6d494432b19f6a79cc11df25f920e5e0621ca868
[kvmfornfv.git] / kernel / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ibx[HPD_NUM_PINS] = {
49         [HPD_CRT] = SDE_CRT_HOTPLUG,
50         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55
56 static const u32 hpd_cpt[HPD_NUM_PINS] = {
57         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63
64 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
65         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
66         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
67         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
68         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
69         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
70         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
71 };
72
73 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
74         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
76         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
77         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 static const u32 hpd_status_i915[HPD_NUM_PINS] = { /* i915 and valleyview are the same */
83         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89 };
90
91 /* IIR can theoretically queue up two events. Be paranoid. */
92 #define GEN8_IRQ_RESET_NDX(type, which) do { \
93         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
94         POSTING_READ(GEN8_##type##_IMR(which)); \
95         I915_WRITE(GEN8_##type##_IER(which), 0); \
96         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
97         POSTING_READ(GEN8_##type##_IIR(which)); \
98         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
99         POSTING_READ(GEN8_##type##_IIR(which)); \
100 } while (0)
101
102 #define GEN5_IRQ_RESET(type) do { \
103         I915_WRITE(type##IMR, 0xffffffff); \
104         POSTING_READ(type##IMR); \
105         I915_WRITE(type##IER, 0); \
106         I915_WRITE(type##IIR, 0xffffffff); \
107         POSTING_READ(type##IIR); \
108         I915_WRITE(type##IIR, 0xffffffff); \
109         POSTING_READ(type##IIR); \
110 } while (0)
111
112 /*
113  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
114  */
115 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
116         u32 val = I915_READ(reg); \
117         if (val) { \
118                 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
119                      (reg), val); \
120                 I915_WRITE((reg), 0xffffffff); \
121                 POSTING_READ(reg); \
122                 I915_WRITE((reg), 0xffffffff); \
123                 POSTING_READ(reg); \
124         } \
125 } while (0)
126
127 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
128         GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
129         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
130         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
131         POSTING_READ(GEN8_##type##_IMR(which)); \
132 } while (0)
133
134 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
135         GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
136         I915_WRITE(type##IER, (ier_val)); \
137         I915_WRITE(type##IMR, (imr_val)); \
138         POSTING_READ(type##IMR); \
139 } while (0)
140
141 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
142
143 /* For display hotplug interrupt */
144 void
145 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
146 {
147         assert_spin_locked(&dev_priv->irq_lock);
148
149         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
150                 return;
151
152         if ((dev_priv->irq_mask & mask) != 0) {
153                 dev_priv->irq_mask &= ~mask;
154                 I915_WRITE(DEIMR, dev_priv->irq_mask);
155                 POSTING_READ(DEIMR);
156         }
157 }
158
159 void
160 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
161 {
162         assert_spin_locked(&dev_priv->irq_lock);
163
164         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
165                 return;
166
167         if ((dev_priv->irq_mask & mask) != mask) {
168                 dev_priv->irq_mask |= mask;
169                 I915_WRITE(DEIMR, dev_priv->irq_mask);
170                 POSTING_READ(DEIMR);
171         }
172 }
173
174 /**
175  * ilk_update_gt_irq - update GTIMR
176  * @dev_priv: driver private
177  * @interrupt_mask: mask of interrupt bits to update
178  * @enabled_irq_mask: mask of interrupt bits to enable
179  */
180 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
181                               uint32_t interrupt_mask,
182                               uint32_t enabled_irq_mask)
183 {
184         assert_spin_locked(&dev_priv->irq_lock);
185
186         WARN_ON(enabled_irq_mask & ~interrupt_mask);
187
188         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
189                 return;
190
191         dev_priv->gt_irq_mask &= ~interrupt_mask;
192         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
193         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
194         POSTING_READ(GTIMR);
195 }
196
197 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
198 {
199         ilk_update_gt_irq(dev_priv, mask, mask);
200 }
201
202 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
203 {
204         ilk_update_gt_irq(dev_priv, mask, 0);
205 }
206
207 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
208 {
209         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
210 }
211
212 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
213 {
214         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
215 }
216
217 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
218 {
219         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
220 }
221
222 /**
223   * snb_update_pm_irq - update GEN6_PMIMR
224   * @dev_priv: driver private
225   * @interrupt_mask: mask of interrupt bits to update
226   * @enabled_irq_mask: mask of interrupt bits to enable
227   */
228 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
229                               uint32_t interrupt_mask,
230                               uint32_t enabled_irq_mask)
231 {
232         uint32_t new_val;
233
234         WARN_ON(enabled_irq_mask & ~interrupt_mask);
235
236         assert_spin_locked(&dev_priv->irq_lock);
237
238         new_val = dev_priv->pm_irq_mask;
239         new_val &= ~interrupt_mask;
240         new_val |= (~enabled_irq_mask & interrupt_mask);
241
242         if (new_val != dev_priv->pm_irq_mask) {
243                 dev_priv->pm_irq_mask = new_val;
244                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
245                 POSTING_READ(gen6_pm_imr(dev_priv));
246         }
247 }
248
249 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
250 {
251         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
252                 return;
253
254         snb_update_pm_irq(dev_priv, mask, mask);
255 }
256
257 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
258                                   uint32_t mask)
259 {
260         snb_update_pm_irq(dev_priv, mask, 0);
261 }
262
263 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
264 {
265         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
266                 return;
267
268         __gen6_disable_pm_irq(dev_priv, mask);
269 }
270
271 void gen6_reset_rps_interrupts(struct drm_device *dev)
272 {
273         struct drm_i915_private *dev_priv = dev->dev_private;
274         uint32_t reg = gen6_pm_iir(dev_priv);
275
276         spin_lock_irq(&dev_priv->irq_lock);
277         I915_WRITE(reg, dev_priv->pm_rps_events);
278         I915_WRITE(reg, dev_priv->pm_rps_events);
279         POSTING_READ(reg);
280         dev_priv->rps.pm_iir = 0;
281         spin_unlock_irq(&dev_priv->irq_lock);
282 }
283
284 void gen6_enable_rps_interrupts(struct drm_device *dev)
285 {
286         struct drm_i915_private *dev_priv = dev->dev_private;
287
288         spin_lock_irq(&dev_priv->irq_lock);
289
290         WARN_ON(dev_priv->rps.pm_iir);
291         WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
292         dev_priv->rps.interrupts_enabled = true;
293         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
294                                 dev_priv->pm_rps_events);
295         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
296
297         spin_unlock_irq(&dev_priv->irq_lock);
298 }
299
300 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
301 {
302         /*
303          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
304          * if GEN6_PM_UP_EI_EXPIRED is masked.
305          *
306          * TODO: verify if this can be reproduced on VLV,CHV.
307          */
308         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
309                 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
310
311         if (INTEL_INFO(dev_priv)->gen >= 8)
312                 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
313
314         return mask;
315 }
316
317 void gen6_disable_rps_interrupts(struct drm_device *dev)
318 {
319         struct drm_i915_private *dev_priv = dev->dev_private;
320
321         spin_lock_irq(&dev_priv->irq_lock);
322         dev_priv->rps.interrupts_enabled = false;
323         spin_unlock_irq(&dev_priv->irq_lock);
324
325         cancel_work_sync(&dev_priv->rps.work);
326
327         spin_lock_irq(&dev_priv->irq_lock);
328
329         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
330
331         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
332         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
333                                 ~dev_priv->pm_rps_events);
334
335         spin_unlock_irq(&dev_priv->irq_lock);
336
337         synchronize_irq(dev->irq);
338 }
339
340 /**
341  * ibx_display_interrupt_update - update SDEIMR
342  * @dev_priv: driver private
343  * @interrupt_mask: mask of interrupt bits to update
344  * @enabled_irq_mask: mask of interrupt bits to enable
345  */
346 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
347                                   uint32_t interrupt_mask,
348                                   uint32_t enabled_irq_mask)
349 {
350         uint32_t sdeimr = I915_READ(SDEIMR);
351         sdeimr &= ~interrupt_mask;
352         sdeimr |= (~enabled_irq_mask & interrupt_mask);
353
354         WARN_ON(enabled_irq_mask & ~interrupt_mask);
355
356         assert_spin_locked(&dev_priv->irq_lock);
357
358         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
359                 return;
360
361         I915_WRITE(SDEIMR, sdeimr);
362         POSTING_READ(SDEIMR);
363 }
364
365 static void
366 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
367                        u32 enable_mask, u32 status_mask)
368 {
369         u32 reg = PIPESTAT(pipe);
370         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
371
372         assert_spin_locked(&dev_priv->irq_lock);
373         WARN_ON(!intel_irqs_enabled(dev_priv));
374
375         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
376                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
377                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
378                       pipe_name(pipe), enable_mask, status_mask))
379                 return;
380
381         if ((pipestat & enable_mask) == enable_mask)
382                 return;
383
384         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
385
386         /* Enable the interrupt, clear any pending status */
387         pipestat |= enable_mask | status_mask;
388         I915_WRITE(reg, pipestat);
389         POSTING_READ(reg);
390 }
391
392 static void
393 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
394                         u32 enable_mask, u32 status_mask)
395 {
396         u32 reg = PIPESTAT(pipe);
397         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
398
399         assert_spin_locked(&dev_priv->irq_lock);
400         WARN_ON(!intel_irqs_enabled(dev_priv));
401
402         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
403                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
404                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
405                       pipe_name(pipe), enable_mask, status_mask))
406                 return;
407
408         if ((pipestat & enable_mask) == 0)
409                 return;
410
411         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
412
413         pipestat &= ~enable_mask;
414         I915_WRITE(reg, pipestat);
415         POSTING_READ(reg);
416 }
417
418 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
419 {
420         u32 enable_mask = status_mask << 16;
421
422         /*
423          * On pipe A we don't support the PSR interrupt yet,
424          * on pipe B and C the same bit MBZ.
425          */
426         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
427                 return 0;
428         /*
429          * On pipe B and C we don't support the PSR interrupt yet, on pipe
430          * A the same bit is for perf counters which we don't use either.
431          */
432         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
433                 return 0;
434
435         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
436                          SPRITE0_FLIP_DONE_INT_EN_VLV |
437                          SPRITE1_FLIP_DONE_INT_EN_VLV);
438         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
439                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
440         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
441                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
442
443         return enable_mask;
444 }
445
446 void
447 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
448                      u32 status_mask)
449 {
450         u32 enable_mask;
451
452         if (IS_VALLEYVIEW(dev_priv->dev))
453                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
454                                                            status_mask);
455         else
456                 enable_mask = status_mask << 16;
457         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
458 }
459
460 void
461 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
462                       u32 status_mask)
463 {
464         u32 enable_mask;
465
466         if (IS_VALLEYVIEW(dev_priv->dev))
467                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
468                                                            status_mask);
469         else
470                 enable_mask = status_mask << 16;
471         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
472 }
473
474 /**
475  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
476  */
477 static void i915_enable_asle_pipestat(struct drm_device *dev)
478 {
479         struct drm_i915_private *dev_priv = dev->dev_private;
480
481         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
482                 return;
483
484         spin_lock_irq(&dev_priv->irq_lock);
485
486         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
487         if (INTEL_INFO(dev)->gen >= 4)
488                 i915_enable_pipestat(dev_priv, PIPE_A,
489                                      PIPE_LEGACY_BLC_EVENT_STATUS);
490
491         spin_unlock_irq(&dev_priv->irq_lock);
492 }
493
494 /*
495  * This timing diagram depicts the video signal in and
496  * around the vertical blanking period.
497  *
498  * Assumptions about the fictitious mode used in this example:
499  *  vblank_start >= 3
500  *  vsync_start = vblank_start + 1
501  *  vsync_end = vblank_start + 2
502  *  vtotal = vblank_start + 3
503  *
504  *           start of vblank:
505  *           latch double buffered registers
506  *           increment frame counter (ctg+)
507  *           generate start of vblank interrupt (gen4+)
508  *           |
509  *           |          frame start:
510  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
511  *           |          may be shifted forward 1-3 extra lines via PIPECONF
512  *           |          |
513  *           |          |  start of vsync:
514  *           |          |  generate vsync interrupt
515  *           |          |  |
516  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
517  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
518  * ----va---> <-----------------vb--------------------> <--------va-------------
519  *       |          |       <----vs----->                     |
520  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
521  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
522  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
523  *       |          |                                         |
524  *       last visible pixel                                   first visible pixel
525  *                  |                                         increment frame counter (gen3/4)
526  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
527  *
528  * x  = horizontal active
529  * _  = horizontal blanking
530  * hs = horizontal sync
531  * va = vertical active
532  * vb = vertical blanking
533  * vs = vertical sync
534  * vbs = vblank_start (number)
535  *
536  * Summary:
537  * - most events happen at the start of horizontal sync
538  * - frame start happens at the start of horizontal blank, 1-4 lines
539  *   (depending on PIPECONF settings) after the start of vblank
540  * - gen3/4 pixel and frame counter are synchronized with the start
541  *   of horizontal active on the first line of vertical active
542  */
543
544 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
545 {
546         /* Gen2 doesn't have a hardware frame counter */
547         return 0;
548 }
549
550 /* Called from drm generic code, passed a 'crtc', which
551  * we use as a pipe index
552  */
553 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
554 {
555         struct drm_i915_private *dev_priv = dev->dev_private;
556         unsigned long high_frame;
557         unsigned long low_frame;
558         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
559         struct intel_crtc *intel_crtc =
560                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
561         const struct drm_display_mode *mode =
562                 &intel_crtc->config->base.adjusted_mode;
563
564         htotal = mode->crtc_htotal;
565         hsync_start = mode->crtc_hsync_start;
566         vbl_start = mode->crtc_vblank_start;
567         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
568                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
569
570         /* Convert to pixel count */
571         vbl_start *= htotal;
572
573         /* Start of vblank event occurs at start of hsync */
574         vbl_start -= htotal - hsync_start;
575
576         high_frame = PIPEFRAME(pipe);
577         low_frame = PIPEFRAMEPIXEL(pipe);
578
579         /*
580          * High & low register fields aren't synchronized, so make sure
581          * we get a low value that's stable across two reads of the high
582          * register.
583          */
584         do {
585                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
586                 low   = I915_READ(low_frame);
587                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
588         } while (high1 != high2);
589
590         high1 >>= PIPE_FRAME_HIGH_SHIFT;
591         pixel = low & PIPE_PIXEL_MASK;
592         low >>= PIPE_FRAME_LOW_SHIFT;
593
594         /*
595          * The frame counter increments at beginning of active.
596          * Cook up a vblank counter by also checking the pixel
597          * counter against vblank start.
598          */
599         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
600 }
601
602 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
603 {
604         struct drm_i915_private *dev_priv = dev->dev_private;
605         int reg = PIPE_FRMCOUNT_GM45(pipe);
606
607         return I915_READ(reg);
608 }
609
610 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
611 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
612
613 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
614 {
615         struct drm_device *dev = crtc->base.dev;
616         struct drm_i915_private *dev_priv = dev->dev_private;
617         const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
618         enum pipe pipe = crtc->pipe;
619         int position, vtotal;
620
621         vtotal = mode->crtc_vtotal;
622         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
623                 vtotal /= 2;
624
625         if (IS_GEN2(dev))
626                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
627         else
628                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
629
630         /*
631          * See update_scanline_offset() for the details on the
632          * scanline_offset adjustment.
633          */
634         return (position + crtc->scanline_offset) % vtotal;
635 }
636
637 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
638                                     unsigned int flags, int *vpos, int *hpos,
639                                     ktime_t *stime, ktime_t *etime)
640 {
641         struct drm_i915_private *dev_priv = dev->dev_private;
642         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
643         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
644         const struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
645         int position;
646         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
647         bool in_vbl = true;
648         int ret = 0;
649         unsigned long irqflags;
650
651         if (!intel_crtc->active) {
652                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
653                                  "pipe %c\n", pipe_name(pipe));
654                 return 0;
655         }
656
657         htotal = mode->crtc_htotal;
658         hsync_start = mode->crtc_hsync_start;
659         vtotal = mode->crtc_vtotal;
660         vbl_start = mode->crtc_vblank_start;
661         vbl_end = mode->crtc_vblank_end;
662
663         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
664                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
665                 vbl_end /= 2;
666                 vtotal /= 2;
667         }
668
669         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
670
671         /*
672          * Lock uncore.lock, as we will do multiple timing critical raw
673          * register reads, potentially with preemption disabled, so the
674          * following code must not block on uncore.lock.
