These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51                                   enum i915_cache_level level)
52 {
53         return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59                 return true;
60
61         return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66                                   size_t size)
67 {
68         spin_lock(&dev_priv->mm.object_stat_lock);
69         dev_priv->mm.object_count++;
70         dev_priv->mm.object_memory += size;
71         spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75                                      size_t size)
76 {
77         spin_lock(&dev_priv->mm.object_stat_lock);
78         dev_priv->mm.object_count--;
79         dev_priv->mm.object_memory -= size;
80         spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86         int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89                    i915_terminally_wedged(error))
90         if (EXIT_COND)
91                 return 0;
92
93         /*
94          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95          * userspace. If it takes that long something really bad is going on and
96          * we should simply try to bail out and fail as gracefully as possible.
97          */
98         ret = wait_event_interruptible_timeout(error->reset_queue,
99                                                EXIT_COND,
100                                                10*HZ);
101         if (ret == 0) {
102                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103                 return -EIO;
104         } else if (ret < 0) {
105                 return ret;
106         }
107 #undef EXIT_COND
108
109         return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114         struct drm_i915_private *dev_priv = dev->dev_private;
115         int ret;
116
117         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118         if (ret)
119                 return ret;
120
121         ret = mutex_lock_interruptible(&dev->struct_mutex);
122         if (ret)
123                 return ret;
124
125         WARN_ON(i915_verify_lists(dev));
126         return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131                             struct drm_file *file)
132 {
133         struct drm_i915_private *dev_priv = dev->dev_private;
134         struct drm_i915_gem_get_aperture *args = data;
135         struct i915_gtt *ggtt = &dev_priv->gtt;
136         struct i915_vma *vma;
137         size_t pinned;
138
139         pinned = 0;
140         mutex_lock(&dev->struct_mutex);
141         list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142                 if (vma->pin_count)
143                         pinned += vma->node.size;
144         list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145                 if (vma->pin_count)
146                         pinned += vma->node.size;
147         mutex_unlock(&dev->struct_mutex);
148
149         args->aper_size = dev_priv->gtt.base.total;
150         args->aper_available_size = args->aper_size - pinned;
151
152         return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159         char *vaddr = obj->phys_handle->vaddr;
160         struct sg_table *st;
161         struct scatterlist *sg;
162         int i;
163
164         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165                 return -EINVAL;
166
167         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168                 struct page *page;
169                 char *src;
170
171                 page = shmem_read_mapping_page(mapping, i);
172                 if (IS_ERR(page))
173                         return PTR_ERR(page);
174
175                 src = kmap_atomic(page);
176                 memcpy(vaddr, src, PAGE_SIZE);
177                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178                 kunmap_atomic(src);
179
180                 page_cache_release(page);
181                 vaddr += PAGE_SIZE;
182         }
183
184         i915_gem_chipset_flush(obj->base.dev);
185
186         st = kmalloc(sizeof(*st), GFP_KERNEL);
187         if (st == NULL)
188                 return -ENOMEM;
189
190         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191                 kfree(st);
192                 return -ENOMEM;
193         }
194
195         sg = st->sgl;
196         sg->offset = 0;
197         sg->length = obj->base.size;
198
199         sg_dma_address(sg) = obj->phys_handle->busaddr;
200         sg_dma_len(sg) = obj->base.size;
201
202         obj->pages = st;
203         return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209         int ret;
210
211         BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213         ret = i915_gem_object_set_to_cpu_domain(obj, true);
214         if (ret) {
215                 /* In the event of a disaster, abandon all caches and
216                  * hope for the best.
217                  */
218                 WARN_ON(ret != -EIO);
219                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220         }
221
222         if (obj->madv == I915_MADV_DONTNEED)
223                 obj->dirty = 0;
224
225         if (obj->dirty) {
226                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227                 char *vaddr = obj->phys_handle->vaddr;
228                 int i;
229
230                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231                         struct page *page;
232                         char *dst;
233
234                         page = shmem_read_mapping_page(mapping, i);
235                         if (IS_ERR(page))
236                                 continue;
237
238                         dst = kmap_atomic(page);
239                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
240                         memcpy(dst, vaddr, PAGE_SIZE);
241                         kunmap_atomic(dst);
242
243                         set_page_dirty(page);
244                         if (obj->madv == I915_MADV_WILLNEED)
245                                 mark_page_accessed(page);
246                         page_cache_release(page);
247                         vaddr += PAGE_SIZE;
248                 }
249                 obj->dirty = 0;
250         }
251
252         sg_free_table(obj->pages);
253         kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259         drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263         .get_pages = i915_gem_object_get_pages_phys,
264         .put_pages = i915_gem_object_put_pages_phys,
265         .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271         struct i915_vma *vma, *next;
272         int ret;
273
274         drm_gem_object_reference(&obj->base);
275         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276                 if (i915_vma_unbind(vma))
277                         break;
278
279         ret = i915_gem_object_put_pages(obj);
280         drm_gem_object_unreference(&obj->base);
281
282         return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287                             int align)
288 {
289         drm_dma_handle_t *phys;
290         int ret;
291
292         if (obj->phys_handle) {
293                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294                         return -EBUSY;
295
296                 return 0;
297         }
298
299         if (obj->madv != I915_MADV_WILLNEED)
300                 return -EFAULT;
301
302         if (obj->base.filp == NULL)
303                 return -EINVAL;
304
305         ret = drop_pages(obj);
306         if (ret)
307                 return ret;
308
309         /* create a new object */
310         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311         if (!phys)
312                 return -ENOMEM;
313
314         obj->phys_handle = phys;
315         obj->ops = &i915_gem_phys_ops;
316
317         return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322                      struct drm_i915_gem_pwrite *args,
323                      struct drm_file *file_priv)
324 {
325         struct drm_device *dev = obj->base.dev;
326         void *vaddr = obj->phys_handle->vaddr + args->offset;
327         char __user *user_data = to_user_ptr(args->data_ptr);
328         int ret = 0;
329
330         /* We manually control the domain here and pretend that it
331          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332          */
333         ret = i915_gem_object_wait_rendering(obj, false);
334         if (ret)
335                 return ret;
336
337         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339                 unsigned long unwritten;
340
341                 /* The physical object once assigned is fixed for the lifetime
342                  * of the obj, so we can safely drop the lock and continue
343                  * to access vaddr.
344                  */
345                 mutex_unlock(&dev->struct_mutex);
346                 unwritten = copy_from_user(vaddr, user_data, args->size);
347                 mutex_lock(&dev->struct_mutex);
348                 if (unwritten) {
349                         ret = -EFAULT;
350                         goto out;
351                 }
352         }
353
354         drm_clflush_virt_range(vaddr, args->size);
355         i915_gem_chipset_flush(dev);
356
357 out:
358         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359         return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364         struct drm_i915_private *dev_priv = dev->dev_private;
365         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371         kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376                 struct drm_device *dev,
377                 uint64_t size,
378                 uint32_t *handle_p)
379 {
380         struct drm_i915_gem_object *obj;
381         int ret;
382         u32 handle;
383
384         size = roundup(size, PAGE_SIZE);
385         if (size == 0)
386                 return -EINVAL;
387
388         /* Allocate the new object */
389         obj = i915_gem_alloc_object(dev, size);
390         if (obj == NULL)
391                 return -ENOMEM;
392
393         ret = drm_gem_handle_create(file, &obj->base, &handle);
394         /* drop reference from allocate - handle holds it now */
395         drm_gem_object_unreference_unlocked(&obj->base);
396         if (ret)
397                 return ret;
398
399         *handle_p = handle;
400         return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405                      struct drm_device *dev,
406                      struct drm_mode_create_dumb *args)
407 {
408         /* have to work out size/pitch and return them */
409         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410         args->size = args->pitch * args->height;
411         return i915_gem_create(file, dev,
412                                args->size, &args->handle);
413 }
414
415 /**
416  * Creates a new mm object and returns a handle to it.
417  */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420                       struct drm_file *file)
421 {
422         struct drm_i915_gem_create *args = data;
423
424         return i915_gem_create(file, dev,
425                                args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430                         const char *gpu_vaddr, int gpu_offset,
431                         int length)
432 {
433         int ret, cpu_offset = 0;
434
435         while (length > 0) {
436                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437                 int this_length = min(cacheline_end - gpu_offset, length);
438                 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441                                      gpu_vaddr + swizzled_gpu_offset,
442                                      this_length);
443                 if (ret)
444                         return ret + length;
445
446                 cpu_offset += this_length;
447                 gpu_offset += this_length;
448                 length -= this_length;
449         }
450
451         return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456                           const char __user *cpu_vaddr,
457                           int length)
458 {
459         int ret, cpu_offset = 0;
460
461         while (length > 0) {
462                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463                 int this_length = min(cacheline_end - gpu_offset, length);
464                 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467                                        cpu_vaddr + cpu_offset,
468                                        this_length);
469                 if (ret)
470                         return ret + length;
471
472                 cpu_offset += this_length;
473                 gpu_offset += this_length;
474                 length -= this_length;
475         }
476
477         return 0;
478 }
479
480 /*
481  * Pins the specified object's pages and synchronizes the object with
482  * GPU accesses. Sets needs_clflush to non-zero if the caller should
483  * flush the object from the CPU cache.
484  */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486                                     int *needs_clflush)
487 {
488         int ret;
489
490         *needs_clflush = 0;
491
492         if (!obj->base.filp)
493                 return -EINVAL;
494
495         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496                 /* If we're not in the cpu read domain, set ourself into the gtt
497                  * read domain and manually flush cachelines (if required). This
498                  * optimizes for the case when the gpu will dirty the data
499                  * anyway again before the next pread happens. */
500                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501                                                         obj->cache_level);
502                 ret = i915_gem_object_wait_rendering(obj, true);
503                 if (ret)
504                         return ret;
505         }
506
507         ret = i915_gem_object_get_pages(obj);
508         if (ret)
509                 return ret;
510
511         i915_gem_object_pin_pages(obj);
512
513         return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517  * Flushes invalid cachelines before reading the target if
518  * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521                  char __user *user_data,
522                  bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524         char *vaddr;
525         int ret;
526
527         if (unlikely(page_do_bit17_swizzling))
528                 return -EINVAL;
529
530         vaddr = kmap_atomic(page);
531         if (needs_clflush)
532                 drm_clflush_virt_range(vaddr + shmem_page_offset,
533                                        page_length);
534         ret = __copy_to_user_inatomic(user_data,
535                                       vaddr + shmem_page_offset,
536                                       page_length);
537         kunmap_atomic(vaddr);
538
539         return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544                              bool swizzled)
545 {
546         if (unlikely(swizzled)) {
547                 unsigned long start = (unsigned long) addr;
548                 unsigned long end = (unsigned long) addr + length;
549
550                 /* For swizzling simply ensure that we always flush both
551                  * channels. Lame, but simple and it works. Swizzled
552                  * pwrite/pread is far from a hotpath - current userspace
553                  * doesn't use it at all. */
554                 start = round_down(start, 128);
555                 end = round_up(end, 128);
556
557                 drm_clflush_virt_range((void *)start, end - start);
558         } else {
559                 drm_clflush_virt_range(addr, length);
560         }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565  * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568                  char __user *user_data,
569                  bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571         char *vaddr;
572         int ret;
573
574         vaddr = kmap(page);
575         if (needs_clflush)
576                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577                                              page_length,
578                                              page_do_bit17_swizzling);
579
580         if (page_do_bit17_swizzling)
581                 ret = __copy_to_user_swizzled(user_data,
582                                               vaddr, shmem_page_offset,
583                                               page_length);
584         else
585                 ret = __copy_to_user(user_data,
586                                      vaddr + shmem_page_offset,
587                                      page_length);
588         kunmap(page);
589
590         return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595                      struct drm_i915_gem_object *obj,
596                      struct drm_i915_gem_pread *args,
597                      struct drm_file *file)
598 {
599         char __user *user_data;
600         ssize_t remain;
601         loff_t offset;
602         int shmem_page_offset, page_length, ret = 0;
603         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604         int prefaulted = 0;
605         int needs_clflush = 0;
606         struct sg_page_iter sg_iter;
607
608         user_data = to_user_ptr(args->data_ptr);
609         remain = args->size;
610
611         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614         if (ret)
615                 return ret;
616
617         offset = args->offset;
618
619         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620                          offset >> PAGE_SHIFT) {
621                 struct page *page = sg_page_iter_page(&sg_iter);
622
623                 if (remain <= 0)
624                         break;
625
626                 /* Operation in this page
627                  *
628                  * shmem_page_offset = offset within page in shmem file
629                  * page_length = bytes to copy for this page
630                  */
631                 shmem_page_offset = offset_in_page(offset);
632                 page_length = remain;
633                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634                         page_length = PAGE_SIZE - shmem_page_offset;
635
636                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637                         (page_to_phys(page) & (1 << 17)) != 0;
638
639                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640                                        user_data, page_do_bit17_swizzling,
641                                        needs_clflush);
642                 if (ret == 0)
643                         goto next_page;
644
645                 mutex_unlock(&dev->struct_mutex);
646
647                 if (likely(!i915.prefault_disable) && !prefaulted) {
648                         ret = fault_in_multipages_writeable(user_data, remain);
649                         /* Userspace is tricking us, but we've already clobbered
650                          * its pages with the prefault and promised to write the
651                          * data up to the first fault. Hence ignore any errors
652                          * and just continue. */
653                         (void)ret;
654                         prefaulted = 1;
655                 }
656
657                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658                                        user_data, page_do_bit17_swizzling,
659                                        needs_clflush);
660
661                 mutex_lock(&dev->struct_mutex);
662
663                 if (ret)
664                         goto out;
665
666 next_page:
667                 remain -= page_length;
668                 user_data += page_length;
669                 offset += page_length;
670         }
671
672 out:
673         i915_gem_object_unpin_pages(obj);
674
675         return ret;
676 }
677
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685                      struct drm_file *file)
686 {
687         struct drm_i915_gem_pread *args = data;
688         struct drm_i915_gem_object *obj;
689         int ret = 0;
690
691         if (args->size == 0)
692                 return 0;
693
694         if (!access_ok(VERIFY_WRITE,
695                        to_user_ptr(args->data_ptr),
696                        args->size))
697                 return -EFAULT;
698
699         ret = i915_mutex_lock_interruptible(dev);
700         if (ret)
701                 return ret;
702
703         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704         if (&obj->base == NULL) {
705                 ret = -ENOENT;
706                 goto unlock;
707         }
708
709         /* Bounds check source.  */
710         if (args->offset > obj->base.size ||
711             args->size > obj->base.size - args->offset) {
712                 ret = -EINVAL;
713                 goto out;
714         }
715
716         /* prime objects have no backing filp to GEM pread/pwrite
717          * pages from.
718          */
719         if (!obj->base.filp) {
720                 ret = -EINVAL;
721                 goto out;
722         }
723
724         trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726         ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729         drm_gem_object_unreference(&obj->base);
730 unlock:
731         mutex_unlock(&dev->struct_mutex);
732         return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736  * page faults in the source data
737  */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741                 loff_t page_base, int page_offset,
742                 char __user *user_data,
743                 int length)
744 {
745         void __iomem *vaddr_atomic;
746         void *vaddr;
747         unsigned long unwritten;
748
749         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750         /* We can use the cpu mem copy function because this is X86. */
751         vaddr = (void __force*)vaddr_atomic + page_offset;
752         unwritten = __copy_from_user_inatomic_nocache(vaddr,
753                                                       user_data, length);
754         io_mapping_unmap_atomic(vaddr_atomic);
755         return unwritten;
756 }
757
758 /**
759  * This is the fast pwrite path, where we copy the data directly from the
760  * user into the GTT, uncached.
761  */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764                          struct drm_i915_gem_object *obj,
765                          struct drm_i915_gem_pwrite *args,
766                          struct drm_file *file)
767 {
768         struct drm_i915_private *dev_priv = dev->dev_private;
769         ssize_t remain;
770         loff_t offset, page_base;
771         char __user *user_data;
772         int page_offset, page_length, ret;
773
774         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775         if (ret)
776                 goto out;
777
778         ret = i915_gem_object_set_to_gtt_domain(obj, true);
779         if (ret)
780                 goto out_unpin;
781
782         ret = i915_gem_object_put_fence(obj);
783         if (ret)
784                 goto out_unpin;
785
786         user_data = to_user_ptr(args->data_ptr);
787         remain = args->size;
788
789         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793         while (remain > 0) {
794                 /* Operation in this page
795                  *
796                  * page_base = page offset within aperture
797                  * page_offset = offset within page
798                  * page_length = bytes to copy for this page
799                  */
800                 page_base = offset & PAGE_MASK;
801                 page_offset = offset_in_page(offset);
802                 page_length = remain;
803                 if ((page_offset + remain) > PAGE_SIZE)
804                         page_length = PAGE_SIZE - page_offset;
805
806                 /* If we get a fault while copying data, then (presumably) our
807                  * source page isn't available.  Return the error and we'll
808                  * retry in the slow path.
