_cursor_plane_create(dev, pipe);
12894         if (!cursor)
12895                 goto fail;
12896
12897         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12898                                         cursor, &intel_crtc_funcs);
12899         if (ret)
12900                 goto fail;
12901
12902         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12903         for (i = 0; i < 256; i++) {
12904                 intel_crtc->lut_r[i] = i;
12905                 intel_crtc->lut_g[i] = i;
12906                 intel_crtc->lut_b[i] = i;
12907         }
12908
12909         /*
12910          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12911          * is hooked to pipe B. Hence we want plane A feeding pipe B.
12912          */
12913         intel_crtc->pipe = pipe;
12914         intel_crtc->plane = pipe;
12915         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12916                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12917                 intel_crtc->plane = !pipe;
12918         }
12919
12920         intel_crtc->cursor_base = ~0;
12921         intel_crtc->cursor_cntl = ~0;
12922         intel_crtc->cursor_size = ~0;
12923
12924         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12925                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12926         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12927         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12928
12929         INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12930
12931         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12932
12933         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12934         return;
12935
12936 fail:
12937         if (primary)
12938                 drm_plane_cleanup(primary);
12939         if (cursor)
12940                 drm_plane_cleanup(cursor);
12941         kfree(crtc_state);
12942         kfree(intel_crtc);
12943 }
12944
12945 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12946 {
12947         struct drm_encoder *encoder = connector->base.encoder;
12948         struct drm_device *dev = connector->base.dev;
12949
12950         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12951
12952         if (!encoder || WARN_ON(!encoder->crtc))
12953                 return INVALID_PIPE;
12954
12955         return to_intel_crtc(encoder->crtc)->pipe;
12956 }
12957
12958 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12959                                 struct drm_file *file)
12960 {
12961         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12962         struct drm_crtc *drmmode_crtc;
12963         struct intel_crtc *crtc;
12964
12965         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12966
12967         if (!drmmode_crtc) {
12968                 DRM_ERROR("no such CRTC id\n");
12969                 return -ENOENT;
12970         }
12971
12972         crtc = to_intel_crtc(drmmode_crtc);
12973         pipe_from_crtc_id->pipe = crtc->pipe;
12974
12975         return 0;
12976 }
12977
12978 static int intel_encoder_clones(struct intel_encoder *encoder)
12979 {
12980         struct drm_device *dev = encoder->base.dev;
12981         struct intel_encoder *source_encoder;
12982         int index_mask = 0;
12983         int entry = 0;
12984
12985         for_each_intel_encoder(dev, source_encoder) {
12986                 if (encoders_cloneable(encoder, source_encoder))
12987                         index_mask |= (1 << entry);
12988
12989                 entry++;
12990         }
12991
12992         return index_mask;
12993 }
12994
12995 static bool has_edp_a(struct drm_device *dev)
12996 {
12997         struct drm_i915_private *dev_priv = dev->dev_private;
12998
12999         if (!IS_MOBILE(dev))
13000                 return false;
13001
13002         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13003                 return false;
13004
13005         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13006                 return false;
13007
13008         return true;
13009 }
13010
13011 static bool intel_crt_present(struct drm_device *dev)
13012 {
13013         struct drm_i915_private *dev_priv = dev->dev_private;
13014
13015         if (INTEL_INFO(dev)->gen >= 9)
13016                 return false;
13017
13018         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13019                 return false;
13020
13021         if (IS_CHERRYVIEW(dev))
13022                 return false;
13023
13024         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13025                 return false;
13026
13027         return true;
13028 }
13029
13030 static void intel_setup_outputs(struct drm_device *dev)
13031 {
13032         struct drm_i915_private *dev_priv = dev->dev_private;
13033         struct intel_encoder *encoder;
13034         bool dpd_is_edp = false;
13035
13036         intel_lvds_init(dev);
13037
13038         if (intel_crt_present(dev))
13039                 intel_crt_init(dev);
13040
13041         if (HAS_DDI(dev)) {
13042                 int found;
13043
13044                 /*
13045                  * Haswell uses DDI functions to detect digital outputs.
13046                  * On SKL pre-D0 the strap isn't connected, so we assume
13047                  * it's there.
13048                  */
13049                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
13050                 /* WaIgnoreDDIAStrap: skl */
13051                 if (found ||
13052                     (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
13053                         intel_ddi_init(dev, PORT_A);
13054
13055                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13056                  * register */
13057                 found = I915_READ(SFUSE_STRAP);
13058
13059                 if (found & SFUSE_STRAP_DDIB_DETECTED)
13060                         intel_ddi_init(dev, PORT_B);
13061                 if (found & SFUSE_STRAP_DDIC_DETECTED)
13062                         intel_ddi_init(dev, PORT_C);
13063                 if (found & SFUSE_STRAP_DDID_DETECTED)
13064                         intel_ddi_init(dev, PORT_D);
13065         } else if (HAS_PCH_SPLIT(dev)) {
13066                 int found;
13067                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
13068
13069                 if (has_edp_a(dev))
13070                         intel_dp_init(dev, DP_A, PORT_A);
13071
13072                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13073                         /* PCH SDVOB multiplex with HDMIB */
13074                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
13075                         if (!found)
13076                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
13077                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13078                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
13079                 }
13080
13081                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13082                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
13083
13084                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13085                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
13086
13087                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
13088                         intel_dp_init(dev, PCH_DP_C, PORT_C);
13089
13090                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
13091                         intel_dp_init(dev, PCH_DP_D, PORT_D);
13092         } else if (IS_VALLEYVIEW(dev)) {
13093                 /*
13094                  * The DP_DETECTED bit is the latched state of the DDC
13095                  * SDA pin at boot. However since eDP doesn't require DDC
13096                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
13097                  * eDP ports may have been muxed to an alternate function.
13098                  * Thus we can't rely on the DP_DETECTED bit alone to detect
13099                  * eDP ports. Consult the VBT as well as DP_DETECTED to
13100                  * detect eDP ports.