675          */
676         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
677
678         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
679
680         /* Get optional system timestamp before query. */
681         if (stime)
682                 *stime = ktime_get();
683
684         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
685                 /* No obvious pixelcount register. Only query vertical
686                  * scanout position from Display scan line register.
687                  */
688                 position = __intel_get_crtc_scanline(intel_crtc);
689         } else {
690                 /* Have access to pixelcount since start of frame.
691                  * We can split this into vertical and horizontal
692                  * scanout position.
693                  */
694                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
695
696                 /* convert to pixel counts */
697                 vbl_start *= htotal;
698                 vbl_end *= htotal;
699                 vtotal *= htotal;
700
701                 /*
702                  * In interlaced modes, the pixel counter counts all pixels,
703                  * so one field will have htotal more pixels. In order to avoid
704                  * the reported position from jumping backwards when the pixel
705                  * counter is beyond the length of the shorter field, just
706                  * clamp the position the length of the shorter field. This
707                  * matches how the scanline counter based position works since
708                  * the scanline counter doesn't count the two half lines.
709                  */
710                 if (position >= vtotal)
711                         position = vtotal - 1;
712
713                 /*
714                  * Start of vblank interrupt is triggered at start of hsync,
715                  * just prior to the first active line of vblank. However we
716                  * consider lines to start at the leading edge of horizontal
717                  * active. So, should we get here before we've crossed into
718                  * the horizontal active of the first line in vblank, we would
719                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
720                  * always add htotal-hsync_start to the current pixel position.
721                  */
722                 position = (position + htotal - hsync_start) % vtotal;
723         }
724
725         /* Get optional system timestamp after query. */
726         if (etime)
727                 *etime = ktime_get();
728
729         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
730
731         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
732
733         in_vbl = position >= vbl_start && position < vbl_end;
734
735         /*
736          * While in vblank, position will be negative
737          * counting up towards 0 at vbl_end. And outside
738          * vblank, position will be positive counting
739          * up since vbl_end.
740          */
741         if (position >= vbl_start)
742                 position -= vbl_end;
743         else
744                 position += vtotal - vbl_end;
745
746         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
747                 *vpos = position;
748                 *hpos = 0;
749         } else {
750                 *vpos = position / htotal;
751                 *hpos = position - (*vpos * htotal);
752         }
753
754         /* In vblank? */
755         if (in_vbl)
756                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
757
758         return ret;
759 }
760
761 int intel_get_crtc_scanline(struct intel_crtc *crtc)
762 {
763         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
764         unsigned long irqflags;
765         int position;
766
767         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
768         position = __intel_get_crtc_scanline(crtc);
769         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
770
771         return position;
772 }
773
774 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
775                               int *max_error,
776                               struct timeval *vblank_time,
777                               unsigned flags)
778 {
779         struct drm_crtc *crtc;
780
781         if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
782                 DRM_ERROR("Invalid crtc %d\n", pipe);
783                 return -EINVAL;
784         }
785
786         /* Get drm_crtc to timestamp: */
787         crtc = intel_get_crtc_for_pipe(dev, pipe);
788         if (crtc == NULL) {
789                 DRM_ERROR("Invalid crtc %d\n", pipe);
790                 return -EINVAL;
791         }
792
793         if (!crtc->state->enable) {
794                 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
795                 return -EBUSY;
796         }
797
798         /* Helper routine in DRM core does all the work: */
799         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
800                                                      vblank_time, flags,
801                                                      crtc,
802                                                      &to_intel_crtc(crtc)->config->base.adjusted_mode);
803 }
804
805 static bool intel_hpd_irq_event(struct drm_device *dev,
806                                 struct drm_connector *connector)
807 {
808         enum drm_connector_status old_status;
809
810         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
811         old_status = connector->status;
812
813         connector->status = connector->funcs->detect(connector, false);
814         if (old_status == connector->status)
815                 return false;
816
817         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
818                       connector->base.id,
819                       connector->name,
820                       drm_get_connector_status_name(old_status),
821                       drm_get_connector_status_name(connector->status));
822
823         return true;
824 }
825
826 static void i915_digport_work_func(struct work_struct *work)
827 {
828         struct drm_i915_private *dev_priv =
829                 container_of(work, struct drm_i915_private, dig_port_work);
830         u32 long_port_mask, short_port_mask;
831         struct intel_digital_port *intel_dig_port;
832         int i;
833         u32 old_bits = 0;
834
835         spin_lock_irq(&dev_priv->irq_lock);
836         long_port_mask = dev_priv->long_hpd_port_mask;
837         dev_priv->long_hpd_port_mask = 0;
838         short_port_mask = dev_priv->short_hpd_port_mask;
839         dev_priv->short_hpd_port_mask = 0;
840         spin_unlock_irq(&dev_priv->irq_lock);
841
842         for (i = 0; i < I915_MAX_PORTS; i++) {
843                 bool valid = false;
844                 bool long_hpd = false;
845                 intel_dig_port = dev_priv->hpd_irq_port[i];
846                 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
847                         continue;
848
849                 if (long_port_mask & (1 << i))  {
850                         valid = true;
851                         long_hpd = true;
852                 } else if (short_port_mask & (1 << i))
853                         valid = true;
854
855                 if (valid) {
856                         enum irqreturn ret;
857
858                         ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
859                         if (ret == IRQ_NONE) {
860                                 /* fall back to old school hpd */
861                                 old_bits |= (1 << intel_dig_port->base.hpd_pin);
862                         }
863                 }
864         }
865
866         if (old_bits) {
867                 spin_lock_irq(&dev_priv->irq_lock);
868                 dev_priv->hpd_event_bits |= old_bits;
869                 spin_unlock_irq(&dev_priv->irq_lock);
870                 schedule_work(&dev_priv->hotplug_work);
871         }
872 }
873
874 /*
875  * Handle hotplug events outside the interrupt handler proper.
876  */
877 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
878
879 static void i915_hotplug_work_func(struct work_struct *work)
880 {
881         struct drm_i915_private *dev_priv =
882                 container_of(work, struct drm_i915_private, hotplug_work);
883         struct drm_device *dev = dev_priv->dev;
884         struct drm_mode_config *mode_config = &dev->mode_config;
885         struct intel_connector *intel_connector;
886         struct intel_encoder *intel_encoder;
887         struct drm_connector *connector;
888         bool hpd_disabled = false;
889         bool changed = false;
890         u32 hpd_event_bits;
891
892         mutex_lock(&mode_config->mutex);
893         DRM_DEBUG_KMS("running encoder hotplug functions\n");
894
895         spin_lock_irq(&dev_priv->irq_lock);
896
897         hpd_event_bits = dev_priv->hpd_event_bits;
898         dev_priv->hpd_event_bits = 0;
899         list_for_each_entry(connector, &mode_config->connector_list, head) {
900                 intel_connector = to_intel_connector(connector);
901                 if (!intel_connector->encoder)
902                         continue;
903                 intel_encoder = intel_connector->encoder;
904                 if (intel_encoder->hpd_pin > HPD_NONE &&
905                     dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
906                     connector->polled == DRM_CONNECTOR_POLL_HPD) {
907                         DRM_INFO("HPD interrupt storm detected on connector %s: "
908                                  "switching from hotplug detection to polling\n",
909                                 connector->name);
910                         dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
911                         connector->polled = DRM_CONNECTOR_POLL_CONNECT
912                                 | DRM_CONNECTOR_POLL_DISCONNECT;
913                         hpd_disabled = true;
914                 }
915                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
916                         DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
917                                       connector->name, intel_encoder->hpd_pin);
918                 }
919         }
920          /* if there were no outputs to poll, poll was disabled,
921           * therefore make sure it's enabled when disabling HPD on
922           * some connectors */
923         if (hpd_disabled) {
924                 drm_kms_helper_poll_enable(dev);
925                 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
926                                  msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
927         }
928
929         spin_unlock_irq(&dev_priv->irq_lock);
930
931         list_for_each_entry(connector, &mode_config->connector_list, head) {
932                 intel_connector = to_intel_connector(connector);
933                 if (!intel_connector->encoder)
934                         continue;
935                 intel_encoder = intel_connector->encoder;
936                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
937                         if (intel_encoder->hot_plug)
938                                 intel_encoder->hot_plug(intel_encoder);
939                         if (intel_hpd_irq_event(dev, connector))
940                                 changed = true;
941                 }
942         }
943         mutex_unlock(&mode_config->mutex);
944
945         if (changed)
946                 drm_kms_helper_hotplug_event(dev);
947 }
948
949 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
950 {
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         u32 busy_up, busy_down, max_avg, min_avg;
953         u8 new_delay;
954
955         spin_lock(&mchdev_lock);
956
957         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
958
959         new_delay = dev_priv->ips.cur_delay;
960
961         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
962         busy_up = I915_READ(RCPREVBSYTUPAVG);
963         busy_down = I915_READ(RCPREVBSYTDNAVG);
964         max_avg = I915_READ(RCBMAXAVG);
965         min_avg = I915_READ(RCBMINAVG);
966
967         /* Handle RCS change request from hw */
968         if (busy_up > max_avg) {
969                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
970                         new_delay = dev_priv->ips.cur_delay - 1;
971                 if (new_delay < dev_priv->ips.max_delay)
972                         new_delay = dev_priv->ips.max_delay;
973         } else if (busy_down < min_avg) {
974                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
975                         new_delay = dev_priv->ips.cur_delay + 1;
976                 if (new_delay > dev_priv->ips.min_delay)
977                         new_delay = dev_priv->ips.min_delay;
978         }
979
980         if (ironlake_set_drps(dev, new_delay))
981                 dev_priv->ips.cur_delay = new_delay;
982
983         spin_unlock(&mchdev_lock);
984
985         return;
986 }
987
988 static void notify_ring(struct drm_device *dev,
989                         struct intel_engine_cs *ring)
990 {
991         if (!intel_ring_initialized(ring))
992                 return;
993
994         trace_i915_gem_request_notify(ring);
995
996         wake_up_all(&ring->irq_queue);
997 }
998
999 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1000                         struct intel_rps_ei *ei)
1001 {
1002         ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1003         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1004         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1005 }
1006
1007 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1008                          const struct intel_rps_ei *old,
1009                          const struct intel_rps_ei *now,
1010                          int threshold)
1011 {
1012         u64 time, c0;
1013
1014         if (old->cz_clock == 0)
1015                 return false;
1016
1017         time = now->cz_clock - old->cz_clock;
1018         time *= threshold * dev_priv->mem_freq;
1019
1020         /* Workload can be split between render + media, e.g. SwapBuffers
1021          * being blitted in X after being rendered in mesa. To account for
1022          * this we need to combine both engines into our activity counter.
1023          */
1024         c0 = now->render_c0 - old->render_c0;
1025         c0 += now->media_c0 - old->media_c0;
1026         c0 *= 100 * VLV_CZ_CLOCK_TO_MILLI_SEC * 4 / 1000;
1027
1028         return c0 >= time;
1029 }
1030
1031 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1032 {
1033         vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1034         dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1035 }
1036
1037 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1038 {
1039         struct intel_rps_ei now;
1040         u32 events = 0;
1041
1042         if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1043                 return 0;
1044
1045         vlv_c0_read(dev_priv, &now);
1046         if (now.cz_clock == 0)
1047                 return 0;
1048
1049         if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1050                 if (!vlv_c0_above(dev_priv,
1051                                   &dev_priv->rps.down_ei, &now,
1052                                   VLV_RP_DOWN_EI_THRESHOLD))
1053                         events |= GEN6_PM_RP_DOWN_THRESHOLD;
1054                 dev_priv->rps.down_ei = now;
1055         }
1056
1057         if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1058                 if (vlv_c0_above(dev_priv,
1059                                  &dev_priv->rps.up_ei, &now,
1060                                  VLV_RP_UP_EI_THRESHOLD))
1061                         events |= GEN6_PM_RP_UP_THRESHOLD;
1062                 dev_priv->rps.up_ei = now;
1063         }
1064
1065         return events;
1066 }
1067
1068 static void gen6_pm_rps_work(struct work_struct *work)
1069 {
1070         struct drm_i915_private *dev_priv =
1071                 container_of(work, struct drm_i915_private, rps.work);
1072         u32 pm_iir;
1073         int new_delay, adj;
1074
1075         spin_lock_irq(&dev_priv->irq_lock);
1076         /* Speed up work cancelation during disabling rps interrupts. */
1077         if (!dev_priv->rps.interrupts_enabled) {
1078                 spin_unlock_irq(&dev_priv->irq_lock);
1079                 return;
1080         }
1081         pm_iir = dev_priv->rps.pm_iir;
1082         dev_priv->rps.pm_iir = 0;
1083         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1084         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1085         spin_unlock_irq(&dev_priv->irq_lock);
1086
1087         /* Make sure we didn't queue anything we're not going to process. */
1088         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1089
1090         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1091                 return;
1092
1093         mutex_lock(&dev_priv->rps.hw_lock);
1094
1095         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1096
1097         adj = dev_priv->rps.last_adj;
1098         if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1099                 if (adj > 0)
1100                         adj *= 2;
1101                 else {
1102                         /* CHV needs even encode values */
1103                         adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1104                 }
1105                 new_delay = dev_priv->rps.cur_freq + adj;
1106
1107                 /*
1108                  * For better performance, jump directly
1109                  * to RPe if we're below it.
1110                  */
1111                 if (new_delay < dev_priv->rps.efficient_freq)
1112                         new_delay = dev_priv->rps.efficient_freq;
1113         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1114                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1115                         new_delay = dev_priv->rps.efficient_freq;
1116                 else
1117                         new_delay = dev_priv->rps.min_freq_softlimit;
1118                 adj = 0;
1119         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1120                 if (adj < 0)
1121                         adj *= 2;
1122                 else {
1123                         /* CHV needs even encode values */
1124                         adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1125                 }
1126                 new_delay = dev_priv->rps.cur_freq + adj;
1127         } else { /* unknown event */
1128                 new_delay = dev_priv->rps.cur_freq;
1129         }
1130
1131         /* sysfs frequency interfaces may have snuck in while servicing the
1132          * interrupt
1133          */
1134         new_delay = clamp_t(int, new_delay,
1135                             dev_priv->rps.min_freq_softlimit,
1136                             dev_priv->rps.max_freq_softlimit);
1137
1138         dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1139
1140         intel_set_rps(dev_priv->dev, new_delay);
1141
1142         mutex_unlock(&dev_priv->rps.hw_lock);
1143 }
1144
1145
1146 /**
1147  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1148  * occurred.
1149  * @work: workqueue struct
1150  *
1151  * Doesn't actually do anything except notify userspace. As a consequence of
1152  * this event, userspace should try to remap the bad rows since statistically
1153  * it is likely the same row is more likely to go bad again.
1154  */
1155 static void ivybridge_parity_work(struct work_struct *work)
1156 {
1157         struct drm_i915_private *dev_priv =
1158                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1159         u32 error_status, row, bank, subbank;
1160         char *parity_event[6];
1161         uint32_t misccpctl;
1162         uint8_t slice = 0;
1163
1164         /* We must turn off DOP level clock gating to access the L3 registers.
1165          * In order to prevent a get/put style interface, acquire struct mutex
1166          * any time we access those registers.