809                  */
810                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811                                     page_offset, user_data, page_length)) {
812                         ret = -EFAULT;
813                         goto out_flush;
814                 }
815
816                 remain -= page_length;
817                 user_data += page_length;
818                 offset += page_length;
819         }
820
821 out_flush:
822         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824         i915_gem_object_ggtt_unpin(obj);
825 out:
826         return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830  * Flushes invalid cachelines before writing to the target if
831  * needs_clflush_before is set and flushes out any written cachelines after
832  * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835                   char __user *user_data,
836                   bool page_do_bit17_swizzling,
837                   bool needs_clflush_before,
838                   bool needs_clflush_after)
839 {
840         char *vaddr;
841         int ret;
842
843         if (unlikely(page_do_bit17_swizzling))
844                 return -EINVAL;
845
846         vaddr = kmap_atomic(page);
847         if (needs_clflush_before)
848                 drm_clflush_virt_range(vaddr + shmem_page_offset,
849                                        page_length);
850         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851                                         user_data, page_length);
852         if (needs_clflush_after)
853                 drm_clflush_virt_range(vaddr + shmem_page_offset,
854                                        page_length);
855         kunmap_atomic(vaddr);
856
857         return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861  * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864                   char __user *user_data,
865                   bool page_do_bit17_swizzling,
866                   bool needs_clflush_before,
867                   bool needs_clflush_after)
868 {
869         char *vaddr;
870         int ret;
871
872         vaddr = kmap(page);
873         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875                                              page_length,
876                                              page_do_bit17_swizzling);
877         if (page_do_bit17_swizzling)
878                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879                                                 user_data,
880                                                 page_length);
881         else
882                 ret = __copy_from_user(vaddr + shmem_page_offset,
883                                        user_data,
884                                        page_length);
885         if (needs_clflush_after)
886                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887                                              page_length,
888                                              page_do_bit17_swizzling);
889         kunmap(page);
890
891         return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896                       struct drm_i915_gem_object *obj,
897                       struct drm_i915_gem_pwrite *args,
898                       struct drm_file *file)
899 {
900         ssize_t remain;
901         loff_t offset;
902         char __user *user_data;
903         int shmem_page_offset, page_length, ret = 0;
904         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905         int hit_slowpath = 0;
906         int needs_clflush_after = 0;
907         int needs_clflush_before = 0;
908         struct sg_page_iter sg_iter;
909
910         user_data = to_user_ptr(args->data_ptr);
911         remain = args->size;
912
913         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916                 /* If we're not in the cpu write domain, set ourself into the gtt
917                  * write domain and manually flush cachelines (if required). This
918                  * optimizes for the case when the gpu will use the data
919                  * right away and we therefore have to clflush anyway. */
920                 needs_clflush_after = cpu_write_needs_clflush(obj);
921                 ret = i915_gem_object_wait_rendering(obj, false);
922                 if (ret)
923                         return ret;
924         }
925         /* Same trick applies to invalidate partially written cachelines read
926          * before writing. */
927         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928                 needs_clflush_before =
929                         !cpu_cache_is_coherent(dev, obj->cache_level);
930
931         ret = i915_gem_object_get_pages(obj);
932         if (ret)
933                 return ret;
934
935         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937         i915_gem_object_pin_pages(obj);
938
939         offset = args->offset;
940         obj->dirty = 1;
941
942         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943                          offset >> PAGE_SHIFT) {
944                 struct page *page = sg_page_iter_page(&sg_iter);
945                 int partial_cacheline_write;
946
947                 if (remain <= 0)
948                         break;
949
950                 /* Operation in this page
951                  *
952                  * shmem_page_offset = offset within page in shmem file
953                  * page_length = bytes to copy for this page
954                  */
955                 shmem_page_offset = offset_in_page(offset);
956
957                 page_length = remain;
958                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959                         page_length = PAGE_SIZE - shmem_page_offset;
960
961                 /* If we don't overwrite a cacheline completely we need to be
962                  * careful to have up-to-date data by first clflushing. Don't
963                  * overcomplicate things and flush the entire patch. */
964                 partial_cacheline_write = needs_clflush_before &&
965                         ((shmem_page_offset | page_length)
966                                 & (boot_cpu_data.x86_clflush_size - 1));
967
968                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969                         (page_to_phys(page) & (1 << 17)) != 0;
970
971                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972                                         user_data, page_do_bit17_swizzling,
973                                         partial_cacheline_write,
974                                         needs_clflush_after);
975                 if (ret == 0)
976                         goto next_page;
977
978                 hit_slowpath = 1;
979                 mutex_unlock(&dev->struct_mutex);
980                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981                                         user_data, page_do_bit17_swizzling,
982                                         partial_cacheline_write,
983                                         needs_clflush_after);
984
985                 mutex_lock(&dev->struct_mutex);
986
987                 if (ret)
988                         goto out;
989
990 next_page:
991                 remain -= page_length;
992                 user_data += page_length;
993                 offset += page_length;
994         }
995
996 out:
997         i915_gem_object_unpin_pages(obj);
998
999         if (hit_slowpath) {
1000                 /*
1001                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1002                  * cachelines in-line while writing and the object moved
1003                  * out of the cpu write domain while we've dropped the lock.
1004                  */
1005                 if (!needs_clflush_after &&
1006                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007                         if (i915_gem_clflush_object(obj, obj->pin_display))
1008                                 needs_clflush_after = true;
1009                 }
1010         }
1011
1012         if (needs_clflush_after)
1013                 i915_gem_chipset_flush(dev);
1014         else
1015                 obj->cache_dirty = true;
1016
1017         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018         return ret;
1019 }
1020
1021 /**
1022  * Writes data to the object referenced by handle.
1023  *
1024  * On error, the contents of the buffer that were to be modified are undefined.
1025  */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028                       struct drm_file *file)
1029 {
1030         struct drm_i915_private *dev_priv = dev->dev_private;
1031         struct drm_i915_gem_pwrite *args = data;
1032         struct drm_i915_gem_object *obj;
1033         int ret;
1034
1035         if (args->size == 0)
1036                 return 0;
1037
1038         if (!access_ok(VERIFY_READ,
1039                        to_user_ptr(args->data_ptr),
1040                        args->size))
1041                 return -EFAULT;
1042
1043         if (likely(!i915.prefault_disable)) {
1044                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045                                                    args->size);
1046                 if (ret)
1047                         return -EFAULT;
1048         }
1049
1050         intel_runtime_pm_get(dev_priv);
1051
1052         ret = i915_mutex_lock_interruptible(dev);
1053         if (ret)
1054                 goto put_rpm;
1055
1056         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057         if (&obj->base == NULL) {
1058                 ret = -ENOENT;
1059                 goto unlock;
1060         }
1061
1062         /* Bounds check destination. */
1063         if (args->offset > obj->base.size ||
1064             args->size > obj->base.size - args->offset) {
1065                 ret = -EINVAL;
1066                 goto out;
1067         }
1068
1069         /* prime objects have no backing filp to GEM pread/pwrite
1070          * pages from.
1071          */
1072         if (!obj->base.filp) {
1073                 ret = -EINVAL;
1074                 goto out;
1075         }
1076
1077         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079         ret = -EFAULT;
1080         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081          * it would end up going through the fenced access, and we'll get
1082          * different detiling behavior between reading and writing.
1083          * pread/pwrite currently are reading and writing from the CPU
1084          * perspective, requiring manual detiling by the client.
1085          */
1086         if (obj->tiling_mode == I915_TILING_NONE &&
1087             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088             cpu_write_needs_clflush(obj)) {
1089                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090                 /* Note that the gtt paths might fail with non-page-backed user
1091                  * pointers (e.g. gtt mappings when moving data between
1092                  * textures). Fallback to the shmem path in that case. */
1093         }
1094
1095         if (ret == -EFAULT || ret == -ENOSPC) {
1096                 if (obj->phys_handle)
1097                         ret = i915_gem_phys_pwrite(obj, args, file);
1098                 else
1099                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100         }
1101
1102 out:
1103         drm_gem_object_unreference(&obj->base);
1104 unlock:
1105         mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107         intel_runtime_pm_put(dev_priv);
1108
1109         return ret;
1110 }
1111
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114                      bool interruptible)
1115 {
1116         if (i915_reset_in_progress(error)) {
1117                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118                  * -EIO unconditionally for these. */
1119                 if (!interruptible)
1120                         return -EIO;
1121
1122                 /* Recovery complete, but the reset failed ... */
1123                 if (i915_terminally_wedged(error))
1124                         return -EIO;
1125
1126                 /*
1127                  * Check if GPU Reset is in progress - we need intel_ring_begin
1128                  * to work properly to reinit the hw state while the gpu is
1129                  * still marked as reset-in-progress. Handle this with a flag.
1130                  */
1131                 if (!error->reload_in_reset)
1132                         return -EAGAIN;
1133         }
1134
1135         return 0;
1136 }
1137
1138 static void fake_irq(unsigned long data)
1139 {
1140         wake_up_process((struct task_struct *)data);
1141 }
1142
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144                        struct intel_engine_cs *ring)
1145 {
1146         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148
1149 static unsigned long local_clock_us(unsigned *cpu)
1150 {
1151         unsigned long t;
1152
1153         /* Cheaply and approximately convert from nanoseconds to microseconds.
1154          * The result and subsequent calculations are also defined in the same
1155          * approximate microseconds units. The principal source of timing
1156          * error here is from the simple truncation.
1157          *
1158          * Note that local_clock() is only defined wrt to the current CPU;
1159          * the comparisons are no longer valid if we switch CPUs. Instead of
1160          * blocking preemption for the entire busywait, we can detect the CPU
1161          * switch and use that as indicator of system load and a reason to
1162          * stop busywaiting, see busywait_stop().
1163          */
1164         *cpu = get_cpu();
1165         t = local_clock() >> 10;
1166         put_cpu();
1167
1168         return t;
1169 }
1170
1171 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172 {
1173         unsigned this_cpu;
1174
1175         if (time_after(local_clock_us(&this_cpu), timeout))
1176                 return true;
1177
1178         return this_cpu != cpu;
1179 }
1180
1181 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182 {
1183         unsigned long timeout;
1184         unsigned cpu;
1185
1186         /* When waiting for high frequency requests, e.g. during synchronous
1187          * rendering split between the CPU and GPU, the finite amount of time
1188          * required to set up the irq and wait upon it limits the response
1189          * rate. By busywaiting on the request completion for a short while we
1190          * can service the high frequency waits as quick as possible. However,
1191          * if it is a slow request, we want to sleep as quickly as possible.
1192          * The tradeoff between waiting and sleeping is roughly the time it
1193          * takes to sleep on a request, on the order of a microsecond.
1194          */
1195
1196         if (req->ring->irq_refcount)
1197                 return -EBUSY;
1198
1199         /* Only spin if we know the GPU is processing this request */
1200         if (!i915_gem_request_started(req, true))
1201                 return -EAGAIN;
1202
1203         timeout = local_clock_us(&cpu) + 5;
1204         while (!need_resched()) {
1205                 if (i915_gem_request_completed(req, true))
1206                         return 0;
1207
1208                 if (signal_pending_state(state, current))
1209                         break;
1210
1211                 if (busywait_stop(timeout, cpu))
1212                         break;
1213
1214                 cpu_relax_lowlatency();
1215         }
1216
1217         if (i915_gem_request_completed(req, false))
1218                 return 0;
1219
1220         return -EAGAIN;
1221 }
1222
1223 /**
1224  * __i915_wait_request - wait until execution of request has finished
1225  * @req: duh!
1226  * @reset_counter: reset sequence associated with the given request
1227  * @interruptible: do an interruptible wait (normally yes)
1228  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229  *
1230  * Note: It is of utmost importance that the passed in seqno and reset_counter
1231  * values have been read by the caller in an smp safe manner. Where read-side
1232  * locks are involved, it is sufficient to read the reset_counter before
1233  * unlocking the lock that protects the seqno. For lockless tricks, the
1234  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235  * inserted.
1236  *
1237  * Returns 0 if the request was found within the alloted time. Else returns the
1238  * errno with remaining time filled in timeout argument.
1239  */
1240 int __i915_wait_request(struct drm_i915_gem_request *req,
1241                         unsigned reset_counter,
1242                         bool interruptible,
1243                         s64 *timeout,
1244                         struct intel_rps_client *rps)
1245 {
1246         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247         struct drm_device *dev = ring->dev;
1248         struct drm_i915_private *dev_priv = dev->dev_private;
1249         const bool irq_test_in_progress =
1250                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251         int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252         DEFINE_WAIT(wait);
1253         unsigned long timeout_expire;
1254         s64 before, now;
1255         int ret;
1256
1257         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258
1259         if (list_empty(&req->list))
1260                 return 0;
1261
1262         if (i915_gem_request_completed(req, true))
1263                 return 0;
1264
1265         timeout_expire = 0;
1266         if (timeout) {
1267                 if (WARN_ON(*timeout < 0))
1268                         return -EINVAL;
1269
1270                 if (*timeout == 0)
1271                         return -ETIME;
1272
1273                 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274         }
1275
1276         if (INTEL_INFO(dev_priv)->gen >= 6)
1277                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1278
1279         /* Record current time in case interrupted by signal, or wedged */
1280         trace_i915_gem_request_wait_begin(req);
1281         before = ktime_get_raw_ns();
1282
1283         /* Optimistic spin for the next jiffie before touching IRQs */
1284         ret = __i915_spin_request(req, state);
1285         if (ret == 0)
1286                 goto out;
1287
1288         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1289                 ret = -ENODEV;
1290                 goto out;
1291         }
1292
1293         for (;;) {
1294                 struct timer_list timer;
1295
1296                 prepare_to_wait(&ring->irq_queue, &wait, state);
1297
1298                 /* We need to check whether any gpu reset happened in between
1299                  * the caller grabbing the seqno and now ... */
1300                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1301                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1302                          * is truely gone. */
1303                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1304                         if (ret == 0)
1305                                 ret = -EAGAIN;
1306                         break;
1307                 }
1308
1309                 if (i915_gem_request_completed(req, false)) {
1310                         ret = 0;
1311                         break;
1312                 }
1313
1314                 if (signal_pending_state(state, current)) {
1315                         ret = -ERESTARTSYS;
1316                         break;
1317                 }
1318
1319                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1320                         ret = -ETIME;
1321                         break;
1322                 }
1323
1324                 timer.function = NULL;
1325                 if (timeout || missed_irq(dev_priv, ring)) {
1326                         unsigned long expire;
1327
1328                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1329                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1330                         mod_timer(&timer, expire);
1331                 }
1332
1333                 io_schedule();
1334
1335                 if (timer.function) {
1336                         del_singleshot_timer_sync(&timer);
1337                         destroy_timer_on_stack(&timer);
1338                 }
1339         }
1340         if (!irq_test_in_progress)
1341                 ring->irq_put(ring);
1342
1343         finish_wait(&ring->irq_queue, &wait);
1344
1345 out:
1346         now = ktime_get_raw_ns();
1347         trace_i915_gem_request_wait_end(req);
1348
1349         if (timeout) {
1350                 s64 tres = *timeout - (now - before);
1351
1352                 *timeout = tres < 0 ? 0 : tres;
1353
1354                 /*
1355                  * Apparently ktime isn't accurate enough and occasionally has a
1356                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1357                  * things up to make the test happy. We allow up to 1 jiffy.
1358                  *
1359                  * This is a regrssion from the timespec->ktime conversion.
1360                  */
1361                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1362                         *timeout = 0;
1363         }
1364
1365         return ret;
1366 }
1367
1368 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1369                                    struct drm_file *file)
1370 {
1371         struct drm_i915_private *dev_private;
1372         struct drm_i915_file_private *file_priv;
1373
1374         WARN_ON(!req || !file || req->file_priv);
1375
1376         if (!req || !file)
1377                 return -EINVAL;
1378
1379         if (req->file_priv)
1380                 return -EINVAL;
1381
1382         dev_private = req->ring->dev->dev_private;
1383         file_priv = file->driver_priv;
1384
1385         spin_lock(&file_priv->mm.lock);
1386         req->file_priv = file_priv;
1387         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1388         spin_unlock(&file_priv->mm.lock);
1389
1390         req->pid = get_pid(task_pid(current));
1391
1392         return 0;
1393 }
1394
1395 static inline void
1396 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1397 {
1398         struct drm_i915_file_private *file_priv = request->file_priv;
1399
1400         if (!file_priv)
1401                 return;
1402
1403         spin_lock(&file_priv->mm.lock);
1404         list_del(&request->client_list);
1405         request->file_priv = NULL;
1406         spin_unlock(&file_priv->mm.lock);
1407
1408         put_pid(request->pid);
1409         request->pid = NULL;
1410 }
1411
1412 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1413 {
1414         trace_i915_gem_request_retire(request);
1415
1416         /* We know the GPU must have read the request to have
1417          * sent us the seqno + interrupt, so use the position
1418          * of tail of the request to update the last known position
1419          * of the GPU head.
1420          *
1421          * Note this requires that we are always called in request
1422          * completion order.
1423          */
1424         request->ringbuf->last_retired_head = request->postfix;
1425
1426         list_del_init(&request->list);
1427         i915_gem_request_remove_from_client(request);
1428
1429         i915_gem_request_unreference(request);
1430 }
1431
1432 static void
1433 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1434 {
1435         struct intel_engine_cs *engine = req->ring;
1436         struct drm_i915_gem_request *tmp;
1437
1438         lockdep_assert_held(&engine->dev->struct_mutex);
1439
1440         if (list_empty(&req->list))
1441                 return;
1442
1443         do {
1444                 tmp = list_first_entry(&engine->request_list,
1445                                        typeof(*tmp), list);
1446
1447                 i915_gem_request_retire(tmp);
1448         } while (tmp != req);
1449
1450         WARN_ON(i915_verify_lists(engine->dev));
1451 }
1452
1453 /**
1454  * Waits for a request to be signaled, and cleans up the
1455  * request and object lists appropriately for that event.
1456  */
1457 int
1458 i915_wait_request(struct drm_i915_gem_request *req)
1459 {
1460         struct drm_device *dev;
1461         struct drm_i915_private *dev_priv;
1462         bool interruptible;
1463         int ret;
1464
1465         BUG_ON(req == NULL);
1466
1467         dev = req->ring->dev;
1468         dev_priv = dev->dev_private;
1469         interruptible = dev_priv->mm.interruptible;
1470
1471         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1472
1473         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1474         if (ret)
1475                 return ret;
1476
1477         ret = __i915_wait_request(req,
1478                                   atomic_read(&dev_priv->gpu_error.reset_counter),
1479                                   interruptible, NULL, NULL);
1480         if (ret)
1481                 return ret;
1482
1483         __i915_gem_request_retire__upto(req);
1484         return 0;
1485 }
1486
1487 /**
1488  * Ensures that all rendering to the object has completed and the object is
1489  * safe to unbind from the GTT or access from the CPU.
1490  */
1491 int
1492 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1493                                bool readonly)
1494 {
1495         int ret, i;
1496
1497         if (!obj->active)
1498                 return 0;
1499
1500         if (readonly) {
1501                 if (obj->last_write_req != NULL) {
1502                         ret = i915_wait_request(obj->last_write_req);
1503                         if (ret)
1504                                 return ret;
1505
1506                         i = obj->last_write_req->ring->id;
1507                         if (obj->last_read_req[i] == obj->last_write_req)
1508                                 i915_gem_object_retire__read(obj, i);
1509                         else
1510                                 i915_gem_object_retire__write(obj);
1511                 }
1512         } else {
1513                 for (i = 0; i < I915_NUM_RINGS; i++) {
1514                         if (obj->last_read_req[i] == NULL)
1515                                 continue;
1516
1517                         ret = i915_wait_request(obj->last_read_req[i]);
1518                         if (ret)
1519                                 return ret;
1520
1521                         i915_gem_object_retire__read(obj, i);
1522                 }
1523                 RQ_BUG_ON(obj->active);
1524         }
1525
1526         return 0;
1527 }
1528
1529 static void
1530 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1531                                struct drm_i915_gem_request *req)
1532 {
1533         int ring = req->ring->id;
1534
1535         if (obj->last_read_req[ring] == req)
1536                 i915_gem_object_retire__read(obj, ring);
1537         else if (obj->last_write_req == req)
1538                 i915_gem_object_retire__write(obj);
1539
1540         __i915_gem_request_retire__upto(req);
1541 }
1542
1543 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1544  * as the object state may change during this call.
