Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51         return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58                        struct dentry *ent,
59                        const void *key)
60 {
61         struct drm_info_node *node;
62
63         node = kmalloc(sizeof(*node), GFP_KERNEL);
64         if (node == NULL) {
65                 debugfs_remove(ent);
66                 return -ENOMEM;
67         }
68
69         node->minor = minor;
70         node->dent = ent;
71         node->info_ent = (void *) key;
72
73         mutex_lock(&minor->debugfs_lock);
74         list_add(&node->list, &minor->debugfs_list);
75         mutex_unlock(&minor->debugfs_lock);
76
77         return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82         struct drm_info_node *node = m->private;
83         struct drm_device *dev = node->minor->dev;
84         const struct intel_device_info *info = INTEL_INFO(dev);
85
86         seq_printf(m, "gen: %d\n", info->gen);
87         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94         return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         if (i915_gem_obj_is_pinned(obj))
100                 return "p";
101         else
102                 return " ";
103 }
104
105 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
106 {
107         switch (obj->tiling_mode) {
108         default:
109         case I915_TILING_NONE: return " ";
110         case I915_TILING_X: return "X";
111         case I915_TILING_Y: return "Y";
112         }
113 }
114
115 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
116 {
117         return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
118 }
119
120 static void
121 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
122 {
123         struct i915_vma *vma;
124         int pin_count = 0;
125
126         seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %x %x %x%s%s%s",
127                    &obj->base,
128                    get_pin_flag(obj),
129                    get_tiling_flag(obj),
130                    get_global_flag(obj),
131                    obj->base.size / 1024,
132                    obj->base.read_domains,
133                    obj->base.write_domain,
134                    i915_gem_request_get_seqno(obj->last_read_req),
135                    i915_gem_request_get_seqno(obj->last_write_req),
136                    i915_gem_request_get_seqno(obj->last_fenced_req),
137                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
138                    obj->dirty ? " dirty" : "",
139                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
140         if (obj->base.name)
141                 seq_printf(m, " (name: %d)", obj->base.name);
142         list_for_each_entry(vma, &obj->vma_list, vma_link) {
143                 if (vma->pin_count > 0)
144                         pin_count++;
145         }
146         seq_printf(m, " (pinned x %d)", pin_count);
147         if (obj->pin_display)
148                 seq_printf(m, " (display)");
149         if (obj->fence_reg != I915_FENCE_REG_NONE)
150                 seq_printf(m, " (fence: %d)", obj->fence_reg);
151         list_for_each_entry(vma, &obj->vma_list, vma_link) {
152                 if (!i915_is_ggtt(vma->vm))
153                         seq_puts(m, " (pp");
154                 else
155                         seq_puts(m, " (g");
156                 seq_printf(m, "gtt offset: %08llx, size: %08llx, type: %u)",
157                            vma->node.start, vma->node.size,
158                            vma->ggtt_view.type);
159         }
160         if (obj->stolen)
161                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
162         if (obj->pin_mappable || obj->fault_mappable) {
163                 char s[3], *t = s;
164                 if (obj->pin_mappable)
165                         *t++ = 'p';
166                 if (obj->fault_mappable)
167                         *t++ = 'f';
168                 *t = '\0';
169                 seq_printf(m, " (%s mappable)", s);
170         }
171         if (obj->last_read_req != NULL)
172                 seq_printf(m, " (%s)",
173                            i915_gem_request_get_ring(obj->last_read_req)->name);
174         if (obj->frontbuffer_bits)
175                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
176 }
177
178 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
179 {
180         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
181         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
182         seq_putc(m, ' ');
183 }
184
185 static int i915_gem_object_list_info(struct seq_file *m, void *data)
186 {
187         struct drm_info_node *node = m->private;
188         uintptr_t list = (uintptr_t) node->info_ent->data;
189         struct list_head *head;
190         struct drm_device *dev = node->minor->dev;
191         struct drm_i915_private *dev_priv = dev->dev_private;
192         struct i915_address_space *vm = &dev_priv->gtt.base;
193         struct i915_vma *vma;
194         size_t total_obj_size, total_gtt_size;
195         int count, ret;
196
197         ret = mutex_lock_interruptible(&dev->struct_mutex);
198         if (ret)
199                 return ret;
200
201         /* FIXME: the user of this interface might want more than just GGTT */
202         switch (list) {
203         case ACTIVE_LIST:
204                 seq_puts(m, "Active:\n");
205                 head = &vm->active_list;
206                 break;
207         case INACTIVE_LIST:
208                 seq_puts(m, "Inactive:\n");
209                 head = &vm->inactive_list;
210                 break;
211         default:
212                 mutex_unlock(&dev->struct_mutex);
213                 return -EINVAL;
214         }
215
216         total_obj_size = total_gtt_size = count = 0;
217         list_for_each_entry(vma, head, mm_list) {
218                 seq_printf(m, "   ");
219                 describe_obj(m, vma->obj);
220                 seq_printf(m, "\n");
221                 total_obj_size += vma->obj->base.size;
222                 total_gtt_size += vma->node.size;
223                 count++;
224         }
225         mutex_unlock(&dev->struct_mutex);
226
227         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
228                    count, total_obj_size, total_gtt_size);
229         return 0;
230 }
231
232 static int obj_rank_by_stolen(void *priv,
233                               struct list_head *A, struct list_head *B)
234 {
235         struct drm_i915_gem_object *a =
236                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
237         struct drm_i915_gem_object *b =
238                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
239
240         return a->stolen->start - b->stolen->start;
241 }
242
243 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
244 {
245         struct drm_info_node *node = m->private;
246         struct drm_device *dev = node->minor->dev;
247         struct drm_i915_private *dev_priv = dev->dev_private;
248         struct drm_i915_gem_object *obj;
249         size_t total_obj_size, total_gtt_size;
250         LIST_HEAD(stolen);
251         int count, ret;
252
253         ret = mutex_lock_interruptible(&dev->struct_mutex);
254         if (ret)
255                 return ret;
256
257         total_obj_size = total_gtt_size = count = 0;
258         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
259                 if (obj->stolen == NULL)
260                         continue;
261
262                 list_add(&obj->obj_exec_link, &stolen);
263
264                 total_obj_size += obj->base.size;
265                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
266                 count++;
267         }
268         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
269                 if (obj->stolen == NULL)
270                         continue;
271
272                 list_add(&obj->obj_exec_link, &stolen);
273
274                 total_obj_size += obj->base.size;
275                 count++;
276         }
277         list_sort(NULL, &stolen, obj_rank_by_stolen);
278         seq_puts(m, "Stolen:\n");
279         while (!list_empty(&stolen)) {
280                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
281                 seq_puts(m, "   ");
282                 describe_obj(m, obj);
283                 seq_putc(m, '\n');
284                 list_del_init(&obj->obj_exec_link);
285         }
286         mutex_unlock(&dev->struct_mutex);
287
288         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
289                    count, total_obj_size, total_gtt_size);
290         return 0;
291 }
292
293 #define count_objects(list, member) do { \
294         list_for_each_entry(obj, list, member) { \
295                 size += i915_gem_obj_ggtt_size(obj); \
296                 ++count; \
297                 if (obj->map_and_fenceable) { \
298                         mappable_size += i915_gem_obj_ggtt_size(obj); \
299                         ++mappable_count; \
300                 } \
301         } \
302 } while (0)
303
304 struct file_stats {
305         struct drm_i915_file_private *file_priv;
306         int count;
307         size_t total, unbound;
308         size_t global, shared;
309         size_t active, inactive;
310 };
311
312 static int per_file_stats(int id, void *ptr, void *data)
313 {
314         struct drm_i915_gem_object *obj = ptr;
315         struct file_stats *stats = data;
316         struct i915_vma *vma;
317
318         stats->count++;
319         stats->total += obj->base.size;
320
321         if (obj->base.name || obj->base.dma_buf)
322                 stats->shared += obj->base.size;
323
324         if (USES_FULL_PPGTT(obj->base.dev)) {
325                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
326                         struct i915_hw_ppgtt *ppgtt;
327
328                         if (!drm_mm_node_allocated(&vma->node))
329                                 continue;
330
331                         if (i915_is_ggtt(vma->vm)) {
332                                 stats->global += obj->base.size;
333                                 continue;
334                         }
335
336                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
337                         if (ppgtt->file_priv != stats->file_priv)
338                                 continue;
339
340                         if (obj->active) /* XXX per-vma statistic */
341                                 stats->active += obj->base.size;
342                         else
343                                 stats->inactive += obj->base.size;
344
345                         return 0;
346                 }
347         } else {
348                 if (i915_gem_obj_ggtt_bound(obj)) {
349                         stats->global += obj->base.size;
350                         if (obj->active)