1167          */
1168         mutex_lock(&dev_priv->dev->struct_mutex);
1169
1170         /* If we've screwed up tracking, just let the interrupt fire again */
1171         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1172                 goto out;
1173
1174         misccpctl = I915_READ(GEN7_MISCCPCTL);
1175         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1176         POSTING_READ(GEN7_MISCCPCTL);
1177
1178         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1179                 u32 reg;
1180
1181                 slice--;
1182                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1183                         break;
1184
1185                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1186
1187                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1188
1189                 error_status = I915_READ(reg);
1190                 row = GEN7_PARITY_ERROR_ROW(error_status);
1191                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1192                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1193
1194                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1195                 POSTING_READ(reg);
1196
1197                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1198                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1199                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1200                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1201                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1202                 parity_event[5] = NULL;
1203
1204                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1205                                    KOBJ_CHANGE, parity_event);
1206
1207                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1208                           slice, row, bank, subbank);
1209
1210                 kfree(parity_event[4]);
1211                 kfree(parity_event[3]);
1212                 kfree(parity_event[2]);
1213                 kfree(parity_event[1]);
1214         }
1215
1216         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1217
1218 out:
1219         WARN_ON(dev_priv->l3_parity.which_slice);
1220         spin_lock_irq(&dev_priv->irq_lock);
1221         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1222         spin_unlock_irq(&dev_priv->irq_lock);
1223
1224         mutex_unlock(&dev_priv->dev->struct_mutex);
1225 }
1226
1227 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1228 {
1229         struct drm_i915_private *dev_priv = dev->dev_private;
1230
1231         if (!HAS_L3_DPF(dev))
1232                 return;
1233
1234         spin_lock(&dev_priv->irq_lock);
1235         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1236         spin_unlock(&dev_priv->irq_lock);
1237
1238         iir &= GT_PARITY_ERROR(dev);
1239         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1240                 dev_priv->l3_parity.which_slice |= 1 << 1;
1241
1242         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1243                 dev_priv->l3_parity.which_slice |= 1 << 0;
1244
1245         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1246 }
1247
1248 static void ilk_gt_irq_handler(struct drm_device *dev,
1249                                struct drm_i915_private *dev_priv,
1250                                u32 gt_iir)
1251 {
1252         if (gt_iir &
1253             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1254                 notify_ring(dev, &dev_priv->ring[RCS]);
1255         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1256                 notify_ring(dev, &dev_priv->ring[VCS]);
1257 }
1258
1259 static void snb_gt_irq_handler(struct drm_device *dev,
1260                                struct drm_i915_private *dev_priv,
1261                                u32 gt_iir)
1262 {
1263
1264         if (gt_iir &
1265             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1266                 notify_ring(dev, &dev_priv->ring[RCS]);
1267         if (gt_iir & GT_BSD_USER_INTERRUPT)
1268                 notify_ring(dev, &dev_priv->ring[VCS]);
1269         if (gt_iir & GT_BLT_USER_INTERRUPT)
1270                 notify_ring(dev, &dev_priv->ring[BCS]);
1271
1272         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1273                       GT_BSD_CS_ERROR_INTERRUPT |
1274                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1275                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1276
1277         if (gt_iir & GT_PARITY_ERROR(dev))
1278                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1279 }
1280
1281 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1282                                        struct drm_i915_private *dev_priv,
1283                                        u32 master_ctl)
1284 {
1285         struct intel_engine_cs *ring;
1286         u32 rcs, bcs, vcs;
1287         uint32_t tmp = 0;
1288         irqreturn_t ret = IRQ_NONE;
1289
1290         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1291                 tmp = I915_READ(GEN8_GT_IIR(0));
1292                 if (tmp) {
1293                         I915_WRITE(GEN8_GT_IIR(0), tmp);
1294                         ret = IRQ_HANDLED;
1295
1296                         rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1297                         ring = &dev_priv->ring[RCS];
1298                         if (rcs & GT_RENDER_USER_INTERRUPT)
1299                                 notify_ring(dev, ring);
1300                         if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1301                                 intel_lrc_irq_handler(ring);
1302
1303                         bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1304                         ring = &dev_priv->ring[BCS];
1305                         if (bcs & GT_RENDER_USER_INTERRUPT)
1306                                 notify_ring(dev, ring);
1307                         if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1308                                 intel_lrc_irq_handler(ring);
1309                 } else
1310                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1311         }
1312
1313         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1314                 tmp = I915_READ(GEN8_GT_IIR(1));
1315                 if (tmp) {
1316                         I915_WRITE(GEN8_GT_IIR(1), tmp);
1317                         ret = IRQ_HANDLED;
1318
1319                         vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1320                         ring = &dev_priv->ring[VCS];
1321                         if (vcs & GT_RENDER_USER_INTERRUPT)
1322                                 notify_ring(dev, ring);
1323                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1324                                 intel_lrc_irq_handler(ring);
1325
1326                         vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1327                         ring = &dev_priv->ring[VCS2];
1328                         if (vcs & GT_RENDER_USER_INTERRUPT)
1329                                 notify_ring(dev, ring);
1330                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1331                                 intel_lrc_irq_handler(ring);
1332                 } else
1333                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1334         }
1335
1336         if (master_ctl & GEN8_GT_PM_IRQ) {
1337                 tmp = I915_READ(GEN8_GT_IIR(2));
1338                 if (tmp & dev_priv->pm_rps_events) {
1339                         I915_WRITE(GEN8_GT_IIR(2),
1340                                    tmp & dev_priv->pm_rps_events);
1341                         ret = IRQ_HANDLED;
1342                         gen6_rps_irq_handler(dev_priv, tmp);
1343                 } else
1344                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1345         }
1346
1347         if (master_ctl & GEN8_GT_VECS_IRQ) {
1348                 tmp = I915_READ(GEN8_GT_IIR(3));
1349                 if (tmp) {
1350                         I915_WRITE(GEN8_GT_IIR(3), tmp);
1351                         ret = IRQ_HANDLED;
1352
1353                         vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1354                         ring = &dev_priv->ring[VECS];
1355                         if (vcs & GT_RENDER_USER_INTERRUPT)
1356                                 notify_ring(dev, ring);
1357                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1358                                 intel_lrc_irq_handler(ring);
1359                 } else
1360                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1361         }
1362
1363         return ret;
1364 }
1365
1366 #define HPD_STORM_DETECT_PERIOD 1000
1367 #define HPD_STORM_THRESHOLD 5
1368
1369 static int pch_port_to_hotplug_shift(enum port port)
1370 {
1371         switch (port) {
1372         case PORT_A:
1373         case PORT_E:
1374         default:
1375                 return -1;
1376         case PORT_B:
1377                 return 0;
1378         case PORT_C:
1379                 return 8;
1380         case PORT_D:
1381                 return 16;
1382         }
1383 }
1384
1385 static int i915_port_to_hotplug_shift(enum port port)
1386 {
1387         switch (port) {
1388         case PORT_A:
1389         case PORT_E:
1390         default:
1391                 return -1;
1392         case PORT_B:
1393                 return 17;
1394         case PORT_C:
1395                 return 19;
1396         case PORT_D:
1397                 return 21;
1398         }
1399 }
1400
1401 static inline enum port get_port_from_pin(enum hpd_pin pin)
1402 {
1403         switch (pin) {
1404         case HPD_PORT_B:
1405                 return PORT_B;
1406         case HPD_PORT_C:
1407                 return PORT_C;
1408         case HPD_PORT_D:
1409                 return PORT_D;
1410         default:
1411                 return PORT_A; /* no hpd */
1412         }
1413 }
1414
1415 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1416                                          u32 hotplug_trigger,
1417                                          u32 dig_hotplug_reg,
1418                                          const u32 hpd[HPD_NUM_PINS])
1419 {
1420         struct drm_i915_private *dev_priv = dev->dev_private;
1421         int i;
1422         enum port port;
1423         bool storm_detected = false;
1424         bool queue_dig = false, queue_hp = false;
1425         u32 dig_shift;
1426         u32 dig_port_mask = 0;
1427
1428         if (!hotplug_trigger)
1429                 return;
1430
1431         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1432                          hotplug_trigger, dig_hotplug_reg);
1433
1434         spin_lock(&dev_priv->irq_lock);
1435         for (i = 1; i < HPD_NUM_PINS; i++) {
1436                 if (!(hpd[i] & hotplug_trigger))
1437                         continue;
1438
1439                 port = get_port_from_pin(i);
1440                 if (port && dev_priv->hpd_irq_port[port]) {
1441                         bool long_hpd;
1442
1443                         if (HAS_PCH_SPLIT(dev)) {
1444                                 dig_shift = pch_port_to_hotplug_shift(port);
1445                                 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1446                         } else {
1447                                 dig_shift = i915_port_to_hotplug_shift(port);
1448                                 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1449                         }
1450
1451                         DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1452                                          port_name(port),
1453                                          long_hpd ? "long" : "short");
1454                         /* for long HPD pulses we want to have the digital queue happen,
1455                            but we still want HPD storm detection to function. */
1456                         if (long_hpd) {
1457                                 dev_priv->long_hpd_port_mask |= (1 << port);
1458                                 dig_port_mask |= hpd[i];
1459                         } else {
1460                                 /* for short HPD just trigger the digital queue */
1461                                 dev_priv->short_hpd_port_mask |= (1 << port);
1462                                 hotplug_trigger &= ~hpd[i];
1463                         }
1464                         queue_dig = true;
1465                 }
1466         }
1467
1468         for (i = 1; i < HPD_NUM_PINS; i++) {
1469                 if (hpd[i] & hotplug_trigger &&
1470                     dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1471                         /*
1472                          * On GMCH platforms the interrupt mask bits only
1473                          * prevent irq generation, not the setting of the
1474                          * hotplug bits itself. So only WARN about unexpected
1475                          * interrupts on saner platforms.
1476                          */
1477                         WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1478                                   "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1479                                   hotplug_trigger, i, hpd[i]);
1480
1481                         continue;
1482                 }
1483
1484                 if (!(hpd[i] & hotplug_trigger) ||
1485                     dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1486                         continue;
1487
1488                 if (!(dig_port_mask & hpd[i])) {
1489                         dev_priv->hpd_event_bits |= (1 << i);
1490                         queue_hp = true;
1491                 }
1492
1493                 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1494                                    dev_priv->hpd_stats[i].hpd_last_jiffies
1495                                    + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1496                         dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1497                         dev_priv->hpd_stats[i].hpd_cnt = 0;
1498                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1499                 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1500                         dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1501                         dev_priv->hpd_event_bits &= ~(1 << i);
1502                         DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1503                         storm_detected = true;
1504                 } else {
1505                         dev_priv->hpd_stats[i].hpd_cnt++;
1506                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1507                                       dev_priv->hpd_stats[i].hpd_cnt);
1508                 }
1509         }
1510
1511         if (storm_detected)
1512                 dev_priv->display.hpd_irq_setup(dev);
1513         spin_unlock(&dev_priv->irq_lock);
1514
1515         /*
1516          * Our hotplug handler can grab modeset locks (by calling down into the
1517          * fb helpers). Hence it must not be run on our own dev-priv->wq work
1518          * queue for otherwise the flush_work in the pageflip code will
1519          * deadlock.
1520          */
1521         if (queue_dig)
1522                 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1523         if (queue_hp)
1524                 schedule_work(&dev_priv->hotplug_work);
1525 }
1526
1527 static void gmbus_irq_handler(struct drm_device *dev)
1528 {
1529         struct drm_i915_private *dev_priv = dev->dev_private;
1530
1531         wake_up_all(&dev_priv->gmbus_wait_queue);
1532 }
1533
1534 static void dp_aux_irq_handler(struct drm_device *dev)
1535 {
1536         struct drm_i915_private *dev_priv = dev->dev_private;
1537
1538         wake_up_all(&dev_priv->gmbus_wait_queue);
1539 }
1540
1541 #if defined(CONFIG_DEBUG_FS)
1542 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1543                                          uint32_t crc0, uint32_t crc1,
1544                                          uint32_t crc2, uint32_t crc3,
1545                                          uint32_t crc4)
1546 {
1547         struct drm_i915_private *dev_priv = dev->dev_private;
1548         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1549         struct intel_pipe_crc_entry *entry;
1550         int head, tail;
1551
1552         spin_lock(&pipe_crc->lock);
1553
1554         if (!pipe_crc->entries) {
1555                 spin_unlock(&pipe_crc->lock);
1556                 DRM_DEBUG_KMS("spurious interrupt\n");
1557                 return;
1558         }
1559
1560         head = pipe_crc->head;
1561         tail = pipe_crc->tail;
1562
1563         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1564                 spin_unlock(&pipe_crc->lock);
1565                 DRM_ERROR("CRC buffer overflowing\n");
1566                 return;
1567         }
1568
1569         entry = &pipe_crc->entries[head];
1570
1571         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1572         entry->crc[0] = crc0;
1573         entry->crc[1] = crc1;
1574         entry->crc[2] = crc2;
1575         entry->crc[3] = crc3;
1576         entry->crc[4] = crc4;
1577
1578         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1579         pipe_crc->head = head;
1580
1581         spin_unlock(&pipe_crc->lock);
1582
1583         wake_up_interruptible(&pipe_crc->wq);
1584 }
1585 #else
1586 static inline void
1587 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1588                              uint32_t crc0, uint32_t crc1,
1589                              uint32_t crc2, uint32_t crc3,
1590                              uint32_t crc4) {}
1591 #endif
1592
1593
1594 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1595 {
1596         struct drm_i915_private *dev_priv = dev->dev_private;
1597
1598         display_pipe_crc_irq_handler(dev, pipe,
1599                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1600                                      0, 0, 0, 0);
1601 }
1602
1603 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1604 {
1605         struct drm_i915_private *dev_priv = dev->dev_private;
1606
1607         display_pipe_crc_irq_handler(dev, pipe,
1608                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1609                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1610                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1611                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1612                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1613 }
1614
1615 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1616 {
1617         struct drm_i915_private *dev_priv = dev->dev_private;
1618         uint32_t res1, res2;
1619
1620         if (INTEL_INFO(dev)->gen >= 3)
1621                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1622         else
1623                 res1 = 0;
1624
1625         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1626                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1627         else
1628                 res2 = 0;
1629
1630         display_pipe_crc_irq_handler(dev, pipe,
1631                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1632                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1633                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1634                                      res1, res2);
1635 }
1636
1637 /* The RPS events need forcewake, so we add them to a work queue and mask their
1638  * IMR bits until the work is done. Other interrupts can be processed without
1639  * the work queue. */
1640 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1641 {
1642         if (pm_iir & dev_priv->pm_rps_events) {
1643                 spin_lock(&dev_priv->irq_lock);
1644                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1645                 if (dev_priv->rps.interrupts_enabled) {
1646                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1647                         queue_work(dev_priv->wq, &dev_priv->rps.work);
1648                 }
1649                 spin_unlock(&dev_priv->irq_lock);
1650         }
1651
1652         if (INTEL_INFO(dev_priv)->gen >= 8)
1653                 return;
1654
1655         if (HAS_VEBOX(dev_priv->dev)) {
1656                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1657                         notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1658
1659                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1660                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1661         }
1662 }
1663
1664 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1665 {
1666         if (!drm_handle_vblank(dev, pipe))
1667                 return false;
1668
1669         return true;
1670 }
1671
1672 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1673 {
1674         struct drm_i915_private *dev_priv = dev->dev_private;
1675         u32 pipe_stats[I915_MAX_PIPES] = { };
1676         int pipe;
1677
1678         spin_lock(&dev_priv->irq_lock);
1679         for_each_pipe(dev_priv, pipe) {
1680                 int reg;
1681                 u32 mask, iir_bit = 0;
1682
1683                 /*
1684                  * PIPESTAT bits get signalled even when the interrupt is
1685                  * disabled with the mask bits, and some of the status bits do
1686                  * not generate interrupts at all (like the underrun bit). Hence
1687                  * we need to be careful that we only handle what we want to
1688                  * handle.
1689                  */
1690
1691                 /* fifo underruns are filterered in the underrun handler. */
1692                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1693
1694                 switch (pipe) {
1695                 case PIPE_A:
1696                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1697                         break;
1698                 case PIPE_B:
1699                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1700                         break;
1701                 case PIPE_C:
1702                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1703                         break;
1704                 }
1705                 if (iir & iir_bit)
1706                         mask |= dev_priv->pipestat_irq_mask[pipe];
1707
1708                 if (!mask)
1709                         continue;
1710
1711                 reg = PIPESTAT(pipe);
1712                 mask |= PIPESTAT_INT_ENABLE_MASK;
1713                 pipe_stats[pipe] = I915_READ(reg) & mask;
1714
1715                 /*
1716                  * Clear the PIPE*STAT regs before the IIR
1717                  */
1718                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1719                                         PIPESTAT_INT_STATUS_MASK))
1720                         I915_WRITE(reg, pipe_stats[pipe]);
1721         }
1722         spin_unlock(&dev_priv->irq_lock);
1723
1724         for_each_pipe(dev_priv, pipe) {
1725                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1726                     intel_pipe_handle_vblank(dev, pipe))
1727                         intel_check_page_flip(dev, pipe);
1728
1729                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1730                         intel_prepare_page_flip(dev, pipe);
1731                         intel_finish_page_flip(dev, pipe);
1732                 }
1733
1734                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1735                         i9xx_pipe_crc_irq_handler(dev, pipe);
1736
1737                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1738                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1739         }
1740
1741         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1742                 gmbus_irq_handler(dev);
1743 }
1744
1745 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1746 {
1747         struct drm_i915_private *dev_priv = dev->dev_private;
1748         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1749
1750         if (hotplug_status) {
1751                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1752                 /*
1753                  * Make sure hotplug status is cleared before we clear IIR, or else we
1754                  * may miss hotplug events.