13101                  */
13102                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
13103                     !intel_dp_is_edp(dev, PORT_B))
13104                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
13105                                         PORT_B);
13106                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
13107                     intel_dp_is_edp(dev, PORT_B))
13108                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
13109
13110                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
13111                     !intel_dp_is_edp(dev, PORT_C))
13112                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
13113                                         PORT_C);
13114                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
13115                     intel_dp_is_edp(dev, PORT_C))
13116                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
13117
13118                 if (IS_CHERRYVIEW(dev)) {
13119                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
13120                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
13121                                                 PORT_D);
13122                         /* eDP not supported on port D, so don't check VBT */
13123                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
13124                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
13125                 }
13126
13127                 intel_dsi_init(dev);
13128         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
13129                 bool found = false;
13130
13131                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13132                         DRM_DEBUG_KMS("probing SDVOB\n");
13133                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
13134                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
13135                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
13136                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
13137                         }
13138
13139                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
13140                                 intel_dp_init(dev, DP_B, PORT_B);
13141                 }
13142
13143                 /* Before G4X SDVOC doesn't have its own detect register */
13144
13145                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13146                         DRM_DEBUG_KMS("probing SDVOC\n");
13147                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
13148                 }
13149
13150                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
13151
13152                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
13153                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
13154                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
13155                         }
13156                         if (SUPPORTS_INTEGRATED_DP(dev))
13157                                 intel_dp_init(dev, DP_C, PORT_C);
13158                 }
13159
13160                 if (SUPPORTS_INTEGRATED_DP(dev) &&
13161                     (I915_READ(DP_D) & DP_DETECTED))
13162                         intel_dp_init(dev, DP_D, PORT_D);
13163         } else if (IS_GEN2(dev))
13164                 intel_dvo_init(dev);
13165
13166         if (SUPPORTS_TV(dev))
13167                 intel_tv_init(dev);
13168
13169         intel_psr_init(dev);
13170
13171         for_each_intel_encoder(dev, encoder) {
13172                 encoder->base.possible_crtcs = encoder->crtc_mask;
13173                 encoder->base.possible_clones =
13174                         intel_encoder_clones(encoder);
13175         }
13176
13177         intel_init_pch_refclk(dev);
13178
13179         drm_helper_move_panel_connectors_to_head(dev);
13180 }
13181
13182 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
13183 {
13184         struct drm_device *dev = fb->dev;
13185         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13186
13187         drm_framebuffer_cleanup(fb);
13188         mutex_lock(&dev->struct_mutex);
13189         WARN_ON(!intel_fb->obj->framebuffer_references--);
13190         drm_gem_object_unreference(&intel_fb->obj->base);
13191         mutex_unlock(&dev->struct_mutex);
13192         kfree(intel_fb);
13193 }
13194
13195 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
13196                                                 struct drm_file *file,
13197                                                 unsigned int *handle)
13198 {
13199         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13200         struct drm_i915_gem_object *obj = intel_fb->obj;
13201
13202         return drm_gem_handle_create(file, &obj->base, handle);
13203 }
13204
13205 static const struct drm_framebuffer_funcs intel_fb_funcs = {
13206         .destroy = intel_user_framebuffer_destroy,
13207         .create_handle = intel_user_framebuffer_create_handle,
13208 };
13209
13210 static
13211 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
13212                          uint32_t pixel_format)
13213 {
13214         u32 gen = INTEL_INFO(dev)->gen;
13215
13216         if (gen >= 9) {
13217                 /* "The stride in bytes must not exceed the of the size of 8K
13218                  *  pixels and 32K bytes."
13219                  */
13220                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
13221         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
13222                 return 32*1024;
13223         } else if (gen >= 4) {
13224                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13225                         return 16*1024;
13226                 else
13227                         return 32*1024;
13228         } else if (gen >= 3) {
13229                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13230                         return 8*1024;
13231                 else
13232                         return 16*1024;
13233         } else {
13234                 /* XXX DSPC is limited to 4k tiled */
13235                 return 8*1024;
13236         }
13237 }
13238
13239 static int intel_framebuffer_init(struct drm_device *dev,
13240                                   struct intel_framebuffer *intel_fb,
13241                                   struct drm_mode_fb_cmd2 *mode_cmd,
13242                                   struct drm_i915_gem_object *obj)
13243 {
13244         unsigned int aligned_height;
13245         int ret;
13246         u32 pitch_limit, stride_alignment;
13247
13248         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
13249
13250         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
13251                 /* Enforce that fb modifier and tiling mode match, but only for
13252                  * X-tiled. This is needed for FBC. */
13253                 if (!!(obj->tiling_mode == I915_TILING_X) !=
13254                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
13255                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
13256                         return -EINVAL;
13257                 }
13258         } else {
13259                 if (obj->tiling_mode == I915_TILING_X)
13260                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
13261                 else if (obj->tiling_mode == I915_TILING_Y) {
13262                         DRM_DEBUG("No Y tiling for legacy addfb\n");
13263                         return -EINVAL;
13264                 }
13265         }
13266
13267         /* Passed in modifier sanity checking. */
13268         switch (mode_cmd->modifier[0]) {
13269         case I915_FORMAT_MOD_Y_TILED:
13270         case I915_FORMAT_MOD_Yf_TILED:
13271                 if (INTEL_INFO(dev)->gen < 9) {
13272                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
13273                                   mode_cmd->modifier[0]);
13274                         return -EINVAL;
13275                 }
13276         case DRM_FORMAT_MOD_NONE:
13277         case I915_FORMAT_MOD_X_TILED:
13278                 break;
13279         default:
13280                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
13281                           mode_cmd->modifier[0]);
13282                 return -EINVAL;
13283         }
13284
13285         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
13286                                                      mode_cmd->pixel_format);
13287         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
13288                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
13289                           mode_cmd->pitches[0], stride_alignment);
13290                 return -EINVAL;
13291         }
13292
13293         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
13294                                            mode_cmd->pixel_format);
13295         if (mode_cmd->pitches[0] > pitch_limit) {
13296                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
13297                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
13298                           "tiled" : "linear",
13299                           mode_cmd->pitches[0], pitch_limit);
13300                 return -EINVAL;
13301         }
13302
13303         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
13304             mode_cmd->pitches[0] != obj->stride) {
13305                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
13306                           mode_cmd->pitches[0], obj->stride);
13307                 return -EINVAL;
13308         }
13309
13310         /* Reject formats not supported by any plane early. */
13311         switch (mode_cmd->pixel_format) {
13312         case DRM_FORMAT_C8:
13313         case DRM_FORMAT_RGB565:
13314         case DRM_FORMAT_XRGB8888:
13315         case DRM_FORMAT_ARGB8888:
13316                 break;
13317         case DRM_FORMAT_XRGB1555:
13318         case DRM_FORMAT_ARGB1555:
13319                 if (INTEL_INFO(dev)->gen > 3) {
13320                         DRM_DEBUG("unsupported pixel format: %s\n",
13321                                   drm_get_format_name(mode_cmd->pixel_format));
13322                         return -EINVAL;
13323                 }
13324                 break;
13325         case DRM_FORMAT_XBGR8888:
13326         case DRM_FORMAT_ABGR8888:
13327         case DRM_FORMAT_XRGB2101010:
13328         case DRM_FORMAT_ARGB2101010:
13329         case DRM_FORMAT_XBGR2101010:
13330         case DRM_FORMAT_ABGR2101010:
13331                 if (INTEL_INFO(dev)->gen < 4) {
13332                         DRM_DEBUG("unsupported pixel format: %s\n",
13333                                   drm_get_format_name(mode_cmd->pixel_format));