351                                 stats->active += obj->base.size;
352                         else
353                                 stats->inactive += obj->base.size;
354                         return 0;
355                 }
356         }
357
358         if (!list_empty(&obj->global_list))
359                 stats->unbound += obj->base.size;
360
361         return 0;
362 }
363
364 #define print_file_stats(m, name, stats) \
365         seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n", \
366                    name, \
367                    stats.count, \
368                    stats.total, \
369                    stats.active, \
370                    stats.inactive, \
371                    stats.global, \
372                    stats.shared, \
373                    stats.unbound)
374
375 static void print_batch_pool_stats(struct seq_file *m,
376                                    struct drm_i915_private *dev_priv)
377 {
378         struct drm_i915_gem_object *obj;
379         struct file_stats stats;
380
381         memset(&stats, 0, sizeof(stats));
382
383         list_for_each_entry(obj,
384                             &dev_priv->mm.batch_pool.cache_list,
385                             batch_pool_list)
386                 per_file_stats(0, obj, &stats);
387
388         print_file_stats(m, "batch pool", stats);
389 }
390
391 #define count_vmas(list, member) do { \
392         list_for_each_entry(vma, list, member) { \
393                 size += i915_gem_obj_ggtt_size(vma->obj); \
394                 ++count; \
395                 if (vma->obj->map_and_fenceable) { \
396                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
397                         ++mappable_count; \
398                 } \
399         } \
400 } while (0)
401
402 static int i915_gem_object_info(struct seq_file *m, void* data)
403 {
404         struct drm_info_node *node = m->private;
405         struct drm_device *dev = node->minor->dev;
406         struct drm_i915_private *dev_priv = dev->dev_private;
407         u32 count, mappable_count, purgeable_count;
408         size_t size, mappable_size, purgeable_size;
409         struct drm_i915_gem_object *obj;
410         struct i915_address_space *vm = &dev_priv->gtt.base;
411         struct drm_file *file;
412         struct i915_vma *vma;
413         int ret;
414
415         ret = mutex_lock_interruptible(&dev->struct_mutex);
416         if (ret)
417                 return ret;
418
419         seq_printf(m, "%u objects, %zu bytes\n",
420                    dev_priv->mm.object_count,
421                    dev_priv->mm.object_memory);
422
423         size = count = mappable_size = mappable_count = 0;
424         count_objects(&dev_priv->mm.bound_list, global_list);
425         seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
426                    count, mappable_count, size, mappable_size);
427
428         size = count = mappable_size = mappable_count = 0;
429         count_vmas(&vm->active_list, mm_list);
430         seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
431                    count, mappable_count, size, mappable_size);
432
433         size = count = mappable_size = mappable_count = 0;
434         count_vmas(&vm->inactive_list, mm_list);
435         seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
436                    count, mappable_count, size, mappable_size);
437
438         size = count = purgeable_size = purgeable_count = 0;
439         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
440                 size += obj->base.size, ++count;
441                 if (obj->madv == I915_MADV_DONTNEED)
442                         purgeable_size += obj->base.size, ++purgeable_count;
443         }
444         seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
445
446         size = count = mappable_size = mappable_count = 0;
447         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
448                 if (obj->fault_mappable) {
449                         size += i915_gem_obj_ggtt_size(obj);
450                         ++count;
451                 }
452                 if (obj->pin_mappable) {
453                         mappable_size += i915_gem_obj_ggtt_size(obj);
454                         ++mappable_count;
455                 }
456                 if (obj->madv == I915_MADV_DONTNEED) {
457                         purgeable_size += obj->base.size;
458                         ++purgeable_count;
459                 }
460         }
461         seq_printf(m, "%u purgeable objects, %zu bytes\n",
462                    purgeable_count, purgeable_size);
463         seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
464                    mappable_count, mappable_size);
465         seq_printf(m, "%u fault mappable objects, %zu bytes\n",
466                    count, size);
467
468         seq_printf(m, "%zu [%lu] gtt total\n",
469                    dev_priv->gtt.base.total,
470                    dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
471
472         seq_putc(m, '\n');
473         print_batch_pool_stats(m, dev_priv);
474
475         seq_putc(m, '\n');
476         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
477                 struct file_stats stats;
478                 struct task_struct *task;
479
480                 memset(&stats, 0, sizeof(stats));
481                 stats.file_priv = file->driver_priv;
482                 spin_lock(&file->table_lock);
483                 idr_for_each(&file->object_idr, per_file_stats, &stats);
484                 spin_unlock(&file->table_lock);
485                 /*
486                  * Although we have a valid reference on file->pid, that does
487                  * not guarantee that the task_struct who called get_pid() is
488                  * still alive (e.g. get_pid(current) => fork() => exit()).
489                  * Therefore, we need to protect this ->comm access using RCU.
490                  */
491                 rcu_read_lock();
492                 task = pid_task(file->pid, PIDTYPE_PID);
493                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
494                 rcu_read_unlock();
495         }
496
497         mutex_unlock(&dev->struct_mutex);
498
499         return 0;
500 }
501
502 static int i915_gem_gtt_info(struct seq_file *m, void *data)
503 {
504         struct drm_info_node *node = m->private;
505         struct drm_device *dev = node->minor->dev;
506         uintptr_t list = (uintptr_t) node->info_ent->data;
507         struct drm_i915_private *dev_priv = dev->dev_private;
508         struct drm_i915_gem_object *obj;
509         size_t total_obj_size, total_gtt_size;
510         int count, ret;
511
512         ret = mutex_lock_interruptible(&dev->struct_mutex);
513         if (ret)
514                 return ret;
515
516         total_obj_size = total_gtt_size = count = 0;
517         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
518                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
519                         continue;
520
521                 seq_puts(m, "   ");
522                 describe_obj(m, obj);
523                 seq_putc(m, '\n');
524                 total_obj_size += obj->base.size;
525                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
526                 count++;
527         }
528
529         mutex_unlock(&dev->struct_mutex);
530
531         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
532                    count, total_obj_size, total_gtt_size);
533
534         return 0;
535 }
536
537 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
538 {
539         struct drm_info_node *node = m->private;
540         struct drm_device *dev = node->minor->dev;
541         struct drm_i915_private *dev_priv = dev->dev_private;
542         struct intel_crtc *crtc;
543         int ret;
544
545         ret = mutex_lock_interruptible(&dev->struct_mutex);
546         if (ret)
547                 return ret;
548
549         for_each_intel_crtc(dev, crtc) {
550                 const char pipe = pipe_name(crtc->pipe);
551                 const char plane = plane_name(crtc->plane);
552                 struct intel_unpin_work *work;
553
554                 spin_lock_irq(&dev->event_lock);
555                 work = crtc->unpin_work;
556                 if (work == NULL) {
557                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
558                                    pipe, plane);
559                 } else {
560                         u32 addr;
561
562                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
563                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
564                                            pipe, plane);
565                         } else {
566                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
567                                            pipe, plane);
568                         }
569                         if (work->flip_queued_req) {
570                                 struct intel_engine_cs *ring =
571                                         i915_gem_request_get_ring(work->flip_queued_req);
572
573                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
574                                            ring->name,
575                                            i915_gem_request_get_seqno(work->flip_queued_req),
576                                            dev_priv->next_seqno,
577                                            ring->get_seqno(ring, true),
578                                            i915_gem_request_completed(work->flip_queued_req, true));
579                         } else
580                                 seq_printf(m, "Flip not associated with any ring\n");
581                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
582                                    work->flip_queued_vblank,
583                                    work->flip_ready_vblank,
584                                    drm_crtc_vblank_count(&crtc->base));
585                         if (work->enable_stall_check)
586                                 seq_puts(m, "Stall check enabled, ");
587                         else
588                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
589                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
590
591                         if (INTEL_INFO(dev)->gen >= 4)
592                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
593                         else
594                                 addr = I915_READ(DSPADDR(crtc->plane));
595                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
596
597                         if (work->pending_flip_obj) {
598                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
599                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
600                         }
601                 }