1755                  */
1756                 POSTING_READ(PORT_HOTPLUG_STAT);
1757
1758                 if (IS_G4X(dev)) {
1759                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1760
1761                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
1762                 } else {
1763                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1764
1765                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
1766                 }
1767
1768                 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1769                     hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1770                         dp_aux_irq_handler(dev);
1771         }
1772 }
1773
1774 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1775 {
1776         struct drm_device *dev = arg;
1777         struct drm_i915_private *dev_priv = dev->dev_private;
1778         u32 iir, gt_iir, pm_iir;
1779         irqreturn_t ret = IRQ_NONE;
1780
1781         if (!intel_irqs_enabled(dev_priv))
1782                 return IRQ_NONE;
1783
1784         while (true) {
1785                 /* Find, clear, then process each source of interrupt */
1786
1787                 gt_iir = I915_READ(GTIIR);
1788                 if (gt_iir)
1789                         I915_WRITE(GTIIR, gt_iir);
1790
1791                 pm_iir = I915_READ(GEN6_PMIIR);
1792                 if (pm_iir)
1793                         I915_WRITE(GEN6_PMIIR, pm_iir);
1794
1795                 iir = I915_READ(VLV_IIR);
1796                 if (iir) {
1797                         /* Consume port before clearing IIR or we'll miss events */
1798                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1799                                 i9xx_hpd_irq_handler(dev);
1800                         I915_WRITE(VLV_IIR, iir);
1801                 }
1802
1803                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1804                         goto out;
1805
1806                 ret = IRQ_HANDLED;
1807
1808                 if (gt_iir)
1809                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
1810                 if (pm_iir)
1811                         gen6_rps_irq_handler(dev_priv, pm_iir);
1812                 /* Call regardless, as some status bits might not be
1813                  * signalled in iir */
1814                 valleyview_pipestat_irq_handler(dev, iir);
1815         }
1816
1817 out:
1818         return ret;
1819 }
1820
1821 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1822 {
1823         struct drm_device *dev = arg;
1824         struct drm_i915_private *dev_priv = dev->dev_private;
1825         u32 master_ctl, iir;
1826         irqreturn_t ret = IRQ_NONE;
1827
1828         if (!intel_irqs_enabled(dev_priv))
1829                 return IRQ_NONE;
1830
1831         for (;;) {
1832                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1833                 iir = I915_READ(VLV_IIR);
1834
1835                 if (master_ctl == 0 && iir == 0)
1836                         break;
1837
1838                 ret = IRQ_HANDLED;
1839
1840                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1841
1842                 /* Find, clear, then process each source of interrupt */
1843
1844                 if (iir) {
1845                         /* Consume port before clearing IIR or we'll miss events */
1846                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1847                                 i9xx_hpd_irq_handler(dev);
1848                         I915_WRITE(VLV_IIR, iir);
1849                 }
1850
1851                 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1852
1853                 /* Call regardless, as some status bits might not be
1854                  * signalled in iir */
1855                 valleyview_pipestat_irq_handler(dev, iir);
1856
1857                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1858                 POSTING_READ(GEN8_MASTER_IRQ);
1859         }
1860
1861         return ret;
1862 }
1863
1864 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1865 {
1866         struct drm_i915_private *dev_priv = dev->dev_private;
1867         int pipe;
1868         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1869         u32 dig_hotplug_reg;
1870
1871         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1872         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1873
1874         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
1875
1876         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1877                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1878                                SDE_AUDIO_POWER_SHIFT);
1879                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1880                                  port_name(port));
1881         }
1882
1883         if (pch_iir & SDE_AUX_MASK)
1884                 dp_aux_irq_handler(dev);
1885
1886         if (pch_iir & SDE_GMBUS)
1887                 gmbus_irq_handler(dev);
1888
1889         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1890                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1891
1892         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1893                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1894
1895         if (pch_iir & SDE_POISON)
1896                 DRM_ERROR("PCH poison interrupt\n");
1897
1898         if (pch_iir & SDE_FDI_MASK)
1899                 for_each_pipe(dev_priv, pipe)
1900                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1901                                          pipe_name(pipe),
1902                                          I915_READ(FDI_RX_IIR(pipe)));
1903
1904         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1905                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1906
1907         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1908                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1909
1910         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1911                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1912
1913         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1914                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1915 }
1916
1917 static void ivb_err_int_handler(struct drm_device *dev)
1918 {
1919         struct drm_i915_private *dev_priv = dev->dev_private;
1920         u32 err_int = I915_READ(GEN7_ERR_INT);
1921         enum pipe pipe;
1922
1923         if (err_int & ERR_INT_POISON)
1924                 DRM_ERROR("Poison interrupt\n");
1925
1926         for_each_pipe(dev_priv, pipe) {
1927                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1928                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1929
1930                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1931                         if (IS_IVYBRIDGE(dev))
1932                                 ivb_pipe_crc_irq_handler(dev, pipe);
1933                         else
1934                                 hsw_pipe_crc_irq_handler(dev, pipe);
1935                 }
1936         }
1937
1938         I915_WRITE(GEN7_ERR_INT, err_int);
1939 }
1940
1941 static void cpt_serr_int_handler(struct drm_device *dev)
1942 {
1943         struct drm_i915_private *dev_priv = dev->dev_private;
1944         u32 serr_int = I915_READ(SERR_INT);
1945
1946         if (serr_int & SERR_INT_POISON)
1947                 DRM_ERROR("PCH poison interrupt\n");
1948
1949         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1950                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1951
1952         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1953                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1954
1955         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1956                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1957
1958         I915_WRITE(SERR_INT, serr_int);
1959 }
1960
1961 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1962 {
1963         struct drm_i915_private *dev_priv = dev->dev_private;
1964         int pipe;
1965         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1966         u32 dig_hotplug_reg;
1967
1968         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1969         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1970
1971         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
1972
1973         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1974                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1975                                SDE_AUDIO_POWER_SHIFT_CPT);
1976                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1977                                  port_name(port));
1978         }
1979
1980         if (pch_iir & SDE_AUX_MASK_CPT)
1981                 dp_aux_irq_handler(dev);
1982
1983         if (pch_iir & SDE_GMBUS_CPT)
1984                 gmbus_irq_handler(dev);
1985
1986         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1987                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1988
1989         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1990                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1991
1992         if (pch_iir & SDE_FDI_MASK_CPT)
1993                 for_each_pipe(dev_priv, pipe)
1994                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1995                                          pipe_name(pipe),
1996                                          I915_READ(FDI_RX_IIR(pipe)));
1997
1998         if (pch_iir & SDE_ERROR_CPT)
1999                 cpt_serr_int_handler(dev);
2000 }
2001
2002 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2003 {
2004         struct drm_i915_private *dev_priv = dev->dev_private;
2005         enum pipe pipe;
2006
2007         if (de_iir & DE_AUX_CHANNEL_A)
2008                 dp_aux_irq_handler(dev);
2009
2010         if (de_iir & DE_GSE)
2011                 intel_opregion_asle_intr(dev);
2012
2013         if (de_iir & DE_POISON)
2014                 DRM_ERROR("Poison interrupt\n");
2015
2016         for_each_pipe(dev_priv, pipe) {
2017                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2018                     intel_pipe_handle_vblank(dev, pipe))
2019                         intel_check_page_flip(dev, pipe);
2020
2021                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2022                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2023
2024                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2025                         i9xx_pipe_crc_irq_handler(dev, pipe);
2026
2027                 /* plane/pipes map 1:1 on ilk+ */
2028                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2029                         intel_prepare_page_flip(dev, pipe);
2030                         intel_finish_page_flip_plane(dev, pipe);
2031                 }
2032         }
2033
2034         /* check event from PCH */
2035         if (de_iir & DE_PCH_EVENT) {
2036                 u32 pch_iir = I915_READ(SDEIIR);
2037
2038                 if (HAS_PCH_CPT(dev))
2039                         cpt_irq_handler(dev, pch_iir);
2040                 else
2041                         ibx_irq_handler(dev, pch_iir);
2042
2043                 /* should clear PCH hotplug event before clear CPU irq */
2044                 I915_WRITE(SDEIIR, pch_iir);
2045         }
2046
2047         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2048                 ironlake_rps_change_irq_handler(dev);
2049 }
2050
2051 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2052 {
2053         struct drm_i915_private *dev_priv = dev->dev_private;
2054         enum pipe pipe;
2055
2056         if (de_iir & DE_ERR_INT_IVB)
2057                 ivb_err_int_handler(dev);
2058
2059         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2060                 dp_aux_irq_handler(dev);
2061
2062         if (de_iir & DE_GSE_IVB)
2063                 intel_opregion_asle_intr(dev);
2064
2065         for_each_pipe(dev_priv, pipe) {
2066                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2067                     intel_pipe_handle_vblank(dev, pipe))
2068                         intel_check_page_flip(dev, pipe);
2069
2070                 /* plane/pipes map 1:1 on ilk+ */
2071                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2072                         intel_prepare_page_flip(dev, pipe);
2073                         intel_finish_page_flip_plane(dev, pipe);
2074                 }
2075         }
2076
2077         /* check event from PCH */
2078         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2079                 u32 pch_iir = I915_READ(SDEIIR);
2080
2081                 cpt_irq_handler(dev, pch_iir);
2082
2083                 /* clear PCH hotplug event before clear CPU irq */
2084                 I915_WRITE(SDEIIR, pch_iir);
2085         }
2086 }
2087
2088 /*
2089  * To handle irqs with the minimum potential races with fresh interrupts, we:
2090  * 1 - Disable Master Interrupt Control.
2091  * 2 - Find the source(s) of the interrupt.
2092  * 3 - Clear the Interrupt Identity bits (IIR).
2093  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2094  * 5 - Re-enable Master Interrupt Control.
2095  */
2096 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2097 {
2098         struct drm_device *dev = arg;
2099         struct drm_i915_private *dev_priv = dev->dev_private;
2100         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2101         irqreturn_t ret = IRQ_NONE;
2102
2103         if (!intel_irqs_enabled(dev_priv))
2104                 return IRQ_NONE;
2105
2106         /* We get interrupts on unclaimed registers, so check for this before we
2107          * do any I915_{READ,WRITE}. */
2108         intel_uncore_check_errors(dev);
2109
2110         /* disable master interrupt before clearing iir  */
2111         de_ier = I915_READ(DEIER);
2112         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2113         POSTING_READ(DEIER);
2114
2115         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2116          * interrupts will will be stored on its back queue, and then we'll be
2117          * able to process them after we restore SDEIER (as soon as we restore
2118          * it, we'll get an interrupt if SDEIIR still has something to process
2119          * due to its back queue). */
2120         if (!HAS_PCH_NOP(dev)) {
2121                 sde_ier = I915_READ(SDEIER);
2122                 I915_WRITE(SDEIER, 0);
2123                 POSTING_READ(SDEIER);
2124         }
2125
2126         /* Find, clear, then process each source of interrupt */
2127
2128         gt_iir = I915_READ(GTIIR);
2129         if (gt_iir) {
2130                 I915_WRITE(GTIIR, gt_iir);
2131                 ret = IRQ_HANDLED;
2132                 if (INTEL_INFO(dev)->gen >= 6)
2133                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2134                 else
2135                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2136         }
2137
2138         de_iir = I915_READ(DEIIR);
2139         if (de_iir) {
2140                 I915_WRITE(DEIIR, de_iir);
2141                 ret = IRQ_HANDLED;
2142                 if (INTEL_INFO(dev)->gen >= 7)
2143                         ivb_display_irq_handler(dev, de_iir);
2144                 else
2145                         ilk_display_irq_handler(dev, de_iir);
2146         }
2147
2148         if (INTEL_INFO(dev)->gen >= 6) {
2149                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2150                 if (pm_iir) {
2151                         I915_WRITE(GEN6_PMIIR, pm_iir);
2152                         ret = IRQ_HANDLED;
2153                         gen6_rps_irq_handler(dev_priv, pm_iir);
2154                 }
2155         }
2156
2157         I915_WRITE(DEIER, de_ier);
2158         POSTING_READ(DEIER);
2159         if (!HAS_PCH_NOP(dev)) {
2160                 I915_WRITE(SDEIER, sde_ier);
2161                 POSTING_READ(SDEIER);
2162         }
2163
2164         return ret;
2165 }
2166
2167 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2168 {
2169         struct drm_device *dev = arg;
2170         struct drm_i915_private *dev_priv = dev->dev_private;
2171         u32 master_ctl;
2172         irqreturn_t ret = IRQ_NONE;
2173         uint32_t tmp = 0;
2174         enum pipe pipe;
2175         u32 aux_mask = GEN8_AUX_CHANNEL_A;
2176
2177         if (!intel_irqs_enabled(dev_priv))
2178                 return IRQ_NONE;
2179
2180         if (IS_GEN9(dev))
2181                 aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2182                         GEN9_AUX_CHANNEL_D;
2183
2184         master_ctl = I915_READ(GEN8_MASTER_IRQ);
2185         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2186         if (!master_ctl)
2187                 return IRQ_NONE;
2188
2189         I915_WRITE(GEN8_MASTER_IRQ, 0);
2190         POSTING_READ(GEN8_MASTER_IRQ);
2191
2192         /* Find, clear, then process each source of interrupt */
2193
2194         ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2195
2196         if (master_ctl & GEN8_DE_MISC_IRQ) {
2197                 tmp = I915_READ(GEN8_DE_MISC_IIR);
2198                 if (tmp) {
2199                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2200                         ret = IRQ_HANDLED;
2201                         if (tmp & GEN8_DE_MISC_GSE)
2202                                 intel_opregion_asle_intr(dev);
2203                         else
2204                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2205                 }
2206                 else
2207                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2208         }
2209
2210         if (master_ctl & GEN8_DE_PORT_IRQ) {
2211                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2212                 if (tmp) {
2213                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2214                         ret = IRQ_HANDLED;
2215
2216                         if (tmp & aux_mask)
2217                                 dp_aux_irq_handler(dev);
2218                         else
2219                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2220                 }
2221                 else
2222                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2223         }
2224
2225         for_each_pipe(dev_priv, pipe) {
2226                 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2227
2228                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2229                         continue;
2230
2231                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2232                 if (pipe_iir) {
2233                         ret = IRQ_HANDLED;
2234                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2235
2236                         if (pipe_iir & GEN8_PIPE_VBLANK &&
2237                             intel_pipe_handle_vblank(dev, pipe))
2238                                 intel_check_page_flip(dev, pipe);
2239
2240                         if (IS_GEN9(dev))
2241                                 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2242                         else
2243                                 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2244
2245                         if (flip_done) {
2246                                 intel_prepare_page_flip(dev, pipe);
2247                                 intel_finish_page_flip_plane(dev, pipe);
2248                         }
2249
2250                         if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2251                                 hsw_pipe_crc_irq_handler(dev, pipe);
2252
2253                         if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2254                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2255                                                                     pipe);
2256
2257
2258                         if (IS_GEN9(dev))
2259                                 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2260                         else
2261                                 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2262
2263                         if (fault_errors)
2264                                 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2265                                           pipe_name(pipe),
2266                                           pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2267                 } else
2268                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2269         }
2270
2271         if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2272                 /*
2273                  * FIXME(BDW): Assume for now that the new interrupt handling
2274                  * scheme also closed the SDE interrupt handling race we've seen
2275                  * on older pch-split platforms. But this needs testing.
2276                  */
2277                 u32 pch_iir = I915_READ(SDEIIR);
2278                 if (pch_iir) {
2279                         I915_WRITE(SDEIIR, pch_iir);
2280                         ret = IRQ_HANDLED;
2281                         cpt_irq_handler(dev, pch_iir);
2282                 } else
2283                         DRM_ERROR("The master control interrupt lied (SDE)!\n");
2284
2285         }
2286
2287         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2288         POSTING_READ(GEN8_MASTER_IRQ);
2289
2290         return ret;
2291 }
2292
2293 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2294                                bool reset_completed)
2295 {
2296         struct intel_engine_cs *ring;
2297         int i;
2298
2299         /*
2300          * Notify all waiters for GPU completion events that reset state has
2301          * been changed, and that they need to restart their wait after
2302          * checking for potential errors (and bail out to drop locks if there is
2303          * a gpu reset pending so that i915_error_work_func can acquire them).
2304          */
2305
2306         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2307         for_each_ring(ring, dev_priv, i)
2308                 wake_up_all(&ring->irq_queue);
2309
2310         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2311         wake_up_all(&dev_priv->pending_flip_queue);
2312
2313         /*
2314          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2315          * reset state is cleared.
