These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33
34 /**
35  * DOC: Global GTT views
36  *
37  * Background and previous state
38  *
39  * Historically objects could exists (be bound) in global GTT space only as
40  * singular instances with a view representing all of the object's backing pages
41  * in a linear fashion. This view will be called a normal view.
42  *
43  * To support multiple views of the same object, where the number of mapped
44  * pages is not equal to the backing store, or where the layout of the pages
45  * is not linear, concept of a GGTT view was added.
46  *
47  * One example of an alternative view is a stereo display driven by a single
48  * image. In this case we would have a framebuffer looking like this
49  * (2x2 pages):
50  *
51  *    12
52  *    34
53  *
54  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55  * rendering. In contrast, fed to the display engine would be an alternative
56  * view which could look something like this:
57  *
58  *   1212
59  *   3434
60  *
61  * In this example both the size and layout of pages in the alternative view is
62  * different from the normal view.
63  *
64  * Implementation and usage
65  *
66  * GGTT views are implemented using VMAs and are distinguished via enum
67  * i915_ggtt_view_type and struct i915_ggtt_view.
68  *
69  * A new flavour of core GEM functions which work with GGTT bound objects were
70  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71  * renaming  in large amounts of code. They take the struct i915_ggtt_view
72  * parameter encapsulating all metadata required to implement a view.
73  *
74  * As a helper for callers which are only interested in the normal view,
75  * globally const i915_ggtt_view_normal singleton instance exists. All old core
76  * GEM API functions, the ones not taking the view parameter, are operating on,
77  * or with the normal GGTT view.
78  *
79  * Code wanting to add or use a new GGTT view needs to:
80  *
81  * 1. Add a new enum with a suitable name.
82  * 2. Extend the metadata in the i915_ggtt_view structure if required.
83  * 3. Add support to i915_get_vma_pages().
84  *
85  * New views are required to build a scatter-gather table from within the
86  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87  * exists for the lifetime of an VMA.
88  *
89  * Core API is designed to have copy semantics which means that passed in
90  * struct i915_ggtt_view does not need to be persistent (left around after
91  * calling the core API functions).
92  *
93  */
94
95 static int
96 i915_get_ggtt_vma_pages(struct i915_vma *vma);
97
98 const struct i915_ggtt_view i915_ggtt_view_normal;
99 const struct i915_ggtt_view i915_ggtt_view_rotated = {
100         .type = I915_GGTT_VIEW_ROTATED
101 };
102
103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104 {
105         bool has_aliasing_ppgtt;
106         bool has_full_ppgtt;
107
108         has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109         has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110
111         if (intel_vgpu_active(dev))
112                 has_full_ppgtt = false; /* emulation is too hard */
113
114         /*
115          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116          * execlists, the sole mechanism available to submit work.
117          */
118         if (INTEL_INFO(dev)->gen < 9 &&
119             (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120                 return 0;
121
122         if (enable_ppgtt == 1)
123                 return 1;
124
125         if (enable_ppgtt == 2 && has_full_ppgtt)
126                 return 2;
127
128 #ifdef CONFIG_INTEL_IOMMU
129         /* Disable ppgtt on SNB if VT-d is on. */
130         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
131                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
132                 return 0;
133         }
134 #endif
135
136         /* Early VLV doesn't have this */
137         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
138             dev->pdev->revision < 0xb) {
139                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
140                 return 0;
141         }
142
143         if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
144                 return 2;
145         else
146                 return has_aliasing_ppgtt ? 1 : 0;
147 }
148
149 static int ppgtt_bind_vma(struct i915_vma *vma,
150                           enum i915_cache_level cache_level,
151                           u32 unused)
152 {
153         u32 pte_flags = 0;
154
155         /* Currently applicable only to VLV */
156         if (vma->obj->gt_ro)
157                 pte_flags |= PTE_READ_ONLY;
158
159         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
160                                 cache_level, pte_flags);
161
162         return 0;
163 }
164
165 static void ppgtt_unbind_vma(struct i915_vma *vma)
166 {
167         vma->vm->clear_range(vma->vm,
168                              vma->node.start,
169                              vma->obj->base.size,
170                              true);
171 }
172
173 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
174                                   enum i915_cache_level level,
175                                   bool valid)
176 {
177         gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
178         pte |= addr;
179
180         switch (level) {
181         case I915_CACHE_NONE:
182                 pte |= PPAT_UNCACHED_INDEX;
183                 break;
184         case I915_CACHE_WT:
185                 pte |= PPAT_DISPLAY_ELLC_INDEX;
186                 break;
187         default:
188                 pte |= PPAT_CACHED_INDEX;
189                 break;
190         }
191
192         return pte;
193 }
194
195 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
196                                   const enum i915_cache_level level)
197 {
198         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
199         pde |= addr;
200         if (level != I915_CACHE_NONE)
201                 pde |= PPAT_CACHED_PDE_INDEX;
202         else
203                 pde |= PPAT_UNCACHED_INDEX;
204         return pde;
205 }
206
207 #define gen8_pdpe_encode gen8_pde_encode
208 #define gen8_pml4e_encode gen8_pde_encode
209
210 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
211                                  enum i915_cache_level level,
212                                  bool valid, u32 unused)
213 {
214         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
215         pte |= GEN6_PTE_ADDR_ENCODE(addr);
216
217         switch (level) {
218         case I915_CACHE_L3_LLC:
219         case I915_CACHE_LLC:
220                 pte |= GEN6_PTE_CACHE_LLC;
221                 break;
222         case I915_CACHE_NONE:
223                 pte |= GEN6_PTE_UNCACHED;
224                 break;
225         default:
226                 MISSING_CASE(level);
227         }
228
229         return pte;
230 }
231
232 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
233                                  enum i915_cache_level level,
234                                  bool valid, u32 unused)
235 {
236         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
237         pte |= GEN6_PTE_ADDR_ENCODE(addr);
238
239         switch (level) {
240         case I915_CACHE_L3_LLC:
241                 pte |= GEN7_PTE_CACHE_L3_LLC;
242                 break;
243         case I915_CACHE_LLC:
244                 pte |= GEN6_PTE_CACHE_LLC;
245                 break;
246         case I915_CACHE_NONE:
247                 pte |= GEN6_PTE_UNCACHED;
248                 break;
249         default:
250                 MISSING_CASE(level);
251         }
252
253         return pte;
254 }
255
256 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
257                                  enum i915_cache_level level,
258                                  bool valid, u32 flags)
259 {
260         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
261         pte |= GEN6_PTE_ADDR_ENCODE(addr);
262
263         if (!(flags & PTE_READ_ONLY))
264                 pte |= BYT_PTE_WRITEABLE;
265
266         if (level != I915_CACHE_NONE)
267                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
268
269         return pte;
270 }
271
272 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
273                                  enum i915_cache_level level,
274                                  bool valid, u32 unused)
275 {
276         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
277         pte |= HSW_PTE_ADDR_ENCODE(addr);
278
279         if (level != I915_CACHE_NONE)
280                 pte |= HSW_WB_LLC_AGE3;
281
282         return pte;
283 }
284
285 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
286                                   enum i915_cache_level level,
287                                   bool valid, u32 unused)
288 {
289         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
290         pte |= HSW_PTE_ADDR_ENCODE(addr);
291
292         switch (level) {
293         case I915_CACHE_NONE:
294                 break;
295         case I915_CACHE_WT:
296                 pte |= HSW_WT_ELLC_LLC_AGE3;
297                 break;
298         default:
299                 pte |= HSW_WB_ELLC_LLC_AGE3;
300                 break;
301         }
302
303         return pte;
304 }
305
306 static int __setup_page_dma(struct drm_device *dev,
307                             struct i915_page_dma *p, gfp_t flags)
308 {
309         struct device *device = &dev->pdev->dev;
310
311         p->page = alloc_page(flags);
312         if (!p->page)
313                 return -ENOMEM;
314
315         p->daddr = dma_map_page(device,
316                                 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
317
318         if (dma_mapping_error(device, p->daddr)) {
319                 __free_page(p->page);
320                 return -EINVAL;
321         }
322
323         return 0;
324 }
325
326 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
327 {
328         return __setup_page_dma(dev, p, GFP_KERNEL);
329 }
330
331 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
332 {
333         if (WARN_ON(!p->page))
334                 return;
335
336         dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
337         __free_page(p->page);
338         memset(p, 0, sizeof(*p));
339 }
340
341 static void *kmap_page_dma(struct i915_page_dma *p)
342 {
343         return kmap_atomic(p->page);
344 }
345
346 /* We use the flushing unmap only with ppgtt structures:
347  * page directories, page tables and scratch pages.
348  */
349 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
350 {
351         /* There are only few exceptions for gen >=6. chv and bxt.
352          * And we are not sure about the latter so play safe for now.
353          */
354         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
355                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
356
357         kunmap_atomic(vaddr);
358 }
359
360 #define kmap_px(px) kmap_page_dma(px_base(px))
361 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
362
363 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
364 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
365 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
366 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
367
368 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
369                           const uint64_t val)
370 {
371         int i;
372         uint64_t * const vaddr = kmap_page_dma(p);
373
374         for (i = 0; i < 512; i++)
375                 vaddr[i] = val;
376
377         kunmap_page_dma(dev, vaddr);
378 }
379
380 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
381                              const uint32_t val32)
382 {
383         uint64_t v = val32;
384
385         v = v << 32 | val32;
386
387         fill_page_dma(dev, p, v);
388 }
389
390 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
391 {
392         struct i915_page_scratch *sp;
393         int ret;
394
395         sp = kzalloc(sizeof(*sp), GFP_KERNEL);
396         if (sp == NULL)
397                 return ERR_PTR(-ENOMEM);
398
399         ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
400         if (ret) {
401                 kfree(sp);
402                 return ERR_PTR(ret);
403         }
404
405         set_pages_uc(px_page(sp), 1);
406
407         return sp;
408 }
409
410 static void free_scratch_page(struct drm_device *dev,
411                               struct i915_page_scratch *sp)
412 {
413         set_pages_wb(px_page(sp), 1);
414
415         cleanup_px(dev, sp);
416         kfree(sp);
417 }
418
419 static struct i915_page_table *alloc_pt(struct drm_device *dev)
420 {
421         struct i915_page_table *pt;
422         const size_t count = INTEL_INFO(dev)->gen >= 8 ?