602                 spin_unlock_irq(&dev->event_lock);
603         }
604
605         mutex_unlock(&dev->struct_mutex);
606
607         return 0;
608 }
609
610 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
611 {
612         struct drm_info_node *node = m->private;
613         struct drm_device *dev = node->minor->dev;
614         struct drm_i915_private *dev_priv = dev->dev_private;
615         struct drm_i915_gem_object *obj;
616         int count = 0;
617         int ret;
618
619         ret = mutex_lock_interruptible(&dev->struct_mutex);
620         if (ret)
621                 return ret;
622
623         seq_puts(m, "cache:\n");
624         list_for_each_entry(obj,
625                             &dev_priv->mm.batch_pool.cache_list,
626                             batch_pool_list) {
627                 seq_puts(m, "   ");
628                 describe_obj(m, obj);
629                 seq_putc(m, '\n');
630                 count++;
631         }
632
633         seq_printf(m, "total: %d\n", count);
634
635         mutex_unlock(&dev->struct_mutex);
636
637         return 0;
638 }
639
640 static int i915_gem_request_info(struct seq_file *m, void *data)
641 {
642         struct drm_info_node *node = m->private;
643         struct drm_device *dev = node->minor->dev;
644         struct drm_i915_private *dev_priv = dev->dev_private;
645         struct intel_engine_cs *ring;
646         struct drm_i915_gem_request *gem_request;
647         int ret, count, i;
648
649         ret = mutex_lock_interruptible(&dev->struct_mutex);
650         if (ret)
651                 return ret;
652
653         count = 0;
654         for_each_ring(ring, dev_priv, i) {
655                 if (list_empty(&ring->request_list))
656                         continue;
657
658                 seq_printf(m, "%s requests:\n", ring->name);
659                 list_for_each_entry(gem_request,
660                                     &ring->request_list,
661                                     list) {
662                         seq_printf(m, "    %x @ %d\n",
663                                    gem_request->seqno,
664                                    (int) (jiffies - gem_request->emitted_jiffies));
665                 }
666                 count++;
667         }
668         mutex_unlock(&dev->struct_mutex);
669
670         if (count == 0)
671                 seq_puts(m, "No requests\n");
672
673         return 0;
674 }
675
676 static void i915_ring_seqno_info(struct seq_file *m,
677                                  struct intel_engine_cs *ring)
678 {
679         if (ring->get_seqno) {
680                 seq_printf(m, "Current sequence (%s): %x\n",
681                            ring->name, ring->get_seqno(ring, false));
682         }
683 }
684
685 static int i915_gem_seqno_info(struct seq_file *m, void *data)
686 {
687         struct drm_info_node *node = m->private;
688         struct drm_device *dev = node->minor->dev;
689         struct drm_i915_private *dev_priv = dev->dev_private;
690         struct intel_engine_cs *ring;
691         int ret, i;
692
693         ret = mutex_lock_interruptible(&dev->struct_mutex);
694         if (ret)
695                 return ret;
696         intel_runtime_pm_get(dev_priv);
697
698         for_each_ring(ring, dev_priv, i)
699                 i915_ring_seqno_info(m, ring);
700
701         intel_runtime_pm_put(dev_priv);
702         mutex_unlock(&dev->struct_mutex);
703
704         return 0;
705 }
706
707
708 static int i915_interrupt_info(struct seq_file *m, void *data)
709 {
710         struct drm_info_node *node = m->private;
711         struct drm_device *dev = node->minor->dev;
712         struct drm_i915_private *dev_priv = dev->dev_private;
713         struct intel_engine_cs *ring;
714         int ret, i, pipe;
715
716         ret = mutex_lock_interruptible(&dev->struct_mutex);
717         if (ret)
718                 return ret;
719         intel_runtime_pm_get(dev_priv);
720
721         if (IS_CHERRYVIEW(dev)) {
722                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
723                            I915_READ(GEN8_MASTER_IRQ));
724
725                 seq_printf(m, "Display IER:\t%08x\n",
726                            I915_READ(VLV_IER));
727                 seq_printf(m, "Display IIR:\t%08x\n",
728                            I915_READ(VLV_IIR));
729                 seq_printf(m, "Display IIR_RW:\t%08x\n",
730                            I915_READ(VLV_IIR_RW));
731                 seq_printf(m, "Display IMR:\t%08x\n",
732                            I915_READ(VLV_IMR));
733                 for_each_pipe(dev_priv, pipe)
734                         seq_printf(m, "Pipe %c stat:\t%08x\n",
735                                    pipe_name(pipe),
736                                    I915_READ(PIPESTAT(pipe)));
737
738                 seq_printf(m, "Port hotplug:\t%08x\n",
739                            I915_READ(PORT_HOTPLUG_EN));
740                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
741                            I915_READ(VLV_DPFLIPSTAT));
742                 seq_printf(m, "DPINVGTT:\t%08x\n",
743                            I915_READ(DPINVGTT));
744
745                 for (i = 0; i < 4; i++) {
746                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
747                                    i, I915_READ(GEN8_GT_IMR(i)));
748                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
749                                    i, I915_READ(GEN8_GT_IIR(i)));
750                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
751                                    i, I915_READ(GEN8_GT_IER(i)));
752                 }
753
754                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
755                            I915_READ(GEN8_PCU_IMR));
756                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
757                            I915_READ(GEN8_PCU_IIR));
758                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
759                            I915_READ(GEN8_PCU_IER));
760         } else if (INTEL_INFO(dev)->gen >= 8) {
761                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
762                            I915_READ(GEN8_MASTER_IRQ));
763
764                 for (i = 0; i < 4; i++) {
765                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
766                                    i, I915_READ(GEN8_GT_IMR(i)));
767                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
768                                    i, I915_READ(GEN8_GT_IIR(i)));
769                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
770                                    i, I915_READ(GEN8_GT_IER(i)));
771                 }
772
773                 for_each_pipe(dev_priv, pipe) {
774                         if (!intel_display_power_is_enabled(dev_priv,
775                                                 POWER_DOMAIN_PIPE(pipe))) {
776                                 seq_printf(m, "Pipe %c power disabled\n",
777                                            pipe_name(pipe));
778                                 continue;
779                         }
780                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
781                                    pipe_name(pipe),
782                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
783                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
784                                    pipe_name(pipe),
785                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
786                         seq_printf(m, "Pipe %c IER:\t%08x\n",
787                                    pipe_name(pipe),
788                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
789                 }
790
791                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
792                            I915_READ(GEN8_DE_PORT_IMR));
793                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
794                            I915_READ(GEN8_DE_PORT_IIR));
795                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
796                            I915_READ(GEN8_DE_PORT_IER));
797
798                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
799                            I915_READ(GEN8_DE_MISC_IMR));
800                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
801                            I915_READ(GEN8_DE_MISC_IIR));
802                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
803                            I915_READ(GEN8_DE_MISC_IER));
804
805                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
806                            I915_READ(GEN8_PCU_IMR));
807                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
808                            I915_READ(GEN8_PCU_IIR));
809                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
810                            I915_READ(GEN8_PCU_IER));
811         } else if (IS_VALLEYVIEW(dev)) {
812                 seq_printf(m, "Display IER:\t%08x\n",
813                            I915_READ(VLV_IER));
814                 seq_printf(m, "Display IIR:\t%08x\n",
815                            I915_READ(VLV_IIR));
816                 seq_printf(m, "Display IIR_RW:\t%08x\n",
817                            I915_READ(VLV_IIR_RW));
818                 seq_printf(m, "Display IMR:\t%08x\n",
819                            I915_READ(VLV_IMR));
820                 for_each_pipe(dev_priv, pipe)
821                         seq_printf(m, "Pipe %c stat:\t%08x\n",
822                                    pipe_name(pipe),
823                                    I915_READ(PIPESTAT(pipe)));
824
825                 seq_printf(m, "Master IER:\t%08x\n",
826                            I915_READ(VLV_MASTER_IER));
827
828                 seq_printf(m, "Render IER:\t%08x\n",
829                            I915_READ(GTIER));
830                 seq_printf(m, "Render IIR:\t%08x\n",
831                            I915_READ(GTIIR));
832                 seq_printf(m, "Render IMR:\t%08x\n",
833                            I915_READ(GTIMR));
834
835                 seq_printf(m, "PM IER:\t\t%08x\n",
836                            I915_READ(GEN6_PMIER));
837                 seq_printf(m, "PM IIR:\t\t%08x\n",
838                            I915_READ(GEN6_PMIIR));
839                 seq_printf(m, "PM IMR:\t\t%08x\n",
840                            I915_READ(GEN6_PMIMR));
841
842                 seq_printf(m, "Port hotplug:\t%08x\n",
843                            I915_READ(PORT_HOTPLUG_EN));
844                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
845                            I915_READ(VLV_DPFLIPSTAT));
846                 seq_printf(m, "DPINVGTT:\t%08x\n",
847                            I915_READ(DPINVGTT));
848
849         } else if (!HAS_PCH_SPLIT(dev)) {
850                 seq_printf(m, "Interrupt enable:    %08x\n",