2316          */
2317         if (reset_completed)
2318                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2319 }
2320
2321 /**
2322  * i915_reset_and_wakeup - do process context error handling work
2323  *
2324  * Fire an error uevent so userspace can see that a hang or error
2325  * was detected.
2326  */
2327 static void i915_reset_and_wakeup(struct drm_device *dev)
2328 {
2329         struct drm_i915_private *dev_priv = to_i915(dev);
2330         struct i915_gpu_error *error = &dev_priv->gpu_error;
2331         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2332         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2333         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2334         int ret;
2335
2336         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2337
2338         /*
2339          * Note that there's only one work item which does gpu resets, so we
2340          * need not worry about concurrent gpu resets potentially incrementing
2341          * error->reset_counter twice. We only need to take care of another
2342          * racing irq/hangcheck declaring the gpu dead for a second time. A
2343          * quick check for that is good enough: schedule_work ensures the
2344          * correct ordering between hang detection and this work item, and since
2345          * the reset in-progress bit is only ever set by code outside of this
2346          * work we don't need to worry about any other races.
2347          */
2348         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2349                 DRM_DEBUG_DRIVER("resetting chip\n");
2350                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2351                                    reset_event);
2352
2353                 /*
2354                  * In most cases it's guaranteed that we get here with an RPM
2355                  * reference held, for example because there is a pending GPU
2356                  * request that won't finish until the reset is done. This
2357                  * isn't the case at least when we get here by doing a
2358                  * simulated reset via debugs, so get an RPM reference.
2359                  */
2360                 intel_runtime_pm_get(dev_priv);
2361
2362                 intel_prepare_reset(dev);
2363
2364                 /*
2365                  * All state reset _must_ be completed before we update the
2366                  * reset counter, for otherwise waiters might miss the reset
2367                  * pending state and not properly drop locks, resulting in
2368                  * deadlocks with the reset work.
2369                  */
2370                 ret = i915_reset(dev);
2371
2372                 intel_finish_reset(dev);
2373
2374                 intel_runtime_pm_put(dev_priv);
2375
2376                 if (ret == 0) {
2377                         /*
2378                          * After all the gem state is reset, increment the reset
2379                          * counter and wake up everyone waiting for the reset to
2380                          * complete.
2381                          *
2382                          * Since unlock operations are a one-sided barrier only,
2383                          * we need to insert a barrier here to order any seqno
2384                          * updates before
2385                          * the counter increment.
2386                          */
2387                         smp_mb__before_atomic();
2388                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2389
2390                         kobject_uevent_env(&dev->primary->kdev->kobj,
2391                                            KOBJ_CHANGE, reset_done_event);
2392                 } else {
2393                         atomic_set_mask(I915_WEDGED, &error->reset_counter);
2394                 }
2395
2396                 /*
2397                  * Note: The wake_up also serves as a memory barrier so that
2398                  * waiters see the update value of the reset counter atomic_t.
2399                  */
2400                 i915_error_wake_up(dev_priv, true);
2401         }
2402 }
2403
2404 static void i915_report_and_clear_eir(struct drm_device *dev)
2405 {
2406         struct drm_i915_private *dev_priv = dev->dev_private;
2407         uint32_t instdone[I915_NUM_INSTDONE_REG];
2408         u32 eir = I915_READ(EIR);
2409         int pipe, i;
2410
2411         if (!eir)
2412                 return;
2413
2414         pr_err("render error detected, EIR: 0x%08x\n", eir);
2415
2416         i915_get_extra_instdone(dev, instdone);
2417
2418         if (IS_G4X(dev)) {
2419                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2420                         u32 ipeir = I915_READ(IPEIR_I965);
2421
2422                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2423                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2424                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2425                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2426                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2427                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2428                         I915_WRITE(IPEIR_I965, ipeir);
2429                         POSTING_READ(IPEIR_I965);
2430                 }
2431                 if (eir & GM45_ERROR_PAGE_TABLE) {
2432                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2433                         pr_err("page table error\n");
2434                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2435                         I915_WRITE(PGTBL_ER, pgtbl_err);
2436                         POSTING_READ(PGTBL_ER);
2437                 }
2438         }
2439
2440         if (!IS_GEN2(dev)) {
2441                 if (eir & I915_ERROR_PAGE_TABLE) {
2442                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2443                         pr_err("page table error\n");
2444                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2445                         I915_WRITE(PGTBL_ER, pgtbl_err);
2446                         POSTING_READ(PGTBL_ER);
2447                 }
2448         }
2449
2450         if (eir & I915_ERROR_MEMORY_REFRESH) {
2451                 pr_err("memory refresh error:\n");
2452                 for_each_pipe(dev_priv, pipe)
2453                         pr_err("pipe %c stat: 0x%08x\n",
2454                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2455                 /* pipestat has already been acked */
2456         }
2457         if (eir & I915_ERROR_INSTRUCTION) {
2458                 pr_err("instruction error\n");
2459                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2460                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2461                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2462                 if (INTEL_INFO(dev)->gen < 4) {
2463                         u32 ipeir = I915_READ(IPEIR);
2464
2465                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2466                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2467                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2468                         I915_WRITE(IPEIR, ipeir);
2469                         POSTING_READ(IPEIR);
2470                 } else {
2471                         u32 ipeir = I915_READ(IPEIR_I965);
2472
2473                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2474                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2475                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2476                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2477                         I915_WRITE(IPEIR_I965, ipeir);
2478                         POSTING_READ(IPEIR_I965);
2479                 }
2480         }
2481
2482         I915_WRITE(EIR, eir);
2483         POSTING_READ(EIR);
2484         eir = I915_READ(EIR);
2485         if (eir) {
2486                 /*
2487                  * some errors might have become stuck,
2488                  * mask them.
2489                  */
2490                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2491                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2492                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2493         }
2494 }
2495
2496 /**
2497  * i915_handle_error - handle a gpu error
2498  * @dev: drm device
2499  *
2500  * Do some basic checking of regsiter state at error time and
2501  * dump it to the syslog.  Also call i915_capture_error_state() to make
2502  * sure we get a record and make it available in debugfs.  Fire a uevent
2503  * so userspace knows something bad happened (should trigger collection
2504  * of a ring dump etc.).
2505  */
2506 void i915_handle_error(struct drm_device *dev, bool wedged,
2507                        const char *fmt, ...)
2508 {
2509         struct drm_i915_private *dev_priv = dev->dev_private;
2510         va_list args;
2511         char error_msg[80];
2512
2513         va_start(args, fmt);
2514         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2515         va_end(args);
2516
2517         i915_capture_error_state(dev, wedged, error_msg);
2518         i915_report_and_clear_eir(dev);
2519
2520         if (wedged) {
2521                 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2522                                 &dev_priv->gpu_error.reset_counter);
2523
2524                 /*
2525                  * Wakeup waiting processes so that the reset function
2526                  * i915_reset_and_wakeup doesn't deadlock trying to grab
2527                  * various locks. By bumping the reset counter first, the woken
2528                  * processes will see a reset in progress and back off,
2529                  * releasing their locks and then wait for the reset completion.
2530                  * We must do this for _all_ gpu waiters that might hold locks
2531                  * that the reset work needs to acquire.
2532                  *
2533                  * Note: The wake_up serves as the required memory barrier to
2534                  * ensure that the waiters see the updated value of the reset
2535                  * counter atomic_t.
2536                  */
2537                 i915_error_wake_up(dev_priv, false);
2538         }
2539
2540         i915_reset_and_wakeup(dev);
2541 }
2542
2543 /* Called from drm generic code, passed 'crtc' which
2544  * we use as a pipe index
2545  */
2546 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2547 {
2548         struct drm_i915_private *dev_priv = dev->dev_private;
2549         unsigned long irqflags;
2550
2551         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2552         if (INTEL_INFO(dev)->gen >= 4)
2553                 i915_enable_pipestat(dev_priv, pipe,
2554                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2555         else
2556                 i915_enable_pipestat(dev_priv, pipe,
2557                                      PIPE_VBLANK_INTERRUPT_STATUS);
2558         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2559
2560         return 0;
2561 }
2562
2563 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2564 {
2565         struct drm_i915_private *dev_priv = dev->dev_private;
2566         unsigned long irqflags;
2567         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2568                                                      DE_PIPE_VBLANK(pipe);
2569
2570         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2571         ironlake_enable_display_irq(dev_priv, bit);
2572         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2573
2574         return 0;
2575 }
2576
2577 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2578 {
2579         struct drm_i915_private *dev_priv = dev->dev_private;
2580         unsigned long irqflags;
2581
2582         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2583         i915_enable_pipestat(dev_priv, pipe,
2584                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2585         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2586
2587         return 0;
2588 }
2589
2590 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2591 {
2592         struct drm_i915_private *dev_priv = dev->dev_private;
2593         unsigned long irqflags;
2594
2595         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2596         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2597         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2598         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2599         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2600         return 0;
2601 }
2602
2603 /* Called from drm generic code, passed 'crtc' which
2604  * we use as a pipe index
2605  */
2606 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2607 {
2608         struct drm_i915_private *dev_priv = dev->dev_private;
2609         unsigned long irqflags;
2610
2611         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2612         i915_disable_pipestat(dev_priv, pipe,
2613                               PIPE_VBLANK_INTERRUPT_STATUS |
2614                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2615         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2616 }
2617
2618 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2619 {
2620         struct drm_i915_private *dev_priv = dev->dev_private;
2621         unsigned long irqflags;
2622         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2623                                                      DE_PIPE_VBLANK(pipe);
2624
2625         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2626         ironlake_disable_display_irq(dev_priv, bit);
2627         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2628 }
2629
2630 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2631 {
2632         struct drm_i915_private *dev_priv = dev->dev_private;
2633         unsigned long irqflags;
2634
2635         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2636         i915_disable_pipestat(dev_priv, pipe,
2637                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2638         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2639 }
2640
2641 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2642 {
2643         struct drm_i915_private *dev_priv = dev->dev_private;
2644         unsigned long irqflags;
2645
2646         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2647         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2648         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2649         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2650         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2651 }
2652
2653 static struct drm_i915_gem_request *
2654 ring_last_request(struct intel_engine_cs *ring)
2655 {
2656         return list_entry(ring->request_list.prev,
2657                           struct drm_i915_gem_request, list);
2658 }
2659
2660 static bool
2661 ring_idle(struct intel_engine_cs *ring)
2662 {
2663         return (list_empty(&ring->request_list) ||
2664                 i915_gem_request_completed(ring_last_request(ring), false));
2665 }
2666
2667 static bool
2668 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2669 {
2670         if (INTEL_INFO(dev)->gen >= 8) {
2671                 return (ipehr >> 23) == 0x1c;
2672         } else {
2673                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2674                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2675                                  MI_SEMAPHORE_REGISTER);
2676         }
2677 }
2678
2679 static struct intel_engine_cs *
2680 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2681 {
2682         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2683         struct intel_engine_cs *signaller;
2684         int i;
2685
2686         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2687                 for_each_ring(signaller, dev_priv, i) {
2688                         if (ring == signaller)
2689                                 continue;
2690
2691                         if (offset == signaller->semaphore.signal_ggtt[ring->id])
2692                                 return signaller;
2693                 }
2694         } else {
2695                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2696
2697                 for_each_ring(signaller, dev_priv, i) {
2698                         if(ring == signaller)
2699                                 continue;
2700
2701                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2702                                 return signaller;
2703                 }
2704         }
2705
2706         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2707                   ring->id, ipehr, offset);
2708
2709         return NULL;
2710 }
2711
2712 static struct intel_engine_cs *
2713 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2714 {
2715         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2716         u32 cmd, ipehr, head;
2717         u64 offset = 0;
2718         int i, backwards;
2719
2720         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2721         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2722                 return NULL;
2723
2724         /*
2725          * HEAD is likely pointing to the dword after the actual command,
2726          * so scan backwards until we find the MBOX. But limit it to just 3
2727          * or 4 dwords depending on the semaphore wait command size.
2728          * Note that we don't care about ACTHD here since that might
2729          * point at at batch, and semaphores are always emitted into the
2730          * ringbuffer itself.
2731          */
2732         head = I915_READ_HEAD(ring) & HEAD_ADDR;
2733         backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2734
2735         for (i = backwards; i; --i) {
2736                 /*
2737                  * Be paranoid and presume the hw has gone off into the wild -
2738                  * our ring is smaller than what the hardware (and hence
2739                  * HEAD_ADDR) allows. Also handles wrap-around.
2740                  */
2741                 head &= ring->buffer->size - 1;
2742
2743                 /* This here seems to blow up */
2744                 cmd = ioread32(ring->buffer->virtual_start + head);
2745                 if (cmd == ipehr)
2746                         break;
2747
2748                 head -= 4;
2749         }
2750
2751         if (!i)
2752                 return NULL;
2753
2754         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2755         if (INTEL_INFO(ring->dev)->gen >= 8) {
2756                 offset = ioread32(ring->buffer->virtual_start + head + 12);
2757                 offset <<= 32;
2758                 offset = ioread32(ring->buffer->virtual_start + head + 8);
2759         }
2760         return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2761 }
2762
2763 static int semaphore_passed(struct intel_engine_cs *ring)
2764 {
2765         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2766         struct intel_engine_cs *signaller;
2767         u32 seqno;
2768
2769         ring->hangcheck.deadlock++;
2770
2771         signaller = semaphore_waits_for(ring, &seqno);
2772         if (signaller == NULL)
2773                 return -1;
2774
2775         /* Prevent pathological recursion due to driver bugs */
2776         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2777                 return -1;
2778
2779         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2780                 return 1;
2781
2782         /* cursory check for an unkickable deadlock */
2783         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2784             semaphore_passed(signaller) < 0)
2785                 return -1;
2786
2787         return 0;
2788 }
2789
2790 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2791 {
2792         struct intel_engine_cs *ring;
2793         int i;
2794
2795         for_each_ring(ring, dev_priv, i)
2796                 ring->hangcheck.deadlock = 0;
2797 }
2798
2799 static enum intel_ring_hangcheck_action
2800 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2801 {
2802         struct drm_device *dev = ring->dev;
2803         struct drm_i915_private *dev_priv = dev->dev_private;
2804         u32 tmp;
2805
2806         if (acthd != ring->hangcheck.acthd) {
2807                 if (acthd > ring->hangcheck.max_acthd) {
2808                         ring->hangcheck.max_acthd = acthd;
2809                         return HANGCHECK_ACTIVE;
2810                 }
2811
2812                 return HANGCHECK_ACTIVE_LOOP;
2813         }
2814
2815         if (IS_GEN2(dev))
2816                 return HANGCHECK_HUNG;
2817
2818         /* Is the chip hanging on a WAIT_FOR_EVENT?
2819          * If so we can simply poke the RB_WAIT bit
2820          * and break the hang. This should work on
2821          * all but the second generation chipsets.
2822          */
2823         tmp = I915_READ_CTL(ring);
2824         if (tmp & RING_WAIT) {
2825                 i915_handle_error(dev, false,
2826                                   "Kicking stuck wait on %s",
2827                                   ring->name);
2828                 I915_WRITE_CTL(ring, tmp);
2829                 return HANGCHECK_KICK;
2830         }
2831
2832         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2833                 switch (semaphore_passed(ring)) {
2834                 default:
2835                         return HANGCHECK_HUNG;
2836                 case 1:
2837                         i915_handle_error(dev, false,
2838                                           "Kicking stuck semaphore on %s",
2839                                           ring->name);
2840                         I915_WRITE_CTL(ring, tmp);
2841                         return HANGCHECK_KICK;
2842                 case 0:
2843                         return HANGCHECK_WAIT;
2844                 }
2845         }
2846
2847         return HANGCHECK_HUNG;
2848 }
2849
2850 /*
2851  * This is called when the chip hasn't reported back with completed
2852  * batchbuffers in a long time. We keep track per ring seqno progress and
2853  * if there are no progress, hangcheck score for that ring is increased.
2854  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2855  * we kick the ring. If we see no progress on three subsequent calls
2856  * we assume chip is wedged and try to fix it by resetting the chip.