1545  */
1546 static __must_check int
1547 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1548                                             struct intel_rps_client *rps,
1549                                             bool readonly)
1550 {
1551         struct drm_device *dev = obj->base.dev;
1552         struct drm_i915_private *dev_priv = dev->dev_private;
1553         struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1554         unsigned reset_counter;
1555         int ret, i, n = 0;
1556
1557         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1558         BUG_ON(!dev_priv->mm.interruptible);
1559
1560         if (!obj->active)
1561                 return 0;
1562
1563         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1564         if (ret)
1565                 return ret;
1566
1567         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1568
1569         if (readonly) {
1570                 struct drm_i915_gem_request *req;
1571
1572                 req = obj->last_write_req;
1573                 if (req == NULL)
1574                         return 0;
1575
1576                 requests[n++] = i915_gem_request_reference(req);
1577         } else {
1578                 for (i = 0; i < I915_NUM_RINGS; i++) {
1579                         struct drm_i915_gem_request *req;
1580
1581                         req = obj->last_read_req[i];
1582                         if (req == NULL)
1583                                 continue;
1584
1585                         requests[n++] = i915_gem_request_reference(req);
1586                 }
1587         }
1588
1589         mutex_unlock(&dev->struct_mutex);
1590         for (i = 0; ret == 0 && i < n; i++)
1591                 ret = __i915_wait_request(requests[i], reset_counter, true,
1592                                           NULL, rps);
1593         mutex_lock(&dev->struct_mutex);
1594
1595         for (i = 0; i < n; i++) {
1596                 if (ret == 0)
1597                         i915_gem_object_retire_request(obj, requests[i]);
1598                 i915_gem_request_unreference(requests[i]);
1599         }
1600
1601         return ret;
1602 }
1603
1604 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1605 {
1606         struct drm_i915_file_private *fpriv = file->driver_priv;
1607         return &fpriv->rps;
1608 }
1609
1610 /**
1611  * Called when user space prepares to use an object with the CPU, either
1612  * through the mmap ioctl's mapping or a GTT mapping.
1613  */
1614 int
1615 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1616                           struct drm_file *file)
1617 {
1618         struct drm_i915_gem_set_domain *args = data;
1619         struct drm_i915_gem_object *obj;
1620         uint32_t read_domains = args->read_domains;
1621         uint32_t write_domain = args->write_domain;
1622         int ret;
1623
1624         /* Only handle setting domains to types used by the CPU. */
1625         if (write_domain & I915_GEM_GPU_DOMAINS)
1626                 return -EINVAL;
1627
1628         if (read_domains & I915_GEM_GPU_DOMAINS)
1629                 return -EINVAL;
1630
1631         /* Having something in the write domain implies it's in the read
1632          * domain, and only that read domain.  Enforce that in the request.
1633          */
1634         if (write_domain != 0 && read_domains != write_domain)
1635                 return -EINVAL;
1636
1637         ret = i915_mutex_lock_interruptible(dev);
1638         if (ret)
1639                 return ret;
1640
1641         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1642         if (&obj->base == NULL) {
1643                 ret = -ENOENT;
1644                 goto unlock;
1645         }
1646
1647         /* Try to flush the object off the GPU without holding the lock.
1648          * We will repeat the flush holding the lock in the normal manner
1649          * to catch cases where we are gazumped.
1650          */
1651         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1652                                                           to_rps_client(file),
1653                                                           !write_domain);
1654         if (ret)
1655                 goto unref;
1656
1657         if (read_domains & I915_GEM_DOMAIN_GTT)
1658                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1659         else
1660                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1661
1662         if (write_domain != 0)
1663                 intel_fb_obj_invalidate(obj,
1664                                         write_domain == I915_GEM_DOMAIN_GTT ?
1665                                         ORIGIN_GTT : ORIGIN_CPU);
1666
1667 unref:
1668         drm_gem_object_unreference(&obj->base);
1669 unlock:
1670         mutex_unlock(&dev->struct_mutex);
1671         return ret;
1672 }
1673
1674 /**
1675  * Called when user space has done writes to this buffer
1676  */
1677 int
1678 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1679                          struct drm_file *file)
1680 {
1681         struct drm_i915_gem_sw_finish *args = data;
1682         struct drm_i915_gem_object *obj;
1683         int ret = 0;
1684
1685         ret = i915_mutex_lock_interruptible(dev);
1686         if (ret)
1687                 return ret;
1688
1689         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1690         if (&obj->base == NULL) {
1691                 ret = -ENOENT;
1692                 goto unlock;
1693         }
1694
1695         /* Pinned buffers may be scanout, so flush the cache */
1696         if (obj->pin_display)
1697                 i915_gem_object_flush_cpu_write_domain(obj);
1698
1699         drm_gem_object_unreference(&obj->base);
1700 unlock:
1701         mutex_unlock(&dev->struct_mutex);
1702         return ret;
1703 }
1704
1705 /**
1706  * Maps the contents of an object, returning the address it is mapped
1707  * into.
1708  *
1709  * While the mapping holds a reference on the contents of the object, it doesn't
1710  * imply a ref on the object itself.
1711  *
1712  * IMPORTANT:
1713  *
1714  * DRM driver writers who look a this function as an example for how to do GEM
1715  * mmap support, please don't implement mmap support like here. The modern way
1716  * to implement DRM mmap support is with an mmap offset ioctl (like
1717  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1718  * That way debug tooling like valgrind will understand what's going on, hiding
1719  * the mmap call in a driver private ioctl will break that. The i915 driver only
1720  * does cpu mmaps this way because we didn't know better.
1721  */
1722 int
1723 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1724                     struct drm_file *file)
1725 {
1726         struct drm_i915_gem_mmap *args = data;
1727         struct drm_gem_object *obj;
1728         unsigned long addr;
1729
1730         if (args->flags & ~(I915_MMAP_WC))
1731                 return -EINVAL;
1732
1733         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1734                 return -ENODEV;
1735
1736         obj = drm_gem_object_lookup(dev, file, args->handle);
1737         if (obj == NULL)
1738                 return -ENOENT;
1739
1740         /* prime objects have no backing filp to GEM mmap
1741          * pages from.
1742          */
1743         if (!obj->filp) {
1744                 drm_gem_object_unreference_unlocked(obj);
1745                 return -EINVAL;
1746         }
1747
1748         addr = vm_mmap(obj->filp, 0, args->size,
1749                        PROT_READ | PROT_WRITE, MAP_SHARED,
1750                        args->offset);
1751         if (args->flags & I915_MMAP_WC) {
1752                 struct mm_struct *mm = current->mm;
1753                 struct vm_area_struct *vma;
1754
1755                 down_write(&mm->mmap_sem);
1756                 vma = find_vma(mm, addr);
1757                 if (vma)
1758                         vma->vm_page_prot =
1759                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1760                 else
1761                         addr = -ENOMEM;
1762                 up_write(&mm->mmap_sem);
1763         }
1764         drm_gem_object_unreference_unlocked(obj);
1765         if (IS_ERR((void *)addr))
1766                 return addr;
1767
1768         args->addr_ptr = (uint64_t) addr;
1769
1770         return 0;
1771 }
1772
1773 /**
1774  * i915_gem_fault - fault a page into the GTT
1775  * @vma: VMA in question
1776  * @vmf: fault info
1777  *
1778  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1779  * from userspace.  The fault handler takes care of binding the object to
1780  * the GTT (if needed), allocating and programming a fence register (again,
1781  * only if needed based on whether the old reg is still valid or the object
1782  * is tiled) and inserting a new PTE into the faulting process.
1783  *
1784  * Note that the faulting process may involve evicting existing objects
1785  * from the GTT and/or fence registers to make room.  So performance may
1786  * suffer if the GTT working set is large or there are few fence registers
1787  * left.
1788  */
1789 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1790 {
1791         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1792         struct drm_device *dev = obj->base.dev;
1793         struct drm_i915_private *dev_priv = dev->dev_private;
1794         struct i915_ggtt_view view = i915_ggtt_view_normal;
1795         pgoff_t page_offset;
1796         unsigned long pfn;
1797         int ret = 0;
1798         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1799
1800         intel_runtime_pm_get(dev_priv);
1801
1802         /* We don't use vmf->pgoff since that has the fake offset */
1803         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1804                 PAGE_SHIFT;
1805
1806         ret = i915_mutex_lock_interruptible(dev);
1807         if (ret)
1808                 goto out;
1809
1810         trace_i915_gem_object_fault(obj, page_offset, true, write);
1811
1812         /* Try to flush the object off the GPU first without holding the lock.
1813          * Upon reacquiring the lock, we will perform our sanity checks and then
1814          * repeat the flush holding the lock in the normal manner to catch cases
1815          * where we are gazumped.
1816          */
1817         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1818         if (ret)
1819                 goto unlock;
1820
1821         /* Access to snoopable pages through the GTT is incoherent. */
1822         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1823                 ret = -EFAULT;
1824                 goto unlock;
1825         }
1826
1827         /* Use a partial view if the object is bigger than the aperture. */
1828         if (obj->base.size >= dev_priv->gtt.mappable_end &&
1829             obj->tiling_mode == I915_TILING_NONE) {
1830                 static const unsigned int chunk_size = 256; // 1 MiB
1831
1832                 memset(&view, 0, sizeof(view));
1833                 view.type = I915_GGTT_VIEW_PARTIAL;
1834                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1835                 view.params.partial.size =
1836                         min_t(unsigned int,
1837                               chunk_size,
1838                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1839                               view.params.partial.offset);
1840         }
1841
1842         /* Now pin it into the GTT if needed */
1843         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1844         if (ret)
1845                 goto unlock;
1846
1847         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1848         if (ret)
1849                 goto unpin;
1850
1851         ret = i915_gem_object_get_fence(obj);
1852         if (ret)
1853                 goto unpin;
1854
1855         /* Finally, remap it using the new GTT offset */
1856         pfn = dev_priv->gtt.mappable_base +
1857                 i915_gem_obj_ggtt_offset_view(obj, &view);
1858         pfn >>= PAGE_SHIFT;
1859
1860         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1861                 /* Overriding existing pages in partial view does not cause
1862                  * us any trouble as TLBs are still valid because the fault
1863                  * is due to userspace losing part of the mapping or never
1864                  * having accessed it before (at this partials' range).
1865                  */
1866                 unsigned long base = vma->vm_start +
1867                                      (view.params.partial.offset << PAGE_SHIFT);
1868                 unsigned int i;
1869
1870                 for (i = 0; i < view.params.partial.size; i++) {
1871                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1872                         if (ret)
1873                                 break;
1874                 }
1875
1876                 obj->fault_mappable = true;
1877         } else {
1878                 if (!obj->fault_mappable) {
1879                         unsigned long size = min_t(unsigned long,
1880                                                    vma->vm_end - vma->vm_start,
1881                                                    obj->base.size);
1882                         int i;
1883
1884                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1885                                 ret = vm_insert_pfn(vma,
1886                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1887                                                     pfn + i);
1888                                 if (ret)
1889                                         break;
1890                         }
1891
1892                         obj->fault_mappable = true;
1893                 } else
1894                         ret = vm_insert_pfn(vma,
1895                                             (unsigned long)vmf->virtual_address,
1896                                             pfn + page_offset);
1897         }
1898 unpin:
1899         i915_gem_object_ggtt_unpin_view(obj, &view);
1900 unlock:
1901         mutex_unlock(&dev->struct_mutex);
1902 out:
1903         switch (ret) {
1904         case -EIO:
1905                 /*
1906                  * We eat errors when the gpu is terminally wedged to avoid
1907                  * userspace unduly crashing (gl has no provisions for mmaps to
1908                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1909                  * and so needs to be reported.
1910                  */
1911                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1912                         ret = VM_FAULT_SIGBUS;
1913                         break;
1914                 }
1915         case -EAGAIN:
1916                 /*
1917                  * EAGAIN means the gpu is hung and we'll wait for the error
1918                  * handler to reset everything when re-faulting in
1919                  * i915_mutex_lock_interruptible.
1920                  */
1921         case 0:
1922         case -ERESTARTSYS:
1923         case -EINTR:
1924         case -EBUSY:
1925                 /*
1926                  * EBUSY is ok: this just means that another thread
1927                  * already did the job.
1928                  */
1929                 ret = VM_FAULT_NOPAGE;
1930                 break;
1931         case -ENOMEM:
1932                 ret = VM_FAULT_OOM;
1933                 break;
1934         case -ENOSPC:
1935         case -EFAULT:
1936                 ret = VM_FAULT_SIGBUS;
1937                 break;
1938         default:
1939                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1940                 ret = VM_FAULT_SIGBUS;
1941                 break;
1942         }
1943
1944         intel_runtime_pm_put(dev_priv);
1945         return ret;
1946 }
1947
1948 /**
1949  * i915_gem_release_mmap - remove physical page mappings
1950  * @obj: obj in question
1951  *
1952  * Preserve the reservation of the mmapping with the DRM core code, but
1953  * relinquish ownership of the pages back to the system.
1954  *
1955  * It is vital that we remove the page mapping if we have mapped a tiled
1956  * object through the GTT and then lose the fence register due to
1957  * resource pressure. Similarly if the object has been moved out of the
1958  * aperture, than pages mapped into userspace must be revoked. Removing the
1959  * mapping will then trigger a page fault on the next user access, allowing
1960  * fixup by i915_gem_fault().
1961  */
1962 void
1963 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1964 {
1965         if (!obj->fault_mappable)
1966                 return;
1967
1968         drm_vma_node_unmap(&obj->base.vma_node,
1969                            obj->base.dev->anon_inode->i_mapping);
1970         obj->fault_mappable = false;
1971 }
1972
1973 void
1974 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1975 {
1976         struct drm_i915_gem_object *obj;
1977
1978         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1979                 i915_gem_release_mmap(obj);
1980 }
1981
1982 uint32_t
1983 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1984 {
1985         uint32_t gtt_size;
1986
1987         if (INTEL_INFO(dev)->gen >= 4 ||
1988             tiling_mode == I915_TILING_NONE)
1989                 return size;
1990
1991         /* Previous chips need a power-of-two fence region when tiling */
1992         if (INTEL_INFO(dev)->gen == 3)
1993                 gtt_size = 1024*1024;
1994         else
1995                 gtt_size = 512*1024;
1996
1997         while (gtt_size < size)
1998                 gtt_size <<= 1;
1999
2000         return gtt_size;
2001 }
2002
2003 /**
2004  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2005  * @obj: object to check
2006  *
2007  * Return the required GTT alignment for an object, taking into account
2008  * potential fence register mapping.
2009  */
2010 uint32_t
2011 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2012                            int tiling_mode, bool fenced)
2013 {
2014         /*
2015          * Minimum alignment is 4k (GTT page size), but might be greater
2016          * if a fence register is needed for the object.
2017          */
2018         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2019             tiling_mode == I915_TILING_NONE)
2020                 return 4096;
2021
2022         /*
2023          * Previous chips need to be aligned to the size of the smallest
2024          * fence register that can contain the object.
2025          */
2026         return i915_gem_get_gtt_size(dev, size, tiling_mode);
2027 }
2028
2029 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2030 {
2031         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2032         int ret;
2033
2034         if (drm_vma_node_has_offset(&obj->base.vma_node))
2035                 return 0;
2036
2037         dev_priv->mm.shrinker_no_lock_stealing = true;
2038
2039         ret = drm_gem_create_mmap_offset(&obj->base);
2040         if (ret != -ENOSPC)
2041                 goto out;
2042
2043         /* Badly fragmented mmap space? The only way we can recover
2044          * space is by destroying unwanted objects. We can't randomly release
2045          * mmap_offsets as userspace expects them to be persistent for the
2046          * lifetime of the objects. The closest we can is to release the
2047          * offsets on purgeable objects by truncating it and marking it purged,
2048          * which prevents userspace from ever using that object again.
2049          */
2050         i915_gem_shrink(dev_priv,
2051                         obj->base.size >> PAGE_SHIFT,
2052                         I915_SHRINK_BOUND |
2053                         I915_SHRINK_UNBOUND |
2054                         I915_SHRINK_PURGEABLE);
2055         ret = drm_gem_create_mmap_offset(&obj->base);
2056         if (ret != -ENOSPC)
2057                 goto out;
2058
2059         i915_gem_shrink_all(dev_priv);
2060         ret = drm_gem_create_mmap_offset(&obj->base);
2061 out:
2062         dev_priv->mm.shrinker_no_lock_stealing = false;
2063
2064         return ret;
2065 }
2066
2067 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2068 {
2069         drm_gem_free_mmap_offset(&obj->base);
2070 }
2071
2072 int
2073 i915_gem_mmap_gtt(struct drm_file *file,
2074                   struct drm_device *dev,
2075                   uint32_t handle,
2076                   uint64_t *offset)
2077 {
2078         struct drm_i915_gem_object *obj;
2079         int ret;
2080
2081         ret = i915_mutex_lock_interruptible(dev);
2082         if (ret)
2083                 return ret;
2084
2085         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2086         if (&obj->base == NULL) {
2087                 ret = -ENOENT;
2088                 goto unlock;
2089         }
2090
2091         if (obj->madv != I915_MADV_WILLNEED) {
2092                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2093                 ret = -EFAULT;
2094                 goto out;
2095         }
2096
2097         ret = i915_gem_object_create_mmap_offset(obj);
2098         if (ret)
2099                 goto out;
2100
2101         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2102
2103 out:
2104         drm_gem_object_unreference(&obj->base);
2105 unlock:
2106         mutex_unlock(&dev->struct_mutex);
2107         return ret;
2108 }
2109
2110 /**
2111  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2112  * @dev: DRM device
2113  * @data: GTT mapping ioctl data
2114  * @file: GEM object info
2115  *
2116  * Simply returns the fake offset to userspace so it can mmap it.
2117  * The mmap call will end up in drm_gem_mmap(), which will set things
2118  * up so we can get faults in the handler above.
2119  *
2120  * The fault handler will take care of binding the object into the GTT
2121  * (since it may have been evicted to make room for something), allocating
2122  * a fence register, and mapping the appropriate aperture address into
2123  * userspace.
2124  */
2125 int
2126 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2127                         struct drm_file *file)
2128 {
2129         struct drm_i915_gem_mmap_gtt *args = data;
2130
2131         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2132 }
2133
2134 /* Immediately discard the backing storage */
2135 static void
2136 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2137 {
2138         i915_gem_object_free_mmap_offset(obj);
2139
2140         if (obj->base.filp == NULL)
2141                 return;
2142
2143         /* Our goal here is to return as much of the memory as
2144          * is possible back to the system as we are called from OOM.
2145          * To do this we must instruct the shmfs to drop all of its
2146          * backing pages, *now*.