13334                         return -EINVAL;
13335                 }
13336                 break;
13337         case DRM_FORMAT_YUYV:
13338         case DRM_FORMAT_UYVY:
13339         case DRM_FORMAT_YVYU:
13340         case DRM_FORMAT_VYUY:
13341                 if (INTEL_INFO(dev)->gen < 5) {
13342                         DRM_DEBUG("unsupported pixel format: %s\n",
13343                                   drm_get_format_name(mode_cmd->pixel_format));
13344                         return -EINVAL;
13345                 }
13346                 break;
13347         default:
13348                 DRM_DEBUG("unsupported pixel format: %s\n",
13349                           drm_get_format_name(mode_cmd->pixel_format));
13350                 return -EINVAL;
13351         }
13352
13353         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
13354         if (mode_cmd->offsets[0] != 0)
13355                 return -EINVAL;
13356
13357         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
13358                                                mode_cmd->pixel_format,
13359                                                mode_cmd->modifier[0]);
13360         /* FIXME drm helper for size checks (especially planar formats)? */
13361         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
13362                 return -EINVAL;
13363
13364         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
13365         intel_fb->obj = obj;
13366         intel_fb->obj->framebuffer_references++;
13367
13368         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
13369         if (ret) {
13370                 DRM_ERROR("framebuffer init failed %d\n", ret);
13371                 return ret;
13372         }
13373
13374         return 0;
13375 }
13376
13377 static struct drm_framebuffer *
13378 intel_user_framebuffer_create(struct drm_device *dev,
13379                               struct drm_file *filp,
13380                               struct drm_mode_fb_cmd2 *mode_cmd)
13381 {
13382         struct drm_i915_gem_object *obj;
13383
13384         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
13385                                                 mode_cmd->handles[0]));
13386         if (&obj->base == NULL)
13387                 return ERR_PTR(-ENOENT);
13388
13389         return intel_framebuffer_create(dev, mode_cmd, obj);
13390 }
13391
13392 #ifndef CONFIG_DRM_I915_FBDEV
13393 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
13394 {
13395 }
13396 #endif
13397
13398 static const struct drm_mode_config_funcs intel_mode_funcs = {
13399         .fb_create = intel_user_framebuffer_create,
13400         .output_poll_changed = intel_fbdev_output_poll_changed,
13401         .atomic_check = intel_atomic_check,
13402         .atomic_commit = intel_atomic_commit,
13403 };
13404
13405 /* Set up chip specific display functions */
13406 static void intel_init_display(struct drm_device *dev)
13407 {
13408         struct drm_i915_private *dev_priv = dev->dev_private;
13409
13410         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
13411                 dev_priv->display.find_dpll = g4x_find_best_dpll;
13412         else if (IS_CHERRYVIEW(dev))
13413                 dev_priv->display.find_dpll = chv_find_best_dpll;
13414         else if (IS_VALLEYVIEW(dev))
13415                 dev_priv->display.find_dpll = vlv_find_best_dpll;
13416         else if (IS_PINEVIEW(dev))
13417                 dev_priv->display.find_dpll = pnv_find_best_dpll;
13418         else
13419                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
13420
13421         if (INTEL_INFO(dev)->gen >= 9) {
13422                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
13423                 dev_priv->display.get_initial_plane_config =
13424                         skylake_get_initial_plane_config;
13425                 dev_priv->display.crtc_compute_clock =
13426                         haswell_crtc_compute_clock;
13427                 dev_priv->display.crtc_enable = haswell_crtc_enable;
13428                 dev_priv->display.crtc_disable = haswell_crtc_disable;
13429                 dev_priv->display.off = ironlake_crtc_off;
13430                 dev_priv->display.update_primary_plane =
13431                         skylake_update_primary_plane;
13432         } else if (HAS_DDI(dev)) {
13433                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
13434                 dev_priv->display.get_initial_plane_config =
13435                         ironlake_get_initial_plane_config;
13436                 dev_priv->display.crtc_compute_clock =
13437                         haswell_crtc_compute_clock;
13438                 dev_priv->display.crtc_enable = haswell_crtc_enable;
13439                 dev_priv->display.crtc_disable = haswell_crtc_disable;
13440                 dev_priv->display.off = ironlake_crtc_off;
13441                 dev_priv->display.update_primary_plane =
13442                         ironlake_update_primary_plane;
13443         } else if (HAS_PCH_SPLIT(dev)) {
13444                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
13445                 dev_priv->display.get_initial_plane_config =
13446                         ironlake_get_initial_plane_config;
13447                 dev_priv->display.crtc_compute_clock =
13448                         ironlake_crtc_compute_clock;
13449                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
13450                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
13451                 dev_priv->display.off = ironlake_crtc_off;
13452                 dev_priv->display.update_primary_plane =
13453                         ironlake_update_primary_plane;
13454         } else if (IS_VALLEYVIEW(dev)) {
13455                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
13456                 dev_priv->display.get_initial_plane_config =
13457                         i9xx_get_initial_plane_config;
13458                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
13459                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
13460                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13461                 dev_priv->display.off = i9xx_crtc_off;
13462                 dev_priv->display.update_primary_plane =
13463                         i9xx_update_primary_plane;
13464         } else {
13465                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
13466                 dev_priv->display.get_initial_plane_config =
13467                         i9xx_get_initial_plane_config;
13468                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
13469                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
13470                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13471                 dev_priv->display.off = i9xx_crtc_off;
13472                 dev_priv->display.update_primary_plane =
13473                         i9xx_update_primary_plane;
13474         }
13475
13476         /* Returns the core display clock speed */
13477         if (IS_VALLEYVIEW(dev))
13478                 dev_priv->display.get_display_clock_speed =
13479                         valleyview_get_display_clock_speed;
13480         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
13481                 dev_priv->display.get_display_clock_speed =
13482                         i945_get_display_clock_speed;
13483         else if (IS_I915G(dev))
13484                 dev_priv->display.get_display_clock_speed =
13485                         i915_get_display_clock_speed;
13486         else if (IS_I945GM(dev) || IS_845G(dev))
13487                 dev_priv->display.get_display_clock_speed =
13488                         i9xx_misc_get_display_clock_speed;
13489         else if (IS_PINEVIEW(dev))
13490                 dev_priv->display.get_display_clock_speed =
13491                         pnv_get_display_clock_speed;
13492         else if (IS_I915GM(dev))
13493                 dev_priv->display.get_display_clock_speed =
13494                         i915gm_get_display_clock_speed;
13495         else if (IS_I865G(dev))
13496                 dev_priv->display.get_display_clock_speed =
13497                         i865_get_display_clock_speed;
13498         else if (IS_I85X(dev))
13499                 dev_priv->display.get_display_clock_speed =
13500                         i855_get_display_clock_speed;
13501         else /* 852, 830 */
13502                 dev_priv->display.get_display_clock_speed =
13503                         i830_get_display_clock_speed;
13504
13505         if (IS_GEN5(dev)) {
13506                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
13507         } else if (IS_GEN6(dev)) {
13508                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
13509         } else if (IS_IVYBRIDGE(dev)) {
13510                 /* FIXME: detect B0+ stepping and use auto training */
13511                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
13512         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
13513                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
13514         } else if (IS_VALLEYVIEW(dev)) {
13515                 dev_priv->display.modeset_global_resources =
13516                         valleyview_modeset_global_resources;
13517         }
13518
13519         switch (INTEL_INFO(dev)->gen) {
13520         case 2:
13521                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
13522                 break;
13523
13524         case 3:
13525                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
13526                 break;
13527
13528         case 4:
13529         case 5:
13530                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
13531                 break;
13532
13533         case 6:
13534                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
13535                 break;
13536         case 7:
13537         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
13538                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
13539                 break;
13540         case 9:
13541                 /* Drop through - unsupported since execlist only. */
13542         default:
13543                 /* Default just returns -ENODEV to indicate unsupported */
13544                 dev_priv->display.queue_flip = intel_default_queue_flip;
13545         }
13546
13547         intel_panel_init_backlight_funcs(dev);
13548
13549         mutex_init(&dev_priv->pps_mutex);
13550 }
13551
13552 /*
13553  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
13554  * resume, or other times.  This quirk makes sure that's the case for
13555  * affected systems.
