0239fbff7bf7282930aa6f345c62ab5c8b502456
[kvmfornfv.git] / kernel / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33
34 /**
35  * DOC: Global GTT views
36  *
37  * Background and previous state
38  *
39  * Historically objects could exists (be bound) in global GTT space only as
40  * singular instances with a view representing all of the object's backing pages
41  * in a linear fashion. This view will be called a normal view.
42  *
43  * To support multiple views of the same object, where the number of mapped
44  * pages is not equal to the backing store, or where the layout of the pages
45  * is not linear, concept of a GGTT view was added.
46  *
47  * One example of an alternative view is a stereo display driven by a single
48  * image. In this case we would have a framebuffer looking like this
49  * (2x2 pages):
50  *
51  *    12
52  *    34
53  *
54  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55  * rendering. In contrast, fed to the display engine would be an alternative
56  * view which could look something like this:
57  *
58  *   1212
59  *   3434
60  *
61  * In this example both the size and layout of pages in the alternative view is
62  * different from the normal view.
63  *
64  * Implementation and usage
65  *
66  * GGTT views are implemented using VMAs and are distinguished via enum
67  * i915_ggtt_view_type and struct i915_ggtt_view.
68  *
69  * A new flavour of core GEM functions which work with GGTT bound objects were
70  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71  * renaming  in large amounts of code. They take the struct i915_ggtt_view
72  * parameter encapsulating all metadata required to implement a view.
73  *
74  * As a helper for callers which are only interested in the normal view,
75  * globally const i915_ggtt_view_normal singleton instance exists. All old core
76  * GEM API functions, the ones not taking the view parameter, are operating on,
77  * or with the normal GGTT view.
78  *
79  * Code wanting to add or use a new GGTT view needs to:
80  *
81  * 1. Add a new enum with a suitable name.
82  * 2. Extend the metadata in the i915_ggtt_view structure if required.
83  * 3. Add support to i915_get_vma_pages().
84  *
85  * New views are required to build a scatter-gather table from within the
86  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87  * exists for the lifetime of an VMA.
88  *
89  * Core API is designed to have copy semantics which means that passed in
90  * struct i915_ggtt_view does not need to be persistent (left around after
91  * calling the core API functions).
92  *
93  */
94
95 const struct i915_ggtt_view i915_ggtt_view_normal;
96 const struct i915_ggtt_view i915_ggtt_view_rotated = {
97         .type = I915_GGTT_VIEW_ROTATED
98 };
99
100 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
101 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
102
103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104 {
105         bool has_aliasing_ppgtt;
106         bool has_full_ppgtt;
107
108         has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109         has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110
111         if (intel_vgpu_active(dev))
112                 has_full_ppgtt = false; /* emulation is too hard */
113
114         /*
115          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116          * execlists, the sole mechanism available to submit work.
117          */
118         if (INTEL_INFO(dev)->gen < 9 &&
119             (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120                 return 0;
121
122         if (enable_ppgtt == 1)
123                 return 1;
124
125         if (enable_ppgtt == 2 && has_full_ppgtt)
126                 return 2;
127
128 #ifdef CONFIG_INTEL_IOMMU
129         /* Disable ppgtt on SNB if VT-d is on. */
130         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
131                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
132                 return 0;
133         }
134 #endif
135
136         /* Early VLV doesn't have this */
137         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
138             dev->pdev->revision < 0xb) {
139                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
140                 return 0;
141         }
142
143         if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
144                 return 2;
145         else
146                 return has_aliasing_ppgtt ? 1 : 0;
147 }
148
149 static void ppgtt_bind_vma(struct i915_vma *vma,
150                            enum i915_cache_level cache_level,
151                            u32 flags);
152 static void ppgtt_unbind_vma(struct i915_vma *vma);
153
154 static inline gen8_pte_t gen8_pte_encode(dma_addr_t addr,
155                                          enum i915_cache_level level,
156                                          bool valid)
157 {
158         gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
159         pte |= addr;
160
161         switch (level) {
162         case I915_CACHE_NONE:
163                 pte |= PPAT_UNCACHED_INDEX;
164                 break;
165         case I915_CACHE_WT:
166                 pte |= PPAT_DISPLAY_ELLC_INDEX;
167                 break;
168         default:
169                 pte |= PPAT_CACHED_INDEX;
170                 break;
171         }
172
173         return pte;
174 }
175
176 static inline gen8_pde_t gen8_pde_encode(struct drm_device *dev,
177                                           dma_addr_t addr,
178                                           enum i915_cache_level level)
179 {
180         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
181         pde |= addr;
182         if (level != I915_CACHE_NONE)
183                 pde |= PPAT_CACHED_PDE_INDEX;
184         else
185                 pde |= PPAT_UNCACHED_INDEX;
186         return pde;
187 }
188
189 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
190                                  enum i915_cache_level level,
191                                  bool valid, u32 unused)
192 {
193         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
194         pte |= GEN6_PTE_ADDR_ENCODE(addr);
195
196         switch (level) {
197         case I915_CACHE_L3_LLC:
198         case I915_CACHE_LLC:
199                 pte |= GEN6_PTE_CACHE_LLC;
200                 break;
201         case I915_CACHE_NONE:
202                 pte |= GEN6_PTE_UNCACHED;
203                 break;
204         default:
205                 MISSING_CASE(level);
206         }
207
208         return pte;
209 }
210
211 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
212                                  enum i915_cache_level level,
213                                  bool valid, u32 unused)
214 {
215         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
216         pte |= GEN6_PTE_ADDR_ENCODE(addr);
217
218         switch (level) {
219         case I915_CACHE_L3_LLC:
220                 pte |= GEN7_PTE_CACHE_L3_LLC;
221                 break;
222         case I915_CACHE_LLC:
223                 pte |= GEN6_PTE_CACHE_LLC;
224                 break;
225         case I915_CACHE_NONE:
226                 pte |= GEN6_PTE_UNCACHED;
227                 break;
228         default:
229                 MISSING_CASE(level);
230         }
231
232         return pte;
233 }
234
235 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
236                                  enum i915_cache_level level,
237                                  bool valid, u32 flags)
238 {
239         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
240         pte |= GEN6_PTE_ADDR_ENCODE(addr);
241
242         if (!(flags & PTE_READ_ONLY))
243                 pte |= BYT_PTE_WRITEABLE;
244
245         if (level != I915_CACHE_NONE)
246                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
247
248         return pte;
249 }
250
251 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
252                                  enum i915_cache_level level,
253                                  bool valid, u32 unused)
254 {
255         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
256         pte |= HSW_PTE_ADDR_ENCODE(addr);
257
258         if (level != I915_CACHE_NONE)
259                 pte |= HSW_WB_LLC_AGE3;
260
261         return pte;
262 }
263
264 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
265                                   enum i915_cache_level level,
266                                   bool valid, u32 unused)
267 {
268         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
269         pte |= HSW_PTE_ADDR_ENCODE(addr);
270
271         switch (level) {
272         case I915_CACHE_NONE:
273                 break;
274         case I915_CACHE_WT:
275                 pte |= HSW_WT_ELLC_LLC_AGE3;
276                 break;
277         default:
278                 pte |= HSW_WB_ELLC_LLC_AGE3;
279                 break;
280         }
281
282         return pte;
283 }
284
285 #define i915_dma_unmap_single(px, dev) \
286         __i915_dma_unmap_single((px)->daddr, dev)
287
288 static inline void __i915_dma_unmap_single(dma_addr_t daddr,
289                                         struct drm_device *dev)
290 {
291         struct device *device = &dev->pdev->dev;
292
293         dma_unmap_page(device, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
294 }
295
296 /**
297  * i915_dma_map_single() - Create a dma mapping for a page table/dir/etc.
298  * @px: Page table/dir/etc to get a DMA map for
299  * @dev:        drm device
300  *
301  * Page table allocations are unified across all gens. They always require a
302  * single 4k allocation, as well as a DMA mapping. If we keep the structs
303  * symmetric here, the simple macro covers us for every page table type.
304  *
305  * Return: 0 if success.
306  */
307 #define i915_dma_map_single(px, dev) \
308         i915_dma_map_page_single((px)->page, (dev), &(px)->daddr)
309
310 static inline int i915_dma_map_page_single(struct page *page,
311                                            struct drm_device *dev,
312                                            dma_addr_t *daddr)
313 {
314         struct device *device = &dev->pdev->dev;
315
316         *daddr = dma_map_page(device, page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
317         if (dma_mapping_error(device, *daddr))
318                 return -ENOMEM;
319
320         return 0;
321 }
322
323 static void unmap_and_free_pt(struct i915_page_table_entry *pt,
324                                struct drm_device *dev)
325 {
326         if (WARN_ON(!pt->page))
327                 return;
328
329         i915_dma_unmap_single(pt, dev);
330         __free_page(pt->page);
331         kfree(pt->used_ptes);
332         kfree(pt);
333 }
334
335 static struct i915_page_table_entry *alloc_pt_single(struct drm_device *dev)
336 {
337         struct i915_page_table_entry *pt;
338         const size_t count = INTEL_INFO(dev)->gen >= 8 ?
339                 GEN8_PTES : GEN6_PTES;
340         int ret = -ENOMEM;
341
342         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
343         if (!pt)
344                 return ERR_PTR(-ENOMEM);
345
346         pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
347                                 GFP_KERNEL);
348
349         if (!pt->used_ptes)
350                 goto fail_bitmap;
351
352         pt->page = alloc_page(GFP_KERNEL);
353         if (!pt->page)
354                 goto fail_page;
355
356         ret = i915_dma_map_single(pt, dev);
357         if (ret)
358                 goto fail_dma;
359
360         return pt;
361
362 fail_dma:
363         __free_page(pt->page);
364 fail_page:
365         kfree(pt->used_ptes);
366 fail_bitmap:
367         kfree(pt);
368
369         return ERR_PTR(ret);
370 }
371
372 /**
373  * alloc_pt_range() - Allocate a multiple page tables
374  * @pd:         The page directory which will have at least @count entries
375  *              available to point to the allocated page tables.
376  * @pde:        First page directory entry for which we are allocating.
377  * @count:      Number of pages to allocate.
378  * @dev:        DRM device.
379  *
380  * Allocates multiple page table pages and sets the appropriate entries in the
381  * page table structure within the page directory. Function cleans up after
382  * itself on any failures.
383  *
384  * Return: 0 if allocation succeeded.