2147          */
2148         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2149         obj->madv = __I915_MADV_PURGED;
2150 }
2151
2152 /* Try to discard unwanted pages */
2153 static void
2154 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2155 {
2156         struct address_space *mapping;
2157
2158         switch (obj->madv) {
2159         case I915_MADV_DONTNEED:
2160                 i915_gem_object_truncate(obj);
2161         case __I915_MADV_PURGED:
2162                 return;
2163         }
2164
2165         if (obj->base.filp == NULL)
2166                 return;
2167
2168         mapping = file_inode(obj->base.filp)->i_mapping,
2169         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2170 }
2171
2172 static void
2173 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2174 {
2175         struct sg_page_iter sg_iter;
2176         int ret;
2177
2178         BUG_ON(obj->madv == __I915_MADV_PURGED);
2179
2180         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2181         if (ret) {
2182                 /* In the event of a disaster, abandon all caches and
2183                  * hope for the best.
2184                  */
2185                 WARN_ON(ret != -EIO);
2186                 i915_gem_clflush_object(obj, true);
2187                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2188         }
2189
2190         i915_gem_gtt_finish_object(obj);
2191
2192         if (i915_gem_object_needs_bit17_swizzle(obj))
2193                 i915_gem_object_save_bit_17_swizzle(obj);
2194
2195         if (obj->madv == I915_MADV_DONTNEED)
2196                 obj->dirty = 0;
2197
2198         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2199                 struct page *page = sg_page_iter_page(&sg_iter);
2200
2201                 if (obj->dirty)
2202                         set_page_dirty(page);
2203
2204                 if (obj->madv == I915_MADV_WILLNEED)
2205                         mark_page_accessed(page);
2206
2207                 page_cache_release(page);
2208         }
2209         obj->dirty = 0;
2210
2211         sg_free_table(obj->pages);
2212         kfree(obj->pages);
2213 }
2214
2215 int
2216 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2217 {
2218         const struct drm_i915_gem_object_ops *ops = obj->ops;
2219
2220         if (obj->pages == NULL)
2221                 return 0;
2222
2223         if (obj->pages_pin_count)
2224                 return -EBUSY;
2225
2226         BUG_ON(i915_gem_obj_bound_any(obj));
2227
2228         /* ->put_pages might need to allocate memory for the bit17 swizzle
2229          * array, hence protect them from being reaped by removing them from gtt
2230          * lists early. */
2231         list_del(&obj->global_list);
2232
2233         ops->put_pages(obj);
2234         obj->pages = NULL;
2235
2236         i915_gem_object_invalidate(obj);
2237
2238         return 0;
2239 }
2240
2241 static int
2242 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2243 {
2244         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2245         int page_count, i;
2246         struct address_space *mapping;
2247         struct sg_table *st;
2248         struct scatterlist *sg;
2249         struct sg_page_iter sg_iter;
2250         struct page *page;
2251         unsigned long last_pfn = 0;     /* suppress gcc warning */
2252         int ret;
2253         gfp_t gfp;
2254
2255         /* Assert that the object is not currently in any GPU domain. As it
2256          * wasn't in the GTT, there shouldn't be any way it could have been in
2257          * a GPU cache
2258          */
2259         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2260         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2261
2262         st = kmalloc(sizeof(*st), GFP_KERNEL);
2263         if (st == NULL)
2264                 return -ENOMEM;
2265
2266         page_count = obj->base.size / PAGE_SIZE;
2267         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2268                 kfree(st);
2269                 return -ENOMEM;
2270         }
2271
2272         /* Get the list of pages out of our struct file.  They'll be pinned
2273          * at this point until we release them.
2274          *
2275          * Fail silently without starting the shrinker
2276          */
2277         mapping = file_inode(obj->base.filp)->i_mapping;
2278         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2279         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2280         sg = st->sgl;
2281         st->nents = 0;
2282         for (i = 0; i < page_count; i++) {
2283                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2284                 if (IS_ERR(page)) {
2285                         i915_gem_shrink(dev_priv,
2286                                         page_count,
2287                                         I915_SHRINK_BOUND |
2288                                         I915_SHRINK_UNBOUND |
2289                                         I915_SHRINK_PURGEABLE);
2290                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2291                 }
2292                 if (IS_ERR(page)) {
2293                         /* We've tried hard to allocate the memory by reaping
2294                          * our own buffer, now let the real VM do its job and
2295                          * go down in flames if truly OOM.
2296                          */
2297                         i915_gem_shrink_all(dev_priv);
2298                         page = shmem_read_mapping_page(mapping, i);
2299                         if (IS_ERR(page)) {
2300                                 ret = PTR_ERR(page);
2301                                 goto err_pages;
2302                         }
2303                 }
2304 #ifdef CONFIG_SWIOTLB
2305                 if (swiotlb_nr_tbl()) {
2306                         st->nents++;
2307                         sg_set_page(sg, page, PAGE_SIZE, 0);
2308                         sg = sg_next(sg);
2309                         continue;
2310                 }
2311 #endif
2312                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2313                         if (i)
2314                                 sg = sg_next(sg);
2315                         st->nents++;
2316                         sg_set_page(sg, page, PAGE_SIZE, 0);
2317                 } else {
2318                         sg->length += PAGE_SIZE;
2319                 }
2320                 last_pfn = page_to_pfn(page);
2321
2322                 /* Check that the i965g/gm workaround works. */
2323                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2324         }
2325 #ifdef CONFIG_SWIOTLB
2326         if (!swiotlb_nr_tbl())
2327 #endif
2328                 sg_mark_end(sg);
2329         obj->pages = st;
2330
2331         ret = i915_gem_gtt_prepare_object(obj);
2332         if (ret)
2333                 goto err_pages;
2334
2335         if (i915_gem_object_needs_bit17_swizzle(obj))
2336                 i915_gem_object_do_bit_17_swizzle(obj);
2337
2338         if (obj->tiling_mode != I915_TILING_NONE &&
2339             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2340                 i915_gem_object_pin_pages(obj);
2341
2342         return 0;
2343
2344 err_pages:
2345         sg_mark_end(sg);
2346         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2347                 page_cache_release(sg_page_iter_page(&sg_iter));
2348         sg_free_table(st);
2349         kfree(st);
2350
2351         /* shmemfs first checks if there is enough memory to allocate the page
2352          * and reports ENOSPC should there be insufficient, along with the usual
2353          * ENOMEM for a genuine allocation failure.
2354          *
2355          * We use ENOSPC in our driver to mean that we have run out of aperture
2356          * space and so want to translate the error from shmemfs back to our
2357          * usual understanding of ENOMEM.
2358          */
2359         if (ret == -ENOSPC)
2360                 ret = -ENOMEM;
2361
2362         return ret;
2363 }
2364
2365 /* Ensure that the associated pages are gathered from the backing storage
2366  * and pinned into our object. i915_gem_object_get_pages() may be called
2367  * multiple times before they are released by a single call to
2368  * i915_gem_object_put_pages() - once the pages are no longer referenced
2369  * either as a result of memory pressure (reaping pages under the shrinker)
2370  * or as the object is itself released.
2371  */
2372 int
2373 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2374 {
2375         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2376         const struct drm_i915_gem_object_ops *ops = obj->ops;
2377         int ret;
2378
2379         if (obj->pages)
2380                 return 0;
2381
2382         if (obj->madv != I915_MADV_WILLNEED) {
2383                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2384                 return -EFAULT;
2385         }
2386
2387         BUG_ON(obj->pages_pin_count);
2388
2389         ret = ops->get_pages(obj);
2390         if (ret)
2391                 return ret;
2392
2393         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2394
2395         obj->get_page.sg = obj->pages->sgl;
2396         obj->get_page.last = 0;
2397
2398         return 0;
2399 }
2400
2401 void i915_vma_move_to_active(struct i915_vma *vma,
2402                              struct drm_i915_gem_request *req)
2403 {
2404         struct drm_i915_gem_object *obj = vma->obj;
2405         struct intel_engine_cs *ring;
2406
2407         ring = i915_gem_request_get_ring(req);
2408
2409         /* Add a reference if we're newly entering the active list. */
2410         if (obj->active == 0)
2411                 drm_gem_object_reference(&obj->base);
2412         obj->active |= intel_ring_flag(ring);
2413
2414         list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2415         i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2416
2417         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2418 }
2419
2420 static void
2421 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2422 {
2423         RQ_BUG_ON(obj->last_write_req == NULL);
2424         RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2425
2426         i915_gem_request_assign(&obj->last_write_req, NULL);
2427         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2428 }
2429
2430 static void
2431 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2432 {
2433         struct i915_vma *vma;
2434
2435         RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2436         RQ_BUG_ON(!(obj->active & (1 << ring)));
2437
2438         list_del_init(&obj->ring_list[ring]);
2439         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2440
2441         if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2442                 i915_gem_object_retire__write(obj);
2443
2444         obj->active &= ~(1 << ring);
2445         if (obj->active)
2446                 return;
2447
2448         /* Bump our place on the bound list to keep it roughly in LRU order
2449          * so that we don't steal from recently used but inactive objects
2450          * (unless we are forced to ofc!)
2451          */
2452         list_move_tail(&obj->global_list,
2453                        &to_i915(obj->base.dev)->mm.bound_list);
2454
2455         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2456                 if (!list_empty(&vma->mm_list))
2457                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2458         }
2459
2460         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2461         drm_gem_object_unreference(&obj->base);
2462 }
2463
2464 static int
2465 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2466 {
2467         struct drm_i915_private *dev_priv = dev->dev_private;
2468         struct intel_engine_cs *ring;
2469         int ret, i, j;
2470
2471         /* Carefully retire all requests without writing to the rings */
2472         for_each_ring(ring, dev_priv, i) {
2473                 ret = intel_ring_idle(ring);
2474                 if (ret)
2475                         return ret;
2476         }
2477         i915_gem_retire_requests(dev);
2478
2479         /* Finally reset hw state */
2480         for_each_ring(ring, dev_priv, i) {
2481                 intel_ring_init_seqno(ring, seqno);
2482
2483                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2484                         ring->semaphore.sync_seqno[j] = 0;
2485         }
2486
2487         return 0;
2488 }
2489
2490 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2491 {
2492         struct drm_i915_private *dev_priv = dev->dev_private;
2493         int ret;
2494
2495         if (seqno == 0)
2496                 return -EINVAL;
2497
2498         /* HWS page needs to be set less than what we
2499          * will inject to ring
2500          */
2501         ret = i915_gem_init_seqno(dev, seqno - 1);
2502         if (ret)
2503                 return ret;
2504
2505         /* Carefully set the last_seqno value so that wrap
2506          * detection still works
2507          */
2508         dev_priv->next_seqno = seqno;
2509         dev_priv->last_seqno = seqno - 1;
2510         if (dev_priv->last_seqno == 0)
2511                 dev_priv->last_seqno--;
2512
2513         return 0;
2514 }
2515
2516 int
2517 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2518 {
2519         struct drm_i915_private *dev_priv = dev->dev_private;
2520
2521         /* reserve 0 for non-seqno */
2522         if (dev_priv->next_seqno == 0) {
2523                 int ret = i915_gem_init_seqno(dev, 0);
2524                 if (ret)
2525                         return ret;
2526
2527                 dev_priv->next_seqno = 1;
2528         }
2529
2530         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2531         return 0;
2532 }
2533
2534 /*
2535  * NB: This function is not allowed to fail. Doing so would mean the the
2536  * request is not being tracked for completion but the work itself is
2537  * going to happen on the hardware. This would be a Bad Thing(tm).
2538  */
2539 void __i915_add_request(struct drm_i915_gem_request *request,
2540                         struct drm_i915_gem_object *obj,
2541                         bool flush_caches)
2542 {
2543         struct intel_engine_cs *ring;
2544         struct drm_i915_private *dev_priv;
2545         struct intel_ringbuffer *ringbuf;
2546         u32 request_start;
2547         int ret;
2548
2549         if (WARN_ON(request == NULL))
2550                 return;
2551
2552         ring = request->ring;
2553         dev_priv = ring->dev->dev_private;
2554         ringbuf = request->ringbuf;
2555
2556         /*
2557          * To ensure that this call will not fail, space for its emissions
2558          * should already have been reserved in the ring buffer. Let the ring
2559          * know that it is time to use that space up.
2560          */
2561         intel_ring_reserved_space_use(ringbuf);
2562
2563         request_start = intel_ring_get_tail(ringbuf);
2564         /*
2565          * Emit any outstanding flushes - execbuf can fail to emit the flush
2566          * after having emitted the batchbuffer command. Hence we need to fix
2567          * things up similar to emitting the lazy request. The difference here
2568          * is that the flush _must_ happen before the next request, no matter
2569          * what.
2570          */
2571         if (flush_caches) {
2572                 if (i915.enable_execlists)
2573                         ret = logical_ring_flush_all_caches(request);
2574                 else
2575                         ret = intel_ring_flush_all_caches(request);
2576                 /* Not allowed to fail! */
2577                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2578         }
2579
2580         /* Record the position of the start of the request so that
2581          * should we detect the updated seqno part-way through the
2582          * GPU processing the request, we never over-estimate the
2583          * position of the head.
2584          */
2585         request->postfix = intel_ring_get_tail(ringbuf);
2586
2587         if (i915.enable_execlists)
2588                 ret = ring->emit_request(request);
2589         else {
2590                 ret = ring->add_request(request);
2591
2592                 request->tail = intel_ring_get_tail(ringbuf);
2593         }
2594         /* Not allowed to fail! */
2595         WARN(ret, "emit|add_request failed: %d!\n", ret);
2596
2597         request->head = request_start;
2598
2599         /* Whilst this request exists, batch_obj will be on the
2600          * active_list, and so will hold the active reference. Only when this
2601          * request is retired will the the batch_obj be moved onto the
2602          * inactive_list and lose its active reference. Hence we do not need
2603          * to explicitly hold another reference here.
2604          */
2605         request->batch_obj = obj;
2606
2607         request->emitted_jiffies = jiffies;
2608         request->previous_seqno = ring->last_submitted_seqno;
2609         ring->last_submitted_seqno = request->seqno;
2610         list_add_tail(&request->list, &ring->request_list);
2611
2612         trace_i915_gem_request_add(request);
2613
2614         i915_queue_hangcheck(ring->dev);
2615
2616         queue_delayed_work(dev_priv->wq,
2617                            &dev_priv->mm.retire_work,
2618                            round_jiffies_up_relative(HZ));
2619         intel_mark_busy(dev_priv->dev);
2620
2621         /* Sanity check that the reserved size was large enough. */
2622         intel_ring_reserved_space_end(ringbuf);
2623 }
2624
2625 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2626                                    const struct intel_context *ctx)
2627 {
2628         unsigned long elapsed;
2629
2630         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2631
2632         if (ctx->hang_stats.banned)
2633                 return true;
2634
2635         if (ctx->hang_stats.ban_period_seconds &&
2636             elapsed <= ctx->hang_stats.ban_period_seconds) {
2637                 if (!i915_gem_context_is_default(ctx)) {
2638                         DRM_DEBUG("context hanging too fast, banning!\n");
2639                         return true;
2640                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2641                         if (i915_stop_ring_allow_warn(dev_priv))
2642                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2643                         return true;
2644                 }
2645         }
2646
2647         return false;
2648 }
2649
2650 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2651                                   struct intel_context *ctx,
2652                                   const bool guilty)
2653 {
2654         struct i915_ctx_hang_stats *hs;
2655
2656         if (WARN_ON(!ctx))
2657                 return;
2658
2659         hs = &ctx->hang_stats;
2660
2661         if (guilty) {
2662                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2663                 hs->batch_active++;
2664                 hs->guilty_ts = get_seconds();
2665         } else {
2666                 hs->batch_pending++;
2667         }
2668 }
2669
2670 void i915_gem_request_free(struct kref *req_ref)
2671 {
2672         struct drm_i915_gem_request *req = container_of(req_ref,
2673                                                  typeof(*req), ref);
2674         struct intel_context *ctx = req->ctx;
2675
2676         if (req->file_priv)
2677                 i915_gem_request_remove_from_client(req);
2678
2679         if (ctx) {
2680                 if (i915.enable_execlists) {
2681                         if (ctx != req->ring->default_context)
2682                                 intel_lr_context_unpin(req);
2683                 }
2684
2685                 i915_gem_context_unreference(ctx);
2686         }
2687
2688         kmem_cache_free(req->i915->requests, req);
2689 }
2690
2691 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2692                            struct intel_context *ctx,
2693                            struct drm_i915_gem_request **req_out)
2694 {
2695         struct drm_i915_private *dev_priv = to_i915(ring->dev);
2696         struct drm_i915_gem_request *req;
2697         int ret;
2698
2699         if (!req_out)
2700                 return -EINVAL;
2701
2702         *req_out = NULL;
2703
2704         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2705         if (req == NULL)
2706                 return -ENOMEM;
2707
2708         ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2709         if (ret)
2710                 goto err;
2711
2712         kref_init(&req->ref);
2713         req->i915 = dev_priv;
2714         req->ring = ring;
2715         req->ctx  = ctx;
2716         i915_gem_context_reference(req->ctx);
2717
2718         if (i915.enable_execlists)
2719                 ret = intel_logical_ring_alloc_request_extras(req);
2720         else
2721                 ret = intel_ring_alloc_request_extras(req);
2722         if (ret) {
2723                 i915_gem_context_unreference(req->ctx);
2724                 goto err;
2725         }
2726
2727         /*
2728          * Reserve space in the ring buffer for all the commands required to
2729          * eventually emit this request. This is to guarantee that the
2730          * i915_add_request() call can't fail. Note that the reserve may need
2731          * to be redone if the request is not actually submitted straight
2732          * away, e.g. because a GPU scheduler has deferred it.
2733          */
2734         if (i915.enable_execlists)
2735                 ret = intel_logical_ring_reserve_space(req);
2736         else
2737                 ret = intel_ring_reserve_space(req);
2738         if (ret) {
2739                 /*
2740                  * At this point, the request is fully allocated even if not
2741                  * fully prepared. Thus it can be cleaned up using the proper
2742                  * free code.