423                 GEN8_PTES : GEN6_PTES;
424         int ret = -ENOMEM;
425
426         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
427         if (!pt)
428                 return ERR_PTR(-ENOMEM);
429
430         pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
431                                 GFP_KERNEL);
432
433         if (!pt->used_ptes)
434                 goto fail_bitmap;
435
436         ret = setup_px(dev, pt);
437         if (ret)
438                 goto fail_page_m;
439
440         return pt;
441
442 fail_page_m:
443         kfree(pt->used_ptes);
444 fail_bitmap:
445         kfree(pt);
446
447         return ERR_PTR(ret);
448 }
449
450 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
451 {
452         cleanup_px(dev, pt);
453         kfree(pt->used_ptes);
454         kfree(pt);
455 }
456
457 static void gen8_initialize_pt(struct i915_address_space *vm,
458                                struct i915_page_table *pt)
459 {
460         gen8_pte_t scratch_pte;
461
462         scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
463                                       I915_CACHE_LLC, true);
464
465         fill_px(vm->dev, pt, scratch_pte);
466 }
467
468 static void gen6_initialize_pt(struct i915_address_space *vm,
469                                struct i915_page_table *pt)
470 {
471         gen6_pte_t scratch_pte;
472
473         WARN_ON(px_dma(vm->scratch_page) == 0);
474
475         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
476                                      I915_CACHE_LLC, true, 0);
477
478         fill32_px(vm->dev, pt, scratch_pte);
479 }
480
481 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
482 {
483         struct i915_page_directory *pd;
484         int ret = -ENOMEM;
485
486         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
487         if (!pd)
488                 return ERR_PTR(-ENOMEM);
489
490         pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
491                                 sizeof(*pd->used_pdes), GFP_KERNEL);
492         if (!pd->used_pdes)
493                 goto fail_bitmap;
494
495         ret = setup_px(dev, pd);
496         if (ret)
497                 goto fail_page_m;
498
499         return pd;
500
501 fail_page_m:
502         kfree(pd->used_pdes);
503 fail_bitmap:
504         kfree(pd);
505
506         return ERR_PTR(ret);
507 }
508
509 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
510 {
511         if (px_page(pd)) {
512                 cleanup_px(dev, pd);
513                 kfree(pd->used_pdes);
514                 kfree(pd);
515         }
516 }
517
518 static void gen8_initialize_pd(struct i915_address_space *vm,
519                                struct i915_page_directory *pd)
520 {
521         gen8_pde_t scratch_pde;
522
523         scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
524
525         fill_px(vm->dev, pd, scratch_pde);
526 }
527
528 static int __pdp_init(struct drm_device *dev,
529                       struct i915_page_directory_pointer *pdp)
530 {
531         size_t pdpes = I915_PDPES_PER_PDP(dev);
532
533         pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
534                                   sizeof(unsigned long),
535                                   GFP_KERNEL);
536         if (!pdp->used_pdpes)
537                 return -ENOMEM;
538
539         pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
540                                       GFP_KERNEL);
541         if (!pdp->page_directory) {
542                 kfree(pdp->used_pdpes);
543                 /* the PDP might be the statically allocated top level. Keep it
544                  * as clean as possible */
545                 pdp->used_pdpes = NULL;
546                 return -ENOMEM;
547         }
548
549         return 0;
550 }
551
552 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
553 {
554         kfree(pdp->used_pdpes);
555         kfree(pdp->page_directory);
556         pdp->page_directory = NULL;
557 }
558
559 static struct
560 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
561 {
562         struct i915_page_directory_pointer *pdp;
563         int ret = -ENOMEM;
564
565         WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
566
567         pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
568         if (!pdp)
569                 return ERR_PTR(-ENOMEM);
570
571         ret = __pdp_init(dev, pdp);
572         if (ret)
573                 goto fail_bitmap;
574
575         ret = setup_px(dev, pdp);
576         if (ret)
577                 goto fail_page_m;
578
579         return pdp;
580
581 fail_page_m:
582         __pdp_fini(pdp);
583 fail_bitmap:
584         kfree(pdp);
585
586         return ERR_PTR(ret);
587 }
588
589 static void free_pdp(struct drm_device *dev,
590                      struct i915_page_directory_pointer *pdp)
591 {
592         __pdp_fini(pdp);
593         if (USES_FULL_48BIT_PPGTT(dev)) {
594                 cleanup_px(dev, pdp);
595                 kfree(pdp);
596         }
597 }
598
599 static void gen8_initialize_pdp(struct i915_address_space *vm,
600                                 struct i915_page_directory_pointer *pdp)
601 {
602         gen8_ppgtt_pdpe_t scratch_pdpe;
603
604         scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
605
606         fill_px(vm->dev, pdp, scratch_pdpe);
607 }
608
609 static void gen8_initialize_pml4(struct i915_address_space *vm,
610                                  struct i915_pml4 *pml4)
611 {
612         gen8_ppgtt_pml4e_t scratch_pml4e;
613
614         scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
615                                           I915_CACHE_LLC);
616
617         fill_px(vm->dev, pml4, scratch_pml4e);
618 }
619
620 static void
621 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
622                           struct i915_page_directory_pointer *pdp,
623                           struct i915_page_directory *pd,
624                           int index)
625 {
626         gen8_ppgtt_pdpe_t *page_directorypo;
627
628         if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
629                 return;
630
631         page_directorypo = kmap_px(pdp);
632         page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
633         kunmap_px(ppgtt, page_directorypo);
634 }
635
636 static void
637 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
638                                   struct i915_pml4 *pml4,
639                                   struct i915_page_directory_pointer *pdp,
640                                   int index)
641 {
642         gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
643
644         WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
645         pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
646         kunmap_px(ppgtt, pagemap);
647 }
648
649 /* Broadwell Page Directory Pointer Descriptors */
650 static int gen8_write_pdp(struct drm_i915_gem_request *req,
651                           unsigned entry,
652                           dma_addr_t addr)
653 {
654         struct intel_engine_cs *ring = req->ring;
655         int ret;
656
657         BUG_ON(entry >= 4);
658
659         ret = intel_ring_begin(req, 6);
660         if (ret)
661                 return ret;
662
663         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
664         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
665         intel_ring_emit(ring, upper_32_bits(addr));
666         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
667         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
668         intel_ring_emit(ring, lower_32_bits(addr));
669         intel_ring_advance(ring);
670
671         return 0;
672 }
673
674 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
675                                  struct drm_i915_gem_request *req)
676 {
677         int i, ret;
678
679         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
680                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
681
682                 ret = gen8_write_pdp(req, i, pd_daddr);
683                 if (ret)
684                         return ret;
685         }
686
687         return 0;
688 }
689
690 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
691                               struct drm_i915_gem_request *req)
692 {
693         return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
694 }
695
696 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
697                                        struct i915_page_directory_pointer *pdp,
698                                        uint64_t start,
699                                        uint64_t length,
700                                        gen8_pte_t scratch_pte)
701 {
702         struct i915_hw_ppgtt *ppgtt =
703                 container_of(vm, struct i915_hw_ppgtt, base);
704         gen8_pte_t *pt_vaddr;
705         unsigned pdpe = gen8_pdpe_index(start);
706         unsigned pde = gen8_pde_index(start);
707         unsigned pte = gen8_pte_index(start);
708         unsigned num_entries = length >> PAGE_SHIFT;
709         unsigned last_pte, i;
710
711         if (WARN_ON(!pdp))
712                 return;
713
714         while (num_entries) {
715                 struct i915_page_directory *pd;
716                 struct i915_page_table *pt;
717
718                 if (WARN_ON(!pdp->page_directory[pdpe]))
719                         break;
720
721                 pd = pdp->page_directory[pdpe];
722
723                 if (WARN_ON(!pd->page_table[pde]))
724                         break;
725
726                 pt = pd->page_table[pde];
727
728                 if (WARN_ON(!px_page(pt)))
729                         break;
730
731                 last_pte = pte + num_entries;
732                 if (last_pte > GEN8_PTES)
733                         last_pte = GEN8_PTES;
734
735                 pt_vaddr = kmap_px(pt);
736
737                 for (i = pte; i < last_pte; i++) {
738                         pt_vaddr[i] = scratch_pte;
739                         num_entries--;
740                 }
741
742                 kunmap_px(ppgtt, pt);
743
744                 pte = 0;
745                 if (++pde == I915_PDES) {
746                         if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
747                                 break;
748                         pde = 0;
749                 }
750         }
751 }
752
753 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
754                                    uint64_t start,
755                                    uint64_t length,
756                                    bool use_scratch)
757 {
758         struct i915_hw_ppgtt *ppgtt =
759                 container_of(vm, struct i915_hw_ppgtt, base);
760         gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
761                                                  I915_CACHE_LLC, use_scratch);
762
763         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
764                 gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
765                                            scratch_pte);
766         } else {
767                 uint64_t templ4, pml4e;
768                 struct i915_page_directory_pointer *pdp;
769
770                 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
771                         gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
772                                                    scratch_pte);
773                 }
774         }
775 }
776
777 static void
778 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
779                               struct i915_page_directory_pointer *pdp,
780                               struct sg_page_iter *sg_iter,
781                               uint64_t start,
782                               enum i915_cache_level cache_level)
783 {
784         struct i915_hw_ppgtt *ppgtt =
785                 container_of(vm, struct i915_hw_ppgtt, base);
786         gen8_pte_t *pt_vaddr;
787         unsigned pdpe = gen8_pdpe_index(start);
788         unsigned pde = gen8_pde_index(start);
789         unsigned pte = gen8_pte_index(start);
790
791         pt_vaddr = NULL;
792
793         while (__sg_page_iter_next(sg_iter)) {
794                 if (pt_vaddr == NULL) {
795                         struct i915_page_directory *pd = pdp->page_directory[pdpe];
796                         struct i915_page_table *pt = pd->page_table[pde];
797                         pt_vaddr = kmap_px(pt);
798                 }
799
800                 pt_vaddr[pte] =
801                         gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
802                                         cache_level, true);
803                 if (++pte == GEN8_PTES) {
804                         kunmap_px(ppgtt, pt_vaddr);
805                         pt_vaddr = NULL;
806                         if (++pde == I915_PDES) {
807                                 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
808                                         break;
809                                 pde = 0;
810                         }
811                         pte = 0;
812                 }
813         }
814
815         if (pt_vaddr)
816                 kunmap_px(ppgtt, pt_vaddr);
817 }
818
819 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
820                                       struct sg_table *pages,
821                                       uint64_t start,
822                                       enum i915_cache_level cache_level,
823                                       u32 unused)
824 {
825         struct i915_hw_ppgtt *ppgtt =
826                 container_of(vm, struct i915_hw_ppgtt, base);
827         struct sg_page_iter sg_iter;
828
829         __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
830
831         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
832                 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
833                                               cache_level);
834         } else {
835                 struct i915_page_directory_pointer *pdp;
836                 uint64_t templ4, pml4e;
837                 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
838
839                 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
840                         gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
841                                                       start, cache_level);
842                 }
843         }
844 }
845
846 static void gen8_free_page_tables(struct drm_device *dev,
847                                   struct i915_page_directory *pd)
848 {
849         int i;
850
851         if (!px_page(pd))
852                 return;
853
854         for_each_set_bit(i, pd->used_pdes, I915_PDES) {
855                 if (WARN_ON(!pd->page_table[i]))
856                         continue;
857
858                 free_pt(dev, pd->page_table[i]);
859                 pd->page_table[i] = NULL;
860         }
861 }
862
863 static int gen8_init_scratch(struct i915_address_space *vm)
864 {
865         struct drm_device *dev = vm->dev;
866
867         vm->scratch_page = alloc_scratch_page(dev);
868         if (IS_ERR(vm->scratch_page))
869                 return PTR_ERR(vm->scratch_page);
870
871         vm->scratch_pt = alloc_pt(dev);
872         if (IS_ERR(vm->scratch_pt)) {
873                 free_scratch_page(dev, vm->scratch_page);
874                 return PTR_ERR(vm->scratch_pt);
875         }
876
877         vm->scratch_pd = alloc_pd(dev);
878         if (IS_ERR(vm->scratch_pd)) {
879                 free_pt(dev, vm->scratch_pt);
880                 free_scratch_page(dev, vm->scratch_page);
881                 return PTR_ERR(vm->scratch_pd);
882         }
883
884         if (USES_FULL_48BIT_PPGTT(dev)) {
885                 vm->scratch_pdp = alloc_pdp(dev);
886                 if (IS_ERR(vm->scratch_pdp)) {
887                         free_pd(dev, vm->scratch_pd);
888                         free_pt(dev, vm->scratch_pt);
889                         free_scratch_page(dev, vm->scratch_page);
890                         return PTR_ERR(vm->scratch_pdp);
891                 }
892         }
893
894         gen8_initialize_pt(vm, vm->scratch_pt);
895         gen8_initialize_pd(vm, vm->scratch_pd);
896         if (USES_FULL_48BIT_PPGTT(dev))
897                 gen8_initialize_pdp(vm, vm->scratch_pdp);
898
899         return 0;
900 }
901
902 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
903 {
904         enum vgt_g2v_type msg;
905         struct drm_device *dev = ppgtt->base.dev;
906         struct drm_i915_private *dev_priv = dev->dev_private;
907         unsigned int offset = vgtif_reg(pdp0_lo);
908         int i;
909
910         if (USES_FULL_48BIT_PPGTT(dev)) {
911                 u64 daddr = px_dma(&ppgtt->pml4);
912
913                 I915_WRITE(offset, lower_32_bits(daddr));
914                 I915_WRITE(offset + 4, upper_32_bits(daddr));
915
916                 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
917                                 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
918         } else {
919                 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
920                         u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
921
922                         I915_WRITE(offset, lower_32_bits(daddr));
923                         I915_WRITE(offset + 4, upper_32_bits(daddr));
924
925                         offset += 8;
926                 }
927
928                 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
929                                 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
930         }
931
932         I915_WRITE(vgtif_reg(g2v_notify), msg);
933
934         return 0;
935 }
936
937 static void gen8_free_scratch(struct i915_address_space *vm)
938 {
939         struct drm_device *dev = vm->dev;
940
941         if (USES_FULL_48BIT_PPGTT(dev))
942                 free_pdp(dev, vm->scratch_pdp);
943         free_pd(dev, vm->scratch_pd);
944         free_pt(dev, vm->scratch_pt);
945         free_scratch_page(dev, vm->scratch_page);
946 }
947
948 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
949                                     struct i915_page_directory_pointer *pdp)
950 {
951         int i;
952
953         for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
954                 if (WARN_ON(!pdp->page_directory[i]))
955                         continue;
956
957                 gen8_free_page_tables(dev, pdp->page_directory[i]);
958                 free_pd(dev, pdp->page_directory[i]);
959         }
960
961         free_pdp(dev, pdp);
962 }
963
964 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
965 {
966         int i;
967
968         for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
969                 if (WARN_ON(!ppgtt->pml4.pdps[i]))
970                         continue;
971
972                 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
973         }
974
975         cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
976 }
977
978 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
979 {
980         struct i915_hw_ppgtt *ppgtt =
981                 container_of(vm, struct i915_hw_ppgtt, base);
982
983         if (intel_vgpu_active(vm->dev))
984                 gen8_ppgtt_notify_vgt(ppgtt, false);
985
986         if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
987                 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
988         else
989                 gen8_ppgtt_cleanup_4lvl(ppgtt);
990
991         gen8_free_scratch(vm);
992 }
993
994 /**
995  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
996  * @vm: Master vm structure.