385  */
386 static int alloc_pt_range(struct i915_page_directory_entry *pd, uint16_t pde, size_t count,
387                           struct drm_device *dev)
388 {
389         int i, ret;
390
391         /* 512 is the max page tables per page_directory on any platform. */
392         if (WARN_ON(pde + count > I915_PDES))
393                 return -EINVAL;
394
395         for (i = pde; i < pde + count; i++) {
396                 struct i915_page_table_entry *pt = alloc_pt_single(dev);
397
398                 if (IS_ERR(pt)) {
399                         ret = PTR_ERR(pt);
400                         goto err_out;
401                 }
402                 WARN(pd->page_table[i],
403                      "Leaking page directory entry %d (%p)\n",
404                      i, pd->page_table[i]);
405                 pd->page_table[i] = pt;
406         }
407
408         return 0;
409
410 err_out:
411         while (i-- > pde)
412                 unmap_and_free_pt(pd->page_table[i], dev);
413         return ret;
414 }
415
416 static void unmap_and_free_pd(struct i915_page_directory_entry *pd)
417 {
418         if (pd->page) {
419                 __free_page(pd->page);
420                 kfree(pd);
421         }
422 }
423
424 static struct i915_page_directory_entry *alloc_pd_single(void)
425 {
426         struct i915_page_directory_entry *pd;
427
428         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
429         if (!pd)
430                 return ERR_PTR(-ENOMEM);
431
432         pd->page = alloc_page(GFP_KERNEL | __GFP_ZERO);
433         if (!pd->page) {
434                 kfree(pd);
435                 return ERR_PTR(-ENOMEM);
436         }
437
438         return pd;
439 }
440
441 /* Broadwell Page Directory Pointer Descriptors */
442 static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
443                            uint64_t val)
444 {
445         int ret;
446
447         BUG_ON(entry >= 4);
448
449         ret = intel_ring_begin(ring, 6);
450         if (ret)
451                 return ret;
452
453         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
454         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
455         intel_ring_emit(ring, (u32)(val >> 32));
456         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
457         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
458         intel_ring_emit(ring, (u32)(val));
459         intel_ring_advance(ring);
460
461         return 0;
462 }
463
464 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
465                           struct intel_engine_cs *ring)
466 {
467         int i, ret;
468
469         /* bit of a hack to find the actual last used pd */
470         int used_pd = ppgtt->num_pd_entries / I915_PDES;
471
472         for (i = used_pd - 1; i >= 0; i--) {
473                 dma_addr_t addr = ppgtt->pdp.page_directory[i]->daddr;
474                 ret = gen8_write_pdp(ring, i, addr);
475                 if (ret)
476                         return ret;
477         }
478
479         return 0;
480 }
481
482 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
483                                    uint64_t start,
484                                    uint64_t length,
485                                    bool use_scratch)
486 {
487         struct i915_hw_ppgtt *ppgtt =
488                 container_of(vm, struct i915_hw_ppgtt, base);
489         gen8_pte_t *pt_vaddr, scratch_pte;
490         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
491         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
492         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
493         unsigned num_entries = length >> PAGE_SHIFT;
494         unsigned last_pte, i;
495
496         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
497                                       I915_CACHE_LLC, use_scratch);
498
499         while (num_entries) {
500                 struct i915_page_directory_entry *pd;
501                 struct i915_page_table_entry *pt;
502                 struct page *page_table;
503
504                 if (WARN_ON(!ppgtt->pdp.page_directory[pdpe]))
505                         continue;
506
507                 pd = ppgtt->pdp.page_directory[pdpe];
508
509                 if (WARN_ON(!pd->page_table[pde]))
510                         continue;
511
512                 pt = pd->page_table[pde];
513
514                 if (WARN_ON(!pt->page))
515                         continue;
516
517                 page_table = pt->page;
518
519                 last_pte = pte + num_entries;
520                 if (last_pte > GEN8_PTES)
521                         last_pte = GEN8_PTES;
522
523                 pt_vaddr = kmap_atomic(page_table);
524
525                 for (i = pte; i < last_pte; i++) {
526                         pt_vaddr[i] = scratch_pte;
527                         num_entries--;
528                 }
529
530                 if (!HAS_LLC(ppgtt->base.dev))
531                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
532                 kunmap_atomic(pt_vaddr);
533
534                 pte = 0;
535                 if (++pde == I915_PDES) {
536                         pdpe++;
537                         pde = 0;
538                 }
539         }
540 }
541
542 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
543                                       struct sg_table *pages,
544                                       uint64_t start,
545                                       enum i915_cache_level cache_level, u32 unused)
546 {
547         struct i915_hw_ppgtt *ppgtt =
548                 container_of(vm, struct i915_hw_ppgtt, base);
549         gen8_pte_t *pt_vaddr;
550         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
551         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
552         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
553         struct sg_page_iter sg_iter;
554
555         pt_vaddr = NULL;
556
557         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
558                 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
559                         break;
560
561                 if (pt_vaddr == NULL) {
562                         struct i915_page_directory_entry *pd = ppgtt->pdp.page_directory[pdpe];
563                         struct i915_page_table_entry *pt = pd->page_table[pde];
564                         struct page *page_table = pt->page;
565
566                         pt_vaddr = kmap_atomic(page_table);
567                 }
568
569                 pt_vaddr[pte] =
570                         gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
571                                         cache_level, true);
572                 if (++pte == GEN8_PTES) {
573                         if (!HAS_LLC(ppgtt->base.dev))
574                                 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
575                         kunmap_atomic(pt_vaddr);
576                         pt_vaddr = NULL;
577                         if (++pde == I915_PDES) {
578                                 pdpe++;
579                                 pde = 0;
580                         }
581                         pte = 0;
582                 }
583         }
584         if (pt_vaddr) {
585                 if (!HAS_LLC(ppgtt->base.dev))
586                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
587                 kunmap_atomic(pt_vaddr);
588         }
589 }
590
591 static void gen8_free_page_tables(struct i915_page_directory_entry *pd, struct drm_device *dev)
592 {
593         int i;
594
595         if (!pd->page)
596                 return;
597
598         for (i = 0; i < I915_PDES; i++) {
599                 if (WARN_ON(!pd->page_table[i]))
600                         continue;
601
602                 unmap_and_free_pt(pd->page_table[i], dev);
603                 pd->page_table[i] = NULL;
604         }
605 }
606
607 static void gen8_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
608 {
609         int i;
610
611         for (i = 0; i < ppgtt->num_pd_pages; i++) {
612                 if (WARN_ON(!ppgtt->pdp.page_directory[i]))
613                         continue;
614
615                 gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
616                 unmap_and_free_pd(ppgtt->pdp.page_directory[i]);
617         }
618 }
619
620 static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
621 {
622         struct pci_dev *hwdev = ppgtt->base.dev->pdev;
623         int i, j;
624
625         for (i = 0; i < ppgtt->num_pd_pages; i++) {
626                 /* TODO: In the future we'll support sparse mappings, so this
627                  * will have to change. */
628                 if (!ppgtt->pdp.page_directory[i]->daddr)
629                         continue;
630
631                 pci_unmap_page(hwdev, ppgtt->pdp.page_directory[i]->daddr, PAGE_SIZE,
632                                PCI_DMA_BIDIRECTIONAL);
633
634                 for (j = 0; j < I915_PDES; j++) {
635                         struct i915_page_directory_entry *pd = ppgtt->pdp.page_directory[i];
636                         struct i915_page_table_entry *pt;
637                         dma_addr_t addr;
638
639                         if (WARN_ON(!pd->page_table[j]))
640                                 continue;
641
642                         pt = pd->page_table[j];
643                         addr = pt->daddr;
644
645                         if (addr)
646                                 pci_unmap_page(hwdev, addr, PAGE_SIZE,
647                                                PCI_DMA_BIDIRECTIONAL);
648                 }
649         }
650 }
651
652 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
653 {
654         struct i915_hw_ppgtt *ppgtt =
655                 container_of(vm, struct i915_hw_ppgtt, base);
656
657         gen8_ppgtt_unmap_pages(ppgtt);
658         gen8_ppgtt_free(ppgtt);
659 }
660
661 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
662 {
663         int i, ret;
664
665         for (i = 0; i < ppgtt->num_pd_pages; i++) {
666                 ret = alloc_pt_range(ppgtt->pdp.page_directory[i],
667                                      0, I915_PDES, ppgtt->base.dev);
668                 if (ret)
669                         goto unwind_out;
670         }
671
672         return 0;
673
674 unwind_out:
675         while (i--)
676                 gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
677
678         return -ENOMEM;
679 }
680
681 static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
682                                                 const int max_pdp)
683 {
684         int i;
685
686         for (i = 0; i < max_pdp; i++) {
687                 ppgtt->pdp.page_directory[i] = alloc_pd_single();
688                 if (IS_ERR(ppgtt->pdp.page_directory[i]))
689                         goto unwind_out;
690         }
691
692         ppgtt->num_pd_pages = max_pdp;
693         BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPES);
694
695         return 0;
696
697 unwind_out:
698         while (i--)
699                 unmap_and_free_pd(ppgtt->pdp.page_directory[i]);
700
701         return -ENOMEM;
702 }
703
704 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
705                             const int max_pdp)
706 {
707         int ret;
708
709         ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
710         if (ret)
711                 return ret;
712
713         ret = gen8_ppgtt_allocate_page_tables(ppgtt);
714         if (ret)
715                 goto err_out;
716
717         ppgtt->num_pd_entries = max_pdp * I915_PDES;
718
719         return 0;
720
721 err_out:
722         gen8_ppgtt_free(ppgtt);
723         return ret;
724 }
725
726 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
727                                              const int pd)
728 {
729         dma_addr_t pd_addr;
730         int ret;
731
732         pd_addr = pci_map_page(ppgtt->base.dev->pdev,
733                                ppgtt->pdp.page_directory[pd]->page, 0,
734                                PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
735
736         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
737         if (ret)
738                 return ret;
739
740         ppgtt->pdp.page_directory[pd]->daddr = pd_addr;
741
742         return 0;
743 }
744
745 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
746                                         const int pd,
747                                         const int pt)
748 {
749         dma_addr_t pt_addr;
750         struct i915_page_directory_entry *pdir = ppgtt->pdp.page_directory[pd];
751         struct i915_page_table_entry *ptab = pdir->page_table[pt];
752         struct page *p = ptab->page;
753         int ret;
754
755         pt_addr = pci_map_page(ppgtt->base.dev->pdev,
756                                p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
757         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
758         if (ret)
759                 return ret;
760
761         ptab->daddr = pt_addr;
762
763         return 0;
764 }
765
766 /*
767  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
768  * with a net effect resembling a 2-level page table in normal x86 terms. Each
769  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
770  * space.