13556  */
13557 static void quirk_pipea_force(struct drm_device *dev)
13558 {
13559         struct drm_i915_private *dev_priv = dev->dev_private;
13560
13561         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
13562         DRM_INFO("applying pipe a force quirk\n");
13563 }
13564
13565 static void quirk_pipeb_force(struct drm_device *dev)
13566 {
13567         struct drm_i915_private *dev_priv = dev->dev_private;
13568
13569         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
13570         DRM_INFO("applying pipe b force quirk\n");
13571 }
13572
13573 /*
13574  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
13575  */
13576 static void quirk_ssc_force_disable(struct drm_device *dev)
13577 {
13578         struct drm_i915_private *dev_priv = dev->dev_private;
13579         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
13580         DRM_INFO("applying lvds SSC disable quirk\n");
13581 }
13582
13583 /*
13584  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
13585  * brightness value
13586  */
13587 static void quirk_invert_brightness(struct drm_device *dev)
13588 {
13589         struct drm_i915_private *dev_priv = dev->dev_private;
13590         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
13591         DRM_INFO("applying inverted panel brightness quirk\n");
13592 }
13593
13594 /* Some VBT's incorrectly indicate no backlight is present */
13595 static void quirk_backlight_present(struct drm_device *dev)
13596 {
13597         struct drm_i915_private *dev_priv = dev->dev_private;
13598         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13599         DRM_INFO("applying backlight present quirk\n");
13600 }
13601
13602 struct intel_quirk {
13603         int device;
13604         int subsystem_vendor;
13605         int subsystem_device;
13606         void (*hook)(struct drm_device *dev);
13607 };
13608
13609 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13610 struct intel_dmi_quirk {
13611         void (*hook)(struct drm_device *dev);
13612         const struct dmi_system_id (*dmi_id_list)[];
13613 };
13614
13615 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13616 {
13617         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13618         return 1;
13619 }
13620
13621 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13622         {
13623                 .dmi_id_list = &(const struct dmi_system_id[]) {
13624                         {
13625                                 .callback = intel_dmi_reverse_brightness,
13626                                 .ident = "NCR Corporation",
13627                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13628                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
13629                                 },
13630                         },
13631                         { }  /* terminating entry */
13632                 },
13633                 .hook = quirk_invert_brightness,
13634         },
13635 };
13636
13637 static struct intel_quirk intel_quirks[] = {
13638         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13639         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13640
13641         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13642         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13643
13644         /* 830 needs to leave pipe A & dpll A up */
13645         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13646
13647         /* 830 needs to leave pipe B & dpll B up */
13648         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13649
13650         /* Lenovo U160 cannot use SSC on LVDS */
13651         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
13652
13653         /* Sony Vaio Y cannot use SSC on LVDS */
13654         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
13655
13656         /* Acer Aspire 5734Z must invert backlight brightness */
13657         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13658
13659         /* Acer/eMachines G725 */
13660         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13661
13662         /* Acer/eMachines e725 */
13663         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13664
13665         /* Acer/Packard Bell NCL20 */
13666         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13667
13668         /* Acer Aspire 4736Z */
13669         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
13670
13671         /* Acer Aspire 5336 */
13672         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
13673
13674         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13675         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
13676
13677         /* Acer C720 Chromebook (Core i3 4005U) */
13678         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13679
13680         /* Apple Macbook 2,1 (Core 2 T7400) */
13681         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13682
13683         /* Toshiba CB35 Chromebook (Celeron 2955U) */
13684         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
13685
13686         /* HP Chromebook 14 (Celeron 2955U) */
13687         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
13688
13689         /* Dell Chromebook 11 */
13690         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
13691 };
13692
13693 static void intel_init_quirks(struct drm_device *dev)
13694 {
13695         struct pci_dev *d = dev->pdev;
13696         int i;
13697
13698         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13699                 struct intel_quirk *q = &intel_quirks[i];
13700
13701                 if (d->device == q->device &&
13702                     (d->subsystem_vendor == q->subsystem_vendor ||
13703                      q->subsystem_vendor == PCI_ANY_ID) &&
13704                     (d->subsystem_device == q->subsystem_device ||
13705                      q->subsystem_device == PCI_ANY_ID))
13706                         q->hook(dev);
13707         }
13708         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13709                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13710                         intel_dmi_quirks[i].hook(dev);
13711         }
13712 }
13713
13714 /* Disable the VGA plane that we never use */
13715 static void i915_disable_vga(struct drm_device *dev)
13716 {
13717         struct drm_i915_private *dev_priv = dev->dev_private;
13718         u8 sr1;
13719         u32 vga_reg = i915_vgacntrl_reg(dev);
13720
13721         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
13722         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
13723         outb(SR01, VGA_SR_INDEX);
13724         sr1 = inb(VGA_SR_DATA);
13725         outb(sr1 | 1<<5, VGA_SR_DATA);
13726         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13727         udelay(300);
13728
13729         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
13730         POSTING_READ(vga_reg);
13731 }
13732
13733 void intel_modeset_init_hw(struct drm_device *dev)
13734 {
13735         intel_prepare_ddi(dev);
13736
13737         if (IS_VALLEYVIEW(dev))
13738                 vlv_update_cdclk(dev);
13739
13740         intel_init_clock_gating(dev);
13741
13742         intel_enable_gt_powersave(dev);
13743 }
13744
13745 void intel_modeset_init(struct drm_device *dev)
13746 {
13747         struct drm_i915_private *dev_priv = dev->dev_private;
13748         int sprite, ret;
13749         enum pipe pipe;
13750         struct intel_crtc *crtc;
13751
13752         drm_mode_config_init(dev);
13753
13754         dev->mode_config.min_width = 0;
13755         dev->mode_config.min_height = 0;
13756
13757         dev->mode_config.preferred_depth = 24;
13758         dev->mode_config.prefer_shadow = 1;
13759
13760         dev->mode_config.allow_fb_modifiers = true;
13761
13762         dev->mode_config.funcs = &intel_mode_funcs;
13763
13764         intel_init_quirks(dev);
13765
13766         intel_init_pm(dev);
13767
13768         if (INTEL_INFO(dev)->num_pipes == 0)
13769                 return;
13770
13771         intel_init_display(dev);
13772         intel_init_audio(dev);
13773
13774         if (IS_GEN2(dev)) {
13775                 dev->mode_config.max_width = 2048;
13776                 dev->mode_config.max_height = 2048;
13777         } else if (IS_GEN3(dev)) {
13778                 dev->mode_config.max_width = 4096;
13779                 dev->mode_config.max_height = 4096;
13780         } else {
13781                 dev->mode_config.max_width = 8192;
13782                 dev->mode_config.max_height = 8192;
13783         }
13784
13785         if (IS_845G(dev) || IS_I865G(dev)) {
13786                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13787                 dev->mode_config.cursor_height = 1023;
13788         } else if (IS_GEN2(dev)) {
13789                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13790                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13791         } else {
13792                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13793                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13794         }