851                            I915_READ(IER));
852                 seq_printf(m, "Interrupt identity:  %08x\n",
853                            I915_READ(IIR));
854                 seq_printf(m, "Interrupt mask:      %08x\n",
855                            I915_READ(IMR));
856                 for_each_pipe(dev_priv, pipe)
857                         seq_printf(m, "Pipe %c stat:         %08x\n",
858                                    pipe_name(pipe),
859                                    I915_READ(PIPESTAT(pipe)));
860         } else {
861                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
862                            I915_READ(DEIER));
863                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
864                            I915_READ(DEIIR));
865                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
866                            I915_READ(DEIMR));
867                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
868                            I915_READ(SDEIER));
869                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
870                            I915_READ(SDEIIR));
871                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
872                            I915_READ(SDEIMR));
873                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
874                            I915_READ(GTIER));
875                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
876                            I915_READ(GTIIR));
877                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
878                            I915_READ(GTIMR));
879         }
880         for_each_ring(ring, dev_priv, i) {
881                 if (INTEL_INFO(dev)->gen >= 6) {
882                         seq_printf(m,
883                                    "Graphics Interrupt mask (%s):       %08x\n",
884                                    ring->name, I915_READ_IMR(ring));
885                 }
886                 i915_ring_seqno_info(m, ring);
887         }
888         intel_runtime_pm_put(dev_priv);
889         mutex_unlock(&dev->struct_mutex);
890
891         return 0;
892 }
893
894 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
895 {
896         struct drm_info_node *node = m->private;
897         struct drm_device *dev = node->minor->dev;
898         struct drm_i915_private *dev_priv = dev->dev_private;
899         int i, ret;
900
901         ret = mutex_lock_interruptible(&dev->struct_mutex);
902         if (ret)
903                 return ret;
904
905         seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
906         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
907         for (i = 0; i < dev_priv->num_fence_regs; i++) {
908                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
909
910                 seq_printf(m, "Fence %d, pin count = %d, object = ",
911                            i, dev_priv->fence_regs[i].pin_count);
912                 if (obj == NULL)
913                         seq_puts(m, "unused");
914                 else
915                         describe_obj(m, obj);
916                 seq_putc(m, '\n');
917         }
918
919         mutex_unlock(&dev->struct_mutex);
920         return 0;
921 }
922
923 static int i915_hws_info(struct seq_file *m, void *data)
924 {
925         struct drm_info_node *node = m->private;
926         struct drm_device *dev = node->minor->dev;
927         struct drm_i915_private *dev_priv = dev->dev_private;
928         struct intel_engine_cs *ring;
929         const u32 *hws;
930         int i;
931
932         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
933         hws = ring->status_page.page_addr;
934         if (hws == NULL)
935                 return 0;
936
937         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
938                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
939                            i * 4,
940                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
941         }
942         return 0;
943 }
944
945 static ssize_t
946 i915_error_state_write(struct file *filp,
947                        const char __user *ubuf,
948                        size_t cnt,
949                        loff_t *ppos)
950 {
951         struct i915_error_state_file_priv *error_priv = filp->private_data;
952         struct drm_device *dev = error_priv->dev;
953         int ret;
954
955         DRM_DEBUG_DRIVER("Resetting error state\n");
956
957         ret = mutex_lock_interruptible(&dev->struct_mutex);
958         if (ret)
959                 return ret;
960
961         i915_destroy_error_state(dev);
962         mutex_unlock(&dev->struct_mutex);
963
964         return cnt;
965 }
966
967 static int i915_error_state_open(struct inode *inode, struct file *file)
968 {
969         struct drm_device *dev = inode->i_private;
970         struct i915_error_state_file_priv *error_priv;
971
972         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
973         if (!error_priv)
974                 return -ENOMEM;
975
976         error_priv->dev = dev;
977
978         i915_error_state_get(dev, error_priv);
979
980         file->private_data = error_priv;
981
982         return 0;
983 }
984
985 static int i915_error_state_release(struct inode *inode, struct file *file)
986 {
987         struct i915_error_state_file_priv *error_priv = file->private_data;
988
989         i915_error_state_put(error_priv);
990         kfree(error_priv);
991
992         return 0;
993 }
994
995 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
996                                      size_t count, loff_t *pos)
997 {
998         struct i915_error_state_file_priv *error_priv = file->private_data;
999         struct drm_i915_error_state_buf error_str;
1000         loff_t tmp_pos = 0;
1001         ssize_t ret_count = 0;
1002         int ret;
1003
1004         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1005         if (ret)
1006                 return ret;
1007
1008         ret = i915_error_state_to_str(&error_str, error_priv);
1009         if (ret)
1010                 goto out;
1011
1012         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1013                                             error_str.buf,
1014                                             error_str.bytes);
1015
1016         if (ret_count < 0)
1017                 ret = ret_count;
1018         else
1019                 *pos = error_str.start + ret_count;
1020 out:
1021         i915_error_state_buf_release(&error_str);
1022         return ret ?: ret_count;
1023 }
1024
1025 static const struct file_operations i915_error_state_fops = {
1026         .owner = THIS_MODULE,
1027         .open = i915_error_state_open,
1028         .read = i915_error_state_read,
1029         .write = i915_error_state_write,
1030         .llseek = default_llseek,
1031         .release = i915_error_state_release,
1032 };
1033
1034 static int
1035 i915_next_seqno_get(void *data, u64 *val)
1036 {
1037         struct drm_device *dev = data;
1038         struct drm_i915_private *dev_priv = dev->dev_private;
1039         int ret;
1040
1041         ret = mutex_lock_interruptible(&dev->struct_mutex);
1042         if (ret)
1043                 return ret;
1044
1045         *val = dev_priv->next_seqno;
1046         mutex_unlock(&dev->struct_mutex);
1047
1048         return 0;
1049 }
1050
1051 static int
1052 i915_next_seqno_set(void *data, u64 val)
1053 {
1054         struct drm_device *dev = data;
1055         int ret;
1056
1057         ret = mutex_lock_interruptible(&dev->struct_mutex);
1058         if (ret)
1059                 return ret;
1060
1061         ret = i915_gem_set_seqno(dev, val);
1062         mutex_unlock(&dev->struct_mutex);
1063
1064         return ret;
1065 }
1066
1067 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1068                         i915_next_seqno_get, i915_next_seqno_set,
1069                         "0x%llx\n");
1070
1071 static int i915_frequency_info(struct seq_file *m, void *unused)
1072 {
1073         struct drm_info_node *node = m->private;
1074         struct drm_device *dev = node->minor->dev;
1075         struct drm_i915_private *dev_priv = dev->dev_private;
1076         int ret = 0;
1077
1078         intel_runtime_pm_get(dev_priv);
1079
1080         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1081
1082         if (IS_GEN5(dev)) {
1083                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1084                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1085
1086                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1087                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1088                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1089                            MEMSTAT_VID_SHIFT);
1090                 seq_printf(m, "Current P-state: %d\n",
1091                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1092         } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1093                    IS_BROADWELL(dev) || IS_GEN9(dev)) {
1094                 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1095                 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1096                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1097                 u32 rpmodectl, rpinclimit, rpdeclimit;
1098                 u32 rpstat, cagf, reqf;
1099                 u32 rpupei, rpcurup, rpprevup;
1100                 u32 rpdownei, rpcurdown, rpprevdown;
1101                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1102                 int max_freq;
1103
1104                 /* RPSTAT1 is in the GT power well */
1105                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1106                 if (ret)
1107                         goto out;
1108
1109                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1110
1111                 reqf = I915_READ(GEN6_RPNSWREQ);
1112                 if (IS_GEN9(dev))
1113                         reqf >>= 23;
1114                 else {
1115                         reqf &= ~GEN6_TURBO_DISABLE;
1116                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1117                                 reqf >>= 24;
1118                         else
1119                                 reqf >>= 25;
1120                 }
1121                 reqf = intel_gpu_freq(dev_priv, reqf);
1122
1123                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1124                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1125                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1126
1127                 rpstat = I915_READ(GEN6_RPSTAT1);