771  *
772  * FIXME: split allocation into smaller pieces. For now we only ever do this
773  * once, but with full PPGTT, the multiple contiguous allocations will be bad.
774  * TODO: Do something with the size parameter
775  */
776 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
777 {
778         const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
779         const int min_pt_pages = I915_PDES * max_pdp;
780         int i, j, ret;
781
782         if (size % (1<<30))
783                 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
784
785         /* 1. Do all our allocations for page directories and page tables.
786          * We allocate more than was asked so that we can point the unused parts
787          * to valid entries that point to scratch page. Dynamic page tables
788          * will fix this eventually.
789          */
790         ret = gen8_ppgtt_alloc(ppgtt, GEN8_LEGACY_PDPES);
791         if (ret)
792                 return ret;
793
794         /*
795          * 2. Create DMA mappings for the page directories and page tables.
796          */
797         for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
798                 ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
799                 if (ret)
800                         goto bail;
801
802                 for (j = 0; j < I915_PDES; j++) {
803                         ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
804                         if (ret)
805                                 goto bail;
806                 }
807         }
808
809         /*
810          * 3. Map all the page directory entires to point to the page tables
811          * we've allocated.
812          *
813          * For now, the PPGTT helper functions all require that the PDEs are
814          * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
815          * will never need to touch the PDEs again.
816          */
817         for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
818                 struct i915_page_directory_entry *pd = ppgtt->pdp.page_directory[i];
819                 gen8_pde_t *pd_vaddr;
820                 pd_vaddr = kmap_atomic(ppgtt->pdp.page_directory[i]->page);
821                 for (j = 0; j < I915_PDES; j++) {
822                         struct i915_page_table_entry *pt = pd->page_table[j];
823                         dma_addr_t addr = pt->daddr;
824                         pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
825                                                       I915_CACHE_LLC);
826                 }
827                 if (!HAS_LLC(ppgtt->base.dev))
828                         drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
829                 kunmap_atomic(pd_vaddr);
830         }
831
832         ppgtt->switch_mm = gen8_mm_switch;
833         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
834         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
835         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
836         ppgtt->base.start = 0;
837
838         /* This is the area that we advertise as usable for the caller */
839         ppgtt->base.total = max_pdp * I915_PDES * GEN8_PTES * PAGE_SIZE;
840
841         /* Set all ptes to a valid scratch page. Also above requested space */
842         ppgtt->base.clear_range(&ppgtt->base, 0,
843                                 ppgtt->num_pd_pages * GEN8_PTES * PAGE_SIZE,
844                                 true);
845
846         DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
847                          ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
848         DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
849                          ppgtt->num_pd_entries,
850                          (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
851         return 0;
852
853 bail:
854         gen8_ppgtt_unmap_pages(ppgtt);
855         gen8_ppgtt_free(ppgtt);
856         return ret;
857 }
858
859 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
860 {
861         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
862         struct i915_address_space *vm = &ppgtt->base;
863         gen6_pte_t __iomem *pd_addr;
864         gen6_pte_t scratch_pte;
865         uint32_t pd_entry;
866         int pte, pde;
867
868         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
869
870         pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
871                 ppgtt->pd.pd_offset / sizeof(gen6_pte_t);
872
873         seq_printf(m, "  VM %p (pd_offset %x-%x):\n", vm,
874                    ppgtt->pd.pd_offset,
875                    ppgtt->pd.pd_offset + ppgtt->num_pd_entries);
876         for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
877                 u32 expected;
878                 gen6_pte_t *pt_vaddr;
879                 dma_addr_t pt_addr = ppgtt->pd.page_table[pde]->daddr;
880                 pd_entry = readl(pd_addr + pde);
881                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
882
883                 if (pd_entry != expected)
884                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
885                                    pde,
886                                    pd_entry,
887                                    expected);
888                 seq_printf(m, "\tPDE: %x\n", pd_entry);
889
890                 pt_vaddr = kmap_atomic(ppgtt->pd.page_table[pde]->page);
891                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
892                         unsigned long va =
893                                 (pde * PAGE_SIZE * GEN6_PTES) +
894                                 (pte * PAGE_SIZE);
895                         int i;
896                         bool found = false;
897                         for (i = 0; i < 4; i++)
898                                 if (pt_vaddr[pte + i] != scratch_pte)
899                                         found = true;
900                         if (!found)
901                                 continue;
902
903                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
904                         for (i = 0; i < 4; i++) {
905                                 if (pt_vaddr[pte + i] != scratch_pte)
906                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
907                                 else
908                                         seq_puts(m, "  SCRATCH ");
909                         }
910                         seq_puts(m, "\n");
911                 }
912                 kunmap_atomic(pt_vaddr);
913         }
914 }
915
916 /* Write pde (index) from the page directory @pd to the page table @pt */
917 static void gen6_write_pde(struct i915_page_directory_entry *pd,
918                             const int pde, struct i915_page_table_entry *pt)
919 {
920         /* Caller needs to make sure the write completes if necessary */
921         struct i915_hw_ppgtt *ppgtt =
922                 container_of(pd, struct i915_hw_ppgtt, pd);
923         u32 pd_entry;
924
925         pd_entry = GEN6_PDE_ADDR_ENCODE(pt->daddr);
926         pd_entry |= GEN6_PDE_VALID;
927
928         writel(pd_entry, ppgtt->pd_addr + pde);
929 }
930
931 /* Write all the page tables found in the ppgtt structure to incrementing page
932  * directories. */
933 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
934                                   struct i915_page_directory_entry *pd,
935                                   uint32_t start, uint32_t length)
936 {
937         struct i915_page_table_entry *pt;
938         uint32_t pde, temp;
939
940         gen6_for_each_pde(pt, pd, start, length, temp, pde)
941                 gen6_write_pde(pd, pde, pt);
942
943         /* Make sure write is complete before other code can use this page
944          * table. Also require for WC mapped PTEs */
945         readl(dev_priv->gtt.gsm);
946 }
947
948 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
949 {
950         BUG_ON(ppgtt->pd.pd_offset & 0x3f);
951
952         return (ppgtt->pd.pd_offset / 64) << 16;
953 }
954
955 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
956                          struct intel_engine_cs *ring)
957 {
958         int ret;
959
960         /* NB: TLBs must be flushed and invalidated before a switch */
961         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
962         if (ret)
963                 return ret;
964
965         ret = intel_ring_begin(ring, 6);
966         if (ret)
967                 return ret;
968
969         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
970         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
971         intel_ring_emit(ring, PP_DIR_DCLV_2G);
972         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
973         intel_ring_emit(ring, get_pd_offset(ppgtt));
974         intel_ring_emit(ring, MI_NOOP);
975         intel_ring_advance(ring);
976
977         return 0;
978 }
979
980 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
981                           struct intel_engine_cs *ring)
982 {
983         struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
984
985         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
986         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
987         return 0;
988 }
989
990 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
991                           struct intel_engine_cs *ring)
992 {
993         int ret;
994
995         /* NB: TLBs must be flushed and invalidated before a switch */
996         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
997         if (ret)
998                 return ret;
999
1000         ret = intel_ring_begin(ring, 6);
1001         if (ret)
1002                 return ret;
1003
1004         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1005         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1006         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1007         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1008         intel_ring_emit(ring, get_pd_offset(ppgtt));
1009         intel_ring_emit(ring, MI_NOOP);
1010         intel_ring_advance(ring);
1011
1012         /* XXX: RCS is the only one to auto invalidate the TLBs? */
1013         if (ring->id != RCS) {
1014                 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1015                 if (ret)
1016                         return ret;
1017         }
1018
1019         return 0;
1020 }
1021
1022 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1023                           struct intel_engine_cs *ring)
1024 {
1025         struct drm_device *dev = ppgtt->base.dev;
1026         struct drm_i915_private *dev_priv = dev->dev_private;
1027
1028
1029         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1030         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1031
1032         POSTING_READ(RING_PP_DIR_DCLV(ring));
1033
1034         return 0;
1035 }
1036
1037 static void gen8_ppgtt_enable(struct drm_device *dev)
1038 {
1039         struct drm_i915_private *dev_priv = dev->dev_private;
1040         struct intel_engine_cs *ring;
1041         int j;
1042
1043         for_each_ring(ring, dev_priv, j) {
1044                 I915_WRITE(RING_MODE_GEN7(ring),
1045                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1046         }
1047 }
1048
1049 static void gen7_ppgtt_enable(struct drm_device *dev)
1050 {
1051         struct drm_i915_private *dev_priv = dev->dev_private;
1052         struct intel_engine_cs *ring;
1053         uint32_t ecochk, ecobits;
1054         int i;
1055
1056         ecobits = I915_READ(GAC_ECO_BITS);
1057         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1058
1059         ecochk = I915_READ(GAM_ECOCHK);
1060         if (IS_HASWELL(dev)) {
1061                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1062         } else {
1063                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1064                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1065         }
1066         I915_WRITE(GAM_ECOCHK, ecochk);
1067
1068         for_each_ring(ring, dev_priv, i) {
1069                 /* GFX_MODE is per-ring on gen7+ */
1070                 I915_WRITE(RING_MODE_GEN7(ring),
1071                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1072         }
1073 }
1074
1075 static void gen6_ppgtt_enable(struct drm_device *dev)
1076 {
1077         struct drm_i915_private *dev_priv = dev->dev_private;
1078         uint32_t ecochk, gab_ctl, ecobits;
1079
1080         ecobits = I915_READ(GAC_ECO_BITS);
1081         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1082                    ECOBITS_PPGTT_CACHE64B);
1083
1084         gab_ctl = I915_READ(GAB_CTL);
1085         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1086
1087         ecochk = I915_READ(GAM_ECOCHK);
1088         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1089
1090         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1091 }
1092
1093 /* PPGTT support for Sandybdrige/Gen6 and later */
1094 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1095                                    uint64_t start,
1096                                    uint64_t length,
1097                                    bool use_scratch)
1098 {
1099         struct i915_hw_ppgtt *ppgtt =
1100                 container_of(vm, struct i915_hw_ppgtt, base);
1101         gen6_pte_t *pt_vaddr, scratch_pte;
1102         unsigned first_entry = start >> PAGE_SHIFT;
1103         unsigned num_entries = length >> PAGE_SHIFT;
1104         unsigned act_pt = first_entry / GEN6_PTES;
1105         unsigned first_pte = first_entry % GEN6_PTES;
1106         unsigned last_pte, i;
1107
1108         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
1109
1110         while (num_entries) {
1111                 last_pte = first_pte + num_entries;
1112                 if (last_pte > GEN6_PTES)
1113                         last_pte = GEN6_PTES;
1114
1115                 pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1116
1117                 for (i = first_pte; i < last_pte; i++)
1118                         pt_vaddr[i] = scratch_pte;
1119
1120                 kunmap_atomic(pt_vaddr);
1121
1122                 num_entries -= last_pte - first_pte;
1123                 first_pte = 0;
1124                 act_pt++;
1125         }
1126 }
1127
1128 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1129                                       struct sg_table *pages,
1130                                       uint64_t start,
1131                                       enum i915_cache_level cache_level, u32 flags)
1132 {
1133         struct i915_hw_ppgtt *ppgtt =
1134                 container_of(vm, struct i915_hw_ppgtt, base);
1135         gen6_pte_t *pt_vaddr;
1136         unsigned first_entry = start >> PAGE_SHIFT;
1137         unsigned act_pt = first_entry / GEN6_PTES;
1138         unsigned act_pte = first_entry % GEN6_PTES;
1139         struct sg_page_iter sg_iter;
1140
1141         pt_vaddr = NULL;
1142         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1143                 if (pt_vaddr == NULL)
1144                         pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1145
1146                 pt_vaddr[act_pte] =
1147                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1148                                        cache_level, true, flags);
1149
1150                 if (++act_pte == GEN6_PTES) {
1151                         kunmap_atomic(pt_vaddr);
1152                         pt_vaddr = NULL;
1153                         act_pt++;
1154                         act_pte = 0;
1155                 }
1156         }
1157         if (pt_vaddr)
1158                 kunmap_atomic(pt_vaddr);
1159 }
1160
1161 /* PDE TLBs are a pain invalidate pre GEN8. It requires a context reload. If we
1162  * are switching between contexts with the same LRCA, we also must do a force
1163  * restore.