2743                  */
2744                 i915_gem_request_cancel(req);
2745                 return ret;
2746         }
2747
2748         *req_out = req;
2749         return 0;
2750
2751 err:
2752         kmem_cache_free(dev_priv->requests, req);
2753         return ret;
2754 }
2755
2756 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2757 {
2758         intel_ring_reserved_space_cancel(req->ringbuf);
2759
2760         i915_gem_request_unreference(req);
2761 }
2762
2763 struct drm_i915_gem_request *
2764 i915_gem_find_active_request(struct intel_engine_cs *ring)
2765 {
2766         struct drm_i915_gem_request *request;
2767
2768         list_for_each_entry(request, &ring->request_list, list) {
2769                 if (i915_gem_request_completed(request, false))
2770                         continue;
2771
2772                 return request;
2773         }
2774
2775         return NULL;
2776 }
2777
2778 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2779                                        struct intel_engine_cs *ring)
2780 {
2781         struct drm_i915_gem_request *request;
2782         bool ring_hung;
2783
2784         request = i915_gem_find_active_request(ring);
2785
2786         if (request == NULL)
2787                 return;
2788
2789         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2790
2791         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2792
2793         list_for_each_entry_continue(request, &ring->request_list, list)
2794                 i915_set_reset_status(dev_priv, request->ctx, false);
2795 }
2796
2797 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2798                                         struct intel_engine_cs *ring)
2799 {
2800         while (!list_empty(&ring->active_list)) {
2801                 struct drm_i915_gem_object *obj;
2802
2803                 obj = list_first_entry(&ring->active_list,
2804                                        struct drm_i915_gem_object,
2805                                        ring_list[ring->id]);
2806
2807                 i915_gem_object_retire__read(obj, ring->id);
2808         }
2809
2810         /*
2811          * Clear the execlists queue up before freeing the requests, as those
2812          * are the ones that keep the context and ringbuffer backing objects
2813          * pinned in place.
2814          */
2815         while (!list_empty(&ring->execlist_queue)) {
2816                 struct drm_i915_gem_request *submit_req;
2817
2818                 submit_req = list_first_entry(&ring->execlist_queue,
2819                                 struct drm_i915_gem_request,
2820                                 execlist_link);
2821                 list_del(&submit_req->execlist_link);
2822
2823                 if (submit_req->ctx != ring->default_context)
2824                         intel_lr_context_unpin(submit_req);
2825
2826                 i915_gem_request_unreference(submit_req);
2827         }
2828
2829         /*
2830          * We must free the requests after all the corresponding objects have
2831          * been moved off active lists. Which is the same order as the normal
2832          * retire_requests function does. This is important if object hold
2833          * implicit references on things like e.g. ppgtt address spaces through
2834          * the request.
2835          */
2836         while (!list_empty(&ring->request_list)) {
2837                 struct drm_i915_gem_request *request;
2838
2839                 request = list_first_entry(&ring->request_list,
2840                                            struct drm_i915_gem_request,
2841                                            list);
2842
2843                 i915_gem_request_retire(request);
2844         }
2845 }
2846
2847 void i915_gem_reset(struct drm_device *dev)
2848 {
2849         struct drm_i915_private *dev_priv = dev->dev_private;
2850         struct intel_engine_cs *ring;
2851         int i;
2852
2853         /*
2854          * Before we free the objects from the requests, we need to inspect
2855          * them for finding the guilty party. As the requests only borrow
2856          * their reference to the objects, the inspection must be done first.
2857          */
2858         for_each_ring(ring, dev_priv, i)
2859                 i915_gem_reset_ring_status(dev_priv, ring);
2860
2861         for_each_ring(ring, dev_priv, i)
2862                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2863
2864         i915_gem_context_reset(dev);
2865
2866         i915_gem_restore_fences(dev);
2867
2868         WARN_ON(i915_verify_lists(dev));
2869 }
2870
2871 /**
2872  * This function clears the request list as sequence numbers are passed.
2873  */
2874 void
2875 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2876 {
2877         WARN_ON(i915_verify_lists(ring->dev));
2878
2879         /* Retire requests first as we use it above for the early return.
2880          * If we retire requests last, we may use a later seqno and so clear
2881          * the requests lists without clearing the active list, leading to
2882          * confusion.
2883          */
2884         while (!list_empty(&ring->request_list)) {
2885                 struct drm_i915_gem_request *request;
2886
2887                 request = list_first_entry(&ring->request_list,
2888                                            struct drm_i915_gem_request,
2889                                            list);
2890
2891                 if (!i915_gem_request_completed(request, true))
2892                         break;
2893
2894                 i915_gem_request_retire(request);
2895         }
2896
2897         /* Move any buffers on the active list that are no longer referenced
2898          * by the ringbuffer to the flushing/inactive lists as appropriate,
2899          * before we free the context associated with the requests.
2900          */
2901         while (!list_empty(&ring->active_list)) {
2902                 struct drm_i915_gem_object *obj;
2903
2904                 obj = list_first_entry(&ring->active_list,
2905                                       struct drm_i915_gem_object,
2906                                       ring_list[ring->id]);
2907
2908                 if (!list_empty(&obj->last_read_req[ring->id]->list))
2909                         break;
2910
2911                 i915_gem_object_retire__read(obj, ring->id);
2912         }
2913
2914         if (unlikely(ring->trace_irq_req &&
2915                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2916                 ring->irq_put(ring);
2917                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2918         }
2919
2920         WARN_ON(i915_verify_lists(ring->dev));
2921 }
2922
2923 bool
2924 i915_gem_retire_requests(struct drm_device *dev)
2925 {
2926         struct drm_i915_private *dev_priv = dev->dev_private;
2927         struct intel_engine_cs *ring;
2928         bool idle = true;
2929         int i;
2930
2931         for_each_ring(ring, dev_priv, i) {
2932                 i915_gem_retire_requests_ring(ring);
2933                 idle &= list_empty(&ring->request_list);
2934                 if (i915.enable_execlists) {
2935                         unsigned long flags;
2936
2937                         spin_lock_irqsave(&ring->execlist_lock, flags);
2938                         idle &= list_empty(&ring->execlist_queue);
2939                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2940
2941                         intel_execlists_retire_requests(ring);
2942                 }
2943         }
2944
2945         if (idle)
2946                 mod_delayed_work(dev_priv->wq,
2947                                    &dev_priv->mm.idle_work,
2948                                    msecs_to_jiffies(100));
2949
2950         return idle;
2951 }
2952
2953 static void
2954 i915_gem_retire_work_handler(struct work_struct *work)
2955 {
2956         struct drm_i915_private *dev_priv =
2957                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2958         struct drm_device *dev = dev_priv->dev;
2959         bool idle;
2960
2961         /* Come back later if the device is busy... */
2962         idle = false;
2963         if (mutex_trylock(&dev->struct_mutex)) {
2964                 idle = i915_gem_retire_requests(dev);
2965                 mutex_unlock(&dev->struct_mutex);
2966         }
2967         if (!idle)
2968                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2969                                    round_jiffies_up_relative(HZ));
2970 }
2971
2972 static void
2973 i915_gem_idle_work_handler(struct work_struct *work)
2974 {
2975         struct drm_i915_private *dev_priv =
2976                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2977         struct drm_device *dev = dev_priv->dev;
2978         struct intel_engine_cs *ring;
2979         int i;
2980
2981         for_each_ring(ring, dev_priv, i)
2982                 if (!list_empty(&ring->request_list))
2983                         return;
2984
2985         intel_mark_idle(dev);
2986
2987         if (mutex_trylock(&dev->struct_mutex)) {
2988                 struct intel_engine_cs *ring;
2989                 int i;
2990
2991                 for_each_ring(ring, dev_priv, i)
2992                         i915_gem_batch_pool_fini(&ring->batch_pool);
2993
2994                 mutex_unlock(&dev->struct_mutex);
2995         }
2996 }
2997
2998 /**
2999  * Ensures that an object will eventually get non-busy by flushing any required
3000  * write domains, emitting any outstanding lazy request and retiring and
3001  * completed requests.
3002  */
3003 static int
3004 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3005 {
3006         int i;
3007
3008         if (!obj->active)
3009                 return 0;
3010
3011         for (i = 0; i < I915_NUM_RINGS; i++) {
3012                 struct drm_i915_gem_request *req;
3013
3014                 req = obj->last_read_req[i];
3015                 if (req == NULL)
3016                         continue;
3017
3018                 if (list_empty(&req->list))
3019                         goto retire;
3020
3021                 if (i915_gem_request_completed(req, true)) {
3022                         __i915_gem_request_retire__upto(req);
3023 retire:
3024                         i915_gem_object_retire__read(obj, i);
3025                 }
3026         }
3027
3028         return 0;
3029 }
3030
3031 /**
3032  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3033  * @DRM_IOCTL_ARGS: standard ioctl arguments
3034  *
3035  * Returns 0 if successful, else an error is returned with the remaining time in
3036  * the timeout parameter.
3037  *  -ETIME: object is still busy after timeout
3038  *  -ERESTARTSYS: signal interrupted the wait
3039  *  -ENONENT: object doesn't exist
3040  * Also possible, but rare:
3041  *  -EAGAIN: GPU wedged
3042  *  -ENOMEM: damn
3043  *  -ENODEV: Internal IRQ fail
3044  *  -E?: The add request failed
3045  *
3046  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3047  * non-zero timeout parameter the wait ioctl will wait for the given number of
3048  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3049  * without holding struct_mutex the object may become re-busied before this
3050  * function completes. A similar but shorter * race condition exists in the busy
3051  * ioctl
3052  */
3053 int
3054 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3055 {
3056         struct drm_i915_private *dev_priv = dev->dev_private;
3057         struct drm_i915_gem_wait *args = data;
3058         struct drm_i915_gem_object *obj;
3059         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3060         unsigned reset_counter;
3061         int i, n = 0;
3062         int ret;
3063
3064         if (args->flags != 0)
3065                 return -EINVAL;
3066
3067         ret = i915_mutex_lock_interruptible(dev);
3068         if (ret)
3069                 return ret;
3070
3071         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3072         if (&obj->base == NULL) {
3073                 mutex_unlock(&dev->struct_mutex);
3074                 return -ENOENT;
3075         }
3076
3077         /* Need to make sure the object gets inactive eventually. */
3078         ret = i915_gem_object_flush_active(obj);
3079         if (ret)
3080                 goto out;
3081
3082         if (!obj->active)
3083                 goto out;
3084
3085         /* Do this after OLR check to make sure we make forward progress polling
3086          * on this IOCTL with a timeout == 0 (like busy ioctl)
3087          */
3088         if (args->timeout_ns == 0) {
3089                 ret = -ETIME;
3090                 goto out;
3091         }
3092
3093         drm_gem_object_unreference(&obj->base);
3094         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3095
3096         for (i = 0; i < I915_NUM_RINGS; i++) {
3097                 if (obj->last_read_req[i] == NULL)
3098                         continue;
3099
3100                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3101         }
3102
3103         mutex_unlock(&dev->struct_mutex);
3104
3105         for (i = 0; i < n; i++) {
3106                 if (ret == 0)
3107                         ret = __i915_wait_request(req[i], reset_counter, true,
3108                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3109                                                   file->driver_priv);
3110                 i915_gem_request_unreference__unlocked(req[i]);
3111         }
3112         return ret;
3113
3114 out:
3115         drm_gem_object_unreference(&obj->base);
3116         mutex_unlock(&dev->struct_mutex);
3117         return ret;
3118 }
3119
3120 static int
3121 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3122                        struct intel_engine_cs *to,
3123                        struct drm_i915_gem_request *from_req,
3124                        struct drm_i915_gem_request **to_req)
3125 {
3126         struct intel_engine_cs *from;
3127         int ret;
3128
3129         from = i915_gem_request_get_ring(from_req);
3130         if (to == from)
3131                 return 0;
3132
3133         if (i915_gem_request_completed(from_req, true))
3134                 return 0;
3135
3136         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3137                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3138                 ret = __i915_wait_request(from_req,
3139                                           atomic_read(&i915->gpu_error.reset_counter),
3140                                           i915->mm.interruptible,
3141                                           NULL,
3142                                           &i915->rps.semaphores);
3143                 if (ret)
3144                         return ret;
3145
3146                 i915_gem_object_retire_request(obj, from_req);
3147         } else {
3148                 int idx = intel_ring_sync_index(from, to);
3149                 u32 seqno = i915_gem_request_get_seqno(from_req);
3150
3151                 WARN_ON(!to_req);
3152
3153                 if (seqno <= from->semaphore.sync_seqno[idx])
3154                         return 0;
3155
3156                 if (*to_req == NULL) {
3157                         ret = i915_gem_request_alloc(to, to->default_context, to_req);
3158                         if (ret)
3159                                 return ret;
3160                 }
3161
3162                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3163                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3164                 if (ret)
3165                         return ret;
3166
3167                 /* We use last_read_req because sync_to()
3168                  * might have just caused seqno wrap under
3169                  * the radar.
3170                  */
3171                 from->semaphore.sync_seqno[idx] =
3172                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3173         }
3174
3175         return 0;
3176 }
3177
3178 /**
3179  * i915_gem_object_sync - sync an object to a ring.
3180  *
3181  * @obj: object which may be in use on another ring.
3182  * @to: ring we wish to use the object on. May be NULL.
3183  * @to_req: request we wish to use the object for. See below.
3184  *          This will be allocated and returned if a request is
3185  *          required but not passed in.
3186  *
3187  * This code is meant to abstract object synchronization with the GPU.
3188  * Calling with NULL implies synchronizing the object with the CPU
3189  * rather than a particular GPU ring. Conceptually we serialise writes
3190  * between engines inside the GPU. We only allow one engine to write
3191  * into a buffer at any time, but multiple readers. To ensure each has
3192  * a coherent view of memory, we must:
3193  *
3194  * - If there is an outstanding write request to the object, the new
3195  *   request must wait for it to complete (either CPU or in hw, requests
3196  *   on the same ring will be naturally ordered).
3197  *
3198  * - If we are a write request (pending_write_domain is set), the new
3199  *   request must wait for outstanding read requests to complete.
3200  *
3201  * For CPU synchronisation (NULL to) no request is required. For syncing with
3202  * rings to_req must be non-NULL. However, a request does not have to be
3203  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3204  * request will be allocated automatically and returned through *to_req. Note
3205  * that it is not guaranteed that commands will be emitted (because the system
3206  * might already be idle). Hence there is no need to create a request that
3207  * might never have any work submitted. Note further that if a request is
3208  * returned in *to_req, it is the responsibility of the caller to submit
3209  * that request (after potentially adding more work to it).
3210  *
3211  * Returns 0 if successful, else propagates up the lower layer error.
3212  */
3213 int
3214 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3215                      struct intel_engine_cs *to,
3216                      struct drm_i915_gem_request **to_req)
3217 {
3218         const bool readonly = obj->base.pending_write_domain == 0;
3219         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3220         int ret, i, n;
3221
3222         if (!obj->active)
3223                 return 0;
3224
3225         if (to == NULL)
3226                 return i915_gem_object_wait_rendering(obj, readonly);
3227
3228         n = 0;
3229         if (readonly) {
3230                 if (obj->last_write_req)
3231                         req[n++] = obj->last_write_req;
3232         } else {
3233                 for (i = 0; i < I915_NUM_RINGS; i++)
3234                         if (obj->last_read_req[i])
3235                                 req[n++] = obj->last_read_req[i];
3236         }
3237         for (i = 0; i < n; i++) {
3238                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3239                 if (ret)
3240                         return ret;
3241         }
3242
3243         return 0;
3244 }
3245
3246 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3247 {
3248         u32 old_write_domain, old_read_domains;
3249
3250         /* Force a pagefault for domain tracking on next user access */
3251         i915_gem_release_mmap(obj);
3252
3253         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3254                 return;
3255
3256         /* Wait for any direct GTT access to complete */
3257         mb();
3258
3259         old_read_domains = obj->base.read_domains;
3260         old_write_domain = obj->base.write_domain;
3261
3262         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3263         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3264
3265         trace_i915_gem_object_change_domain(obj,
3266                                             old_read_domains,
3267                                             old_write_domain);
3268 }
3269
3270 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3271 {
3272         struct drm_i915_gem_object *obj = vma->obj;
3273         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3274         int ret;
3275
3276         if (list_empty(&vma->vma_link))
3277                 return 0;
3278
3279         if (!drm_mm_node_allocated(&vma->node)) {
3280                 i915_gem_vma_destroy(vma);
3281                 return 0;
3282         }
3283
3284         if (vma->pin_count)
3285                 return -EBUSY;
3286
3287         BUG_ON(obj->pages == NULL);
3288
3289         if (wait) {
3290                 ret = i915_gem_object_wait_rendering(obj, false);
3291                 if (ret)
3292                         return ret;
3293         }
3294
3295         if (i915_is_ggtt(vma->vm) &&
3296             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3297                 i915_gem_object_finish_gtt(obj);
3298
3299                 /* release the fence reg _after_ flushing */
3300                 ret = i915_gem_object_put_fence(obj);
3301                 if (ret)
3302                         return ret;
3303         }
3304
3305         trace_i915_vma_unbind(vma);
3306
3307         vma->vm->unbind_vma(vma);
3308         vma->bound = 0;
3309
3310         list_del_init(&vma->mm_list);
3311         if (i915_is_ggtt(vma->vm)) {
3312                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3313                         obj->map_and_fenceable = false;
3314                 } else if (vma->ggtt_view.pages) {
3315                         sg_free_table(vma->ggtt_view.pages);
3316                         kfree(vma->ggtt_view.pages);
3317                 }
3318                 vma->ggtt_view.pages = NULL;
3319         }
3320
3321         drm_mm_remove_node(&vma->node);
3322         i915_gem_vma_destroy(vma);
3323
3324         /* Since the unbound list is global, only move to that list if
3325          * no more VMAs exist. */
3326         if (list_empty(&obj->vma_list))
3327                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3328
3329         /* And finally now the object is completely decoupled from this vma,
3330          * we can drop its hold on the backing storage and allow it to be
3331          * reaped by the shrinker.
3332          */
3333         i915_gem_object_unpin_pages(obj);
3334
3335         return 0;
3336 }
3337
3338 int i915_vma_unbind(struct i915_vma *vma)
3339 {
3340         return __i915_vma_unbind(vma, true);
3341 }
3342
3343 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3344 {
3345         return __i915_vma_unbind(vma, false);
3346 }
3347
3348 int i915_gpu_idle(struct drm_device *dev)
3349 {
3350         struct drm_i915_private *dev_priv = dev->dev_private;
3351         struct intel_engine_cs *ring;
3352         int ret, i;
3353
3354         /* Flush everything onto the inactive list. */
3355         for_each_ring(ring, dev_priv, i) {
3356                 if (!i915.enable_execlists) {
3357                         struct drm_i915_gem_request *req;
3358
3359                         ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3360                         if (ret)
3361                                 return ret;
3362
3363                         ret = i915_switch_context(req);
3364                         if (ret) {
3365                                 i915_gem_request_cancel(req);
3366                                 return ret;
3367                         }
3368
3369                         i915_add_request_no_flush(req);
3370                 }
3371
3372                 ret = intel_ring_idle(ring);
3373                 if (ret)
3374                         return ret;
3375         }
3376
3377         WARN_ON(i915_verify_lists(dev));
3378         return 0;
3379 }
3380
3381 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3382                                      unsigned long cache_level)
3383 {
3384         struct drm_mm_node *gtt_space = &vma->node;
3385         struct drm_mm_node *other;
3386
3387         /*
3388          * On some machines we have to be careful when putting differing types
3389          * of snoopable memory together to avoid the prefetcher crossing memory
3390          * domains and dying. During vm initialisation, we decide whether or not
3391          * these constraints apply and set the drm_mm.color_adjust
3392          * appropriately.