997  * @pd: Page directory for this address range.
998  * @start:      Starting virtual address to begin allocations.
999  * @length:     Size of the allocations.
1000  * @new_pts:    Bitmap set by function with new allocations. Likely used by the
1001  *              caller to free on error.
1002  *
1003  * Allocate the required number of page tables. Extremely similar to
1004  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1005  * the page directory boundary (instead of the page directory pointer). That
1006  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1007  * possible, and likely that the caller will need to use multiple calls of this
1008  * function to achieve the appropriate allocation.
1009  *
1010  * Return: 0 if success; negative error code otherwise.
1011  */
1012 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1013                                      struct i915_page_directory *pd,
1014                                      uint64_t start,
1015                                      uint64_t length,
1016                                      unsigned long *new_pts)
1017 {
1018         struct drm_device *dev = vm->dev;
1019         struct i915_page_table *pt;
1020         uint64_t temp;
1021         uint32_t pde;
1022
1023         gen8_for_each_pde(pt, pd, start, length, temp, pde) {
1024                 /* Don't reallocate page tables */
1025                 if (test_bit(pde, pd->used_pdes)) {
1026                         /* Scratch is never allocated this way */
1027                         WARN_ON(pt == vm->scratch_pt);
1028                         continue;
1029                 }
1030
1031                 pt = alloc_pt(dev);
1032                 if (IS_ERR(pt))
1033                         goto unwind_out;
1034
1035                 gen8_initialize_pt(vm, pt);
1036                 pd->page_table[pde] = pt;
1037                 __set_bit(pde, new_pts);
1038                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1039         }
1040
1041         return 0;
1042
1043 unwind_out:
1044         for_each_set_bit(pde, new_pts, I915_PDES)
1045                 free_pt(dev, pd->page_table[pde]);
1046
1047         return -ENOMEM;
1048 }
1049
1050 /**
1051  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1052  * @vm: Master vm structure.
1053  * @pdp:        Page directory pointer for this address range.
1054  * @start:      Starting virtual address to begin allocations.
1055  * @length:     Size of the allocations.
1056  * @new_pds:    Bitmap set by function with new allocations. Likely used by the
1057  *              caller to free on error.
1058  *
1059  * Allocate the required number of page directories starting at the pde index of
1060  * @start, and ending at the pde index @start + @length. This function will skip
1061  * over already allocated page directories within the range, and only allocate
1062  * new ones, setting the appropriate pointer within the pdp as well as the
1063  * correct position in the bitmap @new_pds.
1064  *
1065  * The function will only allocate the pages within the range for a give page
1066  * directory pointer. In other words, if @start + @length straddles a virtually
1067  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1068  * required by the caller, This is not currently possible, and the BUG in the
1069  * code will prevent it.
1070  *
1071  * Return: 0 if success; negative error code otherwise.
1072  */
1073 static int
1074 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1075                                   struct i915_page_directory_pointer *pdp,
1076                                   uint64_t start,
1077                                   uint64_t length,
1078                                   unsigned long *new_pds)
1079 {
1080         struct drm_device *dev = vm->dev;
1081         struct i915_page_directory *pd;
1082         uint64_t temp;
1083         uint32_t pdpe;
1084         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1085
1086         WARN_ON(!bitmap_empty(new_pds, pdpes));
1087
1088         gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1089                 if (test_bit(pdpe, pdp->used_pdpes))
1090                         continue;
1091
1092                 pd = alloc_pd(dev);
1093                 if (IS_ERR(pd))
1094                         goto unwind_out;
1095
1096                 gen8_initialize_pd(vm, pd);
1097                 pdp->page_directory[pdpe] = pd;
1098                 __set_bit(pdpe, new_pds);
1099                 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1100         }
1101
1102         return 0;
1103
1104 unwind_out:
1105         for_each_set_bit(pdpe, new_pds, pdpes)
1106                 free_pd(dev, pdp->page_directory[pdpe]);
1107
1108         return -ENOMEM;
1109 }
1110
1111 /**
1112  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1113  * @vm: Master vm structure.
1114  * @pml4:       Page map level 4 for this address range.
1115  * @start:      Starting virtual address to begin allocations.
1116  * @length:     Size of the allocations.
1117  * @new_pdps:   Bitmap set by function with new allocations. Likely used by the
1118  *              caller to free on error.
1119  *
1120  * Allocate the required number of page directory pointers. Extremely similar to
1121  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1122  * The main difference is here we are limited by the pml4 boundary (instead of
1123  * the page directory pointer).
1124  *
1125  * Return: 0 if success; negative error code otherwise.
1126  */
1127 static int
1128 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1129                                   struct i915_pml4 *pml4,
1130                                   uint64_t start,
1131                                   uint64_t length,
1132                                   unsigned long *new_pdps)
1133 {
1134         struct drm_device *dev = vm->dev;
1135         struct i915_page_directory_pointer *pdp;
1136         uint64_t temp;
1137         uint32_t pml4e;
1138
1139         WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1140
1141         gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
1142                 if (!test_bit(pml4e, pml4->used_pml4es)) {
1143                         pdp = alloc_pdp(dev);
1144                         if (IS_ERR(pdp))
1145                                 goto unwind_out;
1146
1147                         gen8_initialize_pdp(vm, pdp);
1148                         pml4->pdps[pml4e] = pdp;
1149                         __set_bit(pml4e, new_pdps);
1150                         trace_i915_page_directory_pointer_entry_alloc(vm,
1151                                                                       pml4e,
1152                                                                       start,
1153                                                                       GEN8_PML4E_SHIFT);
1154                 }
1155         }
1156
1157         return 0;
1158
1159 unwind_out:
1160         for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1161                 free_pdp(dev, pml4->pdps[pml4e]);
1162
1163         return -ENOMEM;
1164 }
1165
1166 static void
1167 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1168 {
1169         kfree(new_pts);
1170         kfree(new_pds);
1171 }
1172
1173 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1174  * of these are based on the number of PDPEs in the system.
1175  */
1176 static
1177 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1178                                          unsigned long **new_pts,
1179                                          uint32_t pdpes)
1180 {
1181         unsigned long *pds;
1182         unsigned long *pts;
1183
1184         pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1185         if (!pds)
1186                 return -ENOMEM;
1187
1188         pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1189                       GFP_TEMPORARY);
1190         if (!pts)
1191                 goto err_out;
1192
1193         *new_pds = pds;
1194         *new_pts = pts;
1195
1196         return 0;
1197
1198 err_out:
1199         free_gen8_temp_bitmaps(pds, pts);
1200         return -ENOMEM;
1201 }
1202
1203 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1204  * the page table structures, we mark them dirty so that
1205  * context switching/execlist queuing code takes extra steps
1206  * to ensure that tlbs are flushed.
1207  */
1208 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1209 {
1210         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1211 }
1212
1213 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1214                                     struct i915_page_directory_pointer *pdp,
1215                                     uint64_t start,
1216                                     uint64_t length)
1217 {
1218         struct i915_hw_ppgtt *ppgtt =
1219                 container_of(vm, struct i915_hw_ppgtt, base);
1220         unsigned long *new_page_dirs, *new_page_tables;
1221         struct drm_device *dev = vm->dev;
1222         struct i915_page_directory *pd;
1223         const uint64_t orig_start = start;
1224         const uint64_t orig_length = length;
1225         uint64_t temp;
1226         uint32_t pdpe;
1227         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1228         int ret;
1229
1230         /* Wrap is never okay since we can only represent 48b, and we don't
1231          * actually use the other side of the canonical address space.
1232          */
1233         if (WARN_ON(start + length < start))
1234                 return -ENODEV;
1235
1236         if (WARN_ON(start + length > vm->total))
1237                 return -ENODEV;
1238
1239         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1240         if (ret)
1241                 return ret;
1242
1243         /* Do the allocations first so we can easily bail out */
1244         ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1245                                                 new_page_dirs);
1246         if (ret) {
1247                 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1248                 return ret;
1249         }
1250
1251         /* For every page directory referenced, allocate page tables */
1252         gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1253                 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1254                                                 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1255                 if (ret)
1256                         goto err_out;
1257         }
1258
1259         start = orig_start;
1260         length = orig_length;
1261
1262         /* Allocations have completed successfully, so set the bitmaps, and do
1263          * the mappings. */
1264         gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1265                 gen8_pde_t *const page_directory = kmap_px(pd);
1266                 struct i915_page_table *pt;
1267                 uint64_t pd_len = length;
1268                 uint64_t pd_start = start;
1269                 uint32_t pde;
1270
1271                 /* Every pd should be allocated, we just did that above. */
1272                 WARN_ON(!pd);
1273
1274                 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
1275                         /* Same reasoning as pd */
1276                         WARN_ON(!pt);
1277                         WARN_ON(!pd_len);
1278                         WARN_ON(!gen8_pte_count(pd_start, pd_len));
1279
1280                         /* Set our used ptes within the page table */
1281                         bitmap_set(pt->used_ptes,
1282                                    gen8_pte_index(pd_start),
1283                                    gen8_pte_count(pd_start, pd_len));
1284
1285                         /* Our pde is now pointing to the pagetable, pt */
1286                         __set_bit(pde, pd->used_pdes);
1287
1288                         /* Map the PDE to the page table */
1289                         page_directory[pde] = gen8_pde_encode(px_dma(pt),
1290                                                               I915_CACHE_LLC);
1291                         trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1292                                                         gen8_pte_index(start),
1293                                                         gen8_pte_count(start, length),
1294                                                         GEN8_PTES);
1295
1296                         /* NB: We haven't yet mapped ptes to pages. At this
1297                          * point we're still relying on insert_entries() */
1298                 }
1299
1300                 kunmap_px(ppgtt, page_directory);
1301                 __set_bit(pdpe, pdp->used_pdpes);
1302                 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1303         }
1304
1305         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1306         mark_tlbs_dirty(ppgtt);
1307         return 0;
1308
1309 err_out:
1310         while (pdpe--) {
1311                 for_each_set_bit(temp, new_page_tables + pdpe *
1312                                 BITS_TO_LONGS(I915_PDES), I915_PDES)
1313                         free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1314         }
1315
1316         for_each_set_bit(pdpe, new_page_dirs, pdpes)
1317                 free_pd(dev, pdp->page_directory[pdpe]);
1318
1319         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1320         mark_tlbs_dirty(ppgtt);
1321         return ret;
1322 }
1323
1324 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1325                                     struct i915_pml4 *pml4,
1326                                     uint64_t start,
1327                                     uint64_t length)
1328 {
1329         DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1330         struct i915_hw_ppgtt *ppgtt =
1331                         container_of(vm, struct i915_hw_ppgtt, base);
1332         struct i915_page_directory_pointer *pdp;
1333         uint64_t temp, pml4e;
1334         int ret = 0;
1335
1336         /* Do the pml4 allocations first, so we don't need to track the newly
1337          * allocated tables below the pdp */
1338         bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1339
1340         /* The pagedirectory and pagetable allocations are done in the shared 3
1341          * and 4 level code. Just allocate the pdps.
1342          */
1343         ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1344                                                 new_pdps);
1345         if (ret)
1346                 return ret;
1347
1348         WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1349              "The allocation has spanned more than 512GB. "
1350              "It is highly likely this is incorrect.");
1351
1352         gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
1353                 WARN_ON(!pdp);
1354
1355                 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1356                 if (ret)
1357                         goto err_out;
1358
1359                 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1360         }
1361
1362         bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1363                   GEN8_PML4ES_PER_PML4);
1364
1365         return 0;
1366
1367 err_out:
1368         for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1369                 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1370
1371         return ret;
1372 }
1373
1374 static int gen8_alloc_va_range(struct i915_address_space *vm,
1375                                uint64_t start, uint64_t length)
1376 {
1377         struct i915_hw_ppgtt *ppgtt =
1378                 container_of(vm, struct i915_hw_ppgtt, base);
1379
1380         if (USES_FULL_48BIT_PPGTT(vm->dev))
1381                 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1382         else
1383                 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1384 }
1385
1386 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1387                           uint64_t start, uint64_t length,
1388                           gen8_pte_t scratch_pte,
1389                           struct seq_file *m)
1390 {
1391         struct i915_page_directory *pd;
1392         uint64_t temp;
1393         uint32_t pdpe;
1394
1395         gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1396                 struct i915_page_table *pt;
1397                 uint64_t pd_len = length;
1398                 uint64_t pd_start = start;
1399                 uint32_t pde;
1400
1401                 if (!test_bit(pdpe, pdp->used_pdpes))
1402                         continue;
1403
1404                 seq_printf(m, "\tPDPE #%d\n", pdpe);
1405                 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
1406                         uint32_t  pte;
1407                         gen8_pte_t *pt_vaddr;
1408
1409                         if (!test_bit(pde, pd->used_pdes))
1410                                 continue;
1411
1412                         pt_vaddr = kmap_px(pt);
1413                         for (pte = 0; pte < GEN8_PTES; pte += 4) {
1414                                 uint64_t va =
1415                                         (pdpe << GEN8_PDPE_SHIFT) |
1416                                         (pde << GEN8_PDE_SHIFT) |
1417                                         (pte << GEN8_PTE_SHIFT);
1418                                 int i;
1419                                 bool found = false;
1420
1421                                 for (i = 0; i < 4; i++)
1422                                         if (pt_vaddr[pte + i] != scratch_pte)
1423                                                 found = true;
1424                                 if (!found)
1425                                         continue;
1426
1427                                 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1428                                 for (i = 0; i < 4; i++) {
1429                                         if (pt_vaddr[pte + i] != scratch_pte)
1430                                                 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1431                                         else
1432                                                 seq_puts(m, "  SCRATCH ");
1433                                 }
1434                                 seq_puts(m, "\n");
1435                         }
1436                         /* don't use kunmap_px, it could trigger
1437                          * an unnecessary flush.