1128                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1129                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1130                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1131                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1132                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1133                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1134                 if (IS_GEN9(dev))
1135                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1136                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1137                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1138                 else
1139                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1140                 cagf = intel_gpu_freq(dev_priv, cagf);
1141
1142                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1143                 mutex_unlock(&dev->struct_mutex);
1144
1145                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1146                         pm_ier = I915_READ(GEN6_PMIER);
1147                         pm_imr = I915_READ(GEN6_PMIMR);
1148                         pm_isr = I915_READ(GEN6_PMISR);
1149                         pm_iir = I915_READ(GEN6_PMIIR);
1150                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1151                 } else {
1152                         pm_ier = I915_READ(GEN8_GT_IER(2));
1153                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1154                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1155                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1156                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1157                 }
1158                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1159                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1160                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1161                 seq_printf(m, "Render p-state ratio: %d\n",
1162                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1163                 seq_printf(m, "Render p-state VID: %d\n",
1164                            gt_perf_status & 0xff);
1165                 seq_printf(m, "Render p-state limit: %d\n",
1166                            rp_state_limits & 0xff);
1167                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1168                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1169                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1170                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1171                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1172                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1173                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1174                            GEN6_CURICONT_MASK);
1175                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1176                            GEN6_CURBSYTAVG_MASK);
1177                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1178                            GEN6_CURBSYTAVG_MASK);
1179                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1180                            GEN6_CURIAVG_MASK);
1181                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1182                            GEN6_CURBSYTAVG_MASK);
1183                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1184                            GEN6_CURBSYTAVG_MASK);
1185
1186                 max_freq = (rp_state_cap & 0xff0000) >> 16;
1187                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1188                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1189                            intel_gpu_freq(dev_priv, max_freq));
1190
1191                 max_freq = (rp_state_cap & 0xff00) >> 8;
1192                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1193                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1194                            intel_gpu_freq(dev_priv, max_freq));
1195
1196                 max_freq = rp_state_cap & 0xff;
1197                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1198                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1199                            intel_gpu_freq(dev_priv, max_freq));
1200
1201                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1202                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1203
1204                 seq_printf(m, "Idle freq: %d MHz\n",
1205                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1206         } else if (IS_VALLEYVIEW(dev)) {
1207                 u32 freq_sts;
1208
1209                 mutex_lock(&dev_priv->rps.hw_lock);
1210                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1211                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1212                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1213
1214                 seq_printf(m, "max GPU freq: %d MHz\n",
1215                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1216
1217                 seq_printf(m, "min GPU freq: %d MHz\n",
1218                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1219
1220                 seq_printf(m, "idle GPU freq: %d MHz\n",
1221                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1222
1223                 seq_printf(m,
1224                            "efficient (RPe) frequency: %d MHz\n",
1225                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1226
1227                 seq_printf(m, "current GPU freq: %d MHz\n",
1228                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1229                 mutex_unlock(&dev_priv->rps.hw_lock);
1230         } else {
1231                 seq_puts(m, "no P-state info available\n");
1232         }
1233
1234 out:
1235         intel_runtime_pm_put(dev_priv);
1236         return ret;
1237 }
1238
1239 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1240 {
1241         struct drm_info_node *node = m->private;
1242         struct drm_device *dev = node->minor->dev;
1243         struct drm_i915_private *dev_priv = dev->dev_private;
1244         struct intel_engine_cs *ring;
1245         u64 acthd[I915_NUM_RINGS];
1246         u32 seqno[I915_NUM_RINGS];
1247         int i;
1248
1249         if (!i915.enable_hangcheck) {
1250                 seq_printf(m, "Hangcheck disabled\n");
1251                 return 0;
1252         }
1253
1254         intel_runtime_pm_get(dev_priv);
1255
1256         for_each_ring(ring, dev_priv, i) {
1257                 seqno[i] = ring->get_seqno(ring, false);
1258                 acthd[i] = intel_ring_get_active_head(ring);
1259         }
1260
1261         intel_runtime_pm_put(dev_priv);
1262
1263         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1264                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1265                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1266                                             jiffies));
1267         } else
1268                 seq_printf(m, "Hangcheck inactive\n");
1269
1270         for_each_ring(ring, dev_priv, i) {
1271                 seq_printf(m, "%s:\n", ring->name);
1272                 seq_printf(m, "\tseqno = %x [current %x]\n",
1273                            ring->hangcheck.seqno, seqno[i]);
1274                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1275                            (long long)ring->hangcheck.acthd,
1276                            (long long)acthd[i]);
1277                 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1278                            (long long)ring->hangcheck.max_acthd);
1279                 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1280                 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1281         }
1282
1283         return 0;
1284 }
1285
1286 static int ironlake_drpc_info(struct seq_file *m)
1287 {
1288         struct drm_info_node *node = m->private;
1289         struct drm_device *dev = node->minor->dev;
1290         struct drm_i915_private *dev_priv = dev->dev_private;
1291         u32 rgvmodectl, rstdbyctl;
1292         u16 crstandvid;
1293         int ret;
1294
1295         ret = mutex_lock_interruptible(&dev->struct_mutex);
1296         if (ret)
1297                 return ret;
1298         intel_runtime_pm_get(dev_priv);
1299
1300         rgvmodectl = I915_READ(MEMMODECTL);
1301         rstdbyctl = I915_READ(RSTDBYCTL);
1302         crstandvid = I915_READ16(CRSTANDVID);
1303
1304         intel_runtime_pm_put(dev_priv);
1305         mutex_unlock(&dev->struct_mutex);
1306
1307         seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1308                    "yes" : "no");
1309         seq_printf(m, "Boost freq: %d\n",
1310                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1311                    MEMMODE_BOOST_FREQ_SHIFT);
1312         seq_printf(m, "HW control enabled: %s\n",
1313                    rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1314         seq_printf(m, "SW control enabled: %s\n",
1315                    rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1316         seq_printf(m, "Gated voltage change: %s\n",
1317                    rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1318         seq_printf(m, "Starting frequency: P%d\n",
1319                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1320         seq_printf(m, "Max P-state: P%d\n",
1321                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1322         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1323         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1324         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1325         seq_printf(m, "Render standby enabled: %s\n",
1326                    (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1327         seq_puts(m, "Current RS state: ");
1328         switch (rstdbyctl & RSX_STATUS_MASK) {
1329         case RSX_STATUS_ON:
1330                 seq_puts(m, "on\n");
1331                 break;
1332         case RSX_STATUS_RC1:
1333                 seq_puts(m, "RC1\n");
1334                 break;
1335         case RSX_STATUS_RC1E:
1336                 seq_puts(m, "RC1E\n");
1337                 break;
1338         case RSX_STATUS_RS1:
1339                 seq_puts(m, "RS1\n");
1340                 break;
1341         case RSX_STATUS_RS2:
1342                 seq_puts(m, "RS2 (RC6)\n");
1343                 break;
1344         case RSX_STATUS_RS3:
1345                 seq_puts(m, "RC3 (RC6+)\n");
1346                 break;
1347         default:
1348                 seq_puts(m, "unknown\n");
1349                 break;
1350         }
1351
1352         return 0;
1353 }
1354
1355 static int i915_forcewake_domains(struct seq_file *m, void *data)
1356 {
1357         struct drm_info_node *node = m->private;
1358         struct drm_device *dev = node->minor->dev;