3393          */
3394         if (vma->vm->mm.color_adjust == NULL)
3395                 return true;
3396
3397         if (!drm_mm_node_allocated(gtt_space))
3398                 return true;
3399
3400         if (list_empty(&gtt_space->node_list))
3401                 return true;
3402
3403         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3404         if (other->allocated && !other->hole_follows && other->color != cache_level)
3405                 return false;
3406
3407         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3408         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3409                 return false;
3410
3411         return true;
3412 }
3413
3414 /**
3415  * Finds free space in the GTT aperture and binds the object or a view of it
3416  * there.
3417  */
3418 static struct i915_vma *
3419 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3420                            struct i915_address_space *vm,
3421                            const struct i915_ggtt_view *ggtt_view,
3422                            unsigned alignment,
3423                            uint64_t flags)
3424 {
3425         struct drm_device *dev = obj->base.dev;
3426         struct drm_i915_private *dev_priv = dev->dev_private;
3427         u32 fence_alignment, unfenced_alignment;
3428         u32 search_flag, alloc_flag;
3429         u64 start, end;
3430         u64 size, fence_size;
3431         struct i915_vma *vma;
3432         int ret;
3433
3434         if (i915_is_ggtt(vm)) {
3435                 u32 view_size;
3436
3437                 if (WARN_ON(!ggtt_view))
3438                         return ERR_PTR(-EINVAL);
3439
3440                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3441
3442                 fence_size = i915_gem_get_gtt_size(dev,
3443                                                    view_size,
3444                                                    obj->tiling_mode);
3445                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3446                                                              view_size,
3447                                                              obj->tiling_mode,
3448                                                              true);
3449                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3450                                                                 view_size,
3451                                                                 obj->tiling_mode,
3452                                                                 false);
3453                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3454         } else {
3455                 fence_size = i915_gem_get_gtt_size(dev,
3456                                                    obj->base.size,
3457                                                    obj->tiling_mode);
3458                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3459                                                              obj->base.size,
3460                                                              obj->tiling_mode,
3461                                                              true);
3462                 unfenced_alignment =
3463                         i915_gem_get_gtt_alignment(dev,
3464                                                    obj->base.size,
3465                                                    obj->tiling_mode,
3466                                                    false);
3467                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3468         }
3469
3470         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3471         end = vm->total;
3472         if (flags & PIN_MAPPABLE)
3473                 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3474         if (flags & PIN_ZONE_4G)
3475                 end = min_t(u64, end, (1ULL << 32));
3476
3477         if (alignment == 0)
3478                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3479                                                 unfenced_alignment;
3480         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3481                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3482                           ggtt_view ? ggtt_view->type : 0,
3483                           alignment);
3484                 return ERR_PTR(-EINVAL);
3485         }
3486
3487         /* If binding the object/GGTT view requires more space than the entire
3488          * aperture has, reject it early before evicting everything in a vain
3489          * attempt to find space.
3490          */
3491         if (size > end) {
3492                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3493                           ggtt_view ? ggtt_view->type : 0,
3494                           size,
3495                           flags & PIN_MAPPABLE ? "mappable" : "total",
3496                           end);
3497                 return ERR_PTR(-E2BIG);
3498         }
3499
3500         ret = i915_gem_object_get_pages(obj);
3501         if (ret)
3502                 return ERR_PTR(ret);
3503
3504         i915_gem_object_pin_pages(obj);
3505
3506         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3507                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3508
3509         if (IS_ERR(vma))
3510                 goto err_unpin;
3511
3512         if (flags & PIN_HIGH) {
3513                 search_flag = DRM_MM_SEARCH_BELOW;
3514                 alloc_flag = DRM_MM_CREATE_TOP;
3515         } else {
3516                 search_flag = DRM_MM_SEARCH_DEFAULT;
3517                 alloc_flag = DRM_MM_CREATE_DEFAULT;
3518         }
3519
3520 search_free:
3521         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3522                                                   size, alignment,
3523                                                   obj->cache_level,
3524                                                   start, end,
3525                                                   search_flag,
3526                                                   alloc_flag);
3527         if (ret) {
3528                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3529                                                obj->cache_level,
3530                                                start, end,
3531                                                flags);
3532                 if (ret == 0)
3533                         goto search_free;
3534
3535                 goto err_free_vma;
3536         }
3537         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3538                 ret = -EINVAL;
3539                 goto err_remove_node;
3540         }
3541
3542         trace_i915_vma_bind(vma, flags);
3543         ret = i915_vma_bind(vma, obj->cache_level, flags);
3544         if (ret)
3545                 goto err_remove_node;
3546
3547         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3548         list_add_tail(&vma->mm_list, &vm->inactive_list);
3549
3550         return vma;
3551
3552 err_remove_node:
3553         drm_mm_remove_node(&vma->node);
3554 err_free_vma:
3555         i915_gem_vma_destroy(vma);
3556         vma = ERR_PTR(ret);
3557 err_unpin:
3558         i915_gem_object_unpin_pages(obj);
3559         return vma;
3560 }
3561
3562 bool
3563 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3564                         bool force)
3565 {
3566         /* If we don't have a page list set up, then we're not pinned
3567          * to GPU, and we can ignore the cache flush because it'll happen
3568          * again at bind time.
3569          */
3570         if (obj->pages == NULL)
3571                 return false;
3572
3573         /*
3574          * Stolen memory is always coherent with the GPU as it is explicitly
3575          * marked as wc by the system, or the system is cache-coherent.
3576          */
3577         if (obj->stolen || obj->phys_handle)
3578                 return false;
3579
3580         /* If the GPU is snooping the contents of the CPU cache,
3581          * we do not need to manually clear the CPU cache lines.  However,
3582          * the caches are only snooped when the render cache is
3583          * flushed/invalidated.  As we always have to emit invalidations
3584          * and flushes when moving into and out of the RENDER domain, correct
3585          * snooping behaviour occurs naturally as the result of our domain
3586          * tracking.
3587          */
3588         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3589                 obj->cache_dirty = true;
3590                 return false;
3591         }
3592
3593         trace_i915_gem_object_clflush(obj);
3594         drm_clflush_sg(obj->pages);
3595         obj->cache_dirty = false;
3596
3597         return true;
3598 }
3599
3600 /** Flushes the GTT write domain for the object if it's dirty. */
3601 static void
3602 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3603 {
3604         uint32_t old_write_domain;
3605
3606         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3607                 return;
3608
3609         /* No actual flushing is required for the GTT write domain.  Writes
3610          * to it immediately go to main memory as far as we know, so there's
3611          * no chipset flush.  It also doesn't land in render cache.
3612          *
3613          * However, we do have to enforce the order so that all writes through
3614          * the GTT land before any writes to the device, such as updates to
3615          * the GATT itself.
3616          */
3617         wmb();
3618
3619         old_write_domain = obj->base.write_domain;
3620         obj->base.write_domain = 0;
3621
3622         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3623
3624         trace_i915_gem_object_change_domain(obj,
3625                                             obj->base.read_domains,
3626                                             old_write_domain);
3627 }
3628
3629 /** Flushes the CPU write domain for the object if it's dirty. */
3630 static void
3631 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3632 {
3633         uint32_t old_write_domain;
3634
3635         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3636                 return;
3637
3638         if (i915_gem_clflush_object(obj, obj->pin_display))
3639                 i915_gem_chipset_flush(obj->base.dev);
3640
3641         old_write_domain = obj->base.write_domain;
3642         obj->base.write_domain = 0;
3643
3644         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3645
3646         trace_i915_gem_object_change_domain(obj,
3647                                             obj->base.read_domains,
3648                                             old_write_domain);
3649 }
3650
3651 /**
3652  * Moves a single object to the GTT read, and possibly write domain.
3653  *
3654  * This function returns when the move is complete, including waiting on
3655  * flushes to occur.
3656  */
3657 int
3658 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3659 {
3660         uint32_t old_write_domain, old_read_domains;
3661         struct i915_vma *vma;
3662         int ret;
3663
3664         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3665                 return 0;
3666
3667         ret = i915_gem_object_wait_rendering(obj, !write);
3668         if (ret)
3669                 return ret;
3670
3671         /* Flush and acquire obj->pages so that we are coherent through
3672          * direct access in memory with previous cached writes through
3673          * shmemfs and that our cache domain tracking remains valid.
3674          * For example, if the obj->filp was moved to swap without us
3675          * being notified and releasing the pages, we would mistakenly
3676          * continue to assume that the obj remained out of the CPU cached
3677          * domain.
3678          */
3679         ret = i915_gem_object_get_pages(obj);
3680         if (ret)
3681                 return ret;
3682
3683         i915_gem_object_flush_cpu_write_domain(obj);
3684
3685         /* Serialise direct access to this object with the barriers for
3686          * coherent writes from the GPU, by effectively invalidating the
3687          * GTT domain upon first access.
3688          */
3689         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3690                 mb();
3691
3692         old_write_domain = obj->base.write_domain;
3693         old_read_domains = obj->base.read_domains;
3694
3695         /* It should now be out of any other write domains, and we can update
3696          * the domain values for our changes.
3697          */
3698         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3699         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3700         if (write) {
3701                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3702                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3703                 obj->dirty = 1;
3704         }
3705
3706         trace_i915_gem_object_change_domain(obj,
3707                                             old_read_domains,
3708                                             old_write_domain);
3709
3710         /* And bump the LRU for this access */
3711         vma = i915_gem_obj_to_ggtt(obj);
3712         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3713                 list_move_tail(&vma->mm_list,
3714                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
3715
3716         return 0;
3717 }
3718
3719 /**
3720  * Changes the cache-level of an object across all VMA.
3721  *
3722  * After this function returns, the object will be in the new cache-level
3723  * across all GTT and the contents of the backing storage will be coherent,
3724  * with respect to the new cache-level. In order to keep the backing storage
3725  * coherent for all users, we only allow a single cache level to be set
3726  * globally on the object and prevent it from being changed whilst the
3727  * hardware is reading from the object. That is if the object is currently
3728  * on the scanout it will be set to uncached (or equivalent display
3729  * cache coherency) and all non-MOCS GPU access will also be uncached so
3730  * that all direct access to the scanout remains coherent.
3731  */
3732 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3733                                     enum i915_cache_level cache_level)
3734 {
3735         struct drm_device *dev = obj->base.dev;
3736         struct i915_vma *vma, *next;
3737         bool bound = false;
3738         int ret = 0;
3739
3740         if (obj->cache_level == cache_level)
3741                 goto out;
3742
3743         /* Inspect the list of currently bound VMA and unbind any that would
3744          * be invalid given the new cache-level. This is principally to
3745          * catch the issue of the CS prefetch crossing page boundaries and
3746          * reading an invalid PTE on older architectures.
3747          */
3748         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3749                 if (!drm_mm_node_allocated(&vma->node))
3750                         continue;
3751
3752                 if (vma->pin_count) {
3753                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3754                         return -EBUSY;
3755                 }
3756
3757                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3758                         ret = i915_vma_unbind(vma);
3759                         if (ret)
3760                                 return ret;
3761                 } else
3762                         bound = true;
3763         }
3764
3765         /* We can reuse the existing drm_mm nodes but need to change the
3766          * cache-level on the PTE. We could simply unbind them all and
3767          * rebind with the correct cache-level on next use. However since
3768          * we already have a valid slot, dma mapping, pages etc, we may as
3769          * rewrite the PTE in the belief that doing so tramples upon less
3770          * state and so involves less work.
3771          */
3772         if (bound) {
3773                 /* Before we change the PTE, the GPU must not be accessing it.
3774                  * If we wait upon the object, we know that all the bound
3775                  * VMA are no longer active.
3776                  */
3777                 ret = i915_gem_object_wait_rendering(obj, false);
3778                 if (ret)
3779                         return ret;
3780
3781                 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3782                         /* Access to snoopable pages through the GTT is
3783                          * incoherent and on some machines causes a hard
3784                          * lockup. Relinquish the CPU mmaping to force
3785                          * userspace to refault in the pages and we can
3786                          * then double check if the GTT mapping is still
3787                          * valid for that pointer access.
3788                          */
3789                         i915_gem_release_mmap(obj);
3790
3791                         /* As we no longer need a fence for GTT access,
3792                          * we can relinquish it now (and so prevent having
3793                          * to steal a fence from someone else on the next
3794                          * fence request). Note GPU activity would have
3795                          * dropped the fence as all snoopable access is
3796                          * supposed to be linear.
3797                          */
3798                         ret = i915_gem_object_put_fence(obj);
3799                         if (ret)
3800                                 return ret;
3801                 } else {
3802                         /* We either have incoherent backing store and
3803                          * so no GTT access or the architecture is fully
3804                          * coherent. In such cases, existing GTT mmaps
3805                          * ignore the cache bit in the PTE and we can
3806                          * rewrite it without confusing the GPU or having
3807                          * to force userspace to fault back in its mmaps.
3808                          */
3809                 }
3810
3811                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3812                         if (!drm_mm_node_allocated(&vma->node))
3813                                 continue;
3814
3815                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3816                         if (ret)
3817                                 return ret;
3818                 }
3819         }
3820
3821         list_for_each_entry(vma, &obj->vma_list, vma_link)
3822                 vma->node.color = cache_level;
3823         obj->cache_level = cache_level;
3824
3825 out:
3826         /* Flush the dirty CPU caches to the backing storage so that the
3827          * object is now coherent at its new cache level (with respect
3828          * to the access domain).
3829          */
3830         if (obj->cache_dirty &&
3831             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3832             cpu_write_needs_clflush(obj)) {
3833                 if (i915_gem_clflush_object(obj, true))
3834                         i915_gem_chipset_flush(obj->base.dev);
3835         }
3836
3837         return 0;
3838 }
3839
3840 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3841                                struct drm_file *file)
3842 {
3843         struct drm_i915_gem_caching *args = data;
3844         struct drm_i915_gem_object *obj;
3845
3846         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3847         if (&obj->base == NULL)
3848                 return -ENOENT;
3849
3850         switch (obj->cache_level) {
3851         case I915_CACHE_LLC:
3852         case I915_CACHE_L3_LLC:
3853                 args->caching = I915_CACHING_CACHED;
3854                 break;
3855
3856         case I915_CACHE_WT:
3857                 args->caching = I915_CACHING_DISPLAY;
3858                 break;
3859
3860         default:
3861                 args->caching = I915_CACHING_NONE;
3862                 break;
3863         }
3864
3865         drm_gem_object_unreference_unlocked(&obj->base);
3866         return 0;
3867 }
3868
3869 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3870                                struct drm_file *file)
3871 {
3872         struct drm_i915_private *dev_priv = dev->dev_private;
3873         struct drm_i915_gem_caching *args = data;
3874         struct drm_i915_gem_object *obj;
3875         enum i915_cache_level level;
3876         int ret;
3877
3878         switch (args->caching) {
3879         case I915_CACHING_NONE:
3880                 level = I915_CACHE_NONE;
3881                 break;
3882         case I915_CACHING_CACHED:
3883                 /*
3884                  * Due to a HW issue on BXT A stepping, GPU stores via a
3885                  * snooped mapping may leave stale data in a corresponding CPU
3886                  * cacheline, whereas normally such cachelines would get
3887                  * invalidated.
3888                  */
3889                 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
3890                         return -ENODEV;
3891
3892                 level = I915_CACHE_LLC;
3893                 break;
3894         case I915_CACHING_DISPLAY:
3895                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3896                 break;
3897         default:
3898                 return -EINVAL;
3899         }
3900
3901         intel_runtime_pm_get(dev_priv);
3902
3903         ret = i915_mutex_lock_interruptible(dev);
3904         if (ret)
3905                 goto rpm_put;
3906
3907         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3908         if (&obj->base == NULL) {
3909                 ret = -ENOENT;
3910                 goto unlock;
3911         }
3912
3913         ret = i915_gem_object_set_cache_level(obj, level);
3914
3915         drm_gem_object_unreference(&obj->base);
3916 unlock:
3917         mutex_unlock(&dev->struct_mutex);
3918 rpm_put:
3919         intel_runtime_pm_put(dev_priv);
3920
3921         return ret;
3922 }
3923
3924 /*
3925  * Prepare buffer for display plane (scanout, cursors, etc).
3926  * Can be called from an uninterruptible phase (modesetting) and allows
3927  * any flushes to be pipelined (for pageflips).
3928  */
3929 int
3930 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3931                                      u32 alignment,
3932                                      struct intel_engine_cs *pipelined,
3933                                      struct drm_i915_gem_request **pipelined_request,
3934                                      const struct i915_ggtt_view *view)
3935 {
3936         u32 old_read_domains, old_write_domain;
3937         int ret;
3938
3939         ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
3940         if (ret)
3941                 return ret;
3942
3943         /* Mark the pin_display early so that we account for the
3944          * display coherency whilst setting up the cache domains.
3945          */
3946         obj->pin_display++;
3947
3948         /* The display engine is not coherent with the LLC cache on gen6.  As
3949          * a result, we make sure that the pinning that is about to occur is
3950          * done with uncached PTEs. This is lowest common denominator for all
3951          * chipsets.
3952          *
3953          * However for gen6+, we could do better by using the GFDT bit instead
3954          * of uncaching, which would allow us to flush all the LLC-cached data
3955          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3956          */
3957         ret = i915_gem_object_set_cache_level(obj,
3958                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3959         if (ret)
3960                 goto err_unpin_display;
3961
3962         /* As the user may map the buffer once pinned in the display plane
3963          * (e.g. libkms for the bootup splash), we have to ensure that we
3964          * always use map_and_fenceable for all scanout buffers.
3965          */
3966         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3967                                        view->type == I915_GGTT_VIEW_NORMAL ?
3968                                        PIN_MAPPABLE : 0);
3969         if (ret)
3970                 goto err_unpin_display;
3971
3972         i915_gem_object_flush_cpu_write_domain(obj);
3973
3974         old_write_domain = obj->base.write_domain;
3975         old_read_domains = obj->base.read_domains;
3976
3977         /* It should now be out of any other write domains, and we can update
3978          * the domain values for our changes.