13795
13796         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13797
13798         DRM_DEBUG_KMS("%d display pipe%s available.\n",
13799                       INTEL_INFO(dev)->num_pipes,
13800                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13801
13802         for_each_pipe(dev_priv, pipe) {
13803                 intel_crtc_init(dev, pipe);
13804                 for_each_sprite(dev_priv, pipe, sprite) {
13805                         ret = intel_plane_init(dev, pipe, sprite);
13806                         if (ret)
13807                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13808                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
13809                 }
13810         }
13811
13812         intel_init_dpio(dev);
13813
13814         intel_shared_dpll_init(dev);
13815
13816         /* Just disable it once at startup */
13817         i915_disable_vga(dev);
13818         intel_setup_outputs(dev);
13819
13820         /* Just in case the BIOS is doing something questionable. */
13821         intel_fbc_disable(dev);
13822
13823         drm_modeset_lock_all(dev);
13824         intel_modeset_setup_hw_state(dev, false);
13825         drm_modeset_unlock_all(dev);
13826
13827         for_each_intel_crtc(dev, crtc) {
13828                 if (!crtc->active)
13829                         continue;
13830
13831                 /*
13832                  * Note that reserving the BIOS fb up front prevents us
13833                  * from stuffing other stolen allocations like the ring
13834                  * on top.  This prevents some ugliness at boot time, and
13835                  * can even allow for smooth boot transitions if the BIOS
13836                  * fb is large enough for the active pipe configuration.
13837                  */
13838                 if (dev_priv->display.get_initial_plane_config) {
13839                         dev_priv->display.get_initial_plane_config(crtc,
13840                                                            &crtc->plane_config);
13841                         /*
13842                          * If the fb is shared between multiple heads, we'll
13843                          * just get the first one.
13844                          */
13845                         intel_find_initial_plane_obj(crtc, &crtc->plane_config);
13846                 }
13847         }
13848 }
13849
13850 static void intel_enable_pipe_a(struct drm_device *dev)
13851 {
13852         struct intel_connector *connector;
13853         struct drm_connector *crt = NULL;
13854         struct intel_load_detect_pipe load_detect_temp;
13855         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13856
13857         /* We can't just switch on the pipe A, we need to set things up with a
13858          * proper mode and output configuration. As a gross hack, enable pipe A
13859          * by enabling the load detect pipe once. */
13860         for_each_intel_connector(dev, connector) {
13861                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13862                         crt = &connector->base;
13863                         break;
13864                 }
13865         }
13866
13867         if (!crt)
13868                 return;
13869
13870         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13871                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
13872 }
13873
13874 static bool
13875 intel_check_plane_mapping(struct intel_crtc *crtc)
13876 {
13877         struct drm_device *dev = crtc->base.dev;
13878         struct drm_i915_private *dev_priv = dev->dev_private;
13879         u32 reg, val;
13880
13881         if (INTEL_INFO(dev)->num_pipes == 1)
13882                 return true;
13883
13884         reg = DSPCNTR(!crtc->plane);
13885         val = I915_READ(reg);
13886
13887         if ((val & DISPLAY_PLANE_ENABLE) &&
13888             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13889                 return false;
13890
13891         return true;
13892 }
13893
13894 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13895 {
13896         struct drm_device *dev = crtc->base.dev;
13897         struct drm_i915_private *dev_priv = dev->dev_private;
13898         u32 reg;
13899
13900         /* Clear any frame start delays used for debugging left by the BIOS */
13901         reg = PIPECONF(crtc->config->cpu_transcoder);
13902         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13903
13904         /* restore vblank interrupts to correct state */
13905         drm_crtc_vblank_reset(&crtc->base);
13906         if (crtc->active) {
13907                 update_scanline_offset(crtc);
13908                 drm_crtc_vblank_on(&crtc->base);
13909         }
13910
13911         /* We need to sanitize the plane -> pipe mapping first because this will
13912          * disable the crtc (and hence change the state) if it is wrong. Note
13913          * that gen4+ has a fixed plane -> pipe mapping.  */
13914         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13915                 struct intel_connector *connector;
13916                 bool plane;
13917
13918                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13919                               crtc->base.base.id);
13920
13921                 /* Pipe has the wrong plane attached and the plane is active.
13922                  * Temporarily change the plane mapping and disable everything
13923                  * ...  */
13924                 plane = crtc->plane;
13925                 crtc->plane = !plane;
13926                 crtc->primary_enabled = true;
13927                 dev_priv->display.crtc_disable(&crtc->base);
13928                 crtc->plane = plane;
13929
13930                 /* ... and break all links. */
13931                 for_each_intel_connector(dev, connector) {
13932                         if (connector->encoder->base.crtc != &crtc->base)
13933                                 continue;
13934
13935                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13936                         connector->base.encoder = NULL;
13937                 }
13938                 /* multiple connectors may have the same encoder:
13939                  *  handle them and break crtc link separately */
13940                 for_each_intel_connector(dev, connector)
13941                         if (connector->encoder->base.crtc == &crtc->base) {
13942                                 connector->encoder->base.crtc = NULL;
13943                                 connector->encoder->connectors_active = false;
13944                         }
13945
13946                 WARN_ON(crtc->active);
13947                 crtc->base.state->enable = false;
13948                 crtc->base.enabled = false;
13949         }
13950
13951         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13952             crtc->pipe == PIPE_A && !crtc->active) {
13953                 /* BIOS forgot to enable pipe A, this mostly happens after
13954                  * resume. Force-enable the pipe to fix this, the update_dpms
13955                  * call below we restore the pipe to the right state, but leave
13956                  * the required bits on. */
13957                 intel_enable_pipe_a(dev);
13958         }
13959
13960         /* Adjust the state of the output pipe according to whether we
13961          * have active connectors/encoders. */
13962         intel_crtc_update_dpms(&crtc->base);
13963
13964         if (crtc->active != crtc->base.state->enable) {
13965                 struct intel_encoder *encoder;
13966
13967                 /* This can happen either due to bugs in the get_hw_state
13968                  * functions or because the pipe is force-enabled due to the
13969                  * pipe A quirk. */
13970                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13971                               crtc->base.base.id,
13972                               crtc->base.state->enable ? "enabled" : "disabled",
13973                               crtc->active ? "enabled" : "disabled");
13974
13975                 crtc->base.state->enable = crtc->active;
13976                 crtc->base.enabled = crtc->active;
13977
13978                 /* Because we only establish the connector -> encoder ->
13979                  * crtc links if something is active, this means the
13980                  * crtc is now deactivated. Break the links. connector
13981                  * -> encoder links are only establish when things are
13982                  *  actually up, hence no need to break them. */
13983                 WARN_ON(crtc->active);
13984
13985                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13986                         WARN_ON(encoder->connectors_active);
13987                         encoder->base.crtc = NULL;
13988                 }
13989         }
13990
13991         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13992                 /*
13993                  * We start out with underrun reporting disabled to avoid races.