1359         struct drm_i915_private *dev_priv = dev->dev_private;
1360         struct intel_uncore_forcewake_domain *fw_domain;
1361         int i;
1362
1363         spin_lock_irq(&dev_priv->uncore.lock);
1364         for_each_fw_domain(fw_domain, dev_priv, i) {
1365                 seq_printf(m, "%s.wake_count = %u\n",
1366                            intel_uncore_forcewake_domain_to_str(i),
1367                            fw_domain->wake_count);
1368         }
1369         spin_unlock_irq(&dev_priv->uncore.lock);
1370
1371         return 0;
1372 }
1373
1374 static int vlv_drpc_info(struct seq_file *m)
1375 {
1376         struct drm_info_node *node = m->private;
1377         struct drm_device *dev = node->minor->dev;
1378         struct drm_i915_private *dev_priv = dev->dev_private;
1379         u32 rpmodectl1, rcctl1, pw_status;
1380
1381         intel_runtime_pm_get(dev_priv);
1382
1383         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1384         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1385         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1386
1387         intel_runtime_pm_put(dev_priv);
1388
1389         seq_printf(m, "Video Turbo Mode: %s\n",
1390                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1391         seq_printf(m, "Turbo enabled: %s\n",
1392                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1393         seq_printf(m, "HW control enabled: %s\n",
1394                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1395         seq_printf(m, "SW control enabled: %s\n",
1396                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1397                           GEN6_RP_MEDIA_SW_MODE));
1398         seq_printf(m, "RC6 Enabled: %s\n",
1399                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1400                                         GEN6_RC_CTL_EI_MODE(1))));
1401         seq_printf(m, "Render Power Well: %s\n",
1402                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1403         seq_printf(m, "Media Power Well: %s\n",
1404                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1405
1406         seq_printf(m, "Render RC6 residency since boot: %u\n",
1407                    I915_READ(VLV_GT_RENDER_RC6));
1408         seq_printf(m, "Media RC6 residency since boot: %u\n",
1409                    I915_READ(VLV_GT_MEDIA_RC6));
1410
1411         return i915_forcewake_domains(m, NULL);
1412 }
1413
1414 static int gen6_drpc_info(struct seq_file *m)
1415 {
1416         struct drm_info_node *node = m->private;
1417         struct drm_device *dev = node->minor->dev;
1418         struct drm_i915_private *dev_priv = dev->dev_private;
1419         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1420         unsigned forcewake_count;
1421         int count = 0, ret;
1422
1423         ret = mutex_lock_interruptible(&dev->struct_mutex);
1424         if (ret)
1425                 return ret;
1426         intel_runtime_pm_get(dev_priv);
1427
1428         spin_lock_irq(&dev_priv->uncore.lock);
1429         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1430         spin_unlock_irq(&dev_priv->uncore.lock);
1431
1432         if (forcewake_count) {
1433                 seq_puts(m, "RC information inaccurate because somebody "
1434                             "holds a forcewake reference \n");
1435         } else {
1436                 /* NB: we cannot use forcewake, else we read the wrong values */
1437                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1438                         udelay(10);
1439                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1440         }
1441
1442         gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1443         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1444
1445         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1446         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1447         mutex_unlock(&dev->struct_mutex);
1448         mutex_lock(&dev_priv->rps.hw_lock);
1449         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1450         mutex_unlock(&dev_priv->rps.hw_lock);
1451
1452         intel_runtime_pm_put(dev_priv);
1453
1454         seq_printf(m, "Video Turbo Mode: %s\n",
1455                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1456         seq_printf(m, "HW control enabled: %s\n",
1457                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1458         seq_printf(m, "SW control enabled: %s\n",
1459                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1460                           GEN6_RP_MEDIA_SW_MODE));
1461         seq_printf(m, "RC1e Enabled: %s\n",
1462                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1463         seq_printf(m, "RC6 Enabled: %s\n",
1464                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1465         seq_printf(m, "Deep RC6 Enabled: %s\n",
1466                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1467         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1468                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1469         seq_puts(m, "Current RC state: ");
1470         switch (gt_core_status & GEN6_RCn_MASK) {
1471         case GEN6_RC0:
1472                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1473                         seq_puts(m, "Core Power Down\n");
1474                 else
1475                         seq_puts(m, "on\n");
1476                 break;
1477         case GEN6_RC3:
1478                 seq_puts(m, "RC3\n");
1479                 break;
1480         case GEN6_RC6:
1481                 seq_puts(m, "RC6\n");
1482                 break;
1483         case GEN6_RC7:
1484                 seq_puts(m, "RC7\n");
1485                 break;
1486         default:
1487                 seq_puts(m, "Unknown\n");
1488                 break;
1489         }
1490
1491         seq_printf(m, "Core Power Down: %s\n",
1492                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1493
1494         /* Not exactly sure what this is */
1495         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1496                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1497         seq_printf(m, "RC6 residency since boot: %u\n",
1498                    I915_READ(GEN6_GT_GFX_RC6));
1499         seq_printf(m, "RC6+ residency since boot: %u\n",
1500                    I915_READ(GEN6_GT_GFX_RC6p));
1501         seq_printf(m, "RC6++ residency since boot: %u\n",
1502                    I915_READ(GEN6_GT_GFX_RC6pp));
1503
1504         seq_printf(m, "RC6   voltage: %dmV\n",
1505                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1506         seq_printf(m, "RC6+  voltage: %dmV\n",
1507                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1508         seq_printf(m, "RC6++ voltage: %dmV\n",
1509                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1510         return 0;
1511 }
1512
1513 static int i915_drpc_info(struct seq_file *m, void *unused)
1514 {
1515         struct drm_info_node *node = m->private;
1516         struct drm_device *dev = node->minor->dev;
1517
1518         if (IS_VALLEYVIEW(dev))
1519                 return vlv_drpc_info(m);
1520         else if (INTEL_INFO(dev)->gen >= 6)
1521                 return gen6_drpc_info(m);
1522         else
1523                 return ironlake_drpc_info(m);
1524 }
1525
1526 static int i915_fbc_status(struct seq_file *m, void *unused)
1527 {
1528         struct drm_info_node *node = m->private;
1529         struct drm_device *dev = node->minor->dev;
1530         struct drm_i915_private *dev_priv = dev->dev_private;
1531
1532         if (!HAS_FBC(dev)) {
1533                 seq_puts(m, "FBC unsupported on this chipset\n");
1534                 return 0;
1535         }
1536
1537         intel_runtime_pm_get(dev_priv);
1538
1539         if (intel_fbc_enabled(dev)) {
1540                 seq_puts(m, "FBC enabled\n");
1541         } else {
1542                 seq_puts(m, "FBC disabled: ");
1543                 switch (dev_priv->fbc.no_fbc_reason) {
1544                 case FBC_OK:
1545                         seq_puts(m, "FBC actived, but currently disabled in hardware");
1546                         break;
1547                 case FBC_UNSUPPORTED:
1548                         seq_puts(m, "unsupported by this chipset");
1549                         break;
1550                 case FBC_NO_OUTPUT:
1551                         seq_puts(m, "no outputs");
1552                         break;
1553                 case FBC_STOLEN_TOO_SMALL:
1554                         seq_puts(m, "not enough stolen memory");
1555                         break;
1556                 case FBC_UNSUPPORTED_MODE:
1557                         seq_puts(m, "mode not supported");
1558                         break;
1559                 case FBC_MODE_TOO_LARGE:
1560                         seq_puts(m, "mode too large");
1561                         break;
1562                 case FBC_BAD_PLANE:
1563                         seq_puts(m, "FBC unsupported on plane");
1564                         break;
1565                 case FBC_NOT_TILED:
1566                         seq_puts(m, "scanout buffer not tiled");
1567                         break;
1568                 case FBC_MULTIPLE_PIPES:
1569                         seq_puts(m, "multiple pipes are enabled");
1570                         break;
1571                 case FBC_MODULE_PARAM:
1572                         seq_puts(m, "disabled per module param (default off)");
1573                         break;
1574                 case FBC_CHIP_DEFAULT:
1575                         seq_puts(m, "disabled per chip default");
1576                         break;
1577                 default:
1578                         seq_puts(m, "unknown reason");
1579                 }
1580                 seq_putc(m, '\n');
1581         }
1582
1583         intel_runtime_pm_put(dev_priv);
1584
1585         return 0;
1586 }
1587
1588 static int i915_fbc_fc_get(void *data, u64 *val)
1589 {
1590         struct drm_device *dev = data;
1591         struct drm_i915_private *dev_priv = dev->dev_private;
1592
1593         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1594                 return -ENODEV;
1595
1596         drm_modeset_lock_all(dev);
1597         *val = dev_priv->fbc.false_color;
1598         drm_modeset_unlock_all(dev);
1599
1600         return 0;
1601 }
1602
1603 static int i915_fbc_fc_set(void *data, u64 val)
1604 {
1605         struct drm_device *dev = data;
1606         struct drm_i915_private *dev_priv = dev->dev_private;
1607         u32 reg;
1608
1609         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1610                 return -ENODEV;
1611
1612         drm_modeset_lock_all(dev);
1613
1614         reg = I915_READ(ILK_DPFC_CONTROL);
1615         dev_priv->fbc.false_color = val;