3979          */
3980         obj->base.write_domain = 0;
3981         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3982
3983         trace_i915_gem_object_change_domain(obj,
3984                                             old_read_domains,
3985                                             old_write_domain);
3986
3987         return 0;
3988
3989 err_unpin_display:
3990         obj->pin_display--;
3991         return ret;
3992 }
3993
3994 void
3995 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3996                                          const struct i915_ggtt_view *view)
3997 {
3998         if (WARN_ON(obj->pin_display == 0))
3999                 return;
4000
4001         i915_gem_object_ggtt_unpin_view(obj, view);
4002
4003         obj->pin_display--;
4004 }
4005
4006 /**
4007  * Moves a single object to the CPU read, and possibly write domain.
4008  *
4009  * This function returns when the move is complete, including waiting on
4010  * flushes to occur.
4011  */
4012 int
4013 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4014 {
4015         uint32_t old_write_domain, old_read_domains;
4016         int ret;
4017
4018         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4019                 return 0;
4020
4021         ret = i915_gem_object_wait_rendering(obj, !write);
4022         if (ret)
4023                 return ret;
4024
4025         i915_gem_object_flush_gtt_write_domain(obj);
4026
4027         old_write_domain = obj->base.write_domain;
4028         old_read_domains = obj->base.read_domains;
4029
4030         /* Flush the CPU cache if it's still invalid. */
4031         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4032                 i915_gem_clflush_object(obj, false);
4033
4034                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4035         }
4036
4037         /* It should now be out of any other write domains, and we can update
4038          * the domain values for our changes.
4039          */
4040         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4041
4042         /* If we're writing through the CPU, then the GPU read domains will
4043          * need to be invalidated at next use.
4044          */
4045         if (write) {
4046                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4047                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4048         }
4049
4050         trace_i915_gem_object_change_domain(obj,
4051                                             old_read_domains,
4052                                             old_write_domain);
4053
4054         return 0;
4055 }
4056
4057 /* Throttle our rendering by waiting until the ring has completed our requests
4058  * emitted over 20 msec ago.
4059  *
4060  * Note that if we were to use the current jiffies each time around the loop,
4061  * we wouldn't escape the function with any frames outstanding if the time to
4062  * render a frame was over 20ms.
4063  *
4064  * This should get us reasonable parallelism between CPU and GPU but also
4065  * relatively low latency when blocking on a particular request to finish.
4066  */
4067 static int
4068 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4069 {
4070         struct drm_i915_private *dev_priv = dev->dev_private;
4071         struct drm_i915_file_private *file_priv = file->driver_priv;
4072         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4073         struct drm_i915_gem_request *request, *target = NULL;
4074         unsigned reset_counter;
4075         int ret;
4076
4077         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4078         if (ret)
4079                 return ret;
4080
4081         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4082         if (ret)
4083                 return ret;
4084
4085         spin_lock(&file_priv->mm.lock);
4086         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4087                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4088                         break;
4089
4090                 /*
4091                  * Note that the request might not have been submitted yet.
4092                  * In which case emitted_jiffies will be zero.
4093                  */
4094                 if (!request->emitted_jiffies)
4095                         continue;
4096
4097                 target = request;
4098         }
4099         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4100         if (target)
4101                 i915_gem_request_reference(target);
4102         spin_unlock(&file_priv->mm.lock);
4103
4104         if (target == NULL)
4105                 return 0;
4106
4107         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4108         if (ret == 0)
4109                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4110
4111         i915_gem_request_unreference__unlocked(target);
4112
4113         return ret;
4114 }
4115
4116 static bool
4117 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4118 {
4119         struct drm_i915_gem_object *obj = vma->obj;
4120
4121         if (alignment &&
4122             vma->node.start & (alignment - 1))
4123                 return true;
4124
4125         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4126                 return true;
4127
4128         if (flags & PIN_OFFSET_BIAS &&
4129             vma->node.start < (flags & PIN_OFFSET_MASK))
4130                 return true;
4131
4132         return false;
4133 }
4134
4135 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4136 {
4137         struct drm_i915_gem_object *obj = vma->obj;
4138         bool mappable, fenceable;
4139         u32 fence_size, fence_alignment;
4140
4141         fence_size = i915_gem_get_gtt_size(obj->base.dev,
4142                                            obj->base.size,
4143                                            obj->tiling_mode);
4144         fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4145                                                      obj->base.size,
4146                                                      obj->tiling_mode,
4147                                                      true);
4148
4149         fenceable = (vma->node.size == fence_size &&
4150                      (vma->node.start & (fence_alignment - 1)) == 0);
4151
4152         mappable = (vma->node.start + fence_size <=
4153                     to_i915(obj->base.dev)->gtt.mappable_end);
4154
4155         obj->map_and_fenceable = mappable && fenceable;
4156 }
4157
4158 static int
4159 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4160                        struct i915_address_space *vm,
4161                        const struct i915_ggtt_view *ggtt_view,
4162                        uint32_t alignment,
4163                        uint64_t flags)
4164 {
4165         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4166         struct i915_vma *vma;
4167         unsigned bound;
4168         int ret;
4169
4170         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4171                 return -ENODEV;
4172
4173         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4174                 return -EINVAL;
4175
4176         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4177                 return -EINVAL;
4178
4179         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4180                 return -EINVAL;
4181
4182         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4183                           i915_gem_obj_to_vma(obj, vm);
4184
4185         if (IS_ERR(vma))
4186                 return PTR_ERR(vma);
4187
4188         if (vma) {
4189                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4190                         return -EBUSY;
4191
4192                 if (i915_vma_misplaced(vma, alignment, flags)) {
4193                         WARN(vma->pin_count,
4194                              "bo is already pinned in %s with incorrect alignment:"
4195                              " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4196                              " obj->map_and_fenceable=%d\n",
4197                              ggtt_view ? "ggtt" : "ppgtt",
4198                              upper_32_bits(vma->node.start),
4199                              lower_32_bits(vma->node.start),
4200                              alignment,
4201                              !!(flags & PIN_MAPPABLE),
4202                              obj->map_and_fenceable);
4203                         ret = i915_vma_unbind(vma);
4204                         if (ret)
4205                                 return ret;
4206
4207                         vma = NULL;
4208                 }
4209         }
4210
4211         bound = vma ? vma->bound : 0;
4212         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4213                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4214                                                  flags);
4215                 if (IS_ERR(vma))
4216                         return PTR_ERR(vma);
4217         } else {
4218                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4219                 if (ret)
4220                         return ret;
4221         }
4222
4223         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4224             (bound ^ vma->bound) & GLOBAL_BIND) {
4225                 __i915_vma_set_map_and_fenceable(vma);
4226                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4227         }
4228
4229         vma->pin_count++;
4230         return 0;
4231 }
4232
4233 int
4234 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4235                     struct i915_address_space *vm,
4236                     uint32_t alignment,
4237                     uint64_t flags)
4238 {
4239         return i915_gem_object_do_pin(obj, vm,
4240                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4241                                       alignment, flags);
4242 }
4243
4244 int
4245 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4246                          const struct i915_ggtt_view *view,
4247                          uint32_t alignment,
4248                          uint64_t flags)
4249 {
4250         if (WARN_ONCE(!view, "no view specified"))
4251                 return -EINVAL;
4252
4253         return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4254                                       alignment, flags | PIN_GLOBAL);
4255 }
4256
4257 void
4258 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4259                                 const struct i915_ggtt_view *view)
4260 {
4261         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4262
4263         BUG_ON(!vma);
4264         WARN_ON(vma->pin_count == 0);
4265         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4266
4267         --vma->pin_count;
4268 }
4269
4270 int
4271 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4272                     struct drm_file *file)
4273 {
4274         struct drm_i915_gem_busy *args = data;
4275         struct drm_i915_gem_object *obj;
4276         int ret;
4277
4278         ret = i915_mutex_lock_interruptible(dev);
4279         if (ret)
4280                 return ret;
4281
4282         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4283         if (&obj->base == NULL) {
4284                 ret = -ENOENT;
4285                 goto unlock;
4286         }
4287
4288         /* Count all active objects as busy, even if they are currently not used
4289          * by the gpu. Users of this interface expect objects to eventually
4290          * become non-busy without any further actions, therefore emit any
4291          * necessary flushes here.
4292          */
4293         ret = i915_gem_object_flush_active(obj);
4294         if (ret)
4295                 goto unref;
4296
4297         BUILD_BUG_ON(I915_NUM_RINGS > 16);
4298         args->busy = obj->active << 16;
4299         if (obj->last_write_req)
4300                 args->busy |= obj->last_write_req->ring->id;
4301
4302 unref:
4303         drm_gem_object_unreference(&obj->base);
4304 unlock:
4305         mutex_unlock(&dev->struct_mutex);
4306         return ret;
4307 }
4308
4309 int
4310 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4311                         struct drm_file *file_priv)
4312 {
4313         return i915_gem_ring_throttle(dev, file_priv);
4314 }
4315
4316 int
4317 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4318                        struct drm_file *file_priv)
4319 {
4320         struct drm_i915_private *dev_priv = dev->dev_private;
4321         struct drm_i915_gem_madvise *args = data;
4322         struct drm_i915_gem_object *obj;
4323         int ret;
4324
4325         switch (args->madv) {
4326         case I915_MADV_DONTNEED:
4327         case I915_MADV_WILLNEED:
4328             break;
4329         default:
4330             return -EINVAL;
4331         }
4332
4333         ret = i915_mutex_lock_interruptible(dev);
4334         if (ret)
4335                 return ret;
4336
4337         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4338         if (&obj->base == NULL) {
4339                 ret = -ENOENT;
4340                 goto unlock;
4341         }
4342
4343         if (i915_gem_obj_is_pinned(obj)) {
4344                 ret = -EINVAL;
4345                 goto out;
4346         }
4347
4348         if (obj->pages &&
4349             obj->tiling_mode != I915_TILING_NONE &&
4350             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4351                 if (obj->madv == I915_MADV_WILLNEED)
4352                         i915_gem_object_unpin_pages(obj);
4353                 if (args->madv == I915_MADV_WILLNEED)
4354                         i915_gem_object_pin_pages(obj);
4355         }
4356
4357         if (obj->madv != __I915_MADV_PURGED)
4358                 obj->madv = args->madv;
4359
4360         /* if the object is no longer attached, discard its backing storage */
4361         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4362                 i915_gem_object_truncate(obj);
4363
4364         args->retained = obj->madv != __I915_MADV_PURGED;
4365
4366 out:
4367         drm_gem_object_unreference(&obj->base);
4368 unlock:
4369         mutex_unlock(&dev->struct_mutex);
4370         return ret;
4371 }
4372
4373 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4374                           const struct drm_i915_gem_object_ops *ops)
4375 {
4376         int i;
4377
4378         INIT_LIST_HEAD(&obj->global_list);
4379         for (i = 0; i < I915_NUM_RINGS; i++)
4380                 INIT_LIST_HEAD(&obj->ring_list[i]);
4381         INIT_LIST_HEAD(&obj->obj_exec_link);
4382         INIT_LIST_HEAD(&obj->vma_list);
4383         INIT_LIST_HEAD(&obj->batch_pool_link);
4384
4385         obj->ops = ops;
4386
4387         obj->fence_reg = I915_FENCE_REG_NONE;
4388         obj->madv = I915_MADV_WILLNEED;
4389
4390         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4391 }
4392
4393 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4394         .get_pages = i915_gem_object_get_pages_gtt,
4395         .put_pages = i915_gem_object_put_pages_gtt,
4396 };
4397
4398 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4399                                                   size_t size)
4400 {
4401         struct drm_i915_gem_object *obj;
4402         struct address_space *mapping;
4403         gfp_t mask;
4404
4405         obj = i915_gem_object_alloc(dev);
4406         if (obj == NULL)
4407                 return NULL;
4408
4409         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4410                 i915_gem_object_free(obj);
4411                 return NULL;
4412         }
4413
4414         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4415         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4416                 /* 965gm cannot relocate objects above 4GiB. */
4417                 mask &= ~__GFP_HIGHMEM;
4418                 mask |= __GFP_DMA32;
4419         }
4420
4421         mapping = file_inode(obj->base.filp)->i_mapping;
4422         mapping_set_gfp_mask(mapping, mask);
4423
4424         i915_gem_object_init(obj, &i915_gem_object_ops);
4425
4426         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4427         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4428
4429         if (HAS_LLC(dev)) {
4430                 /* On some devices, we can have the GPU use the LLC (the CPU
4431                  * cache) for about a 10% performance improvement
4432                  * compared to uncached.  Graphics requests other than
4433                  * display scanout are coherent with the CPU in
4434                  * accessing this cache.  This means in this mode we
4435                  * don't need to clflush on the CPU side, and on the
4436                  * GPU side we only need to flush internal caches to
4437                  * get data visible to the CPU.
4438                  *
4439                  * However, we maintain the display planes as UC, and so
4440                  * need to rebind when first used as such.
4441                  */
4442                 obj->cache_level = I915_CACHE_LLC;
4443         } else
4444                 obj->cache_level = I915_CACHE_NONE;
4445
4446         trace_i915_gem_object_create(obj);
4447
4448         return obj;
4449 }
4450
4451 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4452 {
4453         /* If we are the last user of the backing storage (be it shmemfs
4454          * pages or stolen etc), we know that the pages are going to be
4455          * immediately released. In this case, we can then skip copying
4456          * back the contents from the GPU.
4457          */
4458
4459         if (obj->madv != I915_MADV_WILLNEED)
4460                 return false;
4461
4462         if (obj->base.filp == NULL)
4463                 return true;
4464
4465         /* At first glance, this looks racy, but then again so would be
4466          * userspace racing mmap against close. However, the first external
4467          * reference to the filp can only be obtained through the
4468          * i915_gem_mmap_ioctl() which safeguards us against the user
4469          * acquiring such a reference whilst we are in the middle of
4470          * freeing the object.
4471          */
4472         return atomic_long_read(&obj->base.filp->f_count) == 1;
4473 }
4474
4475 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4476 {
4477         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4478         struct drm_device *dev = obj->base.dev;
4479         struct drm_i915_private *dev_priv = dev->dev_private;
4480         struct i915_vma *vma, *next;
4481
4482         intel_runtime_pm_get(dev_priv);
4483
4484         trace_i915_gem_object_destroy(obj);
4485
4486         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4487                 int ret;
4488
4489                 vma->pin_count = 0;
4490                 ret = i915_vma_unbind(vma);
4491                 if (WARN_ON(ret == -ERESTARTSYS)) {
4492                         bool was_interruptible;
4493
4494                         was_interruptible = dev_priv->mm.interruptible;
4495                         dev_priv->mm.interruptible = false;
4496
4497                         WARN_ON(i915_vma_unbind(vma));
4498
4499                         dev_priv->mm.interruptible = was_interruptible;
4500                 }
4501         }
4502
4503         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4504          * before progressing. */
4505         if (obj->stolen)
4506                 i915_gem_object_unpin_pages(obj);
4507
4508         WARN_ON(obj->frontbuffer_bits);
4509
4510         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4511             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4512             obj->tiling_mode != I915_TILING_NONE)
4513                 i915_gem_object_unpin_pages(obj);
4514
4515         if (WARN_ON(obj->pages_pin_count))
4516                 obj->pages_pin_count = 0;
4517         if (discard_backing_storage(obj))
4518                 obj->madv = I915_MADV_DONTNEED;
4519         i915_gem_object_put_pages(obj);
4520         i915_gem_object_free_mmap_offset(obj);
4521
4522         BUG_ON(obj->pages);
4523
4524         if (obj->base.import_attach)
4525                 drm_prime_gem_destroy(&obj->base, NULL);
4526
4527         if (obj->ops->release)
4528                 obj->ops->release(obj);
4529
4530         drm_gem_object_release(&obj->base);
4531         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4532
4533         kfree(obj->bit_17);
4534         i915_gem_object_free(obj);
4535
4536         intel_runtime_pm_put(dev_priv);
4537 }
4538
4539 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4540                                      struct i915_address_space *vm)
4541 {
4542         struct i915_vma *vma;
4543         list_for_each_entry(vma, &obj->vma_list, vma_link) {
4544                 if (i915_is_ggtt(vma->vm) &&
4545                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4546                         continue;
4547                 if (vma->vm == vm)
4548                         return vma;
4549         }
4550         return NULL;
4551 }
4552
4553 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4554                                            const struct i915_ggtt_view *view)
4555 {
4556         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4557         struct i915_vma *vma;
4558
4559         if (WARN_ONCE(!view, "no view specified"))
4560                 return ERR_PTR(-EINVAL);
4561
4562         list_for_each_entry(vma, &obj->vma_list, vma_link)
4563                 if (vma->vm == ggtt &&
4564                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4565                         return vma;
4566         return NULL;
4567 }
4568
4569 void i915_gem_vma_destroy(struct i915_vma *vma)
4570 {
4571         struct i915_address_space *vm = NULL;
4572         WARN_ON(vma->node.allocated);
4573
4574         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4575         if (!list_empty(&vma->exec_list))
4576                 return;
4577
4578         vm = vma->vm;
4579
4580         if (!i915_is_ggtt(vm))
4581                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4582
4583         list_del(&vma->vma_link);
4584
4585         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4586 }
4587
4588 static void
4589 i915_gem_stop_ringbuffers(struct drm_device *dev)
4590 {
4591         struct drm_i915_private *dev_priv = dev->dev_private;
4592         struct intel_engine_cs *ring;
4593         int i;
4594
4595         for_each_ring(ring, dev_priv, i)
4596                 dev_priv->gt.stop_ring(ring);
4597 }
4598
4599 int
4600 i915_gem_suspend(struct drm_device *dev)
4601 {
4602         struct drm_i915_private *dev_priv = dev->dev_private;
4603         int ret = 0;
4604
4605         mutex_lock(&dev->struct_mutex);
4606         ret = i915_gpu_idle(dev);
4607         if (ret)
4608                 goto err;
4609
4610         i915_gem_retire_requests(dev);
4611
4612         i915_gem_stop_ringbuffers(dev);
4613         mutex_unlock(&dev->struct_mutex);
4614
4615         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4616         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4617         flush_delayed_work(&dev_priv->mm.idle_work);
4618
4619         /* Assert that we sucessfully flushed all the work and
4620          * reset the GPU back to its idle, low power state.
4621          */
4622         WARN_ON(dev_priv->mm.busy);
4623
4624         return 0;
4625
4626 err:
4627         mutex_unlock(&dev->struct_mutex);
4628         return ret;
4629 }
4630
4631 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4632 {
4633         struct intel_engine_cs *ring = req->ring;
4634         struct drm_device *dev = ring->dev;
4635         struct drm_i915_private *dev_priv = dev->dev_private;
4636         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4637         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4638         int i, ret;
4639
4640         if (!HAS_L3_DPF(dev) || !remap_info)
4641                 return 0;
4642
4643         ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4644         if (ret)
4645                 return ret;
4646
4647         /*
4648          * Note: We do not worry about the concurrent register cacheline hang
4649          * here because no other code should access these registers other than
4650          * at initialization time.