1438                          */
1439                         kunmap_atomic(pt_vaddr);
1440                 }
1441         }
1442 }
1443
1444 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1445 {
1446         struct i915_address_space *vm = &ppgtt->base;
1447         uint64_t start = ppgtt->base.start;
1448         uint64_t length = ppgtt->base.total;
1449         gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1450                                                  I915_CACHE_LLC, true);
1451
1452         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1453                 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1454         } else {
1455                 uint64_t templ4, pml4e;
1456                 struct i915_pml4 *pml4 = &ppgtt->pml4;
1457                 struct i915_page_directory_pointer *pdp;
1458
1459                 gen8_for_each_pml4e(pdp, pml4, start, length, templ4, pml4e) {
1460                         if (!test_bit(pml4e, pml4->used_pml4es))
1461                                 continue;
1462
1463                         seq_printf(m, "    PML4E #%llu\n", pml4e);
1464                         gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1465                 }
1466         }
1467 }
1468
1469 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1470 {
1471         unsigned long *new_page_dirs, *new_page_tables;
1472         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1473         int ret;
1474
1475         /* We allocate temp bitmap for page tables for no gain
1476          * but as this is for init only, lets keep the things simple
1477          */
1478         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1479         if (ret)
1480                 return ret;
1481
1482         /* Allocate for all pdps regardless of how the ppgtt
1483          * was defined.
1484          */
1485         ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1486                                                 0, 1ULL << 32,
1487                                                 new_page_dirs);
1488         if (!ret)
1489                 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1490
1491         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1492
1493         return ret;
1494 }
1495
1496 /*
1497  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1498  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1499  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1500  * space.
1501  *
1502  */
1503 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1504 {
1505         int ret;
1506
1507         ret = gen8_init_scratch(&ppgtt->base);
1508         if (ret)
1509                 return ret;
1510
1511         ppgtt->base.start = 0;
1512         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1513         ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1514         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1515         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1516         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1517         ppgtt->base.bind_vma = ppgtt_bind_vma;
1518         ppgtt->debug_dump = gen8_dump_ppgtt;
1519
1520         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1521                 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1522                 if (ret)
1523                         goto free_scratch;
1524
1525                 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1526
1527                 ppgtt->base.total = 1ULL << 48;
1528                 ppgtt->switch_mm = gen8_48b_mm_switch;
1529         } else {
1530                 ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1531                 if (ret)
1532                         goto free_scratch;
1533
1534                 ppgtt->base.total = 1ULL << 32;
1535                 ppgtt->switch_mm = gen8_legacy_mm_switch;
1536                 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1537                                                               0, 0,
1538                                                               GEN8_PML4E_SHIFT);
1539
1540                 if (intel_vgpu_active(ppgtt->base.dev)) {
1541                         ret = gen8_preallocate_top_level_pdps(ppgtt);
1542                         if (ret)
1543                                 goto free_scratch;
1544                 }
1545         }
1546
1547         if (intel_vgpu_active(ppgtt->base.dev))
1548                 gen8_ppgtt_notify_vgt(ppgtt, true);
1549
1550         return 0;
1551
1552 free_scratch:
1553         gen8_free_scratch(&ppgtt->base);
1554         return ret;
1555 }
1556
1557 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1558 {
1559         struct i915_address_space *vm = &ppgtt->base;
1560         struct i915_page_table *unused;
1561         gen6_pte_t scratch_pte;
1562         uint32_t pd_entry;
1563         uint32_t  pte, pde, temp;
1564         uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1565
1566         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1567                                      I915_CACHE_LLC, true, 0);
1568
1569         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1570                 u32 expected;
1571                 gen6_pte_t *pt_vaddr;
1572                 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1573                 pd_entry = readl(ppgtt->pd_addr + pde);
1574                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1575
1576                 if (pd_entry != expected)
1577                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1578                                    pde,
1579                                    pd_entry,
1580                                    expected);
1581                 seq_printf(m, "\tPDE: %x\n", pd_entry);
1582
1583                 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1584
1585                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1586                         unsigned long va =
1587                                 (pde * PAGE_SIZE * GEN6_PTES) +
1588                                 (pte * PAGE_SIZE);
1589                         int i;
1590                         bool found = false;
1591                         for (i = 0; i < 4; i++)
1592                                 if (pt_vaddr[pte + i] != scratch_pte)
1593                                         found = true;
1594                         if (!found)
1595                                 continue;
1596
1597                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1598                         for (i = 0; i < 4; i++) {
1599                                 if (pt_vaddr[pte + i] != scratch_pte)
1600                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1601                                 else
1602                                         seq_puts(m, "  SCRATCH ");
1603                         }
1604                         seq_puts(m, "\n");
1605                 }
1606                 kunmap_px(ppgtt, pt_vaddr);
1607         }
1608 }
1609
1610 /* Write pde (index) from the page directory @pd to the page table @pt */
1611 static void gen6_write_pde(struct i915_page_directory *pd,
1612                             const int pde, struct i915_page_table *pt)
1613 {
1614         /* Caller needs to make sure the write completes if necessary */
1615         struct i915_hw_ppgtt *ppgtt =
1616                 container_of(pd, struct i915_hw_ppgtt, pd);
1617         u32 pd_entry;
1618
1619         pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1620         pd_entry |= GEN6_PDE_VALID;
1621
1622         writel(pd_entry, ppgtt->pd_addr + pde);
1623 }
1624
1625 /* Write all the page tables found in the ppgtt structure to incrementing page
1626  * directories. */
1627 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1628                                   struct i915_page_directory *pd,
1629                                   uint32_t start, uint32_t length)
1630 {
1631         struct i915_page_table *pt;
1632         uint32_t pde, temp;
1633
1634         gen6_for_each_pde(pt, pd, start, length, temp, pde)
1635                 gen6_write_pde(pd, pde, pt);
1636
1637         /* Make sure write is complete before other code can use this page
1638          * table. Also require for WC mapped PTEs */
1639         readl(dev_priv->gtt.gsm);
1640 }
1641
1642 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1643 {
1644         BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1645
1646         return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1647 }
1648
1649 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1650                          struct drm_i915_gem_request *req)
1651 {
1652         struct intel_engine_cs *ring = req->ring;
1653         int ret;
1654
1655         /* NB: TLBs must be flushed and invalidated before a switch */
1656         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1657         if (ret)
1658                 return ret;
1659
1660         ret = intel_ring_begin(req, 6);
1661         if (ret)
1662                 return ret;
1663
1664         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1665         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1666         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1667         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1668         intel_ring_emit(ring, get_pd_offset(ppgtt));
1669         intel_ring_emit(ring, MI_NOOP);
1670         intel_ring_advance(ring);
1671
1672         return 0;
1673 }
1674
1675 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1676                           struct drm_i915_gem_request *req)
1677 {
1678         struct intel_engine_cs *ring = req->ring;
1679         struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1680
1681         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1682         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1683         return 0;
1684 }
1685
1686 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1687                           struct drm_i915_gem_request *req)
1688 {
1689         struct intel_engine_cs *ring = req->ring;
1690         int ret;
1691
1692         /* NB: TLBs must be flushed and invalidated before a switch */
1693         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1694         if (ret)
1695                 return ret;
1696
1697         ret = intel_ring_begin(req, 6);
1698         if (ret)
1699                 return ret;
1700
1701         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1702         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1703         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1704         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1705         intel_ring_emit(ring, get_pd_offset(ppgtt));
1706         intel_ring_emit(ring, MI_NOOP);
1707         intel_ring_advance(ring);
1708
1709         /* XXX: RCS is the only one to auto invalidate the TLBs? */
1710         if (ring->id != RCS) {
1711                 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1712                 if (ret)
1713                         return ret;
1714         }
1715
1716         return 0;
1717 }
1718
1719 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1720                           struct drm_i915_gem_request *req)
1721 {
1722         struct intel_engine_cs *ring = req->ring;
1723         struct drm_device *dev = ppgtt->base.dev;
1724         struct drm_i915_private *dev_priv = dev->dev_private;
1725
1726
1727         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1728         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1729
1730         POSTING_READ(RING_PP_DIR_DCLV(ring));
1731
1732         return 0;
1733 }
1734
1735 static void gen8_ppgtt_enable(struct drm_device *dev)
1736 {
1737         struct drm_i915_private *dev_priv = dev->dev_private;
1738         struct intel_engine_cs *ring;
1739         int j;
1740
1741         for_each_ring(ring, dev_priv, j) {
1742                 u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1743                 I915_WRITE(RING_MODE_GEN7(ring),
1744                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1745         }
1746 }
1747
1748 static void gen7_ppgtt_enable(struct drm_device *dev)
1749 {
1750         struct drm_i915_private *dev_priv = dev->dev_private;
1751         struct intel_engine_cs *ring;
1752         uint32_t ecochk, ecobits;
1753         int i;
1754
1755         ecobits = I915_READ(GAC_ECO_BITS);
1756         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1757
1758         ecochk = I915_READ(GAM_ECOCHK);
1759         if (IS_HASWELL(dev)) {
1760                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1761         } else {
1762                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1763                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1764         }
1765         I915_WRITE(GAM_ECOCHK, ecochk);
1766
1767         for_each_ring(ring, dev_priv, i) {
1768                 /* GFX_MODE is per-ring on gen7+ */
1769                 I915_WRITE(RING_MODE_GEN7(ring),
1770                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1771         }
1772 }
1773
1774 static void gen6_ppgtt_enable(struct drm_device *dev)
1775 {
1776         struct drm_i915_private *dev_priv = dev->dev_private;
1777         uint32_t ecochk, gab_ctl, ecobits;
1778
1779         ecobits = I915_READ(GAC_ECO_BITS);
1780         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1781                    ECOBITS_PPGTT_CACHE64B);
1782
1783         gab_ctl = I915_READ(GAB_CTL);
1784         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1785
1786         ecochk = I915_READ(GAM_ECOCHK);
1787         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1788
1789         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1790 }
1791
1792 /* PPGTT support for Sandybdrige/Gen6 and later */
1793 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1794                                    uint64_t start,
1795                                    uint64_t length,
1796                                    bool use_scratch)
1797 {
1798         struct i915_hw_ppgtt *ppgtt =
1799                 container_of(vm, struct i915_hw_ppgtt, base);
1800         gen6_pte_t *pt_vaddr, scratch_pte;
1801         unsigned first_entry = start >> PAGE_SHIFT;
1802         unsigned num_entries = length >> PAGE_SHIFT;
1803         unsigned act_pt = first_entry / GEN6_PTES;
1804         unsigned first_pte = first_entry % GEN6_PTES;
1805         unsigned last_pte, i;
1806
1807         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1808                                      I915_CACHE_LLC, true, 0);
1809
1810         while (num_entries) {
1811                 last_pte = first_pte + num_entries;
1812                 if (last_pte > GEN6_PTES)
1813                         last_pte = GEN6_PTES;
1814
1815                 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1816
1817                 for (i = first_pte; i < last_pte; i++)
1818                         pt_vaddr[i] = scratch_pte;
1819
1820                 kunmap_px(ppgtt, pt_vaddr);
1821
1822                 num_entries -= last_pte - first_pte;
1823                 first_pte = 0;
1824                 act_pt++;
1825         }
1826 }
1827
1828 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1829                                       struct sg_table *pages,
1830                                       uint64_t start,
1831                                       enum i915_cache_level cache_level, u32 flags)
1832 {
1833         struct i915_hw_ppgtt *ppgtt =
1834                 container_of(vm, struct i915_hw_ppgtt, base);
1835         gen6_pte_t *pt_vaddr;
1836         unsigned first_entry = start >> PAGE_SHIFT;
1837         unsigned act_pt = first_entry / GEN6_PTES;
1838         unsigned act_pte = first_entry % GEN6_PTES;
1839         struct sg_page_iter sg_iter;
1840
1841         pt_vaddr = NULL;
1842         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1843                 if (pt_vaddr == NULL)
1844                         pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1845
1846                 pt_vaddr[act_pte] =
1847                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1848                                        cache_level, true, flags);
1849
1850                 if (++act_pte == GEN6_PTES) {
1851                         kunmap_px(ppgtt, pt_vaddr);
1852                         pt_vaddr = NULL;
1853                         act_pt++;
1854                         act_pte = 0;
1855                 }
1856         }
1857         if (pt_vaddr)
1858                 kunmap_px(ppgtt, pt_vaddr);
1859 }
1860
1861 static int gen6_alloc_va_range(struct i915_address_space *vm,
1862                                uint64_t start_in, uint64_t length_in)
1863 {
1864         DECLARE_BITMAP(new_page_tables, I915_PDES);
1865         struct drm_device *dev = vm->dev;
1866         struct drm_i915_private *dev_priv = dev->dev_private;
1867         struct i915_hw_ppgtt *ppgtt =
1868                                 container_of(vm, struct i915_hw_ppgtt, base);
1869         struct i915_page_table *pt;
1870         uint32_t start, length, start_save, length_save;
1871         uint32_t pde, temp;
1872         int ret;
1873
1874         if (WARN_ON(start_in + length_in > ppgtt->base.total))
1875                 return -ENODEV;
1876
1877         start = start_save = start_in;
1878         length = length_save = length_in;
1879
1880         bitmap_zero(new_page_tables, I915_PDES);
1881
1882         /* The allocation is done in two stages so that we can bail out with
1883          * minimal amount of pain. The first stage finds new page tables that
1884          * need allocation. The second stage marks use ptes within the page
1885          * tables.