1164  */
1165 static inline void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1166 {
1167         /* If current vm != vm, */
1168         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1169 }
1170
1171 static void gen6_initialize_pt(struct i915_address_space *vm,
1172                 struct i915_page_table_entry *pt)
1173 {
1174         gen6_pte_t *pt_vaddr, scratch_pte;
1175         int i;
1176
1177         WARN_ON(vm->scratch.addr == 0);
1178
1179         scratch_pte = vm->pte_encode(vm->scratch.addr,
1180                         I915_CACHE_LLC, true, 0);
1181
1182         pt_vaddr = kmap_atomic(pt->page);
1183
1184         for (i = 0; i < GEN6_PTES; i++)
1185                 pt_vaddr[i] = scratch_pte;
1186
1187         kunmap_atomic(pt_vaddr);
1188 }
1189
1190 static int gen6_alloc_va_range(struct i915_address_space *vm,
1191                                uint64_t start, uint64_t length)
1192 {
1193         DECLARE_BITMAP(new_page_tables, I915_PDES);
1194         struct drm_device *dev = vm->dev;
1195         struct drm_i915_private *dev_priv = dev->dev_private;
1196         struct i915_hw_ppgtt *ppgtt =
1197                                 container_of(vm, struct i915_hw_ppgtt, base);
1198         struct i915_page_table_entry *pt;
1199         const uint32_t start_save = start, length_save = length;
1200         uint32_t pde, temp;
1201         int ret;
1202
1203         WARN_ON(upper_32_bits(start));
1204
1205         bitmap_zero(new_page_tables, I915_PDES);
1206
1207         /* The allocation is done in two stages so that we can bail out with
1208          * minimal amount of pain. The first stage finds new page tables that
1209          * need allocation. The second stage marks use ptes within the page
1210          * tables.
1211          */
1212         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1213                 if (pt != ppgtt->scratch_pt) {
1214                         WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1215                         continue;
1216                 }
1217
1218                 /* We've already allocated a page table */
1219                 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1220
1221                 pt = alloc_pt_single(dev);
1222                 if (IS_ERR(pt)) {
1223                         ret = PTR_ERR(pt);
1224                         goto unwind_out;
1225                 }
1226
1227                 gen6_initialize_pt(vm, pt);
1228
1229                 ppgtt->pd.page_table[pde] = pt;
1230                 set_bit(pde, new_page_tables);
1231                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1232         }
1233
1234         start = start_save;
1235         length = length_save;
1236
1237         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1238                 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1239
1240                 bitmap_zero(tmp_bitmap, GEN6_PTES);
1241                 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1242                            gen6_pte_count(start, length));
1243
1244                 if (test_and_clear_bit(pde, new_page_tables))
1245                         gen6_write_pde(&ppgtt->pd, pde, pt);
1246
1247                 trace_i915_page_table_entry_map(vm, pde, pt,
1248                                          gen6_pte_index(start),
1249                                          gen6_pte_count(start, length),
1250                                          GEN6_PTES);
1251                 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1252                                 GEN6_PTES);
1253         }
1254
1255         WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1256
1257         /* Make sure write is complete before other code can use this page
1258          * table. Also require for WC mapped PTEs */
1259         readl(dev_priv->gtt.gsm);
1260
1261         mark_tlbs_dirty(ppgtt);
1262         return 0;
1263
1264 unwind_out:
1265         for_each_set_bit(pde, new_page_tables, I915_PDES) {
1266                 struct i915_page_table_entry *pt = ppgtt->pd.page_table[pde];
1267
1268                 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1269                 unmap_and_free_pt(pt, vm->dev);
1270         }
1271
1272         mark_tlbs_dirty(ppgtt);
1273         return ret;
1274 }
1275
1276 static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
1277 {
1278         int i;
1279
1280         for (i = 0; i < ppgtt->num_pd_entries; i++) {
1281                 struct i915_page_table_entry *pt = ppgtt->pd.page_table[i];
1282
1283                 if (pt != ppgtt->scratch_pt)
1284                         unmap_and_free_pt(ppgtt->pd.page_table[i], ppgtt->base.dev);
1285         }
1286
1287         unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1288         unmap_and_free_pd(&ppgtt->pd);
1289 }
1290
1291 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1292 {
1293         struct i915_hw_ppgtt *ppgtt =
1294                 container_of(vm, struct i915_hw_ppgtt, base);
1295
1296         drm_mm_remove_node(&ppgtt->node);
1297
1298         gen6_ppgtt_free(ppgtt);
1299 }
1300
1301 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1302 {
1303         struct drm_device *dev = ppgtt->base.dev;
1304         struct drm_i915_private *dev_priv = dev->dev_private;
1305         bool retried = false;
1306         int ret;
1307
1308         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1309          * allocator works in address space sizes, so it's multiplied by page
1310          * size. We allocate at the top of the GTT to avoid fragmentation.
1311          */
1312         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1313         ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev);
1314         if (IS_ERR(ppgtt->scratch_pt))
1315                 return PTR_ERR(ppgtt->scratch_pt);
1316
1317         gen6_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
1318
1319 alloc:
1320         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1321                                                   &ppgtt->node, GEN6_PD_SIZE,
1322                                                   GEN6_PD_ALIGN, 0,
1323                                                   0, dev_priv->gtt.base.total,
1324                                                   DRM_MM_TOPDOWN);
1325         if (ret == -ENOSPC && !retried) {
1326                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1327                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
1328                                                I915_CACHE_NONE,
1329                                                0, dev_priv->gtt.base.total,
1330                                                0);
1331                 if (ret)
1332                         goto err_out;
1333
1334                 retried = true;
1335                 goto alloc;
1336         }
1337
1338         if (ret)
1339                 goto err_out;
1340
1341
1342         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1343                 DRM_DEBUG("Forced to use aperture for PDEs\n");
1344
1345         ppgtt->num_pd_entries = I915_PDES;
1346         return 0;
1347
1348 err_out:
1349         unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1350         return ret;
1351 }
1352
1353 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1354 {
1355         return gen6_ppgtt_allocate_page_directories(ppgtt);
1356 }
1357
1358 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1359                                   uint64_t start, uint64_t length)
1360 {
1361         struct i915_page_table_entry *unused;
1362         uint32_t pde, temp;
1363
1364         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
1365                 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1366 }
1367
1368 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt, bool aliasing)
1369 {
1370         struct drm_device *dev = ppgtt->base.dev;
1371         struct drm_i915_private *dev_priv = dev->dev_private;
1372         int ret;
1373
1374         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1375         if (IS_GEN6(dev)) {
1376                 ppgtt->switch_mm = gen6_mm_switch;
1377         } else if (IS_HASWELL(dev)) {
1378                 ppgtt->switch_mm = hsw_mm_switch;
1379         } else if (IS_GEN7(dev)) {
1380                 ppgtt->switch_mm = gen7_mm_switch;
1381         } else
1382                 BUG();
1383
1384         if (intel_vgpu_active(dev))
1385                 ppgtt->switch_mm = vgpu_mm_switch;
1386
1387         ret = gen6_ppgtt_alloc(ppgtt);
1388         if (ret)
1389                 return ret;
1390
1391         if (aliasing) {
1392                 /* preallocate all pts */
1393                 ret = alloc_pt_range(&ppgtt->pd, 0, ppgtt->num_pd_entries,
1394                                 ppgtt->base.dev);
1395
1396                 if (ret) {
1397                         gen6_ppgtt_cleanup(&ppgtt->base);
1398                         return ret;
1399                 }
1400         }
1401
1402         ppgtt->base.allocate_va_range = gen6_alloc_va_range;
1403         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1404         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1405         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1406         ppgtt->base.start = 0;
1407         ppgtt->base.total = ppgtt->num_pd_entries * GEN6_PTES * PAGE_SIZE;
1408         ppgtt->debug_dump = gen6_dump_ppgtt;
1409
1410         ppgtt->pd.pd_offset =
1411                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1412
1413         ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
1414                 ppgtt->pd.pd_offset / sizeof(gen6_pte_t);
1415
1416         if (aliasing)
1417                 ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1418         else
1419                 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1420
1421         gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
1422
1423         DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1424                          ppgtt->node.size >> 20,
1425                          ppgtt->node.start / PAGE_SIZE);
1426
1427         DRM_DEBUG("Adding PPGTT at offset %x\n",
1428                   ppgtt->pd.pd_offset << 10);
1429
1430         return 0;
1431 }
1432
1433 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt,
1434                 bool aliasing)
1435 {
1436         struct drm_i915_private *dev_priv = dev->dev_private;
1437
1438         ppgtt->base.dev = dev;
1439         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1440
1441         if (INTEL_INFO(dev)->gen < 8)
1442                 return gen6_ppgtt_init(ppgtt, aliasing);
1443         else
1444                 return gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1445 }
1446 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1447 {
1448         struct drm_i915_private *dev_priv = dev->dev_private;
1449         int ret = 0;
1450
1451         ret = __hw_ppgtt_init(dev, ppgtt, false);
1452         if (ret == 0) {
1453                 kref_init(&ppgtt->ref);
1454                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1455                             ppgtt->base.total);
1456                 i915_init_vm(dev_priv, &ppgtt->base);
1457         }
1458
1459         return ret;
1460 }
1461
1462 int i915_ppgtt_init_hw(struct drm_device *dev)
1463 {
1464         struct drm_i915_private *dev_priv = dev->dev_private;
1465         struct intel_engine_cs *ring;