2857  */
2858 static void i915_hangcheck_elapsed(struct work_struct *work)
2859 {
2860         struct drm_i915_private *dev_priv =
2861                 container_of(work, typeof(*dev_priv),
2862                              gpu_error.hangcheck_work.work);
2863         struct drm_device *dev = dev_priv->dev;
2864         struct intel_engine_cs *ring;
2865         int i;
2866         int busy_count = 0, rings_hung = 0;
2867         bool stuck[I915_NUM_RINGS] = { 0 };
2868 #define BUSY 1
2869 #define KICK 5
2870 #define HUNG 20
2871
2872         if (!i915.enable_hangcheck)
2873                 return;
2874
2875         for_each_ring(ring, dev_priv, i) {
2876                 u64 acthd;
2877                 u32 seqno;
2878                 bool busy = true;
2879
2880                 semaphore_clear_deadlocks(dev_priv);
2881
2882                 seqno = ring->get_seqno(ring, false);
2883                 acthd = intel_ring_get_active_head(ring);
2884
2885                 if (ring->hangcheck.seqno == seqno) {
2886                         if (ring_idle(ring)) {
2887                                 ring->hangcheck.action = HANGCHECK_IDLE;
2888
2889                                 if (waitqueue_active(&ring->irq_queue)) {
2890                                         /* Issue a wake-up to catch stuck h/w. */
2891                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2892                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2893                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2894                                                                   ring->name);
2895                                                 else
2896                                                         DRM_INFO("Fake missed irq on %s\n",
2897                                                                  ring->name);
2898                                                 wake_up_all(&ring->irq_queue);
2899                                         }
2900                                         /* Safeguard against driver failure */
2901                                         ring->hangcheck.score += BUSY;
2902                                 } else
2903                                         busy = false;
2904                         } else {
2905                                 /* We always increment the hangcheck score
2906                                  * if the ring is busy and still processing
2907                                  * the same request, so that no single request
2908                                  * can run indefinitely (such as a chain of
2909                                  * batches). The only time we do not increment
2910                                  * the hangcheck score on this ring, if this
2911                                  * ring is in a legitimate wait for another
2912                                  * ring. In that case the waiting ring is a
2913                                  * victim and we want to be sure we catch the
2914                                  * right culprit. Then every time we do kick
2915                                  * the ring, add a small increment to the
2916                                  * score so that we can catch a batch that is
2917                                  * being repeatedly kicked and so responsible
2918                                  * for stalling the machine.
2919                                  */
2920                                 ring->hangcheck.action = ring_stuck(ring,
2921                                                                     acthd);
2922
2923                                 switch (ring->hangcheck.action) {
2924                                 case HANGCHECK_IDLE:
2925                                 case HANGCHECK_WAIT:
2926                                 case HANGCHECK_ACTIVE:
2927                                         break;
2928                                 case HANGCHECK_ACTIVE_LOOP:
2929                                         ring->hangcheck.score += BUSY;
2930                                         break;
2931                                 case HANGCHECK_KICK:
2932                                         ring->hangcheck.score += KICK;
2933                                         break;
2934                                 case HANGCHECK_HUNG:
2935                                         ring->hangcheck.score += HUNG;
2936                                         stuck[i] = true;
2937                                         break;
2938                                 }
2939                         }
2940                 } else {
2941                         ring->hangcheck.action = HANGCHECK_ACTIVE;
2942
2943                         /* Gradually reduce the count so that we catch DoS
2944                          * attempts across multiple batches.
2945                          */
2946                         if (ring->hangcheck.score > 0)
2947                                 ring->hangcheck.score--;
2948
2949                         ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
2950                 }
2951
2952                 ring->hangcheck.seqno = seqno;
2953                 ring->hangcheck.acthd = acthd;
2954                 busy_count += busy;
2955         }
2956
2957         for_each_ring(ring, dev_priv, i) {
2958                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2959                         DRM_INFO("%s on %s\n",
2960                                  stuck[i] ? "stuck" : "no progress",
2961                                  ring->name);
2962                         rings_hung++;
2963                 }
2964         }
2965
2966         if (rings_hung)
2967                 return i915_handle_error(dev, true, "Ring hung");
2968
2969         if (busy_count)
2970                 /* Reset timer case chip hangs without another request
2971                  * being added */
2972                 i915_queue_hangcheck(dev);
2973 }
2974
2975 void i915_queue_hangcheck(struct drm_device *dev)
2976 {
2977         struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
2978
2979         if (!i915.enable_hangcheck)
2980                 return;
2981
2982         /* Don't continually defer the hangcheck so that it is always run at
2983          * least once after work has been scheduled on any ring. Otherwise,
2984          * we will ignore a hung ring if a second ring is kept busy.
2985          */
2986
2987         queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
2988                            round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
2989 }
2990
2991 static void ibx_irq_reset(struct drm_device *dev)
2992 {
2993         struct drm_i915_private *dev_priv = dev->dev_private;
2994
2995         if (HAS_PCH_NOP(dev))
2996                 return;
2997
2998         GEN5_IRQ_RESET(SDE);
2999
3000         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3001                 I915_WRITE(SERR_INT, 0xffffffff);
3002 }
3003
3004 /*
3005  * SDEIER is also touched by the interrupt handler to work around missed PCH
3006  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3007  * instead we unconditionally enable all PCH interrupt sources here, but then
3008  * only unmask them as needed with SDEIMR.
3009  *
3010  * This function needs to be called before interrupts are enabled.
3011  */
3012 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3013 {
3014         struct drm_i915_private *dev_priv = dev->dev_private;
3015
3016         if (HAS_PCH_NOP(dev))
3017                 return;
3018
3019         WARN_ON(I915_READ(SDEIER) != 0);
3020         I915_WRITE(SDEIER, 0xffffffff);
3021         POSTING_READ(SDEIER);
3022 }
3023
3024 static void gen5_gt_irq_reset(struct drm_device *dev)
3025 {
3026         struct drm_i915_private *dev_priv = dev->dev_private;
3027
3028         GEN5_IRQ_RESET(GT);
3029         if (INTEL_INFO(dev)->gen >= 6)
3030                 GEN5_IRQ_RESET(GEN6_PM);
3031 }
3032
3033 /* drm_dma.h hooks
3034 */
3035 static void ironlake_irq_reset(struct drm_device *dev)
3036 {
3037         struct drm_i915_private *dev_priv = dev->dev_private;
3038
3039         I915_WRITE(HWSTAM, 0xffffffff);
3040
3041         GEN5_IRQ_RESET(DE);
3042         if (IS_GEN7(dev))
3043                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3044
3045         gen5_gt_irq_reset(dev);
3046
3047         ibx_irq_reset(dev);
3048 }
3049
3050 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3051 {
3052         enum pipe pipe;
3053
3054         I915_WRITE(PORT_HOTPLUG_EN, 0);
3055         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3056
3057         for_each_pipe(dev_priv, pipe)
3058                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3059
3060         GEN5_IRQ_RESET(VLV_);
3061 }
3062
3063 static void valleyview_irq_preinstall(struct drm_device *dev)
3064 {
3065         struct drm_i915_private *dev_priv = dev->dev_private;
3066
3067         /* VLV magic */
3068         I915_WRITE(VLV_IMR, 0);
3069         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3070         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3071         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3072
3073         gen5_gt_irq_reset(dev);
3074
3075         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3076
3077         vlv_display_irq_reset(dev_priv);
3078 }
3079
3080 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3081 {
3082         GEN8_IRQ_RESET_NDX(GT, 0);
3083         GEN8_IRQ_RESET_NDX(GT, 1);
3084         GEN8_IRQ_RESET_NDX(GT, 2);
3085         GEN8_IRQ_RESET_NDX(GT, 3);
3086 }
3087
3088 static void gen8_irq_reset(struct drm_device *dev)
3089 {
3090         struct drm_i915_private *dev_priv = dev->dev_private;
3091         int pipe;
3092
3093         I915_WRITE(GEN8_MASTER_IRQ, 0);
3094         POSTING_READ(GEN8_MASTER_IRQ);
3095
3096         gen8_gt_irq_reset(dev_priv);
3097
3098         for_each_pipe(dev_priv, pipe)
3099                 if (intel_display_power_is_enabled(dev_priv,
3100                                                    POWER_DOMAIN_PIPE(pipe)))
3101                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3102
3103         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3104         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3105         GEN5_IRQ_RESET(GEN8_PCU_);
3106
3107         ibx_irq_reset(dev);
3108 }
3109
3110 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3111                                      unsigned int pipe_mask)
3112 {
3113         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3114
3115         spin_lock_irq(&dev_priv->irq_lock);
3116         if (pipe_mask & 1 << PIPE_A)
3117                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3118                                   dev_priv->de_irq_mask[PIPE_A],
3119                                   ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3120         if (pipe_mask & 1 << PIPE_B)
3121                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3122                                   dev_priv->de_irq_mask[PIPE_B],
3123                                   ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3124         if (pipe_mask & 1 << PIPE_C)
3125                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3126                                   dev_priv->de_irq_mask[PIPE_C],
3127                                   ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3128         spin_unlock_irq(&dev_priv->irq_lock);
3129 }
3130
3131 static void cherryview_irq_preinstall(struct drm_device *dev)
3132 {
3133         struct drm_i915_private *dev_priv = dev->dev_private;
3134
3135         I915_WRITE(GEN8_MASTER_IRQ, 0);
3136         POSTING_READ(GEN8_MASTER_IRQ);
3137
3138         gen8_gt_irq_reset(dev_priv);
3139
3140         GEN5_IRQ_RESET(GEN8_PCU_);
3141
3142         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3143
3144         vlv_display_irq_reset(dev_priv);
3145 }
3146
3147 static void ibx_hpd_irq_setup(struct drm_device *dev)
3148 {
3149         struct drm_i915_private *dev_priv = dev->dev_private;
3150         struct intel_encoder *intel_encoder;
3151         u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3152
3153         if (HAS_PCH_IBX(dev)) {
3154                 hotplug_irqs = SDE_HOTPLUG_MASK;
3155                 for_each_intel_encoder(dev, intel_encoder)
3156                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3157                                 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3158         } else {
3159                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3160                 for_each_intel_encoder(dev, intel_encoder)
3161                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3162                                 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3163         }
3164
3165         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3166
3167         /*
3168          * Enable digital hotplug on the PCH, and configure the DP short pulse
3169          * duration to 2ms (which is the minimum in the Display Port spec)
3170          *
3171          * This register is the same on all known PCH chips.
3172          */
3173         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3174         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3175         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3176         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3177         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3178         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3179 }
3180
3181 static void ibx_irq_postinstall(struct drm_device *dev)
3182 {
3183         struct drm_i915_private *dev_priv = dev->dev_private;
3184         u32 mask;
3185
3186         if (HAS_PCH_NOP(dev))
3187                 return;
3188
3189         if (HAS_PCH_IBX(dev))
3190                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3191         else
3192                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3193
3194         GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3195         I915_WRITE(SDEIMR, ~mask);
3196 }
3197
3198 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3199 {
3200         struct drm_i915_private *dev_priv = dev->dev_private;
3201         u32 pm_irqs, gt_irqs;
3202
3203         pm_irqs = gt_irqs = 0;
3204
3205         dev_priv->gt_irq_mask = ~0;
3206         if (HAS_L3_DPF(dev)) {
3207                 /* L3 parity interrupt is always unmasked. */
3208                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3209                 gt_irqs |= GT_PARITY_ERROR(dev);
3210         }
3211
3212         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3213         if (IS_GEN5(dev)) {
3214                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3215                            ILK_BSD_USER_INTERRUPT;
3216         } else {
3217                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3218         }
3219
3220         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3221
3222         if (INTEL_INFO(dev)->gen >= 6) {
3223                 /*
3224                  * RPS interrupts will get enabled/disabled on demand when RPS
3225                  * itself is enabled/disabled.
3226                  */
3227                 if (HAS_VEBOX(dev))
3228                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3229
3230                 dev_priv->pm_irq_mask = 0xffffffff;
3231                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3232         }
3233 }
3234
3235 static int ironlake_irq_postinstall(struct drm_device *dev)
3236 {
3237         struct drm_i915_private *dev_priv = dev->dev_private;
3238         u32 display_mask, extra_mask;
3239
3240         if (INTEL_INFO(dev)->gen >= 7) {
3241                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3242                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3243                                 DE_PLANEB_FLIP_DONE_IVB |
3244                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3245                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3246                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3247         } else {
3248                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3249                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3250                                 DE_AUX_CHANNEL_A |
3251                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3252                                 DE_POISON);
3253                 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3254                                 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3255         }
3256
3257         dev_priv->irq_mask = ~display_mask;
3258
3259         I915_WRITE(HWSTAM, 0xeffe);
3260
3261         ibx_irq_pre_postinstall(dev);
3262
3263         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3264
3265         gen5_gt_irq_postinstall(dev);
3266
3267         ibx_irq_postinstall(dev);
3268
3269         if (IS_IRONLAKE_M(dev)) {
3270                 /* Enable PCU event interrupts
3271                  *
3272                  * spinlocking not required here for correctness since interrupt
3273                  * setup is guaranteed to run in single-threaded context. But we
3274                  * need it to make the assert_spin_locked happy. */
3275                 spin_lock_irq(&dev_priv->irq_lock);
3276                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3277                 spin_unlock_irq(&dev_priv->irq_lock);
3278         }
3279
3280         return 0;
3281 }
3282
3283 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3284 {
3285         u32 pipestat_mask;
3286         u32 iir_mask;
3287         enum pipe pipe;
3288
3289         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3290                         PIPE_FIFO_UNDERRUN_STATUS;
3291
3292         for_each_pipe(dev_priv, pipe)
3293                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3294         POSTING_READ(PIPESTAT(PIPE_A));
3295
3296         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3297                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3298
3299         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3300         for_each_pipe(dev_priv, pipe)
3301                       i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3302
3303         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3304                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3305                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3306         if (IS_CHERRYVIEW(dev_priv))
3307                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3308         dev_priv->irq_mask &= ~iir_mask;
3309
3310         I915_WRITE(VLV_IIR, iir_mask);
3311         I915_WRITE(VLV_IIR, iir_mask);
3312         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3313         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3314         POSTING_READ(VLV_IMR);
3315 }
3316
3317 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3318 {
3319         u32 pipestat_mask;
3320         u32 iir_mask;
3321         enum pipe pipe;
3322
3323         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3324                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3325                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3326         if (IS_CHERRYVIEW(dev_priv))
3327                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3328
3329         dev_priv->irq_mask |= iir_mask;
3330         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3331         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3332         I915_WRITE(VLV_IIR, iir_mask);
3333         I915_WRITE(VLV_IIR, iir_mask);
3334         POSTING_READ(VLV_IIR);
3335
3336         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3337                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3338
3339         i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3340         for_each_pipe(dev_priv, pipe)
3341                 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3342
3343         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3344                         PIPE_FIFO_UNDERRUN_STATUS;
3345
3346         for_each_pipe(dev_priv, pipe)
3347                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3348         POSTING_READ(PIPESTAT(PIPE_A));
3349 }
3350
3351 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3352 {
3353         assert_spin_locked(&dev_priv->irq_lock);
3354
3355         if (dev_priv->display_irqs_enabled)
3356                 return;
3357
3358         dev_priv->display_irqs_enabled = true;
3359
3360         if (intel_irqs_enabled(dev_priv))
3361                 valleyview_display_irqs_install(dev_priv);
3362 }
3363
3364 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3365 {
3366         assert_spin_locked(&dev_priv->irq_lock);
3367
3368         if (!dev_priv->display_irqs_enabled)
3369                 return;
3370
3371         dev_priv->display_irqs_enabled = false;
3372
3373         if (intel_irqs_enabled(dev_priv))
3374                 valleyview_display_irqs_uninstall(dev_priv);
3375 }
3376
3377 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3378 {
3379         dev_priv->irq_mask = ~0;
3380
3381         I915_WRITE(PORT_HOTPLUG_EN, 0);
3382         POSTING_READ(PORT_HOTPLUG_EN);
3383
3384         I915_WRITE(VLV_IIR, 0xffffffff);
3385         I915_WRITE(VLV_IIR, 0xffffffff);
3386         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3387         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3388         POSTING_READ(VLV_IMR);
3389
3390         /* Interrupt setup is already guaranteed to be single-threaded, this is
3391          * just to make the assert_spin_locked check happy. */
3392         spin_lock_irq(&dev_priv->irq_lock);
3393         if (dev_priv->display_irqs_enabled)
3394                 valleyview_display_irqs_install(dev_priv);
3395         spin_unlock_irq(&dev_priv->irq_lock);
3396 }
3397
3398 static int valleyview_irq_postinstall(struct drm_device *dev)
3399 {
3400         struct drm_i915_private *dev_priv = dev->dev_private;
3401
3402         vlv_display_irq_postinstall(dev_priv);
3403
3404         gen5_gt_irq_postinstall(dev);
3405
3406         /* ack & enable invalid PTE error interrupts */
3407 #if 0 /* FIXME: add support to irq handler for checking these bits */
3408         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3409         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3410 #endif
3411
3412         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3413
3414         return 0;
3415 }
3416
3417 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3418 {
3419         /* These are interrupts we'll toggle with the ring mask register */
3420         uint32_t gt_interrupts[] = {
3421                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3422                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3423                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3424                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3425                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3426                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3427                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3428                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3429                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3430                 0,
3431                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3432                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3433                 };
3434
3435         dev_priv->pm_irq_mask = 0xffffffff;
3436         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3437         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3438         /*
3439          * RPS interrupts will get enabled/disabled on demand when RPS itself
3440          * is enabled/disabled.