1886          */
1887         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1888                 if (pt != vm->scratch_pt) {
1889                         WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1890                         continue;
1891                 }
1892
1893                 /* We've already allocated a page table */
1894                 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1895
1896                 pt = alloc_pt(dev);
1897                 if (IS_ERR(pt)) {
1898                         ret = PTR_ERR(pt);
1899                         goto unwind_out;
1900                 }
1901
1902                 gen6_initialize_pt(vm, pt);
1903
1904                 ppgtt->pd.page_table[pde] = pt;
1905                 __set_bit(pde, new_page_tables);
1906                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1907         }
1908
1909         start = start_save;
1910         length = length_save;
1911
1912         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1913                 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1914
1915                 bitmap_zero(tmp_bitmap, GEN6_PTES);
1916                 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1917                            gen6_pte_count(start, length));
1918
1919                 if (__test_and_clear_bit(pde, new_page_tables))
1920                         gen6_write_pde(&ppgtt->pd, pde, pt);
1921
1922                 trace_i915_page_table_entry_map(vm, pde, pt,
1923                                          gen6_pte_index(start),
1924                                          gen6_pte_count(start, length),
1925                                          GEN6_PTES);
1926                 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1927                                 GEN6_PTES);
1928         }
1929
1930         WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1931
1932         /* Make sure write is complete before other code can use this page
1933          * table. Also require for WC mapped PTEs */
1934         readl(dev_priv->gtt.gsm);
1935
1936         mark_tlbs_dirty(ppgtt);
1937         return 0;
1938
1939 unwind_out:
1940         for_each_set_bit(pde, new_page_tables, I915_PDES) {
1941                 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1942
1943                 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1944                 free_pt(vm->dev, pt);
1945         }
1946
1947         mark_tlbs_dirty(ppgtt);
1948         return ret;
1949 }
1950
1951 static int gen6_init_scratch(struct i915_address_space *vm)
1952 {
1953         struct drm_device *dev = vm->dev;
1954
1955         vm->scratch_page = alloc_scratch_page(dev);
1956         if (IS_ERR(vm->scratch_page))
1957                 return PTR_ERR(vm->scratch_page);
1958
1959         vm->scratch_pt = alloc_pt(dev);
1960         if (IS_ERR(vm->scratch_pt)) {
1961                 free_scratch_page(dev, vm->scratch_page);
1962                 return PTR_ERR(vm->scratch_pt);
1963         }
1964
1965         gen6_initialize_pt(vm, vm->scratch_pt);
1966
1967         return 0;
1968 }
1969
1970 static void gen6_free_scratch(struct i915_address_space *vm)
1971 {
1972         struct drm_device *dev = vm->dev;
1973
1974         free_pt(dev, vm->scratch_pt);
1975         free_scratch_page(dev, vm->scratch_page);
1976 }
1977
1978 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1979 {
1980         struct i915_hw_ppgtt *ppgtt =
1981                 container_of(vm, struct i915_hw_ppgtt, base);
1982         struct i915_page_table *pt;
1983         uint32_t pde;
1984
1985         drm_mm_remove_node(&ppgtt->node);
1986
1987         gen6_for_all_pdes(pt, ppgtt, pde) {
1988                 if (pt != vm->scratch_pt)
1989                         free_pt(ppgtt->base.dev, pt);
1990         }
1991
1992         gen6_free_scratch(vm);
1993 }
1994
1995 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1996 {
1997         struct i915_address_space *vm = &ppgtt->base;
1998         struct drm_device *dev = ppgtt->base.dev;
1999         struct drm_i915_private *dev_priv = dev->dev_private;
2000         bool retried = false;
2001         int ret;
2002
2003         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2004          * allocator works in address space sizes, so it's multiplied by page
2005          * size. We allocate at the top of the GTT to avoid fragmentation.
2006          */
2007         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
2008
2009         ret = gen6_init_scratch(vm);
2010         if (ret)
2011                 return ret;
2012
2013 alloc:
2014         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
2015                                                   &ppgtt->node, GEN6_PD_SIZE,
2016                                                   GEN6_PD_ALIGN, 0,
2017                                                   0, dev_priv->gtt.base.total,
2018                                                   DRM_MM_TOPDOWN);
2019         if (ret == -ENOSPC && !retried) {
2020                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
2021                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
2022                                                I915_CACHE_NONE,
2023                                                0, dev_priv->gtt.base.total,
2024                                                0);
2025                 if (ret)
2026                         goto err_out;
2027
2028                 retried = true;
2029                 goto alloc;
2030         }
2031
2032         if (ret)
2033                 goto err_out;
2034
2035
2036         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
2037                 DRM_DEBUG("Forced to use aperture for PDEs\n");
2038
2039         return 0;
2040
2041 err_out:
2042         gen6_free_scratch(vm);
2043         return ret;
2044 }
2045
2046 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2047 {
2048         return gen6_ppgtt_allocate_page_directories(ppgtt);
2049 }
2050
2051 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2052                                   uint64_t start, uint64_t length)
2053 {
2054         struct i915_page_table *unused;
2055         uint32_t pde, temp;
2056
2057         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2058                 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2059 }
2060
2061 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2062 {
2063         struct drm_device *dev = ppgtt->base.dev;
2064         struct drm_i915_private *dev_priv = dev->dev_private;
2065         int ret;
2066
2067         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
2068         if (IS_GEN6(dev)) {
2069                 ppgtt->switch_mm = gen6_mm_switch;
2070         } else if (IS_HASWELL(dev)) {
2071                 ppgtt->switch_mm = hsw_mm_switch;
2072         } else if (IS_GEN7(dev)) {
2073                 ppgtt->switch_mm = gen7_mm_switch;
2074         } else
2075                 BUG();
2076
2077         if (intel_vgpu_active(dev))
2078                 ppgtt->switch_mm = vgpu_mm_switch;
2079
2080         ret = gen6_ppgtt_alloc(ppgtt);
2081         if (ret)
2082                 return ret;
2083
2084         ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2085         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2086         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2087         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2088         ppgtt->base.bind_vma = ppgtt_bind_vma;
2089         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2090         ppgtt->base.start = 0;
2091         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2092         ppgtt->debug_dump = gen6_dump_ppgtt;
2093
2094         ppgtt->pd.base.ggtt_offset =
2095                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2096
2097         ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
2098                 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2099
2100         gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2101
2102         gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2103
2104         DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2105                          ppgtt->node.size >> 20,
2106                          ppgtt->node.start / PAGE_SIZE);
2107
2108         DRM_DEBUG("Adding PPGTT at offset %x\n",
2109                   ppgtt->pd.base.ggtt_offset << 10);
2110
2111         return 0;
2112 }
2113
2114 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2115 {
2116         ppgtt->base.dev = dev;
2117
2118         if (INTEL_INFO(dev)->gen < 8)
2119                 return gen6_ppgtt_init(ppgtt);
2120         else
2121                 return gen8_ppgtt_init(ppgtt);
2122 }
2123
2124 static void i915_address_space_init(struct i915_address_space *vm,
2125                                     struct drm_i915_private *dev_priv)
2126 {
2127         drm_mm_init(&vm->mm, vm->start, vm->total);
2128         vm->dev = dev_priv->dev;
2129         INIT_LIST_HEAD(&vm->active_list);
2130         INIT_LIST_HEAD(&vm->inactive_list);
2131         list_add_tail(&vm->global_link, &dev_priv->vm_list);
2132 }
2133
2134 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2135 {
2136         struct drm_i915_private *dev_priv = dev->dev_private;
2137         int ret = 0;
2138
2139         ret = __hw_ppgtt_init(dev, ppgtt);
2140         if (ret == 0) {
2141                 kref_init(&ppgtt->ref);
2142                 i915_address_space_init(&ppgtt->base, dev_priv);
2143         }
2144
2145         return ret;
2146 }
2147
2148 int i915_ppgtt_init_hw(struct drm_device *dev)
2149 {
2150         /* In the case of execlists, PPGTT is enabled by the context descriptor
2151          * and the PDPs are contained within the context itself.  We don't
2152          * need to do anything here. */
2153         if (i915.enable_execlists)
2154                 return 0;
2155
2156         if (!USES_PPGTT(dev))
2157                 return 0;
2158
2159         if (IS_GEN6(dev))
2160                 gen6_ppgtt_enable(dev);
2161         else if (IS_GEN7(dev))
2162                 gen7_ppgtt_enable(dev);
2163         else if (INTEL_INFO(dev)->gen >= 8)
2164                 gen8_ppgtt_enable(dev);
2165         else
2166                 MISSING_CASE(INTEL_INFO(dev)->gen);
2167
2168         return 0;
2169 }
2170
2171 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
2172 {
2173         struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
2174         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2175
2176         if (i915.enable_execlists)
2177                 return 0;
2178
2179         if (!ppgtt)
2180                 return 0;
2181
2182         return ppgtt->switch_mm(ppgtt, req);
2183 }
2184
2185 struct i915_hw_ppgtt *
2186 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2187 {
2188         struct i915_hw_ppgtt *ppgtt;
2189         int ret;
2190
2191         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2192         if (!ppgtt)
2193                 return ERR_PTR(-ENOMEM);
2194
2195         ret = i915_ppgtt_init(dev, ppgtt);
2196         if (ret) {
2197                 kfree(ppgtt);
2198                 return ERR_PTR(ret);
2199         }
2200
2201         ppgtt->file_priv = fpriv;
2202
2203         trace_i915_ppgtt_create(&ppgtt->base);
2204
2205         return ppgtt;
2206 }
2207
2208 void  i915_ppgtt_release(struct kref *kref)
2209 {
2210         struct i915_hw_ppgtt *ppgtt =
2211                 container_of(kref, struct i915_hw_ppgtt, ref);
2212
2213         trace_i915_ppgtt_release(&ppgtt->base);
2214
2215         /* vmas should already be unbound */
2216         WARN_ON(!list_empty(&ppgtt->base.active_list));
2217         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2218
2219         list_del(&ppgtt->base.global_link);
2220         drm_mm_takedown(&ppgtt->base.mm);
2221
2222         ppgtt->base.cleanup(&ppgtt->base);
2223         kfree(ppgtt);
2224 }
2225
2226 extern int intel_iommu_gfx_mapped;
2227 /* Certain Gen5 chipsets require require idling the GPU before
2228  * unmapping anything from the GTT when VT-d is enabled.
2229  */
2230 static bool needs_idle_maps(struct drm_device *dev)
2231 {
2232 #ifdef CONFIG_INTEL_IOMMU
2233         /* Query intel_iommu to see if we need the workaround. Presumably that
2234          * was loaded first.