1466         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1467         int i, ret = 0;
1468
1469         /* In the case of execlists, PPGTT is enabled by the context descriptor
1470          * and the PDPs are contained within the context itself.  We don't
1471          * need to do anything here. */
1472         if (i915.enable_execlists)
1473                 return 0;
1474
1475         if (!USES_PPGTT(dev))
1476                 return 0;
1477
1478         if (IS_GEN6(dev))
1479                 gen6_ppgtt_enable(dev);
1480         else if (IS_GEN7(dev))
1481                 gen7_ppgtt_enable(dev);
1482         else if (INTEL_INFO(dev)->gen >= 8)
1483                 gen8_ppgtt_enable(dev);
1484         else
1485                 MISSING_CASE(INTEL_INFO(dev)->gen);
1486
1487         if (ppgtt) {
1488                 for_each_ring(ring, dev_priv, i) {
1489                         ret = ppgtt->switch_mm(ppgtt, ring);
1490                         if (ret != 0)
1491                                 return ret;
1492                 }
1493         }
1494
1495         return ret;
1496 }
1497 struct i915_hw_ppgtt *
1498 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1499 {
1500         struct i915_hw_ppgtt *ppgtt;
1501         int ret;
1502
1503         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1504         if (!ppgtt)
1505                 return ERR_PTR(-ENOMEM);
1506
1507         ret = i915_ppgtt_init(dev, ppgtt);
1508         if (ret) {
1509                 kfree(ppgtt);
1510                 return ERR_PTR(ret);
1511         }
1512
1513         ppgtt->file_priv = fpriv;
1514
1515         trace_i915_ppgtt_create(&ppgtt->base);
1516
1517         return ppgtt;
1518 }
1519
1520 void  i915_ppgtt_release(struct kref *kref)
1521 {
1522         struct i915_hw_ppgtt *ppgtt =
1523                 container_of(kref, struct i915_hw_ppgtt, ref);
1524
1525         trace_i915_ppgtt_release(&ppgtt->base);
1526
1527         /* vmas should already be unbound */
1528         WARN_ON(!list_empty(&ppgtt->base.active_list));
1529         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1530
1531         list_del(&ppgtt->base.global_link);
1532         drm_mm_takedown(&ppgtt->base.mm);
1533
1534         ppgtt->base.cleanup(&ppgtt->base);
1535         kfree(ppgtt);
1536 }
1537
1538 static void
1539 ppgtt_bind_vma(struct i915_vma *vma,
1540                enum i915_cache_level cache_level,
1541                u32 flags)
1542 {
1543         /* Currently applicable only to VLV */
1544         if (vma->obj->gt_ro)
1545                 flags |= PTE_READ_ONLY;
1546
1547         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1548                                 cache_level, flags);
1549 }
1550
1551 static void ppgtt_unbind_vma(struct i915_vma *vma)
1552 {
1553         vma->vm->clear_range(vma->vm,
1554                              vma->node.start,
1555                              vma->obj->base.size,
1556                              true);
1557 }
1558
1559 extern int intel_iommu_gfx_mapped;
1560 /* Certain Gen5 chipsets require require idling the GPU before
1561  * unmapping anything from the GTT when VT-d is enabled.
1562  */
1563 static inline bool needs_idle_maps(struct drm_device *dev)
1564 {
1565 #ifdef CONFIG_INTEL_IOMMU
1566         /* Query intel_iommu to see if we need the workaround. Presumably that
1567          * was loaded first.
1568          */
1569         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1570                 return true;
1571 #endif
1572         return false;
1573 }
1574
1575 static bool do_idling(struct drm_i915_private *dev_priv)
1576 {
1577         bool ret = dev_priv->mm.interruptible;
1578
1579         if (unlikely(dev_priv->gtt.do_idle_maps)) {
1580                 dev_priv->mm.interruptible = false;
1581                 if (i915_gpu_idle(dev_priv->dev)) {
1582                         DRM_ERROR("Couldn't idle GPU\n");
1583                         /* Wait a bit, in hopes it avoids the hang */
1584                         udelay(10);
1585                 }
1586         }
1587
1588         return ret;
1589 }
1590
1591 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1592 {
1593         if (unlikely(dev_priv->gtt.do_idle_maps))
1594                 dev_priv->mm.interruptible = interruptible;
1595 }
1596
1597 void i915_check_and_clear_faults(struct drm_device *dev)
1598 {
1599         struct drm_i915_private *dev_priv = dev->dev_private;
1600         struct intel_engine_cs *ring;
1601         int i;
1602
1603         if (INTEL_INFO(dev)->gen < 6)
1604                 return;
1605
1606         for_each_ring(ring, dev_priv, i) {
1607                 u32 fault_reg;
1608                 fault_reg = I915_READ(RING_FAULT_REG(ring));
1609                 if (fault_reg & RING_FAULT_VALID) {
1610                         DRM_DEBUG_DRIVER("Unexpected fault\n"
1611                                          "\tAddr: 0x%08lx\n"
1612                                          "\tAddress space: %s\n"
1613                                          "\tSource ID: %d\n"
1614                                          "\tType: %d\n",
1615                                          fault_reg & PAGE_MASK,
1616                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1617                                          RING_FAULT_SRCID(fault_reg),
1618                                          RING_FAULT_FAULT_TYPE(fault_reg));
1619                         I915_WRITE(RING_FAULT_REG(ring),
1620                                    fault_reg & ~RING_FAULT_VALID);
1621                 }
1622         }
1623         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1624 }
1625
1626 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1627 {
1628         if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1629                 intel_gtt_chipset_flush();
1630         } else {
1631                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1632                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1633         }
1634 }
1635
1636 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1637 {
1638         struct drm_i915_private *dev_priv = dev->dev_private;
1639
1640         /* Don't bother messing with faults pre GEN6 as we have little
1641          * documentation supporting that it's a good idea.
1642          */
1643         if (INTEL_INFO(dev)->gen < 6)
1644                 return;
1645
1646         i915_check_and_clear_faults(dev);
1647
1648         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1649                                        dev_priv->gtt.base.start,
1650                                        dev_priv->gtt.base.total,
1651                                        true);
1652
1653         i915_ggtt_flush(dev_priv);
1654 }
1655
1656 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1657 {
1658         struct drm_i915_private *dev_priv = dev->dev_private;
1659         struct drm_i915_gem_object *obj;
1660         struct i915_address_space *vm;
1661
1662         i915_check_and_clear_faults(dev);
1663
1664         /* First fill our portion of the GTT with scratch pages */
1665         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1666                                        dev_priv->gtt.base.start,
1667                                        dev_priv->gtt.base.total,
1668                                        true);
1669
1670         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1671                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1672                                                            &dev_priv->gtt.base);
1673                 if (!vma)
1674                         continue;
1675
1676                 i915_gem_clflush_object(obj, obj->pin_display);
1677                 /* The bind_vma code tries to be smart about tracking mappings.
1678                  * Unfortunately above, we've just wiped out the mappings
1679                  * without telling our object about it. So we need to fake it.
1680                  *
1681                  * Bind is not expected to fail since this is only called on
1682                  * resume and assumption is all requirements exist already.
1683                  */
1684                 vma->bound &= ~GLOBAL_BIND;
1685                 WARN_ON(i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND));
1686         }
1687
1688
1689         if (INTEL_INFO(dev)->gen >= 8) {
1690                 if (IS_CHERRYVIEW(dev))
1691                         chv_setup_private_ppat(dev_priv);
1692                 else
1693                         bdw_setup_private_ppat(dev_priv);
1694
1695                 return;
1696         }
1697
1698         if (USES_PPGTT(dev)) {
1699                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1700                         /* TODO: Perhaps it shouldn't be gen6 specific */
1701
1702                         struct i915_hw_ppgtt *ppgtt =
1703                                         container_of(vm, struct i915_hw_ppgtt,
1704                                                      base);
1705
1706                         if (i915_is_ggtt(vm))
1707                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
1708
1709                         gen6_write_page_range(dev_priv, &ppgtt->pd,
1710                                               0, ppgtt->base.total);
1711                 }
1712         }
1713
1714         i915_ggtt_flush(dev_priv);
1715 }
1716
1717 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1718 {
1719         if (obj->has_dma_mapping)
1720                 return 0;
1721
1722         if (!dma_map_sg(&obj->base.dev->pdev->dev,
1723                         obj->pages->sgl, obj->pages->nents,
1724                         PCI_DMA_BIDIRECTIONAL))
1725                 return -ENOSPC;
1726
1727         return 0;
1728 }
1729
1730 static inline void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
1731 {
1732 #ifdef writeq
1733         writeq(pte, addr);
1734 #else
1735         iowrite32((u32)pte, addr);
1736         iowrite32(pte >> 32, addr + 4);
1737 #endif
1738 }
1739
1740 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1741                                      struct sg_table *st,
1742                                      uint64_t start,
1743                                      enum i915_cache_level level, u32 unused)
1744 {
1745         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1746         unsigned first_entry = start >> PAGE_SHIFT;
1747         gen8_pte_t __iomem *gtt_entries =
1748                 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1749         int i = 0;
1750         struct sg_page_iter sg_iter;
1751         dma_addr_t addr = 0; /* shut up gcc */
1752
1753         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1754                 addr = sg_dma_address(sg_iter.sg) +
1755                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
1756                 gen8_set_pte(&gtt_entries[i],
1757                              gen8_pte_encode(addr, level, true));
1758                 i++;
1759         }
1760
1761         /*
1762          * XXX: This serves as a posting read to make sure that the PTE has
1763          * actually been updated. There is some concern that even though
1764          * registers and PTEs are within the same BAR that they are potentially
1765          * of NUMA access patterns. Therefore, even with the way we assume
1766          * hardware should work, we must keep this posting read for paranoia.