13994                  * For correct bookkeeping mark this on active crtcs.
13995                  *
13996                  * Also on gmch platforms we dont have any hardware bits to
13997                  * disable the underrun reporting. Which means we need to start
13998                  * out with underrun reporting disabled also on inactive pipes,
13999                  * since otherwise we'll complain about the garbage we read when
14000                  * e.g. coming up after runtime pm.
14001                  *
14002                  * No protection against concurrent access is required - at
14003                  * worst a fifo underrun happens which also sets this to false.
14004                  */
14005                 crtc->cpu_fifo_underrun_disabled = true;
14006                 crtc->pch_fifo_underrun_disabled = true;
14007         }
14008 }
14009
14010 static void intel_sanitize_encoder(struct intel_encoder *encoder)
14011 {
14012         struct intel_connector *connector;
14013         struct drm_device *dev = encoder->base.dev;
14014
14015         /* We need to check both for a crtc link (meaning that the
14016          * encoder is active and trying to read from a pipe) and the
14017          * pipe itself being active. */
14018         bool has_active_crtc = encoder->base.crtc &&
14019                 to_intel_crtc(encoder->base.crtc)->active;
14020
14021         if (encoder->connectors_active && !has_active_crtc) {
14022                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14023                               encoder->base.base.id,
14024                               encoder->base.name);
14025
14026                 /* Connector is active, but has no active pipe. This is
14027                  * fallout from our resume register restoring. Disable
14028                  * the encoder manually again. */
14029                 if (encoder->base.crtc) {
14030                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14031                                       encoder->base.base.id,
14032                                       encoder->base.name);
14033                         encoder->disable(encoder);
14034                         if (encoder->post_disable)
14035                                 encoder->post_disable(encoder);
14036                 }
14037                 encoder->base.crtc = NULL;
14038                 encoder->connectors_active = false;
14039
14040                 /* Inconsistent output/port/pipe state happens presumably due to
14041                  * a bug in one of the get_hw_state functions. Or someplace else
14042                  * in our code, like the register restore mess on resume. Clamp
14043                  * things to off as a safer default. */
14044                 for_each_intel_connector(dev, connector) {
14045                         if (connector->encoder != encoder)
14046                                 continue;
14047                         connector->base.dpms = DRM_MODE_DPMS_OFF;
14048                         connector->base.encoder = NULL;
14049                 }
14050         }
14051         /* Enabled encoders without active connectors will be fixed in
14052          * the crtc fixup. */
14053 }
14054
14055 void i915_redisable_vga_power_on(struct drm_device *dev)
14056 {
14057         struct drm_i915_private *dev_priv = dev->dev_private;
14058         u32 vga_reg = i915_vgacntrl_reg(dev);
14059
14060         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14061                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14062                 i915_disable_vga(dev);
14063         }
14064 }
14065
14066 void i915_redisable_vga(struct drm_device *dev)
14067 {
14068         struct drm_i915_private *dev_priv = dev->dev_private;
14069
14070         /* This function can be called both from intel_modeset_setup_hw_state or
14071          * at a very early point in our resume sequence, where the power well
14072          * structures are not yet restored. Since this function is at a very
14073          * paranoid "someone might have enabled VGA while we were not looking"
14074          * level, just check if the power well is enabled instead of trying to
14075          * follow the "don't touch the power well if we don't need it" policy
14076          * the rest of the driver uses. */
14077         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
14078                 return;
14079
14080         i915_redisable_vga_power_on(dev);
14081 }
14082
14083 static bool primary_get_hw_state(struct intel_crtc *crtc)
14084 {
14085         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
14086
14087         if (!crtc->active)
14088                 return false;
14089
14090         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
14091 }
14092
14093 static void intel_modeset_readout_hw_state(struct drm_device *dev)
14094 {
14095         struct drm_i915_private *dev_priv = dev->dev_private;
14096         enum pipe pipe;
14097         struct intel_crtc *crtc;
14098         struct intel_encoder *encoder;
14099         struct intel_connector *connector;
14100         int i;
14101
14102         for_each_intel_crtc(dev, crtc) {
14103                 memset(crtc->config, 0, sizeof(*crtc->config));
14104
14105                 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
14106
14107                 crtc->active = dev_priv->display.get_pipe_config(crtc,
14108                                                                  crtc->config);
14109
14110                 crtc->base.state->enable = crtc->active;
14111                 crtc->base.enabled = crtc->active;
14112                 crtc->primary_enabled = primary_get_hw_state(crtc);
14113
14114                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
14115                               crtc->base.base.id,
14116                               crtc->active ? "enabled" : "disabled");
14117         }
14118
14119         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14120                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14121
14122                 pll->on = pll->get_hw_state(dev_priv, pll,
14123                                             &pll->config.hw_state);
14124                 pll->active = 0;
14125                 pll->config.crtc_mask = 0;
14126                 for_each_intel_crtc(dev, crtc) {
14127                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
14128                                 pll->active++;
14129                                 pll->config.crtc_mask |= 1 << crtc->pipe;
14130                         }
14131                 }
14132
14133                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
14134                               pll->name, pll->config.crtc_mask, pll->on);
14135
14136                 if (pll->config.crtc_mask)
14137                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
14138         }
14139
14140         for_each_intel_encoder(dev, encoder) {
14141                 pipe = 0;
14142
14143                 if (encoder->get_hw_state(encoder, &pipe)) {
14144                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14145                         encoder->base.crtc = &crtc->base;
14146                         encoder->get_config(encoder, crtc->config);
14147                 } else {
14148                         encoder->base.crtc = NULL;
14149                 }
14150
14151                 encoder->connectors_active = false;
14152                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
14153                               encoder->base.base.id,
14154                               encoder->base.name,
14155                               encoder->base.crtc ? "enabled" : "disabled",
14156                               pipe_name(pipe));
14157         }
14158
14159         for_each_intel_connector(dev, connector) {
14160                 if (connector->get_hw_state(connector)) {
14161                         connector->base.dpms = DRM_MODE_DPMS_ON;
14162                         connector->encoder->connectors_active = true;
14163                         connector->base.encoder = &connector->encoder->base;
14164                 } else {
14165                         connector->base.dpms = DRM_MODE_DPMS_OFF;
14166                         connector->base.encoder = NULL;
14167                 }
14168                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
14169                               connector->base.base.id,
14170                               connector->base.name,
14171                               connector->base.encoder ? "enabled" : "disabled");
14172         }
14173 }
14174
14175 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
14176  * and i915 state tracking structures. */
14177 void intel_modeset_setup_hw_state(struct drm_device *dev,
14178                                   bool force_restore)
14179 {
14180         struct drm_i915_private *dev_priv = dev->dev_private;
14181         enum pipe pipe;
14182         struct intel_crtc *crtc;
14183         struct intel_encoder *encoder;
14184         int i;
14185
14186         intel_modeset_readout_hw_state(dev);
14187
14188         /*
14189          * Now that we have the config, copy it to each CRTC struct
14190          * Note that this could go away if we move to using crtc_config
14191          * checking everywhere.