3441          */
3442         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3443         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3444 }
3445
3446 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3447 {
3448         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3449         uint32_t de_pipe_enables;
3450         int pipe;
3451         u32 aux_en = GEN8_AUX_CHANNEL_A;
3452
3453         if (IS_GEN9(dev_priv)) {
3454                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3455                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3456                 aux_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3457                         GEN9_AUX_CHANNEL_D;
3458         } else
3459                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3460                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3461
3462         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3463                                            GEN8_PIPE_FIFO_UNDERRUN;
3464
3465         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3466         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3467         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3468
3469         for_each_pipe(dev_priv, pipe)
3470                 if (intel_display_power_is_enabled(dev_priv,
3471                                 POWER_DOMAIN_PIPE(pipe)))
3472                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3473                                           dev_priv->de_irq_mask[pipe],
3474                                           de_pipe_enables);
3475
3476         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~aux_en, aux_en);
3477 }
3478
3479 static int gen8_irq_postinstall(struct drm_device *dev)
3480 {
3481         struct drm_i915_private *dev_priv = dev->dev_private;
3482
3483         ibx_irq_pre_postinstall(dev);
3484
3485         gen8_gt_irq_postinstall(dev_priv);
3486         gen8_de_irq_postinstall(dev_priv);
3487
3488         ibx_irq_postinstall(dev);
3489
3490         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3491         POSTING_READ(GEN8_MASTER_IRQ);
3492
3493         return 0;
3494 }
3495
3496 static int cherryview_irq_postinstall(struct drm_device *dev)
3497 {
3498         struct drm_i915_private *dev_priv = dev->dev_private;
3499
3500         vlv_display_irq_postinstall(dev_priv);
3501
3502         gen8_gt_irq_postinstall(dev_priv);
3503
3504         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3505         POSTING_READ(GEN8_MASTER_IRQ);
3506
3507         return 0;
3508 }
3509
3510 static void gen8_irq_uninstall(struct drm_device *dev)
3511 {
3512         struct drm_i915_private *dev_priv = dev->dev_private;
3513
3514         if (!dev_priv)
3515                 return;
3516
3517         gen8_irq_reset(dev);
3518 }
3519
3520 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3521 {
3522         /* Interrupt setup is already guaranteed to be single-threaded, this is
3523          * just to make the assert_spin_locked check happy. */
3524         spin_lock_irq(&dev_priv->irq_lock);
3525         if (dev_priv->display_irqs_enabled)
3526                 valleyview_display_irqs_uninstall(dev_priv);
3527         spin_unlock_irq(&dev_priv->irq_lock);
3528
3529         vlv_display_irq_reset(dev_priv);
3530
3531         dev_priv->irq_mask = ~0;
3532 }
3533
3534 static void valleyview_irq_uninstall(struct drm_device *dev)
3535 {
3536         struct drm_i915_private *dev_priv = dev->dev_private;
3537
3538         if (!dev_priv)
3539                 return;
3540
3541         I915_WRITE(VLV_MASTER_IER, 0);
3542
3543         gen5_gt_irq_reset(dev);
3544
3545         I915_WRITE(HWSTAM, 0xffffffff);
3546
3547         vlv_display_irq_uninstall(dev_priv);
3548 }
3549
3550 static void cherryview_irq_uninstall(struct drm_device *dev)
3551 {
3552         struct drm_i915_private *dev_priv = dev->dev_private;
3553
3554         if (!dev_priv)
3555                 return;
3556
3557         I915_WRITE(GEN8_MASTER_IRQ, 0);
3558         POSTING_READ(GEN8_MASTER_IRQ);
3559
3560         gen8_gt_irq_reset(dev_priv);
3561
3562         GEN5_IRQ_RESET(GEN8_PCU_);
3563
3564         vlv_display_irq_uninstall(dev_priv);
3565 }
3566
3567 static void ironlake_irq_uninstall(struct drm_device *dev)
3568 {
3569         struct drm_i915_private *dev_priv = dev->dev_private;
3570
3571         if (!dev_priv)
3572                 return;
3573
3574         ironlake_irq_reset(dev);
3575 }
3576
3577 static void i8xx_irq_preinstall(struct drm_device * dev)
3578 {
3579         struct drm_i915_private *dev_priv = dev->dev_private;
3580         int pipe;
3581
3582         for_each_pipe(dev_priv, pipe)
3583                 I915_WRITE(PIPESTAT(pipe), 0);
3584         I915_WRITE16(IMR, 0xffff);
3585         I915_WRITE16(IER, 0x0);
3586         POSTING_READ16(IER);
3587 }
3588
3589 static int i8xx_irq_postinstall(struct drm_device *dev)
3590 {
3591         struct drm_i915_private *dev_priv = dev->dev_private;
3592
3593         I915_WRITE16(EMR,
3594                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3595
3596         /* Unmask the interrupts that we always want on. */
3597         dev_priv->irq_mask =
3598                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3599                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3600                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3601                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3602         I915_WRITE16(IMR, dev_priv->irq_mask);
3603
3604         I915_WRITE16(IER,
3605                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3606                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3607                      I915_USER_INTERRUPT);
3608         POSTING_READ16(IER);
3609
3610         /* Interrupt setup is already guaranteed to be single-threaded, this is
3611          * just to make the assert_spin_locked check happy. */
3612         spin_lock_irq(&dev_priv->irq_lock);
3613         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3614         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3615         spin_unlock_irq(&dev_priv->irq_lock);
3616
3617         return 0;
3618 }
3619
3620 /*
3621  * Returns true when a page flip has completed.
3622  */
3623 static bool i8xx_handle_vblank(struct drm_device *dev,
3624                                int plane, int pipe, u32 iir)
3625 {
3626         struct drm_i915_private *dev_priv = dev->dev_private;
3627         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3628
3629         if (!intel_pipe_handle_vblank(dev, pipe))
3630                 return false;
3631
3632         if ((iir & flip_pending) == 0)
3633                 goto check_page_flip;
3634
3635         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3636          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3637          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3638          * the flip is completed (no longer pending). Since this doesn't raise
3639          * an interrupt per se, we watch for the change at vblank.
3640          */
3641         if (I915_READ16(ISR) & flip_pending)
3642                 goto check_page_flip;
3643
3644         intel_prepare_page_flip(dev, plane);
3645         intel_finish_page_flip(dev, pipe);
3646         return true;
3647
3648 check_page_flip:
3649         intel_check_page_flip(dev, pipe);
3650         return false;
3651 }
3652
3653 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3654 {
3655         struct drm_device *dev = arg;
3656         struct drm_i915_private *dev_priv = dev->dev_private;
3657         u16 iir, new_iir;
3658         u32 pipe_stats[2];
3659         int pipe;
3660         u16 flip_mask =
3661                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3662                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3663
3664         if (!intel_irqs_enabled(dev_priv))
3665                 return IRQ_NONE;
3666
3667         iir = I915_READ16(IIR);
3668         if (iir == 0)
3669                 return IRQ_NONE;
3670
3671         while (iir & ~flip_mask) {
3672                 /* Can't rely on pipestat interrupt bit in iir as it might
3673                  * have been cleared after the pipestat interrupt was received.
3674                  * It doesn't set the bit in iir again, but it still produces
3675                  * interrupts (for non-MSI).
3676                  */
3677                 spin_lock(&dev_priv->irq_lock);
3678                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3679                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3680
3681                 for_each_pipe(dev_priv, pipe) {
3682                         int reg = PIPESTAT(pipe);
3683                         pipe_stats[pipe] = I915_READ(reg);
3684
3685                         /*
3686                          * Clear the PIPE*STAT regs before the IIR
3687                          */
3688                         if (pipe_stats[pipe] & 0x8000ffff)
3689                                 I915_WRITE(reg, pipe_stats[pipe]);
3690                 }
3691                 spin_unlock(&dev_priv->irq_lock);
3692
3693                 I915_WRITE16(IIR, iir & ~flip_mask);
3694                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3695
3696                 if (iir & I915_USER_INTERRUPT)
3697                         notify_ring(dev, &dev_priv->ring[RCS]);
3698
3699                 for_each_pipe(dev_priv, pipe) {
3700                         int plane = pipe;
3701                         if (HAS_FBC(dev))
3702                                 plane = !plane;
3703
3704                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3705                             i8xx_handle_vblank(dev, plane, pipe, iir))
3706                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3707
3708                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3709                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3710
3711                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3712                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3713                                                                     pipe);
3714                 }
3715
3716                 iir = new_iir;
3717         }
3718
3719         return IRQ_HANDLED;
3720 }
3721
3722 static void i8xx_irq_uninstall(struct drm_device * dev)
3723 {
3724         struct drm_i915_private *dev_priv = dev->dev_private;
3725         int pipe;
3726
3727         for_each_pipe(dev_priv, pipe) {
3728                 /* Clear enable bits; then clear status bits */
3729                 I915_WRITE(PIPESTAT(pipe), 0);
3730                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3731         }
3732         I915_WRITE16(IMR, 0xffff);
3733         I915_WRITE16(IER, 0x0);
3734         I915_WRITE16(IIR, I915_READ16(IIR));
3735 }
3736
3737 static void i915_irq_preinstall(struct drm_device * dev)
3738 {
3739         struct drm_i915_private *dev_priv = dev->dev_private;
3740         int pipe;
3741
3742         if (I915_HAS_HOTPLUG(dev)) {
3743                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3744                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3745         }
3746
3747         I915_WRITE16(HWSTAM, 0xeffe);
3748         for_each_pipe(dev_priv, pipe)
3749                 I915_WRITE(PIPESTAT(pipe), 0);
3750         I915_WRITE(IMR, 0xffffffff);
3751         I915_WRITE(IER, 0x0);
3752         POSTING_READ(IER);
3753 }
3754
3755 static int i915_irq_postinstall(struct drm_device *dev)
3756 {
3757         struct drm_i915_private *dev_priv = dev->dev_private;
3758         u32 enable_mask;
3759
3760         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3761
3762         /* Unmask the interrupts that we always want on. */
3763         dev_priv->irq_mask =
3764                 ~(I915_ASLE_INTERRUPT |
3765                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3766                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3767                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3768                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3769
3770         enable_mask =
3771                 I915_ASLE_INTERRUPT |
3772                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3773                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3774                 I915_USER_INTERRUPT;
3775
3776         if (I915_HAS_HOTPLUG(dev)) {
3777                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3778                 POSTING_READ(PORT_HOTPLUG_EN);
3779
3780                 /* Enable in IER... */
3781                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3782                 /* and unmask in IMR */
3783                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3784         }
3785
3786         I915_WRITE(IMR, dev_priv->irq_mask);
3787         I915_WRITE(IER, enable_mask);
3788         POSTING_READ(IER);
3789
3790         i915_enable_asle_pipestat(dev);
3791
3792         /* Interrupt setup is already guaranteed to be single-threaded, this is
3793          * just to make the assert_spin_locked check happy. */
3794         spin_lock_irq(&dev_priv->irq_lock);
3795         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3796         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3797         spin_unlock_irq(&dev_priv->irq_lock);
3798
3799         return 0;
3800 }
3801
3802 /*
3803  * Returns true when a page flip has completed.
3804  */
3805 static bool i915_handle_vblank(struct drm_device *dev,
3806                                int plane, int pipe, u32 iir)
3807 {
3808         struct drm_i915_private *dev_priv = dev->dev_private;
3809         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3810
3811         if (!intel_pipe_handle_vblank(dev, pipe))
3812                 return false;
3813
3814         if ((iir & flip_pending) == 0)
3815                 goto check_page_flip;
3816
3817         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3818          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3819          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3820          * the flip is completed (no longer pending). Since this doesn't raise
3821          * an interrupt per se, we watch for the change at vblank.
3822          */
3823         if (I915_READ(ISR) & flip_pending)
3824                 goto check_page_flip;
3825
3826         intel_prepare_page_flip(dev, plane);
3827         intel_finish_page_flip(dev, pipe);
3828         return true;
3829
3830 check_page_flip:
3831         intel_check_page_flip(dev, pipe);
3832         return false;
3833 }
3834
3835 static irqreturn_t i915_irq_handler(int irq, void *arg)
3836 {
3837         struct drm_device *dev = arg;
3838         struct drm_i915_private *dev_priv = dev->dev_private;
3839         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3840         u32 flip_mask =
3841                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3842                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3843         int pipe, ret = IRQ_NONE;
3844
3845         if (!intel_irqs_enabled(dev_priv))
3846                 return IRQ_NONE;
3847
3848         iir = I915_READ(IIR);
3849         do {
3850                 bool irq_received = (iir & ~flip_mask) != 0;
3851                 bool blc_event = false;
3852
3853                 /* Can't rely on pipestat interrupt bit in iir as it might
3854                  * have been cleared after the pipestat interrupt was received.
3855                  * It doesn't set the bit in iir again, but it still produces
3856                  * interrupts (for non-MSI).
3857                  */
3858                 spin_lock(&dev_priv->irq_lock);
3859                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3860                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3861
3862                 for_each_pipe(dev_priv, pipe) {
3863                         int reg = PIPESTAT(pipe);
3864                         pipe_stats[pipe] = I915_READ(reg);
3865
3866                         /* Clear the PIPE*STAT regs before the IIR */
3867                         if (pipe_stats[pipe] & 0x8000ffff) {
3868                                 I915_WRITE(reg, pipe_stats[pipe]);
3869                                 irq_received = true;
3870                         }
3871                 }
3872                 spin_unlock(&dev_priv->irq_lock);
3873
3874                 if (!irq_received)
3875                         break;
3876
3877                 /* Consume port.  Then clear IIR or we'll miss events */
3878                 if (I915_HAS_HOTPLUG(dev) &&
3879                     iir & I915_DISPLAY_PORT_INTERRUPT)
3880                         i9xx_hpd_irq_handler(dev);
3881
3882                 I915_WRITE(IIR, iir & ~flip_mask);
3883                 new_iir = I915_READ(IIR); /* Flush posted writes */
3884
3885                 if (iir & I915_USER_INTERRUPT)
3886                         notify_ring(dev, &dev_priv->ring[RCS]);
3887
3888                 for_each_pipe(dev_priv, pipe) {
3889                         int plane = pipe;
3890                         if (HAS_FBC(dev))
3891                                 plane = !plane;
3892
3893                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3894                             i915_handle_vblank(dev, plane, pipe, iir))
3895                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3896
3897                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3898                                 blc_event = true;
3899
3900                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3901                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3902
3903                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3904                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3905                                                                     pipe);
3906                 }
3907
3908                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3909                         intel_opregion_asle_intr(dev);
3910
3911                 /* With MSI, interrupts are only generated when iir
3912                  * transitions from zero to nonzero.  If another bit got
3913                  * set while we were handling the existing iir bits, then
3914                  * we would never get another interrupt.
3915                  *
3916                  * This is fine on non-MSI as well, as if we hit this path
3917                  * we avoid exiting the interrupt handler only to generate
3918                  * another one.
3919                  *
3920                  * Note that for MSI this could cause a stray interrupt report
3921                  * if an interrupt landed in the time between writing IIR and
3922                  * the posting read.  This should be rare enough to never
3923                  * trigger the 99% of 100,000 interrupts test for disabling
3924                  * stray interrupts.