1767          */
1768         if (i != 0)
1769                 WARN_ON(readq(&gtt_entries[i-1])
1770                         != gen8_pte_encode(addr, level, true));
1771
1772         /* This next bit makes the above posting read even more important. We
1773          * want to flush the TLBs only after we're certain all the PTE updates
1774          * have finished.
1775          */
1776         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1777         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1778 }
1779
1780 /*
1781  * Binds an object into the global gtt with the specified cache level. The object
1782  * will be accessible to the GPU via commands whose operands reference offsets
1783  * within the global GTT as well as accessible by the GPU through the GMADR
1784  * mapped BAR (dev_priv->mm.gtt->gtt).
1785  */
1786 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1787                                      struct sg_table *st,
1788                                      uint64_t start,
1789                                      enum i915_cache_level level, u32 flags)
1790 {
1791         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1792         unsigned first_entry = start >> PAGE_SHIFT;
1793         gen6_pte_t __iomem *gtt_entries =
1794                 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1795         int i = 0;
1796         struct sg_page_iter sg_iter;
1797         dma_addr_t addr = 0;
1798
1799         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1800                 addr = sg_page_iter_dma_address(&sg_iter);
1801                 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1802                 i++;
1803         }
1804
1805         /* XXX: This serves as a posting read to make sure that the PTE has
1806          * actually been updated. There is some concern that even though
1807          * registers and PTEs are within the same BAR that they are potentially
1808          * of NUMA access patterns. Therefore, even with the way we assume
1809          * hardware should work, we must keep this posting read for paranoia.
1810          */
1811         if (i != 0) {
1812                 unsigned long gtt = readl(&gtt_entries[i-1]);
1813                 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1814         }
1815
1816         /* This next bit makes the above posting read even more important. We
1817          * want to flush the TLBs only after we're certain all the PTE updates
1818          * have finished.
1819          */
1820         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1821         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1822 }
1823
1824 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1825                                   uint64_t start,
1826                                   uint64_t length,
1827                                   bool use_scratch)
1828 {
1829         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1830         unsigned first_entry = start >> PAGE_SHIFT;
1831         unsigned num_entries = length >> PAGE_SHIFT;
1832         gen8_pte_t scratch_pte, __iomem *gtt_base =
1833                 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1834         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1835         int i;
1836
1837         if (WARN(num_entries > max_entries,
1838                  "First entry = %d; Num entries = %d (max=%d)\n",
1839                  first_entry, num_entries, max_entries))
1840                 num_entries = max_entries;
1841
1842         scratch_pte = gen8_pte_encode(vm->scratch.addr,
1843                                       I915_CACHE_LLC,
1844                                       use_scratch);
1845         for (i = 0; i < num_entries; i++)
1846                 gen8_set_pte(&gtt_base[i], scratch_pte);
1847         readl(gtt_base);
1848 }
1849
1850 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1851                                   uint64_t start,
1852                                   uint64_t length,
1853                                   bool use_scratch)
1854 {
1855         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1856         unsigned first_entry = start >> PAGE_SHIFT;
1857         unsigned num_entries = length >> PAGE_SHIFT;
1858         gen6_pte_t scratch_pte, __iomem *gtt_base =
1859                 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1860         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1861         int i;
1862
1863         if (WARN(num_entries > max_entries,
1864                  "First entry = %d; Num entries = %d (max=%d)\n",
1865                  first_entry, num_entries, max_entries))
1866                 num_entries = max_entries;
1867
1868         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
1869
1870         for (i = 0; i < num_entries; i++)
1871                 iowrite32(scratch_pte, &gtt_base[i]);
1872         readl(gtt_base);
1873 }
1874
1875
1876 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1877                                enum i915_cache_level cache_level,
1878                                u32 unused)
1879 {
1880         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1881         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1882                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1883
1884         BUG_ON(!i915_is_ggtt(vma->vm));
1885         intel_gtt_insert_sg_entries(vma->ggtt_view.pages, entry, flags);
1886         vma->bound = GLOBAL_BIND;
1887 }
1888
1889 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1890                                   uint64_t start,
1891                                   uint64_t length,
1892                                   bool unused)
1893 {
1894         unsigned first_entry = start >> PAGE_SHIFT;
1895         unsigned num_entries = length >> PAGE_SHIFT;
1896         intel_gtt_clear_range(first_entry, num_entries);
1897 }
1898
1899 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1900 {
1901         const unsigned int first = vma->node.start >> PAGE_SHIFT;
1902         const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1903
1904         BUG_ON(!i915_is_ggtt(vma->vm));
1905         vma->bound = 0;
1906         intel_gtt_clear_range(first, size);
1907 }
1908
1909 static void ggtt_bind_vma(struct i915_vma *vma,
1910                           enum i915_cache_level cache_level,
1911                           u32 flags)
1912 {
1913         struct drm_device *dev = vma->vm->dev;
1914         struct drm_i915_private *dev_priv = dev->dev_private;
1915         struct drm_i915_gem_object *obj = vma->obj;
1916         struct sg_table *pages = obj->pages;
1917
1918         /* Currently applicable only to VLV */
1919         if (obj->gt_ro)
1920                 flags |= PTE_READ_ONLY;
1921
1922         if (i915_is_ggtt(vma->vm))
1923                 pages = vma->ggtt_view.pages;
1924
1925         /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1926          * or we have a global mapping already but the cacheability flags have
1927          * changed, set the global PTEs.
1928          *
1929          * If there is an aliasing PPGTT it is anecdotally faster, so use that
1930          * instead if none of the above hold true.
1931          *
1932          * NB: A global mapping should only be needed for special regions like
1933          * "gtt mappable", SNB errata, or if specified via special execbuf
1934          * flags. At all other times, the GPU will use the aliasing PPGTT.
1935          */
1936         if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1937                 if (!(vma->bound & GLOBAL_BIND) ||
1938                     (cache_level != obj->cache_level)) {
1939                         vma->vm->insert_entries(vma->vm, pages,
1940                                                 vma->node.start,
1941                                                 cache_level, flags);
1942                         vma->bound |= GLOBAL_BIND;
1943                 }
1944         }
1945
1946         if (dev_priv->mm.aliasing_ppgtt &&
1947             (!(vma->bound & LOCAL_BIND) ||
1948              (cache_level != obj->cache_level))) {
1949                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1950                 appgtt->base.insert_entries(&appgtt->base, pages,
1951                                             vma->node.start,
1952                                             cache_level, flags);
1953                 vma->bound |= LOCAL_BIND;
1954         }
1955 }
1956
1957 static void ggtt_unbind_vma(struct i915_vma *vma)
1958 {
1959         struct drm_device *dev = vma->vm->dev;
1960         struct drm_i915_private *dev_priv = dev->dev_private;
1961         struct drm_i915_gem_object *obj = vma->obj;
1962
1963         if (vma->bound & GLOBAL_BIND) {
1964                 vma->vm->clear_range(vma->vm,
1965                                      vma->node.start,
1966                                      obj->base.size,
1967                                      true);
1968                 vma->bound &= ~GLOBAL_BIND;
1969         }
1970
1971         if (vma->bound & LOCAL_BIND) {
1972                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1973                 appgtt->base.clear_range(&appgtt->base,
1974                                          vma->node.start,
1975                                          obj->base.size,
1976                                          true);
1977                 vma->bound &= ~LOCAL_BIND;
1978         }
1979 }
1980
1981 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1982 {
1983         struct drm_device *dev = obj->base.dev;
1984         struct drm_i915_private *dev_priv = dev->dev_private;
1985         bool interruptible;
1986
1987         interruptible = do_idling(dev_priv);
1988
1989         if (!obj->has_dma_mapping)
1990                 dma_unmap_sg(&dev->pdev->dev,
1991                              obj->pages->sgl, obj->pages->nents,
1992                              PCI_DMA_BIDIRECTIONAL);
1993
1994         undo_idling(dev_priv, interruptible);
1995 }
1996
1997 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1998                                   unsigned long color,
1999                                   u64 *start,
2000                                   u64 *end)
2001 {
2002         if (node->color != color)
2003                 *start += 4096;
2004
2005         if (!list_empty(&node->node_list)) {
2006                 node = list_entry(node->node_list.next,
2007                                   struct drm_mm_node,
2008                                   node_list);
2009                 if (node->allocated && node->color != color)
2010                         *end -= 4096;
2011         }
2012 }
2013
2014 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2015                                      unsigned long start,
2016                                      unsigned long mappable_end,
2017                                      unsigned long end)
2018 {
2019         /* Let GEM Manage all of the aperture.
2020          *
2021          * However, leave one page at the end still bound to the scratch page.
2022          * There are a number of places where the hardware apparently prefetches
2023          * past the end of the object, and we've seen multiple hangs with the
2024          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2025          * aperture.  One page should be enough to keep any prefetching inside
2026          * of the aperture.