14192          */
14193         for_each_intel_crtc(dev, crtc) {
14194                 if (crtc->active && i915.fastboot) {
14195                         intel_mode_from_pipe_config(&crtc->base.mode,
14196                                                     crtc->config);
14197                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
14198                                       crtc->base.base.id);
14199                         drm_mode_debug_printmodeline(&crtc->base.mode);
14200                 }
14201         }
14202
14203         /* HW state is read out, now we need to sanitize this mess. */
14204         for_each_intel_encoder(dev, encoder) {
14205                 intel_sanitize_encoder(encoder);
14206         }
14207
14208         for_each_pipe(dev_priv, pipe) {
14209                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14210                 intel_sanitize_crtc(crtc);
14211                 intel_dump_pipe_config(crtc, crtc->config,
14212                                        "[setup_hw_state]");
14213         }
14214
14215         intel_modeset_update_connector_atomic_state(dev);
14216
14217         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14218                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14219
14220                 if (!pll->on || pll->active)
14221                         continue;
14222
14223                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
14224
14225                 pll->disable(dev_priv, pll);
14226                 pll->on = false;
14227         }
14228
14229         if (IS_GEN9(dev))
14230                 skl_wm_get_hw_state(dev);
14231         else if (HAS_PCH_SPLIT(dev))
14232                 ilk_wm_get_hw_state(dev);
14233
14234         if (force_restore) {
14235                 i915_redisable_vga(dev);
14236
14237                 /*
14238                  * We need to use raw interfaces for restoring state to avoid
14239                  * checking (bogus) intermediate states.
14240                  */
14241                 for_each_pipe(dev_priv, pipe) {
14242                         struct drm_crtc *crtc =
14243                                 dev_priv->pipe_to_crtc_mapping[pipe];
14244
14245                         intel_crtc_restore_mode(crtc);
14246                 }
14247         } else {
14248                 intel_modeset_update_staged_output_state(dev);
14249         }
14250
14251         intel_modeset_check_state(dev);
14252 }
14253
14254 void intel_modeset_gem_init(struct drm_device *dev)
14255 {
14256         struct drm_i915_private *dev_priv = dev->dev_private;
14257         struct drm_crtc *c;
14258         struct drm_i915_gem_object *obj;
14259         int ret;
14260
14261         mutex_lock(&dev->struct_mutex);
14262         intel_init_gt_powersave(dev);
14263         mutex_unlock(&dev->struct_mutex);
14264
14265         /*
14266          * There may be no VBT; and if the BIOS enabled SSC we can
14267          * just keep using it to avoid unnecessary flicker.  Whereas if the
14268          * BIOS isn't using it, don't assume it will work even if the VBT
14269          * indicates as much.
14270          */
14271         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
14272                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14273                                                 DREF_SSC1_ENABLE);
14274
14275         intel_modeset_init_hw(dev);
14276
14277         intel_setup_overlay(dev);
14278
14279         /*
14280          * Make sure any fbs we allocated at startup are properly
14281          * pinned & fenced.  When we do the allocation it's too early
14282          * for this.
14283          */
14284         for_each_crtc(dev, c) {
14285                 obj = intel_fb_obj(c->primary->fb);
14286                 if (obj == NULL)
14287                         continue;
14288
14289                 mutex_lock(&dev->struct_mutex);
14290                 ret = intel_pin_and_fence_fb_obj(c->primary,
14291                                                  c->primary->fb,
14292                                                  c->primary->state,
14293                                                  NULL);
14294                 mutex_unlock(&dev->struct_mutex);
14295                 if (ret) {
14296                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
14297                                   to_intel_crtc(c)->pipe);
14298                         drm_framebuffer_unreference(c->primary->fb);
14299                         c->primary->fb = NULL;
14300                         update_state_fb(c->primary);
14301                 }
14302         }
14303
14304         intel_backlight_register(dev);
14305 }
14306
14307 void intel_connector_unregister(struct intel_connector *intel_connector)
14308 {
14309         struct drm_connector *connector = &intel_connector->base;
14310
14311         intel_panel_destroy_backlight(connector);
14312         drm_connector_unregister(connector);
14313 }
14314
14315 void intel_modeset_cleanup(struct drm_device *dev)
14316 {
14317         struct drm_i915_private *dev_priv = dev->dev_private;
14318         struct drm_connector *connector;
14319
14320         intel_disable_gt_powersave(dev);
14321
14322         intel_backlight_unregister(dev);
14323
14324         /*
14325          * Interrupts and polling as the first thing to avoid creating havoc.
14326          * Too much stuff here (turning of connectors, ...) would
14327          * experience fancy races otherwise.
14328          */
14329         intel_irq_uninstall(dev_priv);
14330
14331         /*
14332          * Due to the hpd irq storm handling the hotplug work can re-arm the
14333          * poll handlers. Hence disable polling after hpd handling is shut down.
14334          */
14335         drm_kms_helper_poll_fini(dev);
14336
14337         mutex_lock(&dev->struct_mutex);
14338
14339         intel_unregister_dsm_handler();
14340
14341         intel_fbc_disable(dev);
14342
14343         mutex_unlock(&dev->struct_mutex);
14344
14345         /* flush any delayed tasks or pending work */
14346         flush_scheduled_work();
14347
14348         /* destroy the backlight and sysfs files before encoders/connectors */
14349         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
14350                 struct intel_connector *intel_connector;
14351
14352                 intel_connector = to_intel_connector(connector);
14353                 intel_connector->unregister(intel_connector);
14354         }
14355
14356         drm_mode_config_cleanup(dev);
14357
14358         intel_cleanup_overlay(dev);
14359
14360         mutex_lock(&dev->struct_mutex);
14361         intel_cleanup_gt_powersave(dev);
14362         mutex_unlock(&dev->struct_mutex);
14363 }
14364
14365 /*
14366  * Return which encoder is currently attached for connector.