2235          */
2236         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2237                 return true;
2238 #endif
2239         return false;
2240 }
2241
2242 static bool do_idling(struct drm_i915_private *dev_priv)
2243 {
2244         bool ret = dev_priv->mm.interruptible;
2245
2246         if (unlikely(dev_priv->gtt.do_idle_maps)) {
2247                 dev_priv->mm.interruptible = false;
2248                 if (i915_gpu_idle(dev_priv->dev)) {
2249                         DRM_ERROR("Couldn't idle GPU\n");
2250                         /* Wait a bit, in hopes it avoids the hang */
2251                         udelay(10);
2252                 }
2253         }
2254
2255         return ret;
2256 }
2257
2258 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2259 {
2260         if (unlikely(dev_priv->gtt.do_idle_maps))
2261                 dev_priv->mm.interruptible = interruptible;
2262 }
2263
2264 void i915_check_and_clear_faults(struct drm_device *dev)
2265 {
2266         struct drm_i915_private *dev_priv = dev->dev_private;
2267         struct intel_engine_cs *ring;
2268         int i;
2269
2270         if (INTEL_INFO(dev)->gen < 6)
2271                 return;
2272
2273         for_each_ring(ring, dev_priv, i) {
2274                 u32 fault_reg;
2275                 fault_reg = I915_READ(RING_FAULT_REG(ring));
2276                 if (fault_reg & RING_FAULT_VALID) {
2277                         DRM_DEBUG_DRIVER("Unexpected fault\n"
2278                                          "\tAddr: 0x%08lx\n"
2279                                          "\tAddress space: %s\n"
2280                                          "\tSource ID: %d\n"
2281                                          "\tType: %d\n",
2282                                          fault_reg & PAGE_MASK,
2283                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2284                                          RING_FAULT_SRCID(fault_reg),
2285                                          RING_FAULT_FAULT_TYPE(fault_reg));
2286                         I915_WRITE(RING_FAULT_REG(ring),
2287                                    fault_reg & ~RING_FAULT_VALID);
2288                 }
2289         }
2290         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
2291 }
2292
2293 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2294 {
2295         if (INTEL_INFO(dev_priv->dev)->gen < 6) {
2296                 intel_gtt_chipset_flush();
2297         } else {
2298                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2299                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2300         }
2301 }
2302
2303 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2304 {
2305         struct drm_i915_private *dev_priv = dev->dev_private;
2306
2307         /* Don't bother messing with faults pre GEN6 as we have little
2308          * documentation supporting that it's a good idea.
2309          */
2310         if (INTEL_INFO(dev)->gen < 6)
2311                 return;
2312
2313         i915_check_and_clear_faults(dev);
2314
2315         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2316                                        dev_priv->gtt.base.start,
2317                                        dev_priv->gtt.base.total,
2318                                        true);
2319
2320         i915_ggtt_flush(dev_priv);
2321 }
2322
2323 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2324 {
2325         if (!dma_map_sg(&obj->base.dev->pdev->dev,
2326                         obj->pages->sgl, obj->pages->nents,
2327                         PCI_DMA_BIDIRECTIONAL))
2328                 return -ENOSPC;
2329
2330         return 0;
2331 }
2332
2333 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2334 {
2335 #ifdef writeq
2336         writeq(pte, addr);
2337 #else
2338         iowrite32((u32)pte, addr);
2339         iowrite32(pte >> 32, addr + 4);
2340 #endif
2341 }
2342
2343 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2344                                      struct sg_table *st,
2345                                      uint64_t start,
2346                                      enum i915_cache_level level, u32 unused)
2347 {
2348         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2349         unsigned first_entry = start >> PAGE_SHIFT;
2350         gen8_pte_t __iomem *gtt_entries =
2351                 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2352         int i = 0;
2353         struct sg_page_iter sg_iter;
2354         dma_addr_t addr = 0; /* shut up gcc */
2355
2356         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2357                 addr = sg_dma_address(sg_iter.sg) +
2358                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
2359                 gen8_set_pte(&gtt_entries[i],
2360                              gen8_pte_encode(addr, level, true));
2361                 i++;
2362         }
2363
2364         /*
2365          * XXX: This serves as a posting read to make sure that the PTE has
2366          * actually been updated. There is some concern that even though
2367          * registers and PTEs are within the same BAR that they are potentially
2368          * of NUMA access patterns. Therefore, even with the way we assume
2369          * hardware should work, we must keep this posting read for paranoia.
2370          */
2371         if (i != 0)
2372                 WARN_ON(readq(&gtt_entries[i-1])
2373                         != gen8_pte_encode(addr, level, true));
2374
2375         /* This next bit makes the above posting read even more important. We
2376          * want to flush the TLBs only after we're certain all the PTE updates
2377          * have finished.
2378          */
2379         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2380         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2381 }
2382
2383 /*
2384  * Binds an object into the global gtt with the specified cache level. The object
2385  * will be accessible to the GPU via commands whose operands reference offsets
2386  * within the global GTT as well as accessible by the GPU through the GMADR
2387  * mapped BAR (dev_priv->mm.gtt->gtt).
2388  */
2389 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2390                                      struct sg_table *st,
2391                                      uint64_t start,
2392                                      enum i915_cache_level level, u32 flags)
2393 {
2394         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2395         unsigned first_entry = start >> PAGE_SHIFT;
2396         gen6_pte_t __iomem *gtt_entries =
2397                 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2398         int i = 0;
2399         struct sg_page_iter sg_iter;
2400         dma_addr_t addr = 0;
2401
2402         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2403                 addr = sg_page_iter_dma_address(&sg_iter);
2404                 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
2405                 i++;
2406         }
2407
2408         /* XXX: This serves as a posting read to make sure that the PTE has
2409          * actually been updated. There is some concern that even though
2410          * registers and PTEs are within the same BAR that they are potentially
2411          * of NUMA access patterns. Therefore, even with the way we assume
2412          * hardware should work, we must keep this posting read for paranoia.
2413          */
2414         if (i != 0) {
2415                 unsigned long gtt = readl(&gtt_entries[i-1]);
2416                 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2417         }
2418
2419         /* This next bit makes the above posting read even more important. We
2420          * want to flush the TLBs only after we're certain all the PTE updates
2421          * have finished.
2422          */
2423         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2424         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2425 }
2426
2427 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2428                                   uint64_t start,
2429                                   uint64_t length,
2430                                   bool use_scratch)
2431 {
2432         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2433         unsigned first_entry = start >> PAGE_SHIFT;
2434         unsigned num_entries = length >> PAGE_SHIFT;
2435         gen8_pte_t scratch_pte, __iomem *gtt_base =
2436                 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2437         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2438         int i;
2439
2440         if (WARN(num_entries > max_entries,
2441                  "First entry = %d; Num entries = %d (max=%d)\n",
2442                  first_entry, num_entries, max_entries))
2443                 num_entries = max_entries;
2444
2445         scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2446                                       I915_CACHE_LLC,
2447                                       use_scratch);
2448         for (i = 0; i < num_entries; i++)
2449                 gen8_set_pte(&gtt_base[i], scratch_pte);
2450         readl(gtt_base);
2451 }
2452
2453 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2454                                   uint64_t start,
2455                                   uint64_t length,
2456                                   bool use_scratch)
2457 {
2458         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2459         unsigned first_entry = start >> PAGE_SHIFT;
2460         unsigned num_entries = length >> PAGE_SHIFT;
2461         gen6_pte_t scratch_pte, __iomem *gtt_base =
2462                 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2463         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2464         int i;
2465
2466         if (WARN(num_entries > max_entries,
2467                  "First entry = %d; Num entries = %d (max=%d)\n",
2468                  first_entry, num_entries, max_entries))
2469                 num_entries = max_entries;
2470
2471         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2472                                      I915_CACHE_LLC, use_scratch, 0);
2473
2474         for (i = 0; i < num_entries; i++)
2475                 iowrite32(scratch_pte, &gtt_base[i]);
2476         readl(gtt_base);
2477 }
2478
2479 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2480                                      struct sg_table *pages,
2481                                      uint64_t start,
2482                                      enum i915_cache_level cache_level, u32 unused)
2483 {
2484         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2485                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2486
2487         intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2488
2489 }
2490
2491 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2492                                   uint64_t start,
2493                                   uint64_t length,
2494                                   bool unused)
2495 {
2496         unsigned first_entry = start >> PAGE_SHIFT;
2497         unsigned num_entries = length >> PAGE_SHIFT;
2498         intel_gtt_clear_range(first_entry, num_entries);
2499 }
2500
2501 static int ggtt_bind_vma(struct i915_vma *vma,
2502                          enum i915_cache_level cache_level,
2503                          u32 flags)
2504 {
2505         struct drm_i915_gem_object *obj = vma->obj;
2506         u32 pte_flags = 0;
2507         int ret;
2508
2509         ret = i915_get_ggtt_vma_pages(vma);
2510         if (ret)
2511                 return ret;
2512
2513         /* Currently applicable only to VLV */
2514         if (obj->gt_ro)
2515                 pte_flags |= PTE_READ_ONLY;
2516
2517         vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2518                                 vma->node.start,
2519                                 cache_level, pte_flags);
2520
2521         /*
2522          * Without aliasing PPGTT there's no difference between
2523          * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2524          * upgrade to both bound if we bind either to avoid double-binding.
2525          */
2526         vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2527
2528         return 0;
2529 }
2530
2531 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2532                                  enum i915_cache_level cache_level,
2533                                  u32 flags)
2534 {
2535         struct drm_device *dev = vma->vm->dev;
2536         struct drm_i915_private *dev_priv = dev->dev_private;
2537         struct drm_i915_gem_object *obj = vma->obj;
2538         struct sg_table *pages = obj->pages;
2539         u32 pte_flags = 0;
2540         int ret;
2541
2542         ret = i915_get_ggtt_vma_pages(vma);
2543         if (ret)
2544                 return ret;
2545         pages = vma->ggtt_view.pages;
2546
2547         /* Currently applicable only to VLV */
2548         if (obj->gt_ro)
2549                 pte_flags |= PTE_READ_ONLY;
2550
2551
2552         if (flags & GLOBAL_BIND) {
2553                 vma->vm->insert_entries(vma->vm, pages,
2554                                         vma->node.start,
2555                                         cache_level, pte_flags);
2556         }
2557
2558         if (flags & LOCAL_BIND) {
2559                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2560                 appgtt->base.insert_entries(&appgtt->base, pages,
2561                                             vma->node.start,
2562                                             cache_level, pte_flags);
2563         }
2564
2565         return 0;
2566 }
2567
2568 static void ggtt_unbind_vma(struct i915_vma *vma)
2569 {
2570         struct drm_device *dev = vma->vm->dev;
2571         struct drm_i915_private *dev_priv = dev->dev_private;
2572         struct drm_i915_gem_object *obj = vma->obj;
2573         const uint64_t size = min_t(uint64_t,
2574                                     obj->base.size,
2575                                     vma->node.size);
2576
2577         if (vma->bound & GLOBAL_BIND) {
2578                 vma->vm->clear_range(vma->vm,
2579                                      vma->node.start,
2580                                      size,
2581                                      true);
2582         }
2583
2584         if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2585                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2586
2587                 appgtt->base.clear_range(&appgtt->base,
2588                                          vma->node.start,
2589                                          size,
2590                                          true);
2591         }
2592 }
2593
2594 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2595 {
2596         struct drm_device *dev = obj->base.dev;
2597         struct drm_i915_private *dev_priv = dev->dev_private;
2598         bool interruptible;
2599
2600         interruptible = do_idling(dev_priv);
2601
2602         dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2603                      PCI_DMA_BIDIRECTIONAL);
2604
2605         undo_idling(dev_priv, interruptible);
2606 }
2607
2608 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2609                                   unsigned long color,
2610                                   u64 *start,
2611                                   u64 *end)
2612 {
2613         if (node->color != color)
2614                 *start += 4096;
2615
2616         if (!list_empty(&node->node_list)) {
2617                 node = list_entry(node->node_list.next,
2618                                   struct drm_mm_node,
2619                                   node_list);
2620                 if (node->allocated && node->color != color)
2621                         *end -= 4096;
2622         }
2623 }
2624
2625 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2626                                      u64 start,
2627                                      u64 mappable_end,
2628                                      u64 end)
2629 {
2630         /* Let GEM Manage all of the aperture.
2631          *
2632          * However, leave one page at the end still bound to the scratch page.
2633          * There are a number of places where the hardware apparently prefetches
2634          * past the end of the object, and we've seen multiple hangs with the
2635          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2636          * aperture.  One page should be enough to keep any prefetching inside
2637          * of the aperture.