2027          */
2028         struct drm_i915_private *dev_priv = dev->dev_private;
2029         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2030         struct drm_mm_node *entry;
2031         struct drm_i915_gem_object *obj;
2032         unsigned long hole_start, hole_end;
2033         int ret;
2034
2035         BUG_ON(mappable_end > end);
2036
2037         /* Subtract the guard page ... */
2038         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2039
2040         dev_priv->gtt.base.start = start;
2041         dev_priv->gtt.base.total = end - start;
2042
2043         if (intel_vgpu_active(dev)) {
2044                 ret = intel_vgt_balloon(dev);
2045                 if (ret)
2046                         return ret;
2047         }
2048
2049         if (!HAS_LLC(dev))
2050                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2051
2052         /* Mark any preallocated objects as occupied */
2053         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2054                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2055
2056                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2057                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
2058
2059                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2060                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2061                 if (ret) {
2062                         DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2063                         return ret;
2064                 }
2065                 vma->bound |= GLOBAL_BIND;
2066         }
2067
2068         /* Clear any non-preallocated blocks */
2069         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2070                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2071                               hole_start, hole_end);
2072                 ggtt_vm->clear_range(ggtt_vm, hole_start,
2073                                      hole_end - hole_start, true);
2074         }
2075
2076         /* And finally clear the reserved guard page */
2077         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2078
2079         if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2080                 struct i915_hw_ppgtt *ppgtt;
2081
2082                 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2083                 if (!ppgtt)
2084                         return -ENOMEM;
2085
2086                 ret = __hw_ppgtt_init(dev, ppgtt, true);
2087                 if (ret) {
2088                         kfree(ppgtt);
2089                         return ret;
2090                 }
2091
2092                 dev_priv->mm.aliasing_ppgtt = ppgtt;
2093         }
2094
2095         return 0;
2096 }
2097
2098 void i915_gem_init_global_gtt(struct drm_device *dev)
2099 {
2100         struct drm_i915_private *dev_priv = dev->dev_private;
2101         unsigned long gtt_size, mappable_size;
2102
2103         gtt_size = dev_priv->gtt.base.total;
2104         mappable_size = dev_priv->gtt.mappable_end;
2105
2106         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2107 }
2108
2109 void i915_global_gtt_cleanup(struct drm_device *dev)
2110 {
2111         struct drm_i915_private *dev_priv = dev->dev_private;
2112         struct i915_address_space *vm = &dev_priv->gtt.base;
2113
2114         if (dev_priv->mm.aliasing_ppgtt) {
2115                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2116
2117                 ppgtt->base.cleanup(&ppgtt->base);
2118         }
2119
2120         if (drm_mm_initialized(&vm->mm)) {
2121                 if (intel_vgpu_active(dev))
2122                         intel_vgt_deballoon();
2123
2124                 drm_mm_takedown(&vm->mm);
2125                 list_del(&vm->global_link);
2126         }
2127
2128         vm->cleanup(vm);
2129 }
2130
2131 static int setup_scratch_page(struct drm_device *dev)
2132 {
2133         struct drm_i915_private *dev_priv = dev->dev_private;
2134         struct page *page;
2135         dma_addr_t dma_addr;
2136
2137         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
2138         if (page == NULL)
2139                 return -ENOMEM;
2140         set_pages_uc(page, 1);
2141
2142 #ifdef CONFIG_INTEL_IOMMU
2143         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
2144                                 PCI_DMA_BIDIRECTIONAL);
2145         if (pci_dma_mapping_error(dev->pdev, dma_addr))
2146                 return -EINVAL;
2147 #else
2148         dma_addr = page_to_phys(page);
2149 #endif
2150         dev_priv->gtt.base.scratch.page = page;
2151         dev_priv->gtt.base.scratch.addr = dma_addr;
2152
2153         return 0;
2154 }
2155
2156 static void teardown_scratch_page(struct drm_device *dev)
2157 {
2158         struct drm_i915_private *dev_priv = dev->dev_private;
2159         struct page *page = dev_priv->gtt.base.scratch.page;
2160
2161         set_pages_wb(page, 1);
2162         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
2163                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
2164         __free_page(page);
2165 }
2166
2167 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2168 {
2169         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2170         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2171         return snb_gmch_ctl << 20;
2172 }
2173
2174 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2175 {
2176         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2177         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2178         if (bdw_gmch_ctl)
2179                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2180
2181 #ifdef CONFIG_X86_32
2182         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2183         if (bdw_gmch_ctl > 4)
2184                 bdw_gmch_ctl = 4;
2185 #endif
2186
2187         return bdw_gmch_ctl << 20;
2188 }
2189
2190 static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2191 {
2192         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2193         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2194
2195         if (gmch_ctrl)
2196                 return 1 << (20 + gmch_ctrl);
2197
2198         return 0;
2199 }
2200
2201 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2202 {
2203         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2204         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2205         return snb_gmch_ctl << 25; /* 32 MB units */
2206 }
2207
2208 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2209 {
2210         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2211         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2212         return bdw_gmch_ctl << 25; /* 32 MB units */
2213 }
2214
2215 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2216 {
2217         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2218         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2219
2220         /*
2221          * 0x0  to 0x10: 32MB increments starting at 0MB
2222          * 0x11 to 0x16: 4MB increments starting at 8MB
2223          * 0x17 to 0x1d: 4MB increments start at 36MB
2224          */
2225         if (gmch_ctrl < 0x11)
2226                 return gmch_ctrl << 25;
2227         else if (gmch_ctrl < 0x17)
2228                 return (gmch_ctrl - 0x11 + 2) << 22;
2229         else
2230                 return (gmch_ctrl - 0x17 + 9) << 22;
2231 }
2232
2233 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2234 {
2235         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2236         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2237
2238         if (gen9_gmch_ctl < 0xf0)
2239                 return gen9_gmch_ctl << 25; /* 32 MB units */
2240         else
2241                 /* 4MB increments starting at 0xf0 for 4MB */
2242                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2243 }
2244
2245 static int ggtt_probe_common(struct drm_device *dev,
2246                              size_t gtt_size)
2247 {
2248         struct drm_i915_private *dev_priv = dev->dev_private;
2249         phys_addr_t gtt_phys_addr;
2250         int ret;
2251
2252         /* For Modern GENs the PTEs and register space are split in the BAR */
2253         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2254                 (pci_resource_len(dev->pdev, 0) / 2);
2255
2256         dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2257         if (!dev_priv->gtt.gsm) {
2258                 DRM_ERROR("Failed to map the gtt page table\n");
2259                 return -ENOMEM;
2260         }
2261
2262         ret = setup_scratch_page(dev);
2263         if (ret) {
2264                 DRM_ERROR("Scratch setup failed\n");
2265                 /* iounmap will also get called at remove, but meh */
2266                 iounmap(dev_priv->gtt.gsm);
2267         }
2268
2269         return ret;
2270 }
2271
2272 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2273  * bits. When using advanced contexts each context stores its own PAT, but
2274  * writing this data shouldn't be harmful even in those cases. */
2275 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2276 {
2277         uint64_t pat;
2278
2279         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2280               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2281               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2282               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2283               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2284               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2285               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2286               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2287
2288         if (!USES_PPGTT(dev_priv->dev))
2289                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2290                  * so RTL will always use the value corresponding to
2291                  * pat_sel = 000".
2292                  * So let's disable cache for GGTT to avoid screen corruptions.
2293                  * MOCS still can be used though.
2294                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2295                  * before this patch, i.e. the same uncached + snooping access
2296                  * like on gen6/7 seems to be in effect.
2297                  * - So this just fixes blitter/render access. Again it looks
2298                  * like it's not just uncached access, but uncached + snooping.
2299                  * So we can still hold onto all our assumptions wrt cpu
2300                  * clflushing on LLC machines.
2301                  */
2302                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2303
2304         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2305          * write would work. */
2306         I915_WRITE(GEN8_PRIVATE_PAT, pat);
2307         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2308 }
2309
2310 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2311 {
2312         uint64_t pat;
2313
2314         /*
2315          * Map WB on BDW to snooped on CHV.
2316          *
2317          * Only the snoop bit has meaning for CHV, the rest is
2318          * ignored.
2319          *
2320          * The hardware will never snoop for certain types of accesses:
2321          * - CPU GTT (GMADR->GGTT->no snoop->memory)
2322          * - PPGTT page tables
2323          * - some other special cycles
2324          *
2325          * As with BDW, we also need to consider the following for GT accesses:
2326          * "For GGTT, there is NO pat_sel[2:0] from the entry,
2327          * so RTL will always use the value corresponding to
2328          * pat_sel = 000".
2329          * Which means we must set the snoop bit in PAT entry 0
2330          * in order to keep the global status page working.
2331          */
2332         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2333               GEN8_PPAT(1, 0) |
2334               GEN8_PPAT(2, 0) |
2335               GEN8_PPAT(3, 0) |
2336               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2337               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2338               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2339               GEN8_PPAT(7, CHV_PPAT_SNOOP);
2340
2341         I915_WRITE(GEN8_PRIVATE_PAT, pat);
2342         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2343 }
2344
2345 static int gen8_gmch_probe(struct drm_device *dev,
2346                            size_t *gtt_total,
2347                            size_t *stolen,
2348                            phys_addr_t *mappable_base,
2349                            unsigned long *mappable_end)
2350 {
2351         struct drm_i915_private *dev_priv = dev->dev_private;
2352         unsigned int gtt_size;
2353         u16 snb_gmch_ctl;
2354         int ret;
2355
2356         /* TODO: We're not aware of mappable constraints on gen8 yet */
2357         *mappable_base = pci_resource_start(dev->pdev, 2);
2358         *mappable_end = pci_resource_len(dev->pdev, 2);
2359
2360         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2361                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2362
2363         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2364
2365         if (INTEL_INFO(dev)->gen >= 9) {
2366                 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
2367                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2368         } else if (IS_CHERRYVIEW(dev)) {
2369                 *stolen = chv_get_stolen_size(snb_gmch_ctl);
2370                 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2371         } else {
2372                 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
2373                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2374         }
2375
2376         *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2377
2378         if (IS_CHERRYVIEW(dev))
2379                 chv_setup_private_ppat(dev_priv);
2380         else
2381                 bdw_setup_private_ppat(dev_priv);
2382
2383         ret = ggtt_probe_common(dev, gtt_size);
2384
2385         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2386         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2387
2388         return ret;
2389 }
2390
2391 static int gen6_gmch_probe(struct drm_device *dev,
2392                            size_t *gtt_total,
2393                            size_t *stolen,
2394                            phys_addr_t *mappable_base,
2395                            unsigned long *mappable_end)
2396 {
2397         struct drm_i915_private *dev_priv = dev->dev_private;
2398         unsigned int gtt_size;
2399         u16 snb_gmch_ctl;
2400         int ret;
2401
2402         *mappable_base = pci_resource_start(dev->pdev, 2);
2403         *mappable_end = pci_resource_len(dev->pdev, 2);
2404
2405         /* 64/512MB is the current min/max we actually know of, but this is just
2406          * a coarse sanity check.