14367  */
14368 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
14369 {
14370         return &intel_attached_encoder(connector)->base;
14371 }
14372
14373 void intel_connector_attach_encoder(struct intel_connector *connector,
14374                                     struct intel_encoder *encoder)
14375 {
14376         connector->encoder = encoder;
14377         drm_mode_connector_attach_encoder(&connector->base,
14378                                           &encoder->base);
14379 }
14380
14381 /*
14382  * set vga decode state - true == enable VGA decode
14383  */
14384 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
14385 {
14386         struct drm_i915_private *dev_priv = dev->dev_private;
14387         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
14388         u16 gmch_ctrl;
14389
14390         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
14391                 DRM_ERROR("failed to read control word\n");
14392                 return -EIO;
14393         }
14394
14395         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
14396                 return 0;
14397
14398         if (state)
14399                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
14400         else
14401                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
14402
14403         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
14404                 DRM_ERROR("failed to write control word\n");
14405                 return -EIO;
14406         }
14407
14408         return 0;
14409 }
14410
14411 struct intel_display_error_state {
14412
14413         u32 power_well_driver;
14414
14415         int num_transcoders;
14416
14417         struct intel_cursor_error_state {
14418                 u32 control;
14419                 u32 position;
14420                 u32 base;
14421                 u32 size;
14422         } cursor[I915_MAX_PIPES];
14423
14424         struct intel_pipe_error_state {
14425                 bool power_domain_on;
14426                 u32 source;
14427                 u32 stat;
14428         } pipe[I915_MAX_PIPES];
14429
14430         struct intel_plane_error_state {
14431                 u32 control;
14432                 u32 stride;
14433                 u32 size;
14434                 u32 pos;
14435                 u32 addr;
14436                 u32 surface;
14437                 u32 tile_offset;
14438         } plane[I915_MAX_PIPES];
14439
14440         struct intel_transcoder_error_state {
14441                 bool power_domain_on;
14442                 enum transcoder cpu_transcoder;
14443
14444                 u32 conf;
14445
14446                 u32 htotal;
14447                 u32 hblank;
14448                 u32 hsync;
14449                 u32 vtotal;
14450                 u32 vblank;
14451                 u32 vsync;
14452         } transcoder[4];
14453 };
14454
14455 struct intel_display_error_state *
14456 intel_display_capture_error_state(struct drm_device *dev)
14457 {
14458         struct drm_i915_private *dev_priv = dev->dev_private;
14459         struct intel_display_error_state *error;
14460         int transcoders[] = {
14461                 TRANSCODER_A,
14462                 TRANSCODER_B,
14463                 TRANSCODER_C,
14464                 TRANSCODER_EDP,
14465         };
14466         int i;
14467
14468         if (INTEL_INFO(dev)->num_pipes == 0)
14469                 return NULL;
14470
14471         error = kzalloc(sizeof(*error), GFP_ATOMIC);
14472         if (error == NULL)
14473                 return NULL;
14474
14475         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14476                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
14477
14478         for_each_pipe(dev_priv, i) {
14479                 error->pipe[i].power_domain_on =
14480                         __intel_display_power_is_enabled(dev_priv,
14481                                                          POWER_DOMAIN_PIPE(i));
14482                 if (!error->pipe[i].power_domain_on)
14483                         continue;
14484
14485                 error->cursor[i].control = I915_READ(CURCNTR(i));
14486                 error->cursor[i].position = I915_READ(CURPOS(i));
14487                 error->cursor[i].base = I915_READ(CURBASE(i));
14488
14489                 error->plane[i].control = I915_READ(DSPCNTR(i));
14490                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
14491                 if (INTEL_INFO(dev)->gen <= 3) {
14492                         error->plane[i].size = I915_READ(DSPSIZE(i));
14493                         error->plane[i].pos = I915_READ(DSPPOS(i));
14494                 }
14495                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14496                         error->plane[i].addr = I915_READ(DSPADDR(i));
14497                 if (INTEL_INFO(dev)->gen >= 4) {
14498                         error->plane[i].surface = I915_READ(DSPSURF(i));
14499                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
14500                 }
14501
14502                 error->pipe[i].source = I915_READ(PIPESRC(i));
14503
14504                 if (HAS_GMCH_DISPLAY(dev))
14505                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
14506         }
14507
14508         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
14509         if (HAS_DDI(dev_priv->dev))
14510                 error->num_transcoders++; /* Account for eDP. */
14511
14512         for (i = 0; i < error->num_transcoders; i++) {
14513                 enum transcoder cpu_transcoder = transcoders[i];
14514
14515                 error->transcoder[i].power_domain_on =
14516                         __intel_display_power_is_enabled(dev_priv,
14517                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
14518                 if (!error->transcoder[i].power_domain_on)
14519                         continue;
14520
14521                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
14522
14523                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
14524                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
14525                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
14526                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
14527                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
14528                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
14529                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
14530         }
14531
14532         return error;
14533 }
14534
14535 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
14536
14537 void
14538 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
14539                                 struct drm_device *dev,
14540                                 struct intel_display_error_state *error)
14541 {
14542         struct drm_i915_private *dev_priv = dev->dev_private;
14543         int i;
14544
14545         if (!error)
14546                 return;
14547
14548         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
14549         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14550                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
14551                            error->power_well_driver);
14552         for_each_pipe(dev_priv, i) {
14553                 err_printf(m, "Pipe [%d]:\n", i);
14554                 err_printf(m, "  Power: %s\n",
14555                            error->pipe[i].power_domain_on ? "on" : "off");
14556                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
14557                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
14558
14559                 err_printf(m, "Plane [%d]:\n", i);
14560                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
14561                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
14562                 if (INTEL_INFO(dev)->gen <= 3) {
14563                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
14564                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
14565                 }
14566                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14567                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
14568                 if (INTEL_INFO(dev)->gen >= 4) {
14569                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
14570                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
14571                 }
14572
14573                 err_printf(m, "Cursor [%d]:\n", i);
14574                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
14575                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
14576                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
14577         }
14578
14579         for (i = 0; i < error->num_transcoders; i++) {
14580                 err_printf(m, "CPU transcoder: %c\n",
14581                            transcoder_name(error->transcoder[i].cpu_transcoder));
14582                 err_printf(m, "  Power: %s\n",
14583                            error->transcoder[i].power_domain_on ? "on" : "off");
14584                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
14585                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
14586                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
14587                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
14588                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
14589                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
14590                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
14591         }
14592 }
14593
14594 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14595 {
14596         struct intel_crtc *crtc;
14597
14598         for_each_intel_crtc(dev, crtc) {
14599                 struct intel_unpin_work *work;
14600
14601                 spin_lock_irq(&dev->event_lock);
14602
14603                 work = crtc->unpin_work;
14604
14605                 if (work && work->event &&
14606                     work->event->base.file_priv == file) {
14607                         kfree(work->event);
14608                         work->event = NULL;
14609                 }
14610
14611                 spin_unlock_irq(&dev->event_lock);
14612         }
14613 }