4651          */
4652         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4653                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4654                 intel_ring_emit(ring, reg_base + i);
4655                 intel_ring_emit(ring, remap_info[i/4]);
4656         }
4657
4658         intel_ring_advance(ring);
4659
4660         return ret;
4661 }
4662
4663 void i915_gem_init_swizzling(struct drm_device *dev)
4664 {
4665         struct drm_i915_private *dev_priv = dev->dev_private;
4666
4667         if (INTEL_INFO(dev)->gen < 5 ||
4668             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4669                 return;
4670
4671         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4672                                  DISP_TILE_SURFACE_SWIZZLING);
4673
4674         if (IS_GEN5(dev))
4675                 return;
4676
4677         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4678         if (IS_GEN6(dev))
4679                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4680         else if (IS_GEN7(dev))
4681                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4682         else if (IS_GEN8(dev))
4683                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4684         else
4685                 BUG();
4686 }
4687
4688 static void init_unused_ring(struct drm_device *dev, u32 base)
4689 {
4690         struct drm_i915_private *dev_priv = dev->dev_private;
4691
4692         I915_WRITE(RING_CTL(base), 0);
4693         I915_WRITE(RING_HEAD(base), 0);
4694         I915_WRITE(RING_TAIL(base), 0);
4695         I915_WRITE(RING_START(base), 0);
4696 }
4697
4698 static void init_unused_rings(struct drm_device *dev)
4699 {
4700         if (IS_I830(dev)) {
4701                 init_unused_ring(dev, PRB1_BASE);
4702                 init_unused_ring(dev, SRB0_BASE);
4703                 init_unused_ring(dev, SRB1_BASE);
4704                 init_unused_ring(dev, SRB2_BASE);
4705                 init_unused_ring(dev, SRB3_BASE);
4706         } else if (IS_GEN2(dev)) {
4707                 init_unused_ring(dev, SRB0_BASE);
4708                 init_unused_ring(dev, SRB1_BASE);
4709         } else if (IS_GEN3(dev)) {
4710                 init_unused_ring(dev, PRB1_BASE);
4711                 init_unused_ring(dev, PRB2_BASE);
4712         }
4713 }
4714
4715 int i915_gem_init_rings(struct drm_device *dev)
4716 {
4717         struct drm_i915_private *dev_priv = dev->dev_private;
4718         int ret;
4719
4720         ret = intel_init_render_ring_buffer(dev);
4721         if (ret)
4722                 return ret;
4723
4724         if (HAS_BSD(dev)) {
4725                 ret = intel_init_bsd_ring_buffer(dev);
4726                 if (ret)
4727                         goto cleanup_render_ring;
4728         }
4729
4730         if (HAS_BLT(dev)) {
4731                 ret = intel_init_blt_ring_buffer(dev);
4732                 if (ret)
4733                         goto cleanup_bsd_ring;
4734         }
4735
4736         if (HAS_VEBOX(dev)) {
4737                 ret = intel_init_vebox_ring_buffer(dev);
4738                 if (ret)
4739                         goto cleanup_blt_ring;
4740         }
4741
4742         if (HAS_BSD2(dev)) {
4743                 ret = intel_init_bsd2_ring_buffer(dev);
4744                 if (ret)
4745                         goto cleanup_vebox_ring;
4746         }
4747
4748         return 0;
4749
4750 cleanup_vebox_ring:
4751         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4752 cleanup_blt_ring:
4753         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4754 cleanup_bsd_ring:
4755         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4756 cleanup_render_ring:
4757         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4758
4759         return ret;
4760 }
4761
4762 int
4763 i915_gem_init_hw(struct drm_device *dev)
4764 {
4765         struct drm_i915_private *dev_priv = dev->dev_private;
4766         struct intel_engine_cs *ring;
4767         int ret, i, j;
4768
4769         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4770                 return -EIO;
4771
4772         /* Double layer security blanket, see i915_gem_init() */
4773         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4774
4775         if (dev_priv->ellc_size)
4776                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4777
4778         if (IS_HASWELL(dev))
4779                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4780                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4781
4782         if (HAS_PCH_NOP(dev)) {
4783                 if (IS_IVYBRIDGE(dev)) {
4784                         u32 temp = I915_READ(GEN7_MSG_CTL);
4785                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4786                         I915_WRITE(GEN7_MSG_CTL, temp);
4787                 } else if (INTEL_INFO(dev)->gen >= 7) {
4788                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4789                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4790                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4791                 }
4792         }
4793
4794         i915_gem_init_swizzling(dev);
4795
4796         /*
4797          * At least 830 can leave some of the unused rings
4798          * "active" (ie. head != tail) after resume which
4799          * will prevent c3 entry. Makes sure all unused rings
4800          * are totally idle.
4801          */
4802         init_unused_rings(dev);
4803
4804         BUG_ON(!dev_priv->ring[RCS].default_context);
4805
4806         ret = i915_ppgtt_init_hw(dev);
4807         if (ret) {
4808                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4809                 goto out;
4810         }
4811
4812         /* Need to do basic initialisation of all rings first: */
4813         for_each_ring(ring, dev_priv, i) {
4814                 ret = ring->init_hw(ring);
4815                 if (ret)
4816                         goto out;
4817         }
4818
4819         /* We can't enable contexts until all firmware is loaded */
4820         if (HAS_GUC_UCODE(dev)) {
4821                 ret = intel_guc_ucode_load(dev);
4822                 if (ret) {
4823                         /*
4824                          * If we got an error and GuC submission is enabled, map
4825                          * the error to -EIO so the GPU will be declared wedged.
4826                          * OTOH, if we didn't intend to use the GuC anyway, just
4827                          * discard the error and carry on.
4828                          */
4829                         DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
4830                                   i915.enable_guc_submission ? "" :
4831                                   " (ignored)");
4832                         ret = i915.enable_guc_submission ? -EIO : 0;
4833                         if (ret)
4834                                 goto out;
4835                 }
4836         }
4837
4838         /*
4839          * Increment the next seqno by 0x100 so we have a visible break
4840          * on re-initialisation
4841          */
4842         ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4843         if (ret)
4844                 goto out;
4845
4846         /* Now it is safe to go back round and do everything else: */
4847         for_each_ring(ring, dev_priv, i) {
4848                 struct drm_i915_gem_request *req;
4849
4850                 WARN_ON(!ring->default_context);
4851
4852                 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4853                 if (ret) {
4854                         i915_gem_cleanup_ringbuffer(dev);
4855                         goto out;
4856                 }
4857
4858                 if (ring->id == RCS) {
4859                         for (j = 0; j < NUM_L3_SLICES(dev); j++)
4860                                 i915_gem_l3_remap(req, j);
4861                 }
4862
4863                 ret = i915_ppgtt_init_ring(req);
4864                 if (ret && ret != -EIO) {
4865                         DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4866                         i915_gem_request_cancel(req);
4867                         i915_gem_cleanup_ringbuffer(dev);
4868                         goto out;
4869                 }
4870
4871                 ret = i915_gem_context_enable(req);
4872                 if (ret && ret != -EIO) {
4873                         DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4874                         i915_gem_request_cancel(req);
4875                         i915_gem_cleanup_ringbuffer(dev);
4876                         goto out;
4877                 }
4878
4879                 i915_add_request_no_flush(req);
4880         }
4881
4882 out:
4883         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4884         return ret;
4885 }
4886
4887 int i915_gem_init(struct drm_device *dev)
4888 {
4889         struct drm_i915_private *dev_priv = dev->dev_private;
4890         int ret;
4891
4892         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4893                         i915.enable_execlists);
4894
4895         mutex_lock(&dev->struct_mutex);
4896
4897         if (IS_VALLEYVIEW(dev)) {
4898                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4899                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4900                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4901                               VLV_GTLC_ALLOWWAKEACK), 10))
4902                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4903         }
4904
4905         if (!i915.enable_execlists) {
4906                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4907                 dev_priv->gt.init_rings = i915_gem_init_rings;
4908                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4909                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4910         } else {
4911                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4912                 dev_priv->gt.init_rings = intel_logical_rings_init;
4913                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4914                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4915         }
4916
4917         /* This is just a security blanket to placate dragons.
4918          * On some systems, we very sporadically observe that the first TLBs
4919          * used by the CS may be stale, despite us poking the TLB reset. If
4920          * we hold the forcewake during initialisation these problems
4921          * just magically go away.
4922          */
4923         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4924
4925         ret = i915_gem_init_userptr(dev);
4926         if (ret)
4927                 goto out_unlock;
4928
4929         i915_gem_init_global_gtt(dev);
4930
4931         ret = i915_gem_context_init(dev);
4932         if (ret)
4933                 goto out_unlock;
4934
4935         ret = dev_priv->gt.init_rings(dev);
4936         if (ret)
4937                 goto out_unlock;
4938
4939         ret = i915_gem_init_hw(dev);
4940         if (ret == -EIO) {
4941                 /* Allow ring initialisation to fail by marking the GPU as
4942                  * wedged. But we only want to do this where the GPU is angry,
4943                  * for all other failure, such as an allocation failure, bail.
4944                  */
4945                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4946                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4947                 ret = 0;
4948         }
4949
4950 out_unlock:
4951         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4952         mutex_unlock(&dev->struct_mutex);
4953
4954         return ret;
4955 }
4956
4957 void
4958 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4959 {
4960         struct drm_i915_private *dev_priv = dev->dev_private;
4961         struct intel_engine_cs *ring;
4962         int i;
4963
4964         for_each_ring(ring, dev_priv, i)
4965                 dev_priv->gt.cleanup_ring(ring);
4966
4967     if (i915.enable_execlists)
4968             /*
4969              * Neither the BIOS, ourselves or any other kernel
4970              * expects the system to be in execlists mode on startup,
4971              * so we need to reset the GPU back to legacy mode.
4972              */
4973             intel_gpu_reset(dev);
4974 }
4975
4976 static void
4977 init_ring_lists(struct intel_engine_cs *ring)
4978 {
4979         INIT_LIST_HEAD(&ring->active_list);
4980         INIT_LIST_HEAD(&ring->request_list);
4981 }
4982
4983 void
4984 i915_gem_load(struct drm_device *dev)
4985 {
4986         struct drm_i915_private *dev_priv = dev->dev_private;
4987         int i;
4988
4989         dev_priv->objects =
4990                 kmem_cache_create("i915_gem_object",
4991                                   sizeof(struct drm_i915_gem_object), 0,
4992                                   SLAB_HWCACHE_ALIGN,
4993                                   NULL);
4994         dev_priv->vmas =
4995                 kmem_cache_create("i915_gem_vma",
4996                                   sizeof(struct i915_vma), 0,
4997                                   SLAB_HWCACHE_ALIGN,
4998                                   NULL);
4999         dev_priv->requests =
5000                 kmem_cache_create("i915_gem_request",
5001                                   sizeof(struct drm_i915_gem_request), 0,
5002                                   SLAB_HWCACHE_ALIGN,
5003                                   NULL);
5004
5005         INIT_LIST_HEAD(&dev_priv->vm_list);
5006         INIT_LIST_HEAD(&dev_priv->context_list);
5007         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5008         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5009         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5010         for (i = 0; i < I915_NUM_RINGS; i++)
5011                 init_ring_lists(&dev_priv->ring[i]);
5012         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5013                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5014         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5015                           i915_gem_retire_work_handler);
5016         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5017                           i915_gem_idle_work_handler);
5018         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5019
5020         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5021
5022         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5023                 dev_priv->num_fence_regs = 32;
5024         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5025                 dev_priv->num_fence_regs = 16;
5026         else
5027                 dev_priv->num_fence_regs = 8;
5028
5029         if (intel_vgpu_active(dev))
5030                 dev_priv->num_fence_regs =
5031                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5032
5033         /*
5034          * Set initial sequence number for requests.
5035          * Using this number allows the wraparound to happen early,
5036          * catching any obvious problems.
5037          */
5038         dev_priv->next_seqno = ((u32)~0 - 0x1100);
5039         dev_priv->last_seqno = ((u32)~0 - 0x1101);
5040
5041         /* Initialize fence registers to zero */
5042         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5043         i915_gem_restore_fences(dev);
5044
5045         i915_gem_detect_bit_6_swizzle(dev);
5046         init_waitqueue_head(&dev_priv->pending_flip_queue);
5047
5048         dev_priv->mm.interruptible = true;
5049
5050         i915_gem_shrinker_init(dev_priv);
5051
5052         mutex_init(&dev_priv->fb_tracking.lock);
5053 }
5054
5055 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5056 {
5057         struct drm_i915_file_private *file_priv = file->driver_priv;
5058
5059         /* Clean up our request list when the client is going away, so that
5060          * later retire_requests won't dereference our soon-to-be-gone
5061          * file_priv.
5062          */
5063         spin_lock(&file_priv->mm.lock);
5064         while (!list_empty(&file_priv->mm.request_list)) {
5065                 struct drm_i915_gem_request *request;
5066
5067                 request = list_first_entry(&file_priv->mm.request_list,
5068                                            struct drm_i915_gem_request,
5069                                            client_list);
5070                 list_del(&request->client_list);
5071                 request->file_priv = NULL;
5072         }
5073         spin_unlock(&file_priv->mm.lock);
5074
5075         if (!list_empty(&file_priv->rps.link)) {
5076                 spin_lock(&to_i915(dev)->rps.client_lock);
5077                 list_del(&file_priv->rps.link);
5078                 spin_unlock(&to_i915(dev)->rps.client_lock);
5079         }
5080 }
5081
5082 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5083 {
5084         struct drm_i915_file_private *file_priv;
5085         int ret;
5086
5087         DRM_DEBUG_DRIVER("\n");
5088
5089         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5090         if (!file_priv)
5091                 return -ENOMEM;
5092
5093         file->driver_priv = file_priv;
5094         file_priv->dev_priv = dev->dev_private;
5095         file_priv->file = file;
5096         INIT_LIST_HEAD(&file_priv->rps.link);
5097
5098         spin_lock_init(&file_priv->mm.lock);
5099         INIT_LIST_HEAD(&file_priv->mm.request_list);
5100
5101         ret = i915_gem_context_open(dev, file);
5102         if (ret)
5103                 kfree(file_priv);
5104
5105         return ret;
5106 }
5107
5108 /**
5109  * i915_gem_track_fb - update frontbuffer tracking
5110  * @old: current GEM buffer for the frontbuffer slots
5111  * @new: new GEM buffer for the frontbuffer slots
5112  * @frontbuffer_bits: bitmask of frontbuffer slots
5113  *
5114  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5115  * from @old and setting them in @new. Both @old and @new can be NULL.
5116  */
5117 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5118                        struct drm_i915_gem_object *new,
5119                        unsigned frontbuffer_bits)
5120 {
5121         if (old) {
5122                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5123                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5124                 old->frontbuffer_bits &= ~frontbuffer_bits;
5125         }
5126
5127         if (new) {
5128                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5129                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5130                 new->frontbuffer_bits |= frontbuffer_bits;
5131         }
5132 }
5133
5134 /* All the new VM stuff */
5135 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5136                         struct i915_address_space *vm)
5137 {
5138         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5139         struct i915_vma *vma;
5140
5141         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5142
5143         list_for_each_entry(vma, &o->vma_list, vma_link) {
5144                 if (i915_is_ggtt(vma->vm) &&
5145                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5146                         continue;
5147                 if (vma->vm == vm)
5148                         return vma->node.start;
5149         }
5150
5151         WARN(1, "%s vma for this object not found.\n",
5152              i915_is_ggtt(vm) ? "global" : "ppgtt");
5153         return -1;
5154 }
5155
5156 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5157                                   const struct i915_ggtt_view *view)
5158 {
5159         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5160         struct i915_vma *vma;
5161
5162         list_for_each_entry(vma, &o->vma_list, vma_link)
5163                 if (vma->vm == ggtt &&
5164                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5165                         return vma->node.start;
5166
5167         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5168         return -1;
5169 }
5170
5171 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5172                         struct i915_address_space *vm)
5173 {
5174         struct i915_vma *vma;
5175
5176         list_for_each_entry(vma, &o->vma_list, vma_link) {
5177                 if (i915_is_ggtt(vma->vm) &&
5178                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5179                         continue;
5180                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5181                         return true;
5182         }
5183
5184         return false;
5185 }
5186
5187 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5188                                   const struct i915_ggtt_view *view)
5189 {
5190         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5191         struct i915_vma *vma;
5192
5193         list_for_each_entry(vma, &o->vma_list, vma_link)
5194                 if (vma->vm == ggtt &&
5195                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5196                     drm_mm_node_allocated(&vma->node))
5197                         return true;
5198
5199         return false;
5200 }
5201
5202 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5203 {
5204         struct i915_vma *vma;
5205
5206         list_for_each_entry(vma, &o->vma_list, vma_link)
5207                 if (drm_mm_node_allocated(&vma->node))
5208                         return true;
5209
5210         return false;
5211 }
5212
5213 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5214                                 struct i915_address_space *vm)
5215 {
5216         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5217         struct i915_vma *vma;
5218
5219         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5220
5221         BUG_ON(list_empty(&o->vma_list));
5222
5223         list_for_each_entry(vma, &o->vma_list, vma_link) {
5224                 if (i915_is_ggtt(vma->vm) &&
5225                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5226                         continue;
5227                 if (vma->vm == vm)
5228                         return vma->node.size;
5229         }
5230         return 0;
5231 }
5232
5233 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5234 {
5235         struct i915_vma *vma;
5236         list_for_each_entry(vma, &obj->vma_list, vma_link)
5237                 if (vma->pin_count > 0)
5238                         return true;
5239
5240         return false;
5241 }
5242
5243 /* Allocate a new GEM object and fill it with the supplied data */
5244 struct drm_i915_gem_object *
5245 i915_gem_object_create_from_data(struct drm_device *dev,
5246                                  const void *data, size_t size)
5247 {
5248         struct drm_i915_gem_object *obj;
5249         struct sg_table *sg;
5250         size_t bytes;
5251         int ret;
5252
5253         obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5254         if (IS_ERR_OR_NULL(obj))
5255                 return obj;
5256
5257         ret = i915_gem_object_set_to_cpu_domain(obj, true);
5258         if (ret)
5259                 goto fail;
5260
5261         ret = i915_gem_object_get_pages(obj);
5262         if (ret)
5263                 goto fail;
5264
5265         i915_gem_object_pin_pages(obj);
5266         sg = obj->pages;
5267         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5268         i915_gem_object_unpin_pages(obj);
5269
5270         if (WARN_ON(bytes != size)) {
5271                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5272                 ret = -EFAULT;
5273                 goto fail;
5274         }
5275
5276         return obj;
5277
5278 fail:
5279         drm_gem_object_unreference(&obj->base);
5280         return ERR_PTR(ret);
5281 }