2407          */
2408         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2409                 DRM_ERROR("Unknown GMADR size (%lx)\n",
2410                           dev_priv->gtt.mappable_end);
2411                 return -ENXIO;
2412         }
2413
2414         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2415                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2416         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2417
2418         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
2419
2420         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2421         *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2422
2423         ret = ggtt_probe_common(dev, gtt_size);
2424
2425         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2426         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2427
2428         return ret;
2429 }
2430
2431 static void gen6_gmch_remove(struct i915_address_space *vm)
2432 {
2433
2434         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2435
2436         iounmap(gtt->gsm);
2437         teardown_scratch_page(vm->dev);
2438 }
2439
2440 static int i915_gmch_probe(struct drm_device *dev,
2441                            size_t *gtt_total,
2442                            size_t *stolen,
2443                            phys_addr_t *mappable_base,
2444                            unsigned long *mappable_end)
2445 {
2446         struct drm_i915_private *dev_priv = dev->dev_private;
2447         int ret;
2448
2449         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2450         if (!ret) {
2451                 DRM_ERROR("failed to set up gmch\n");
2452                 return -EIO;
2453         }
2454
2455         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2456
2457         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2458         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2459
2460         if (unlikely(dev_priv->gtt.do_idle_maps))
2461                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2462
2463         return 0;
2464 }
2465
2466 static void i915_gmch_remove(struct i915_address_space *vm)
2467 {
2468         intel_gmch_remove();
2469 }
2470
2471 int i915_gem_gtt_init(struct drm_device *dev)
2472 {
2473         struct drm_i915_private *dev_priv = dev->dev_private;
2474         struct i915_gtt *gtt = &dev_priv->gtt;
2475         int ret;
2476
2477         if (INTEL_INFO(dev)->gen <= 5) {
2478                 gtt->gtt_probe = i915_gmch_probe;
2479                 gtt->base.cleanup = i915_gmch_remove;
2480         } else if (INTEL_INFO(dev)->gen < 8) {
2481                 gtt->gtt_probe = gen6_gmch_probe;
2482                 gtt->base.cleanup = gen6_gmch_remove;
2483                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2484                         gtt->base.pte_encode = iris_pte_encode;
2485                 else if (IS_HASWELL(dev))
2486                         gtt->base.pte_encode = hsw_pte_encode;
2487                 else if (IS_VALLEYVIEW(dev))
2488                         gtt->base.pte_encode = byt_pte_encode;
2489                 else if (INTEL_INFO(dev)->gen >= 7)
2490                         gtt->base.pte_encode = ivb_pte_encode;
2491                 else
2492                         gtt->base.pte_encode = snb_pte_encode;
2493         } else {
2494                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2495                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2496         }
2497
2498         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2499                              &gtt->mappable_base, &gtt->mappable_end);
2500         if (ret)
2501                 return ret;
2502
2503         gtt->base.dev = dev;
2504
2505         /* GMADR is the PCI mmio aperture into the global GTT. */
2506         DRM_INFO("Memory usable by graphics device = %zdM\n",
2507                  gtt->base.total >> 20);
2508         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2509         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2510 #ifdef CONFIG_INTEL_IOMMU
2511         if (intel_iommu_gfx_mapped)
2512                 DRM_INFO("VT-d active for gfx access\n");
2513 #endif
2514         /*
2515          * i915.enable_ppgtt is read-only, so do an early pass to validate the
2516          * user's requested state against the hardware/driver capabilities.  We
2517          * do this now so that we can print out any log messages once rather
2518          * than every time we check intel_enable_ppgtt().
2519          */
2520         i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2521         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2522
2523         return 0;
2524 }
2525
2526 static struct i915_vma *
2527 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
2528                       struct i915_address_space *vm,
2529                       const struct i915_ggtt_view *ggtt_view)
2530 {
2531         struct i915_vma *vma;
2532
2533         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
2534                 return ERR_PTR(-EINVAL);
2535         vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2536         if (vma == NULL)
2537                 return ERR_PTR(-ENOMEM);
2538
2539         INIT_LIST_HEAD(&vma->vma_link);
2540         INIT_LIST_HEAD(&vma->mm_list);
2541         INIT_LIST_HEAD(&vma->exec_list);
2542         vma->vm = vm;
2543         vma->obj = obj;
2544
2545         if (INTEL_INFO(vm->dev)->gen >= 6) {
2546                 if (i915_is_ggtt(vm)) {
2547                         vma->ggtt_view = *ggtt_view;
2548
2549                         vma->unbind_vma = ggtt_unbind_vma;
2550                         vma->bind_vma = ggtt_bind_vma;
2551                 } else {
2552                         vma->unbind_vma = ppgtt_unbind_vma;
2553                         vma->bind_vma = ppgtt_bind_vma;
2554                 }
2555         } else {
2556                 BUG_ON(!i915_is_ggtt(vm));
2557                 vma->ggtt_view = *ggtt_view;
2558                 vma->unbind_vma = i915_ggtt_unbind_vma;
2559                 vma->bind_vma = i915_ggtt_bind_vma;
2560         }
2561
2562         list_add_tail(&vma->vma_link, &obj->vma_list);
2563         if (!i915_is_ggtt(vm))
2564                 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2565
2566         return vma;
2567 }
2568
2569 struct i915_vma *
2570 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2571                                   struct i915_address_space *vm)
2572 {
2573         struct i915_vma *vma;
2574
2575         vma = i915_gem_obj_to_vma(obj, vm);
2576         if (!vma)
2577                 vma = __i915_gem_vma_create(obj, vm,
2578                                             i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
2579
2580         return vma;
2581 }
2582
2583 struct i915_vma *
2584 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
2585                                        const struct i915_ggtt_view *view)
2586 {
2587         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
2588         struct i915_vma *vma;
2589
2590         if (WARN_ON(!view))
2591                 return ERR_PTR(-EINVAL);
2592
2593         vma = i915_gem_obj_to_ggtt_view(obj, view);
2594
2595         if (IS_ERR(vma))
2596                 return vma;
2597
2598         if (!vma)
2599                 vma = __i915_gem_vma_create(obj, ggtt, view);
2600
2601         return vma;
2602
2603 }
2604
2605 static void
2606 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
2607              struct sg_table *st)
2608 {
2609         unsigned int column, row;
2610         unsigned int src_idx;
2611         struct scatterlist *sg = st->sgl;
2612
2613         st->nents = 0;
2614
2615         for (column = 0; column < width; column++) {
2616                 src_idx = width * (height - 1) + column;
2617                 for (row = 0; row < height; row++) {
2618                         st->nents++;
2619                         /* We don't need the pages, but need to initialize
2620                          * the entries so the sg list can be happily traversed.
2621                          * The only thing we need are DMA addresses.
2622                          */
2623                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
2624                         sg_dma_address(sg) = in[src_idx];
2625                         sg_dma_len(sg) = PAGE_SIZE;
2626                         sg = sg_next(sg);
2627                         src_idx -= width;
2628                 }
2629         }
2630 }
2631
2632 static struct sg_table *
2633 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
2634                           struct drm_i915_gem_object *obj)
2635 {
2636         struct drm_device *dev = obj->base.dev;
2637         struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
2638         unsigned long size, pages, rot_pages;
2639         struct sg_page_iter sg_iter;
2640         unsigned long i;
2641         dma_addr_t *page_addr_list;
2642         struct sg_table *st;
2643         unsigned int tile_pitch, tile_height;
2644         unsigned int width_pages, height_pages;
2645         int ret = -ENOMEM;
2646
2647         pages = obj->base.size / PAGE_SIZE;
2648
2649         /* Calculate tiling geometry. */
2650         tile_height = intel_tile_height(dev, rot_info->pixel_format,
2651                                         rot_info->fb_modifier);
2652         tile_pitch = PAGE_SIZE / tile_height;
2653         width_pages = DIV_ROUND_UP(rot_info->pitch, tile_pitch);
2654         height_pages = DIV_ROUND_UP(rot_info->height, tile_height);
2655         rot_pages = width_pages * height_pages;
2656         size = rot_pages * PAGE_SIZE;
2657
2658         /* Allocate a temporary list of source pages for random access. */
2659         page_addr_list = drm_malloc_ab(pages, sizeof(dma_addr_t));
2660         if (!page_addr_list)
2661                 return ERR_PTR(ret);
2662
2663         /* Allocate target SG list. */
2664         st = kmalloc(sizeof(*st), GFP_KERNEL);
2665         if (!st)
2666                 goto err_st_alloc;
2667
2668         ret = sg_alloc_table(st, rot_pages, GFP_KERNEL);
2669         if (ret)
2670                 goto err_sg_alloc;
2671
2672         /* Populate source page list from the object. */
2673         i = 0;
2674         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2675                 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
2676                 i++;
2677         }
2678
2679         /* Rotate the pages. */
2680         rotate_pages(page_addr_list, width_pages, height_pages, st);
2681
2682         DRM_DEBUG_KMS(
2683                       "Created rotated page mapping for object size %lu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages).\n",
2684                       size, rot_info->pitch, rot_info->height,
2685                       rot_info->pixel_format, width_pages, height_pages,
2686                       rot_pages);
2687
2688         drm_free_large(page_addr_list);
2689
2690         return st;
2691
2692 err_sg_alloc:
2693         kfree(st);
2694 err_st_alloc:
2695         drm_free_large(page_addr_list);
2696
2697         DRM_DEBUG_KMS(
2698                       "Failed to create rotated mapping for object size %lu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages)\n",
2699                       size, ret, rot_info->pitch, rot_info->height,
2700                       rot_info->pixel_format, width_pages, height_pages,
2701                       rot_pages);
2702         return ERR_PTR(ret);
2703 }
2704
2705 static inline int
2706 i915_get_ggtt_vma_pages(struct i915_vma *vma)
2707 {
2708         int ret = 0;
2709
2710         if (vma->ggtt_view.pages)
2711                 return 0;
2712
2713         if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2714                 vma->ggtt_view.pages = vma->obj->pages;
2715         else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
2716                 vma->ggtt_view.pages =
2717                         intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
2718         else
2719                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
2720                           vma->ggtt_view.type);
2721
2722         if (!vma->ggtt_view.pages) {
2723                 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
2724                           vma->ggtt_view.type);
2725                 ret = -EINVAL;
2726         } else if (IS_ERR(vma->ggtt_view.pages)) {
2727                 ret = PTR_ERR(vma->ggtt_view.pages);
2728                 vma->ggtt_view.pages = NULL;
2729                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
2730                           vma->ggtt_view.type, ret);
2731         }
2732
2733         return ret;
2734 }
2735
2736 /**
2737  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
2738  * @vma: VMA to map
2739  * @cache_level: mapping cache level
2740  * @flags: flags like global or local mapping
2741  *
2742  * DMA addresses are taken from the scatter-gather table of this object (or of
2743  * this VMA in case of non-default GGTT views) and PTE entries set up.
2744  * Note that DMA addresses are also the only part of the SG table we care about.
2745  */
2746 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2747                   u32 flags)
2748 {
2749         if (i915_is_ggtt(vma->vm)) {
2750                 int ret = i915_get_ggtt_vma_pages(vma);
2751
2752                 if (ret)
2753                         return ret;
2754         }
2755
2756         vma->bind_vma(vma, cache_level, flags);
2757
2758         return 0;
2759 }