2638          */
2639         struct drm_i915_private *dev_priv = dev->dev_private;
2640         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2641         struct drm_mm_node *entry;
2642         struct drm_i915_gem_object *obj;
2643         unsigned long hole_start, hole_end;
2644         int ret;
2645
2646         BUG_ON(mappable_end > end);
2647
2648         ggtt_vm->start = start;
2649
2650         /* Subtract the guard page before address space initialization to
2651          * shrink the range used by drm_mm */
2652         ggtt_vm->total = end - start - PAGE_SIZE;
2653         i915_address_space_init(ggtt_vm, dev_priv);
2654         ggtt_vm->total += PAGE_SIZE;
2655
2656         if (intel_vgpu_active(dev)) {
2657                 ret = intel_vgt_balloon(dev);
2658                 if (ret)
2659                         return ret;
2660         }
2661
2662         if (!HAS_LLC(dev))
2663                 ggtt_vm->mm.color_adjust = i915_gtt_color_adjust;
2664
2665         /* Mark any preallocated objects as occupied */
2666         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2667                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2668
2669                 DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2670                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
2671
2672                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2673                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2674                 if (ret) {
2675                         DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2676                         return ret;
2677                 }
2678                 vma->bound |= GLOBAL_BIND;
2679                 __i915_vma_set_map_and_fenceable(vma);
2680                 list_add_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2681         }
2682
2683         /* Clear any non-preallocated blocks */
2684         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2685                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2686                               hole_start, hole_end);
2687                 ggtt_vm->clear_range(ggtt_vm, hole_start,
2688                                      hole_end - hole_start, true);
2689         }
2690
2691         /* And finally clear the reserved guard page */
2692         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2693
2694         if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2695                 struct i915_hw_ppgtt *ppgtt;
2696
2697                 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2698                 if (!ppgtt)
2699                         return -ENOMEM;
2700
2701                 ret = __hw_ppgtt_init(dev, ppgtt);
2702                 if (ret) {
2703                         ppgtt->base.cleanup(&ppgtt->base);
2704                         kfree(ppgtt);
2705                         return ret;
2706                 }
2707
2708                 if (ppgtt->base.allocate_va_range)
2709                         ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2710                                                             ppgtt->base.total);
2711                 if (ret) {
2712                         ppgtt->base.cleanup(&ppgtt->base);
2713                         kfree(ppgtt);
2714                         return ret;
2715                 }
2716
2717                 ppgtt->base.clear_range(&ppgtt->base,
2718                                         ppgtt->base.start,
2719                                         ppgtt->base.total,
2720                                         true);
2721
2722                 dev_priv->mm.aliasing_ppgtt = ppgtt;
2723                 WARN_ON(dev_priv->gtt.base.bind_vma != ggtt_bind_vma);
2724                 dev_priv->gtt.base.bind_vma = aliasing_gtt_bind_vma;
2725         }
2726
2727         return 0;
2728 }
2729
2730 void i915_gem_init_global_gtt(struct drm_device *dev)
2731 {
2732         struct drm_i915_private *dev_priv = dev->dev_private;
2733         u64 gtt_size, mappable_size;
2734
2735         gtt_size = dev_priv->gtt.base.total;
2736         mappable_size = dev_priv->gtt.mappable_end;
2737
2738         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2739 }
2740
2741 void i915_global_gtt_cleanup(struct drm_device *dev)
2742 {
2743         struct drm_i915_private *dev_priv = dev->dev_private;
2744         struct i915_address_space *vm = &dev_priv->gtt.base;
2745
2746         if (dev_priv->mm.aliasing_ppgtt) {
2747                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2748
2749                 ppgtt->base.cleanup(&ppgtt->base);
2750         }
2751
2752         if (drm_mm_initialized(&vm->mm)) {
2753                 if (intel_vgpu_active(dev))
2754                         intel_vgt_deballoon();
2755
2756                 drm_mm_takedown(&vm->mm);
2757                 list_del(&vm->global_link);
2758         }
2759
2760         vm->cleanup(vm);
2761 }
2762
2763 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2764 {
2765         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2766         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2767         return snb_gmch_ctl << 20;
2768 }
2769
2770 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2771 {
2772         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2773         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2774         if (bdw_gmch_ctl)
2775                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2776
2777 #ifdef CONFIG_X86_32
2778         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2779         if (bdw_gmch_ctl > 4)
2780                 bdw_gmch_ctl = 4;
2781 #endif
2782
2783         return bdw_gmch_ctl << 20;
2784 }
2785
2786 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2787 {
2788         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2789         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2790
2791         if (gmch_ctrl)
2792                 return 1 << (20 + gmch_ctrl);
2793
2794         return 0;
2795 }
2796
2797 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2798 {
2799         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2800         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2801         return snb_gmch_ctl << 25; /* 32 MB units */
2802 }
2803
2804 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2805 {
2806         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2807         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2808         return bdw_gmch_ctl << 25; /* 32 MB units */
2809 }
2810
2811 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2812 {
2813         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2814         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2815
2816         /*
2817          * 0x0  to 0x10: 32MB increments starting at 0MB
2818          * 0x11 to 0x16: 4MB increments starting at 8MB
2819          * 0x17 to 0x1d: 4MB increments start at 36MB
2820          */
2821         if (gmch_ctrl < 0x11)
2822                 return gmch_ctrl << 25;
2823         else if (gmch_ctrl < 0x17)
2824                 return (gmch_ctrl - 0x11 + 2) << 22;
2825         else
2826                 return (gmch_ctrl - 0x17 + 9) << 22;
2827 }
2828
2829 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2830 {
2831         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2832         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2833
2834         if (gen9_gmch_ctl < 0xf0)
2835                 return gen9_gmch_ctl << 25; /* 32 MB units */
2836         else
2837                 /* 4MB increments starting at 0xf0 for 4MB */
2838                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2839 }
2840
2841 static int ggtt_probe_common(struct drm_device *dev,
2842                              size_t gtt_size)
2843 {
2844         struct drm_i915_private *dev_priv = dev->dev_private;
2845         struct i915_page_scratch *scratch_page;
2846         phys_addr_t gtt_phys_addr;
2847
2848         /* For Modern GENs the PTEs and register space are split in the BAR */
2849         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2850                 (pci_resource_len(dev->pdev, 0) / 2);
2851
2852         /*
2853          * On BXT writes larger than 64 bit to the GTT pagetable range will be
2854          * dropped. For WC mappings in general we have 64 byte burst writes
2855          * when the WC buffer is flushed, so we can't use it, but have to
2856          * resort to an uncached mapping. The WC issue is easily caught by the
2857          * readback check when writing GTT PTE entries.
2858          */
2859         if (IS_BROXTON(dev))
2860                 dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2861         else
2862                 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2863         if (!dev_priv->gtt.gsm) {
2864                 DRM_ERROR("Failed to map the gtt page table\n");
2865                 return -ENOMEM;
2866         }
2867
2868         scratch_page = alloc_scratch_page(dev);
2869         if (IS_ERR(scratch_page)) {
2870                 DRM_ERROR("Scratch setup failed\n");
2871                 /* iounmap will also get called at remove, but meh */
2872                 iounmap(dev_priv->gtt.gsm);
2873                 return PTR_ERR(scratch_page);
2874         }
2875
2876         dev_priv->gtt.base.scratch_page = scratch_page;
2877
2878         return 0;
2879 }
2880
2881 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2882  * bits. When using advanced contexts each context stores its own PAT, but
2883  * writing this data shouldn't be harmful even in those cases. */
2884 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2885 {
2886         uint64_t pat;
2887
2888         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2889               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2890               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2891               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2892               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2893               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2894               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2895               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2896
2897         if (!USES_PPGTT(dev_priv->dev))
2898                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2899                  * so RTL will always use the value corresponding to
2900                  * pat_sel = 000".
2901                  * So let's disable cache for GGTT to avoid screen corruptions.
2902                  * MOCS still can be used though.
2903                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2904                  * before this patch, i.e. the same uncached + snooping access
2905                  * like on gen6/7 seems to be in effect.
2906                  * - So this just fixes blitter/render access. Again it looks
2907                  * like it's not just uncached access, but uncached + snooping.
2908                  * So we can still hold onto all our assumptions wrt cpu
2909                  * clflushing on LLC machines.
2910                  */
2911                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2912
2913         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2914          * write would work. */
2915         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2916         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2917 }
2918
2919 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2920 {
2921         uint64_t pat;
2922
2923         /*
2924          * Map WB on BDW to snooped on CHV.
2925          *
2926          * Only the snoop bit has meaning for CHV, the rest is
2927          * ignored.
2928          *
2929          * The hardware will never snoop for certain types of accesses:
2930          * - CPU GTT (GMADR->GGTT->no snoop->memory)
2931          * - PPGTT page tables
2932          * - some other special cycles
2933          *
2934          * As with BDW, we also need to consider the following for GT accesses:
2935          * "For GGTT, there is NO pat_sel[2:0] from the entry,
2936          * so RTL will always use the value corresponding to
2937          * pat_sel = 000".
2938          * Which means we must set the snoop bit in PAT entry 0
2939          * in order to keep the global status page working.
2940          */
2941         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2942               GEN8_PPAT(1, 0) |
2943               GEN8_PPAT(2, 0) |
2944               GEN8_PPAT(3, 0) |
2945               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2946               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2947               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2948               GEN8_PPAT(7, CHV_PPAT_SNOOP);
2949
2950         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2951         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2952 }
2953
2954 static int gen8_gmch_probe(struct drm_device *dev,
2955                            u64 *gtt_total,
2956                            size_t *stolen,
2957                            phys_addr_t *mappable_base,
2958                            u64 *mappable_end)
2959 {
2960         struct drm_i915_private *dev_priv = dev->dev_private;
2961         u64 gtt_size;
2962         u16 snb_gmch_ctl;
2963         int ret;
2964
2965         /* TODO: We're not aware of mappable constraints on gen8 yet */
2966         *mappable_base = pci_resource_start(dev->pdev, 2);
2967         *mappable_end = pci_resource_len(dev->pdev, 2);
2968
2969         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2970                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2971
2972         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2973
2974         if (INTEL_INFO(dev)->gen >= 9) {
2975                 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
2976                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2977         } else if (IS_CHERRYVIEW(dev)) {
2978                 *stolen = chv_get_stolen_size(snb_gmch_ctl);
2979                 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2980         } else {
2981                 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
2982                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2983         }
2984
2985         *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2986
2987         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2988                 chv_setup_private_ppat(dev_priv);
2989         else
2990                 bdw_setup_private_ppat(dev_priv);
2991
2992         ret = ggtt_probe_common(dev, gtt_size);
2993
2994         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2995         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2996         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2997         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2998
2999         return ret;
3000 }
3001
3002 static int gen6_gmch_probe(struct drm_device *dev,
3003                            u64 *gtt_total,
3004                            size_t *stolen,
3005                            phys_addr_t *mappable_base,
3006                            u64 *mappable_end)
3007 {
3008         struct drm_i915_private *dev_priv = dev->dev_private;
3009         unsigned int gtt_size;
3010         u16 snb_gmch_ctl;
3011         int ret;
3012
3013         *mappable_base = pci_resource_start(dev->pdev, 2);
3014         *mappable_end = pci_resource_len(dev->pdev, 2);
3015
3016         /* 64/512MB is the current min/max we actually know of, but this is just
3017          * a coarse sanity check.
3018          */
3019         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
3020                 DRM_ERROR("Unknown GMADR size (%llx)\n",
3021                           dev_priv->gtt.mappable_end);
3022                 return -ENXIO;
3023         }
3024
3025         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3026                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3027         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3028
3029         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
3030
3031         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
3032         *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3033
3034         ret = ggtt_probe_common(dev, gtt_size);
3035
3036         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
3037         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
3038         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3039         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3040
3041         return ret;
3042 }
3043
3044 static void gen6_gmch_remove(struct i915_address_space *vm)
3045 {
3046
3047         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
3048
3049         iounmap(gtt->gsm);
3050         free_scratch_page(vm->dev, vm->scratch_page);
3051 }
3052
3053 static int i915_gmch_probe(struct drm_device *dev,
3054                            u64 *gtt_total,
3055                            size_t *stolen,
3056                            phys_addr_t *mappable_base,
3057                            u64 *mappable_end)
3058 {
3059         struct drm_i915_private *dev_priv = dev->dev_private;
3060         int ret;
3061
3062         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3063         if (!ret) {
3064                 DRM_ERROR("failed to set up gmch\n");
3065                 return -EIO;
3066         }
3067
3068         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
3069
3070         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
3071         dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
3072         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
3073         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3074         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3075
3076         if (unlikely(dev_priv->gtt.do_idle_maps))
3077                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3078
3079         return 0;
3080 }
3081
3082 static void i915_gmch_remove(struct i915_address_space *vm)
3083 {
3084         intel_gmch_remove();
3085 }
3086
3087 int i915_gem_gtt_init(struct drm_device *dev)
3088 {
3089         struct drm_i915_private *dev_priv = dev->dev_private;
3090         struct i915_gtt *gtt = &dev_priv->gtt;
3091         int ret;
3092
3093         if (INTEL_INFO(dev)->gen <= 5) {
3094                 gtt->gtt_probe = i915_gmch_probe;
3095                 gtt->base.cleanup = i915_gmch_remove;
3096         } else if (INTEL_INFO(dev)->gen < 8) {
3097                 gtt->gtt_probe = gen6_gmch_probe;
3098                 gtt->base.cleanup = gen6_gmch_remove;
3099                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
3100                         gtt->base.pte_encode = iris_pte_encode;
3101                 else if (IS_HASWELL(dev))
3102                         gtt->base.pte_encode = hsw_pte_encode;
3103                 else if (IS_VALLEYVIEW(dev))
3104                         gtt->base.pte_encode = byt_pte_encode;
3105                 else if (INTEL_INFO(dev)->gen >= 7)
3106                         gtt->base.pte_encode = ivb_pte_encode;
3107                 else
3108                         gtt->base.pte_encode = snb_pte_encode;
3109         } else {
3110                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
3111                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
3112         }
3113
3114         gtt->base.dev = dev;
3115
3116         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
3117                              &gtt->mappable_base, &gtt->mappable_end);
3118         if (ret)
3119                 return ret;
3120
3121         /* GMADR is the PCI mmio aperture into the global GTT. */
3122         DRM_INFO("Memory usable by graphics device = %lluM\n",
3123                  gtt->base.total >> 20);
3124         DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
3125         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
3126 #ifdef CONFIG_INTEL_IOMMU
3127         if (intel_iommu_gfx_mapped)
3128                 DRM_INFO("VT-d active for gfx access\n");
3129 #endif
3130         /*
3131          * i915.enable_ppgtt is read-only, so do an early pass to validate the
3132          * user's requested state against the hardware/driver capabilities.  We
3133          * do this now so that we can print out any log messages once rather
3134          * than every time we check intel_enable_ppgtt().