1616
1617         I915_WRITE(ILK_DPFC_CONTROL, val ?
1618                    (reg | FBC_CTL_FALSE_COLOR) :
1619                    (reg & ~FBC_CTL_FALSE_COLOR));
1620
1621         drm_modeset_unlock_all(dev);
1622         return 0;
1623 }
1624
1625 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1626                         i915_fbc_fc_get, i915_fbc_fc_set,
1627                         "%llu\n");
1628
1629 static int i915_ips_status(struct seq_file *m, void *unused)
1630 {
1631         struct drm_info_node *node = m->private;
1632         struct drm_device *dev = node->minor->dev;
1633         struct drm_i915_private *dev_priv = dev->dev_private;
1634
1635         if (!HAS_IPS(dev)) {
1636                 seq_puts(m, "not supported\n");
1637                 return 0;
1638         }
1639
1640         intel_runtime_pm_get(dev_priv);
1641
1642         seq_printf(m, "Enabled by kernel parameter: %s\n",
1643                    yesno(i915.enable_ips));
1644
1645         if (INTEL_INFO(dev)->gen >= 8) {
1646                 seq_puts(m, "Currently: unknown\n");
1647         } else {
1648                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1649                         seq_puts(m, "Currently: enabled\n");
1650                 else
1651                         seq_puts(m, "Currently: disabled\n");
1652         }
1653
1654         intel_runtime_pm_put(dev_priv);
1655
1656         return 0;
1657 }
1658
1659 static int i915_sr_status(struct seq_file *m, void *unused)
1660 {
1661         struct drm_info_node *node = m->private;
1662         struct drm_device *dev = node->minor->dev;
1663         struct drm_i915_private *dev_priv = dev->dev_private;
1664         bool sr_enabled = false;
1665
1666         intel_runtime_pm_get(dev_priv);
1667
1668         if (HAS_PCH_SPLIT(dev))
1669                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1670         else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1671                  IS_I945G(dev) || IS_I945GM(dev))
1672                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1673         else if (IS_I915GM(dev))
1674                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1675         else if (IS_PINEVIEW(dev))
1676                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1677         else if (IS_VALLEYVIEW(dev))
1678                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1679
1680         intel_runtime_pm_put(dev_priv);
1681
1682         seq_printf(m, "self-refresh: %s\n",
1683                    sr_enabled ? "enabled" : "disabled");
1684
1685         return 0;
1686 }
1687
1688 static int i915_emon_status(struct seq_file *m, void *unused)
1689 {
1690         struct drm_info_node *node = m->private;
1691         struct drm_device *dev = node->minor->dev;
1692         struct drm_i915_private *dev_priv = dev->dev_private;
1693         unsigned long temp, chipset, gfx;
1694         int ret;
1695
1696         if (!IS_GEN5(dev))
1697                 return -ENODEV;
1698
1699         ret = mutex_lock_interruptible(&dev->struct_mutex);
1700         if (ret)
1701                 return ret;
1702
1703         temp = i915_mch_val(dev_priv);
1704         chipset = i915_chipset_val(dev_priv);
1705         gfx = i915_gfx_val(dev_priv);
1706         mutex_unlock(&dev->struct_mutex);
1707
1708         seq_printf(m, "GMCH temp: %ld\n", temp);
1709         seq_printf(m, "Chipset power: %ld\n", chipset);
1710         seq_printf(m, "GFX power: %ld\n", gfx);
1711         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1712
1713         return 0;
1714 }
1715
1716 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1717 {
1718         struct drm_info_node *node = m->private;
1719         struct drm_device *dev = node->minor->dev;
1720         struct drm_i915_private *dev_priv = dev->dev_private;
1721         int ret = 0;
1722         int gpu_freq, ia_freq;
1723
1724         if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1725                 seq_puts(m, "unsupported on this chipset\n");
1726                 return 0;
1727         }
1728
1729         intel_runtime_pm_get(dev_priv);
1730
1731         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1732
1733         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1734         if (ret)
1735                 goto out;
1736
1737         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1738
1739         for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1740              gpu_freq <= dev_priv->rps.max_freq_softlimit;
1741              gpu_freq++) {
1742                 ia_freq = gpu_freq;
1743                 sandybridge_pcode_read(dev_priv,
1744                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1745                                        &ia_freq);
1746                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1747                            intel_gpu_freq(dev_priv, gpu_freq),
1748                            ((ia_freq >> 0) & 0xff) * 100,
1749                            ((ia_freq >> 8) & 0xff) * 100);
1750         }
1751
1752         mutex_unlock(&dev_priv->rps.hw_lock);
1753
1754 out:
1755         intel_runtime_pm_put(dev_priv);
1756         return ret;
1757 }
1758
1759 static int i915_opregion(struct seq_file *m, void *unused)
1760 {
1761         struct drm_info_node *node = m->private;
1762         struct drm_device *dev = node->minor->dev;
1763         struct drm_i915_private *dev_priv = dev->dev_private;
1764         struct intel_opregion *opregion = &dev_priv->opregion;
1765         void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1766         int ret;
1767
1768         if (data == NULL)
1769                 return -ENOMEM;
1770
1771         ret = mutex_lock_interruptible(&dev->struct_mutex);
1772         if (ret)
1773                 goto out;
1774
1775         if (opregion->header) {
1776                 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1777                 seq_write(m, data, OPREGION_SIZE);
1778         }
1779
1780         mutex_unlock(&dev->struct_mutex);
1781
1782 out:
1783         kfree(data);
1784         return 0;
1785 }
1786
1787 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1788 {
1789         struct drm_info_node *node = m->private;
1790         struct drm_device *dev = node->minor->dev;
1791         struct intel_fbdev *ifbdev = NULL;
1792         struct intel_framebuffer *fb;
1793
1794 #ifdef CONFIG_DRM_I915_FBDEV
1795         struct drm_i915_private *dev_priv = dev->dev_private;
1796
1797         ifbdev = dev_priv->fbdev;
1798         fb = to_intel_framebuffer(ifbdev->helper.fb);
1799
1800         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1801                    fb->base.width,
1802                    fb->base.height,
1803                    fb->base.depth,
1804                    fb->base.bits_per_pixel,
1805                    fb->base.modifier[0],
1806                    atomic_read(&fb->base.refcount.refcount));
1807         describe_obj(m, fb->obj);
1808         seq_putc(m, '\n');
1809 #endif
1810
1811         mutex_lock(&dev->mode_config.fb_lock);
1812         list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1813                 if (ifbdev && &fb->base == ifbdev->helper.fb)
1814                         continue;
1815
1816                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1817                            fb->base.width,
1818                            fb->base.height,
1819                            fb->base.depth,
1820                            fb->base.bits_per_pixel,
1821                            fb->base.modifier[0],
1822                            atomic_read(&fb->base.refcount.refcount));
1823                 describe_obj(m, fb->obj);
1824                 seq_putc(m, '\n');
1825         }
1826         mutex_unlock(&dev->mode_config.fb_lock);
1827
1828         return 0;
1829 }
1830
1831 static void describe_ctx_ringbuf(struct seq_file *m,
1832                                  struct intel_ringbuffer *ringbuf)
1833 {
1834         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1835                    ringbuf->space, ringbuf->head, ringbuf->tail,
1836                    ringbuf->last_retired_head);
1837 }
1838
1839 static int i915_context_status(struct seq_file *m, void *unused)
1840 {
1841         struct drm_info_node *node = m->private;
1842         struct drm_device *dev = node->minor->dev;
1843         struct drm_i915_private *dev_priv = dev->dev_private;
1844         struct intel_engine_cs *ring;
1845         struct intel_context *ctx;
1846         int ret, i;
1847
1848         ret = mutex_lock_interruptible(&dev->struct_mutex);
1849         if (ret)
1850                 return ret;
1851
1852         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1853                 if (!i915.enable_execlists &&
1854                     ctx->legacy_hw_ctx.rcs_state == NULL)
1855                         continue;
1856
1857                 seq_puts(m, "HW context ");
1858                 describe_ctx(m, ctx);
1859                 for_each_ring(ring, dev_priv, i) {
1860                         if (ring->default_context == ctx)
1861                                 seq_printf(m, "(default context %s) ",
1862                                            ring->name);
1863                 }
1864
1865                 if (i915.enable_execlists) {
1866                         seq_putc(m, '\n');
1867                         for_each_ring(ring, dev_priv, i) {
1868                                 struct drm_i915_gem_object *ctx_obj =
1869                                         ctx->engine[i].state;
1870                                 struct intel_ringbuffer *ringbuf =
1871                                         ctx->engine[i].ringbuf;
1872
1873                                 seq_printf(m, "%s: ", ring->name);
1874                                 if (ctx_obj)
1875                                         describe_obj(m, ctx_obj);
1876                                 if (ringbuf)
1877                                         describe_ctx_ringbuf(m, ringbuf);
1878                                 seq_putc(m, '\n');
1879                         }
1880                 } else {
1881                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1882                 }
1883
1884                 seq_putc(m, '\n');
1885         }
1886
1887         mutex_unlock(&dev->struct_mutex);
1888
1889         return 0;
1890 }
1891
1892 static void i915_dump_lrc_obj(struct seq_file *m,
1893                               struct intel_engine_cs *ring,
1894                               struct drm_i915_gem_object *ctx_obj)
1895 {
1896         struct page *page;
1897         uint32_t *reg_state;
1898         int j;
1899         unsigned long ggtt_offset = 0;
1900
1901         if (ctx_obj == NULL) {
1902                 seq_printf(m, "Context on %s with no gem object\n",
1903                            ring->name);
1904                 return;
1905         }
1906
1907         seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1908                    intel_execlists_ctx_id(ctx_obj));
1909
1910         if (!i915_gem_obj_ggtt_bound(ctx_obj))
1911                 seq_puts(m, "\tNot bound in GGTT\n");
1912         else
1913                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1914
1915         if (i915_gem_object_get_pages(ctx_obj)) {
1916                 seq_puts(m, "\tFailed to get pages for context object\n");
1917                 return;
1918         }
1919
1920         page = i915_gem_object_get_page(ctx_obj, 1);
1921         if (!WARN_ON(page == NULL)) {
1922                 reg_state = kmap_atomic(page);
1923
1924                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1925                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1926                                    ggtt_offset + 4096 + (j * 4),