3925                  */
3926                 ret = IRQ_HANDLED;
3927                 iir = new_iir;
3928         } while (iir & ~flip_mask);
3929
3930         return ret;
3931 }
3932
3933 static void i915_irq_uninstall(struct drm_device * dev)
3934 {
3935         struct drm_i915_private *dev_priv = dev->dev_private;
3936         int pipe;
3937
3938         if (I915_HAS_HOTPLUG(dev)) {
3939                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3940                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3941         }
3942
3943         I915_WRITE16(HWSTAM, 0xffff);
3944         for_each_pipe(dev_priv, pipe) {
3945                 /* Clear enable bits; then clear status bits */
3946                 I915_WRITE(PIPESTAT(pipe), 0);
3947                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3948         }
3949         I915_WRITE(IMR, 0xffffffff);
3950         I915_WRITE(IER, 0x0);
3951
3952         I915_WRITE(IIR, I915_READ(IIR));
3953 }
3954
3955 static void i965_irq_preinstall(struct drm_device * dev)
3956 {
3957         struct drm_i915_private *dev_priv = dev->dev_private;
3958         int pipe;
3959
3960         I915_WRITE(PORT_HOTPLUG_EN, 0);
3961         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3962
3963         I915_WRITE(HWSTAM, 0xeffe);
3964         for_each_pipe(dev_priv, pipe)
3965                 I915_WRITE(PIPESTAT(pipe), 0);
3966         I915_WRITE(IMR, 0xffffffff);
3967         I915_WRITE(IER, 0x0);
3968         POSTING_READ(IER);
3969 }
3970
3971 static int i965_irq_postinstall(struct drm_device *dev)
3972 {
3973         struct drm_i915_private *dev_priv = dev->dev_private;
3974         u32 enable_mask;
3975         u32 error_mask;
3976
3977         /* Unmask the interrupts that we always want on. */
3978         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3979                                I915_DISPLAY_PORT_INTERRUPT |
3980                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3981                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3982                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3983                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3984                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3985
3986         enable_mask = ~dev_priv->irq_mask;
3987         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3988                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3989         enable_mask |= I915_USER_INTERRUPT;
3990
3991         if (IS_G4X(dev))
3992                 enable_mask |= I915_BSD_USER_INTERRUPT;
3993
3994         /* Interrupt setup is already guaranteed to be single-threaded, this is
3995          * just to make the assert_spin_locked check happy. */
3996         spin_lock_irq(&dev_priv->irq_lock);
3997         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3998         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3999         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4000         spin_unlock_irq(&dev_priv->irq_lock);
4001
4002         /*
4003          * Enable some error detection, note the instruction error mask
4004          * bit is reserved, so we leave it masked.
4005          */
4006         if (IS_G4X(dev)) {
4007                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4008                                GM45_ERROR_MEM_PRIV |
4009                                GM45_ERROR_CP_PRIV |
4010                                I915_ERROR_MEMORY_REFRESH);
4011         } else {
4012                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4013                                I915_ERROR_MEMORY_REFRESH);
4014         }
4015         I915_WRITE(EMR, error_mask);
4016
4017         I915_WRITE(IMR, dev_priv->irq_mask);
4018         I915_WRITE(IER, enable_mask);
4019         POSTING_READ(IER);
4020
4021         I915_WRITE(PORT_HOTPLUG_EN, 0);
4022         POSTING_READ(PORT_HOTPLUG_EN);
4023
4024         i915_enable_asle_pipestat(dev);
4025
4026         return 0;
4027 }
4028
4029 static void i915_hpd_irq_setup(struct drm_device *dev)
4030 {
4031         struct drm_i915_private *dev_priv = dev->dev_private;
4032         struct intel_encoder *intel_encoder;
4033         u32 hotplug_en;
4034
4035         assert_spin_locked(&dev_priv->irq_lock);
4036
4037         hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4038         hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4039         /* Note HDMI and DP share hotplug bits */
4040         /* enable bits are the same for all generations */
4041         for_each_intel_encoder(dev, intel_encoder)
4042                 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4043                         hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4044         /* Programming the CRT detection parameters tends
4045            to generate a spurious hotplug event about three
4046            seconds later.  So just do it once.
4047         */
4048         if (IS_G4X(dev))
4049                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4050         hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4051         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4052
4053         /* Ignore TV since it's buggy */
4054         I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4055 }
4056
4057 static irqreturn_t i965_irq_handler(int irq, void *arg)
4058 {
4059         struct drm_device *dev = arg;
4060         struct drm_i915_private *dev_priv = dev->dev_private;
4061         u32 iir, new_iir;
4062         u32 pipe_stats[I915_MAX_PIPES];
4063         int ret = IRQ_NONE, pipe;
4064         u32 flip_mask =
4065                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4066                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4067
4068         if (!intel_irqs_enabled(dev_priv))
4069                 return IRQ_NONE;
4070
4071         iir = I915_READ(IIR);
4072
4073         for (;;) {
4074                 bool irq_received = (iir & ~flip_mask) != 0;
4075                 bool blc_event = false;
4076
4077                 /* Can't rely on pipestat interrupt bit in iir as it might
4078                  * have been cleared after the pipestat interrupt was received.
4079                  * It doesn't set the bit in iir again, but it still produces
4080                  * interrupts (for non-MSI).
4081                  */
4082                 spin_lock(&dev_priv->irq_lock);
4083                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4084                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4085
4086                 for_each_pipe(dev_priv, pipe) {
4087                         int reg = PIPESTAT(pipe);
4088                         pipe_stats[pipe] = I915_READ(reg);
4089
4090                         /*
4091                          * Clear the PIPE*STAT regs before the IIR
4092                          */
4093                         if (pipe_stats[pipe] & 0x8000ffff) {
4094                                 I915_WRITE(reg, pipe_stats[pipe]);
4095                                 irq_received = true;
4096                         }
4097                 }
4098                 spin_unlock(&dev_priv->irq_lock);
4099
4100                 if (!irq_received)
4101                         break;
4102
4103                 ret = IRQ_HANDLED;
4104
4105                 /* Consume port.  Then clear IIR or we'll miss events */
4106                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4107                         i9xx_hpd_irq_handler(dev);
4108
4109                 I915_WRITE(IIR, iir & ~flip_mask);
4110                 new_iir = I915_READ(IIR); /* Flush posted writes */
4111
4112                 if (iir & I915_USER_INTERRUPT)
4113                         notify_ring(dev, &dev_priv->ring[RCS]);
4114                 if (iir & I915_BSD_USER_INTERRUPT)
4115                         notify_ring(dev, &dev_priv->ring[VCS]);
4116
4117                 for_each_pipe(dev_priv, pipe) {
4118                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4119                             i915_handle_vblank(dev, pipe, pipe, iir))
4120                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4121
4122                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4123                                 blc_event = true;
4124
4125                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4126                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4127
4128                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4129                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4130                 }
4131
4132                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4133                         intel_opregion_asle_intr(dev);
4134
4135                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4136                         gmbus_irq_handler(dev);
4137
4138                 /* With MSI, interrupts are only generated when iir
4139                  * transitions from zero to nonzero.  If another bit got
4140                  * set while we were handling the existing iir bits, then
4141                  * we would never get another interrupt.
4142                  *
4143                  * This is fine on non-MSI as well, as if we hit this path
4144                  * we avoid exiting the interrupt handler only to generate
4145                  * another one.
4146                  *
4147                  * Note that for MSI this could cause a stray interrupt report
4148                  * if an interrupt landed in the time between writing IIR and
4149                  * the posting read.  This should be rare enough to never
4150                  * trigger the 99% of 100,000 interrupts test for disabling
4151                  * stray interrupts.
4152                  */
4153                 iir = new_iir;
4154         }
4155
4156         return ret;
4157 }
4158
4159 static void i965_irq_uninstall(struct drm_device * dev)
4160 {
4161         struct drm_i915_private *dev_priv = dev->dev_private;
4162         int pipe;
4163
4164         if (!dev_priv)
4165                 return;
4166
4167         I915_WRITE(PORT_HOTPLUG_EN, 0);
4168         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4169
4170         I915_WRITE(HWSTAM, 0xffffffff);
4171         for_each_pipe(dev_priv, pipe)
4172                 I915_WRITE(PIPESTAT(pipe), 0);
4173         I915_WRITE(IMR, 0xffffffff);
4174         I915_WRITE(IER, 0x0);
4175
4176         for_each_pipe(dev_priv, pipe)
4177                 I915_WRITE(PIPESTAT(pipe),
4178                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4179         I915_WRITE(IIR, I915_READ(IIR));
4180 }
4181
4182 static void intel_hpd_irq_reenable_work(struct work_struct *work)
4183 {
4184         struct drm_i915_private *dev_priv =
4185                 container_of(work, typeof(*dev_priv),
4186                              hotplug_reenable_work.work);
4187         struct drm_device *dev = dev_priv->dev;
4188         struct drm_mode_config *mode_config = &dev->mode_config;
4189         int i;
4190
4191         intel_runtime_pm_get(dev_priv);
4192
4193         spin_lock_irq(&dev_priv->irq_lock);
4194         for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4195                 struct drm_connector *connector;
4196
4197                 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4198                         continue;
4199
4200                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4201
4202                 list_for_each_entry(connector, &mode_config->connector_list, head) {
4203                         struct intel_connector *intel_connector = to_intel_connector(connector);
4204
4205                         if (intel_connector->encoder->hpd_pin == i) {
4206                                 if (connector->polled != intel_connector->polled)
4207                                         DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4208                                                          connector->name);
4209                                 connector->polled = intel_connector->polled;
4210                                 if (!connector->polled)
4211                                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4212                         }
4213                 }
4214         }
4215         if (dev_priv->display.hpd_irq_setup)
4216                 dev_priv->display.hpd_irq_setup(dev);
4217         spin_unlock_irq(&dev_priv->irq_lock);
4218
4219         intel_runtime_pm_put(dev_priv);
4220 }
4221
4222 /**
4223  * intel_irq_init - initializes irq support
4224  * @dev_priv: i915 device instance
4225  *
4226  * This function initializes all the irq support including work items, timers
4227  * and all the vtables. It does not setup the interrupt itself though.
4228  */
4229 void intel_irq_init(struct drm_i915_private *dev_priv)
4230 {
4231         struct drm_device *dev = dev_priv->dev;
4232
4233         INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4234         INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4235         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4236         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4237
4238         /* Let's track the enabled rps events */
4239         if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4240                 /* WaGsvRC0ResidencyMethod:vlv */
4241                 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4242         else
4243                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4244
4245         INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4246                           i915_hangcheck_elapsed);
4247         INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4248                           intel_hpd_irq_reenable_work);
4249
4250         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4251
4252         if (IS_GEN2(dev_priv)) {
4253                 dev->max_vblank_count = 0;
4254                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4255         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4256                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4257                 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4258         } else {
4259                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4260                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4261         }
4262
4263         /*
4264          * Opt out of the vblank disable timer on everything except gen2.
4265          * Gen2 doesn't have a hardware frame counter and so depends on
4266          * vblank interrupts to produce sane vblank seuquence numbers.
4267          */
4268         if (!IS_GEN2(dev_priv))
4269                 dev->vblank_disable_immediate = true;
4270
4271         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4272         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4273
4274         if (IS_CHERRYVIEW(dev_priv)) {
4275                 dev->driver->irq_handler = cherryview_irq_handler;
4276                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4277                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4278                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4279                 dev->driver->enable_vblank = valleyview_enable_vblank;
4280                 dev->driver->disable_vblank = valleyview_disable_vblank;
4281                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4282         } else if (IS_VALLEYVIEW(dev_priv)) {
4283                 dev->driver->irq_handler = valleyview_irq_handler;
4284                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4285                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4286                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4287                 dev->driver->enable_vblank = valleyview_enable_vblank;
4288                 dev->driver->disable_vblank = valleyview_disable_vblank;
4289                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4290         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4291                 dev->driver->irq_handler = gen8_irq_handler;
4292                 dev->driver->irq_preinstall = gen8_irq_reset;
4293                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4294                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4295                 dev->driver->enable_vblank = gen8_enable_vblank;
4296                 dev->driver->disable_vblank = gen8_disable_vblank;
4297                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4298         } else if (HAS_PCH_SPLIT(dev)) {
4299                 dev->driver->irq_handler = ironlake_irq_handler;
4300                 dev->driver->irq_preinstall = ironlake_irq_reset;
4301                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4302                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4303                 dev->driver->enable_vblank = ironlake_enable_vblank;
4304                 dev->driver->disable_vblank = ironlake_disable_vblank;
4305                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4306         } else {
4307                 if (INTEL_INFO(dev_priv)->gen == 2) {
4308                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4309                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4310                         dev->driver->irq_handler = i8xx_irq_handler;
4311                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4312                 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4313                         dev->driver->irq_preinstall = i915_irq_preinstall;
4314                         dev->driver->irq_postinstall = i915_irq_postinstall;
4315                         dev->driver->irq_uninstall = i915_irq_uninstall;
4316                         dev->driver->irq_handler = i915_irq_handler;
4317                 } else {
4318                         dev->driver->irq_preinstall = i965_irq_preinstall;
4319                         dev->driver->irq_postinstall = i965_irq_postinstall;
4320                         dev->driver->irq_uninstall = i965_irq_uninstall;
4321                         dev->driver->irq_handler = i965_irq_handler;
4322                 }
4323                 if (I915_HAS_HOTPLUG(dev_priv))
4324                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4325                 dev->driver->enable_vblank = i915_enable_vblank;
4326                 dev->driver->disable_vblank = i915_disable_vblank;
4327         }
4328 }
4329
4330 /**
4331  * intel_hpd_init - initializes and enables hpd support
4332  * @dev_priv: i915 device instance
4333  *
4334  * This function enables the hotplug support. It requires that interrupts have
4335  * already been enabled with intel_irq_init_hw(). From this point on hotplug and
4336  * poll request can run concurrently to other code, so locking rules must be
4337  * obeyed.
4338  *
4339  * This is a separate step from interrupt enabling to simplify the locking rules
4340  * in the driver load and resume code.
4341  */
4342 void intel_hpd_init(struct drm_i915_private *dev_priv)
4343 {
4344         struct drm_device *dev = dev_priv->dev;
4345         struct drm_mode_config *mode_config = &dev->mode_config;
4346         struct drm_connector *connector;
4347         int i;
4348
4349         for (i = 1; i < HPD_NUM_PINS; i++) {
4350                 dev_priv->hpd_stats[i].hpd_cnt = 0;
4351                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4352         }
4353         list_for_each_entry(connector, &mode_config->connector_list, head) {
4354                 struct intel_connector *intel_connector = to_intel_connector(connector);
4355                 connector->polled = intel_connector->polled;
4356                 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4357                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4358                 if (intel_connector->mst_port)
4359                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4360         }
4361
4362         /* Interrupt setup is already guaranteed to be single-threaded, this is
4363          * just to make the assert_spin_locked checks happy. */
4364         spin_lock_irq(&dev_priv->irq_lock);
4365         if (dev_priv->display.hpd_irq_setup)
4366                 dev_priv->display.hpd_irq_setup(dev);
4367         spin_unlock_irq(&dev_priv->irq_lock);
4368 }
4369
4370 /**
4371  * intel_irq_install - enables the hardware interrupt
4372  * @dev_priv: i915 device instance
4373  *
4374  * This function enables the hardware interrupt handling, but leaves the hotplug
4375  * handling still disabled. It is called after intel_irq_init().
4376  *
4377  * In the driver load and resume code we need working interrupts in a few places
4378  * but don't want to deal with the hassle of concurrent probe and hotplug
4379  * workers. Hence the split into this two-stage approach.
4380  */
4381 int intel_irq_install(struct drm_i915_private *dev_priv)
4382 {
4383         /*
4384          * We enable some interrupt sources in our postinstall hooks, so mark
4385          * interrupts as enabled _before_ actually enabling them to avoid
4386          * special cases in our ordering checks.
4387          */
4388         dev_priv->pm.irqs_enabled = true;
4389
4390         return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4391 }
4392
4393 /**
4394  * intel_irq_uninstall - finilizes all irq handling
4395  * @dev_priv: i915 device instance
4396  *
4397  * This stops interrupt and hotplug handling and unregisters and frees all
4398  * resources acquired in the init functions.
4399  */
4400 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4401 {
4402         drm_irq_uninstall(dev_priv->dev);
4403         intel_hpd_cancel_work(dev_priv);
4404         dev_priv->pm.irqs_enabled = false;
4405 }
4406
4407 /**
4408  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4409  * @dev_priv: i915 device instance
4410  *
4411  * This function is used to disable interrupts at runtime, both in the runtime
4412  * pm and the system suspend/resume code.
4413  */
4414 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4415 {
4416         dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4417         dev_priv->pm.irqs_enabled = false;
4418         synchronize_irq(dev_priv->dev->irq);
4419 }
4420
4421 /**
4422  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4423  * @dev_priv: i915 device instance
4424  *
4425  * This function is used to enable interrupts at runtime, both in the runtime
4426  * pm and the system suspend/resume code.
4427  */
4428 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4429 {
4430         dev_priv->pm.irqs_enabled = true;
4431         dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4432         dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4433 }