3135          */
3136         i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
3137         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3138
3139         return 0;
3140 }
3141
3142 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3143 {
3144         struct drm_i915_private *dev_priv = dev->dev_private;
3145         struct drm_i915_gem_object *obj;
3146         struct i915_address_space *vm;
3147         struct i915_vma *vma;
3148         bool flush;
3149
3150         i915_check_and_clear_faults(dev);
3151
3152         /* First fill our portion of the GTT with scratch pages */
3153         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
3154                                        dev_priv->gtt.base.start,
3155                                        dev_priv->gtt.base.total,
3156                                        true);
3157
3158         /* Cache flush objects bound into GGTT and rebind them. */
3159         vm = &dev_priv->gtt.base;
3160         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3161                 flush = false;
3162                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3163                         if (vma->vm != vm)
3164                                 continue;
3165
3166                         WARN_ON(i915_vma_bind(vma, obj->cache_level,
3167                                               PIN_UPDATE));
3168
3169                         flush = true;
3170                 }
3171
3172                 if (flush)
3173                         i915_gem_clflush_object(obj, obj->pin_display);
3174         }
3175
3176         if (INTEL_INFO(dev)->gen >= 8) {
3177                 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3178                         chv_setup_private_ppat(dev_priv);
3179                 else
3180                         bdw_setup_private_ppat(dev_priv);
3181
3182                 return;
3183         }
3184
3185         if (USES_PPGTT(dev)) {
3186                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3187                         /* TODO: Perhaps it shouldn't be gen6 specific */
3188
3189                         struct i915_hw_ppgtt *ppgtt =
3190                                         container_of(vm, struct i915_hw_ppgtt,
3191                                                      base);
3192
3193                         if (i915_is_ggtt(vm))
3194                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
3195
3196                         gen6_write_page_range(dev_priv, &ppgtt->pd,
3197                                               0, ppgtt->base.total);
3198                 }
3199         }
3200
3201         i915_ggtt_flush(dev_priv);
3202 }
3203
3204 static struct i915_vma *
3205 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3206                       struct i915_address_space *vm,
3207                       const struct i915_ggtt_view *ggtt_view)
3208 {
3209         struct i915_vma *vma;
3210
3211         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3212                 return ERR_PTR(-EINVAL);
3213
3214         vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3215         if (vma == NULL)
3216                 return ERR_PTR(-ENOMEM);
3217
3218         INIT_LIST_HEAD(&vma->vma_link);
3219         INIT_LIST_HEAD(&vma->mm_list);
3220         INIT_LIST_HEAD(&vma->exec_list);
3221         vma->vm = vm;
3222         vma->obj = obj;
3223
3224         if (i915_is_ggtt(vm))
3225                 vma->ggtt_view = *ggtt_view;
3226
3227         list_add_tail(&vma->vma_link, &obj->vma_list);
3228         if (!i915_is_ggtt(vm))
3229                 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3230
3231         return vma;
3232 }
3233
3234 struct i915_vma *
3235 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3236                                   struct i915_address_space *vm)
3237 {
3238         struct i915_vma *vma;
3239
3240         vma = i915_gem_obj_to_vma(obj, vm);
3241         if (!vma)
3242                 vma = __i915_gem_vma_create(obj, vm,
3243                                             i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3244
3245         return vma;
3246 }
3247
3248 struct i915_vma *
3249 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3250                                        const struct i915_ggtt_view *view)
3251 {
3252         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
3253         struct i915_vma *vma;
3254
3255         if (WARN_ON(!view))
3256                 return ERR_PTR(-EINVAL);
3257
3258         vma = i915_gem_obj_to_ggtt_view(obj, view);
3259
3260         if (IS_ERR(vma))
3261                 return vma;
3262
3263         if (!vma)
3264                 vma = __i915_gem_vma_create(obj, ggtt, view);
3265
3266         return vma;
3267
3268 }
3269
3270 static struct scatterlist *
3271 rotate_pages(dma_addr_t *in, unsigned int offset,
3272              unsigned int width, unsigned int height,
3273              struct sg_table *st, struct scatterlist *sg)
3274 {
3275         unsigned int column, row;
3276         unsigned int src_idx;
3277
3278         if (!sg) {
3279                 st->nents = 0;
3280                 sg = st->sgl;
3281         }
3282
3283         for (column = 0; column < width; column++) {
3284                 src_idx = width * (height - 1) + column;
3285                 for (row = 0; row < height; row++) {
3286                         st->nents++;
3287                         /* We don't need the pages, but need to initialize
3288                          * the entries so the sg list can be happily traversed.
3289                          * The only thing we need are DMA addresses.
3290                          */
3291                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
3292                         sg_dma_address(sg) = in[offset + src_idx];
3293                         sg_dma_len(sg) = PAGE_SIZE;
3294                         sg = sg_next(sg);
3295                         src_idx -= width;
3296                 }
3297         }
3298
3299         return sg;
3300 }
3301
3302 static struct sg_table *
3303 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
3304                           struct drm_i915_gem_object *obj)
3305 {
3306         struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
3307         unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
3308         unsigned int size_pages_uv;
3309         struct sg_page_iter sg_iter;
3310         unsigned long i;
3311         dma_addr_t *page_addr_list;
3312         struct sg_table *st;
3313         unsigned int uv_start_page;
3314         struct scatterlist *sg;
3315         int ret = -ENOMEM;
3316
3317         /* Allocate a temporary list of source pages for random access. */
3318         page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
3319                                        sizeof(dma_addr_t));
3320         if (!page_addr_list)
3321                 return ERR_PTR(ret);
3322
3323         /* Account for UV plane with NV12. */
3324         if (rot_info->pixel_format == DRM_FORMAT_NV12)
3325                 size_pages_uv = rot_info->size_uv >> PAGE_SHIFT;
3326         else
3327                 size_pages_uv = 0;
3328
3329         /* Allocate target SG list. */
3330         st = kmalloc(sizeof(*st), GFP_KERNEL);
3331         if (!st)
3332                 goto err_st_alloc;
3333
3334         ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3335         if (ret)
3336                 goto err_sg_alloc;
3337
3338         /* Populate source page list from the object. */
3339         i = 0;
3340         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3341                 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3342                 i++;
3343         }
3344
3345         /* Rotate the pages. */
3346         sg = rotate_pages(page_addr_list, 0,
3347                      rot_info->width_pages, rot_info->height_pages,
3348                      st, NULL);
3349
3350         /* Append the UV plane if NV12. */
3351         if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3352                 uv_start_page = size_pages;
3353
3354                 /* Check for tile-row un-alignment. */
3355                 if (offset_in_page(rot_info->uv_offset))
3356                         uv_start_page--;
3357
3358                 rot_info->uv_start_page = uv_start_page;
3359
3360                 rotate_pages(page_addr_list, uv_start_page,
3361                              rot_info->width_pages_uv,
3362                              rot_info->height_pages_uv,
3363                              st, sg);
3364         }
3365
3366         DRM_DEBUG_KMS(
3367                       "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0)).\n",
3368                       obj->base.size, rot_info->pitch, rot_info->height,
3369                       rot_info->pixel_format, rot_info->width_pages,
3370                       rot_info->height_pages, size_pages + size_pages_uv,
3371                       size_pages);
3372
3373         drm_free_large(page_addr_list);
3374
3375         return st;
3376
3377 err_sg_alloc:
3378         kfree(st);
3379 err_st_alloc:
3380         drm_free_large(page_addr_list);
3381
3382         DRM_DEBUG_KMS(
3383                       "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0))\n",
3384                       obj->base.size, ret, rot_info->pitch, rot_info->height,
3385                       rot_info->pixel_format, rot_info->width_pages,
3386                       rot_info->height_pages, size_pages + size_pages_uv,
3387                       size_pages);
3388         return ERR_PTR(ret);
3389 }
3390
3391 static struct sg_table *
3392 intel_partial_pages(const struct i915_ggtt_view *view,
3393                     struct drm_i915_gem_object *obj)
3394 {
3395         struct sg_table *st;
3396         struct scatterlist *sg;
3397         struct sg_page_iter obj_sg_iter;
3398         int ret = -ENOMEM;
3399
3400         st = kmalloc(sizeof(*st), GFP_KERNEL);
3401         if (!st)
3402                 goto err_st_alloc;
3403
3404         ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3405         if (ret)
3406                 goto err_sg_alloc;
3407
3408         sg = st->sgl;
3409         st->nents = 0;
3410         for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3411                 view->params.partial.offset)
3412         {
3413                 if (st->nents >= view->params.partial.size)
3414                         break;
3415
3416                 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3417                 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3418                 sg_dma_len(sg) = PAGE_SIZE;
3419
3420                 sg = sg_next(sg);
3421                 st->nents++;
3422         }
3423
3424         return st;
3425
3426 err_sg_alloc:
3427         kfree(st);
3428 err_st_alloc:
3429         return ERR_PTR(ret);
3430 }
3431
3432 static int
3433 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3434 {
3435         int ret = 0;
3436
3437         if (vma->ggtt_view.pages)
3438                 return 0;
3439
3440         if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3441                 vma->ggtt_view.pages = vma->obj->pages;
3442         else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3443                 vma->ggtt_view.pages =
3444                         intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
3445         else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3446                 vma->ggtt_view.pages =
3447                         intel_partial_pages(&vma->ggtt_view, vma->obj);
3448         else
3449                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3450                           vma->ggtt_view.type);
3451
3452         if (!vma->ggtt_view.pages) {
3453                 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3454                           vma->ggtt_view.type);
3455                 ret = -EINVAL;
3456         } else if (IS_ERR(vma->ggtt_view.pages)) {
3457                 ret = PTR_ERR(vma->ggtt_view.pages);
3458                 vma->ggtt_view.pages = NULL;
3459                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3460                           vma->ggtt_view.type, ret);
3461         }
3462
3463         return ret;
3464 }
3465
3466 /**
3467  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3468  * @vma: VMA to map
3469  * @cache_level: mapping cache level
3470  * @flags: flags like global or local mapping
3471  *
3472  * DMA addresses are taken from the scatter-gather table of this object (or of
3473  * this VMA in case of non-default GGTT views) and PTE entries set up.
3474  * Note that DMA addresses are also the only part of the SG table we care about.
3475  */
3476 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3477                   u32 flags)
3478 {
3479         int ret;
3480         u32 bind_flags;
3481
3482         if (WARN_ON(flags == 0))
3483                 return -EINVAL;
3484
3485         bind_flags = 0;
3486         if (flags & PIN_GLOBAL)
3487                 bind_flags |= GLOBAL_BIND;
3488         if (flags & PIN_USER)
3489                 bind_flags |= LOCAL_BIND;
3490
3491         if (flags & PIN_UPDATE)
3492                 bind_flags |= vma->bound;
3493         else
3494                 bind_flags &= ~vma->bound;
3495
3496         if (bind_flags == 0)
3497                 return 0;
3498
3499         if (vma->bound == 0 && vma->vm->allocate_va_range) {
3500                 trace_i915_va_alloc(vma->vm,
3501                                     vma->node.start,
3502                                     vma->node.size,
3503                                     VM_TO_TRACE_NAME(vma->vm));
3504
3505                 /* XXX: i915_vma_pin() will fix this +- hack */
3506                 vma->pin_count++;
3507                 ret = vma->vm->allocate_va_range(vma->vm,
3508                                                  vma->node.start,
3509                                                  vma->node.size);
3510                 vma->pin_count--;
3511                 if (ret)
3512                         return ret;
3513         }
3514
3515         ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3516         if (ret)
3517                 return ret;
3518
3519         vma->bound |= bind_flags;
3520
3521         return 0;
3522 }
3523
3524 /**
3525  * i915_ggtt_view_size - Get the size of a GGTT view.
3526  * @obj: Object the view is of.
3527  * @view: The view in question.
3528  *
3529  * @return The size of the GGTT view in bytes.
3530  */
3531 size_t
3532 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3533                     const struct i915_ggtt_view *view)
3534 {
3535         if (view->type == I915_GGTT_VIEW_NORMAL) {
3536                 return obj->base.size;
3537         } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3538                 return view->rotation_info.size;
3539         } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3540                 return view->params.partial.size << PAGE_SHIFT;
3541         } else {
3542                 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3543                 return obj->base.size;
3544         }
3545 }