1927                                    reg_state[j], reg_state[j + 1],
1928                                    reg_state[j + 2], reg_state[j + 3]);
1929                 }
1930                 kunmap_atomic(reg_state);
1931         }
1932
1933         seq_putc(m, '\n');
1934 }
1935
1936 static int i915_dump_lrc(struct seq_file *m, void *unused)
1937 {
1938         struct drm_info_node *node = (struct drm_info_node *) m->private;
1939         struct drm_device *dev = node->minor->dev;
1940         struct drm_i915_private *dev_priv = dev->dev_private;
1941         struct intel_engine_cs *ring;
1942         struct intel_context *ctx;
1943         int ret, i;
1944
1945         if (!i915.enable_execlists) {
1946                 seq_printf(m, "Logical Ring Contexts are disabled\n");
1947                 return 0;
1948         }
1949
1950         ret = mutex_lock_interruptible(&dev->struct_mutex);
1951         if (ret)
1952                 return ret;
1953
1954         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1955                 for_each_ring(ring, dev_priv, i) {
1956                         if (ring->default_context != ctx)
1957                                 i915_dump_lrc_obj(m, ring,
1958                                                   ctx->engine[i].state);
1959                 }
1960         }
1961
1962         mutex_unlock(&dev->struct_mutex);
1963
1964         return 0;
1965 }
1966
1967 static int i915_execlists(struct seq_file *m, void *data)
1968 {
1969         struct drm_info_node *node = (struct drm_info_node *)m->private;
1970         struct drm_device *dev = node->minor->dev;
1971         struct drm_i915_private *dev_priv = dev->dev_private;
1972         struct intel_engine_cs *ring;
1973         u32 status_pointer;
1974         u8 read_pointer;
1975         u8 write_pointer;
1976         u32 status;
1977         u32 ctx_id;
1978         struct list_head *cursor;
1979         int ring_id, i;
1980         int ret;
1981
1982         if (!i915.enable_execlists) {
1983                 seq_puts(m, "Logical Ring Contexts are disabled\n");
1984                 return 0;
1985         }
1986
1987         ret = mutex_lock_interruptible(&dev->struct_mutex);
1988         if (ret)
1989                 return ret;
1990
1991         intel_runtime_pm_get(dev_priv);
1992
1993         for_each_ring(ring, dev_priv, ring_id) {
1994                 struct drm_i915_gem_request *head_req = NULL;
1995                 int count = 0;
1996                 unsigned long flags;
1997
1998                 seq_printf(m, "%s\n", ring->name);
1999
2000                 status = I915_READ(RING_EXECLIST_STATUS(ring));
2001                 ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
2002                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2003                            status, ctx_id);
2004
2005                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2006                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2007
2008                 read_pointer = ring->next_context_status_buffer;
2009                 write_pointer = status_pointer & 0x07;
2010                 if (read_pointer > write_pointer)
2011                         write_pointer += 6;
2012                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2013                            read_pointer, write_pointer);
2014
2015                 for (i = 0; i < 6; i++) {
2016                         status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
2017                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
2018
2019                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2020                                    i, status, ctx_id);
2021                 }
2022
2023                 spin_lock_irqsave(&ring->execlist_lock, flags);
2024                 list_for_each(cursor, &ring->execlist_queue)
2025                         count++;
2026                 head_req = list_first_entry_or_null(&ring->execlist_queue,
2027                                 struct drm_i915_gem_request, execlist_link);
2028                 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2029
2030                 seq_printf(m, "\t%d requests in queue\n", count);
2031                 if (head_req) {
2032                         struct drm_i915_gem_object *ctx_obj;
2033
2034                         ctx_obj = head_req->ctx->engine[ring_id].state;
2035                         seq_printf(m, "\tHead request id: %u\n",
2036                                    intel_execlists_ctx_id(ctx_obj));
2037                         seq_printf(m, "\tHead request tail: %u\n",
2038                                    head_req->tail);
2039                 }
2040
2041                 seq_putc(m, '\n');
2042         }
2043
2044         intel_runtime_pm_put(dev_priv);
2045         mutex_unlock(&dev->struct_mutex);
2046
2047         return 0;
2048 }
2049
2050 static const char *swizzle_string(unsigned swizzle)
2051 {
2052         switch (swizzle) {
2053         case I915_BIT_6_SWIZZLE_NONE:
2054                 return "none";
2055         case I915_BIT_6_SWIZZLE_9:
2056                 return "bit9";
2057         case I915_BIT_6_SWIZZLE_9_10:
2058                 return "bit9/bit10";
2059         case I915_BIT_6_SWIZZLE_9_11:
2060                 return "bit9/bit11";
2061         case I915_BIT_6_SWIZZLE_9_10_11:
2062                 return "bit9/bit10/bit11";
2063         case I915_BIT_6_SWIZZLE_9_17:
2064                 return "bit9/bit17";
2065         case I915_BIT_6_SWIZZLE_9_10_17:
2066                 return "bit9/bit10/bit17";
2067         case I915_BIT_6_SWIZZLE_UNKNOWN:
2068                 return "unknown";
2069         }
2070
2071         return "bug";
2072 }
2073
2074 static int i915_swizzle_info(struct seq_file *m, void *data)
2075 {
2076         struct drm_info_node *node = m->private;
2077         struct drm_device *dev = node->minor->dev;
2078         struct drm_i915_private *dev_priv = dev->dev_private;
2079         int ret;
2080
2081         ret = mutex_lock_interruptible(&dev->struct_mutex);
2082         if (ret)
2083                 return ret;
2084         intel_runtime_pm_get(dev_priv);
2085
2086         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2087                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2088         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2089                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2090
2091         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2092                 seq_printf(m, "DDC = 0x%08x\n",
2093                            I915_READ(DCC));
2094                 seq_printf(m, "DDC2 = 0x%08x\n",
2095                            I915_READ(DCC2));
2096                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2097                            I915_READ16(C0DRB3));
2098                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2099                            I915_READ16(C1DRB3));
2100         } else if (INTEL_INFO(dev)->gen >= 6) {
2101                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2102                            I915_READ(MAD_DIMM_C0));
2103                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2104                            I915_READ(MAD_DIMM_C1));
2105                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2106                            I915_READ(MAD_DIMM_C2));
2107                 seq_printf(m, "TILECTL = 0x%08x\n",
2108                            I915_READ(TILECTL));
2109                 if (INTEL_INFO(dev)->gen >= 8)
2110                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2111                                    I915_READ(GAMTARBMODE));
2112                 else
2113                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2114                                    I915_READ(ARB_MODE));
2115                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2116                            I915_READ(DISP_ARB_CTL));
2117         }
2118
2119         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2120                 seq_puts(m, "L-shaped memory detected\n");
2121
2122         intel_runtime_pm_put(dev_priv);
2123         mutex_unlock(&dev->struct_mutex);
2124
2125         return 0;
2126 }
2127
2128 static int per_file_ctx(int id, void *ptr, void *data)
2129 {
2130         struct intel_context *ctx = ptr;
2131         struct seq_file *m = data;
2132         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2133
2134         if (!ppgtt) {
2135                 seq_printf(m, "  no ppgtt for context %d\n",
2136                            ctx->user_handle);
2137                 return 0;
2138         }
2139
2140         if (i915_gem_context_is_default(ctx))
2141                 seq_puts(m, "  default context:\n");
2142         else
2143                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2144         ppgtt->debug_dump(ppgtt, m);
2145
2146         return 0;
2147 }
2148
2149 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2150 {
2151         struct drm_i915_private *dev_priv = dev->dev_private;
2152         struct intel_engine_cs *ring;
2153         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2154         int unused, i;
2155
2156         if (!ppgtt)
2157                 return;
2158
2159         seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
2160         seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
2161         for_each_ring(ring, dev_priv, unused) {
2162                 seq_printf(m, "%s\n", ring->name);
2163                 for (i = 0; i < 4; i++) {
2164                         u32 offset = 0x270 + i * 8;
2165                         u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2166                         pdp <<= 32;
2167                         pdp |= I915_READ(ring->mmio_base + offset);
2168                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2169                 }
2170         }
2171 }
2172
2173 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2174 {
2175         struct drm_i915_private *dev_priv = dev->dev_private;
2176         struct intel_engine_cs *ring;
2177         struct drm_file *file;
2178         int i;
2179
2180         if (INTEL_INFO(dev)->gen == 6)
2181                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2182
2183         for_each_ring(ring, dev_priv, i) {
2184                 seq_printf(m, "%s\n", ring->name);
2185                 if (INTEL_INFO(dev)->gen == 7)
2186                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2187                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2188                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2189                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2190         }
2191         if (dev_priv->mm.aliasing_ppgtt) {
2192                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2193
2194                 seq_puts(m, "aliasing PPGTT:\n");
2195                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.pd_offset);
2196
2197                 ppgtt->debug_dump(ppgtt, m);
2198         }
2199
2200         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2201                 struct drm_i915_file_private *file_priv = file->driver_priv;
2202
2203                 seq_printf(m, "proc: %s\n",
2204                            get_pid_task(file->pid, PIDTYPE_PID)->comm);
2205                 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2206         }
2207         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2208 }
2209
2210 static int i915_ppgtt_info(struct seq_file *m, void *data)
2211 {
2212         struct drm_info_node *node = m->private;
2213         struct drm_device *dev = node->minor->dev;
2214         struct drm_i915_private *dev_priv = dev->dev_private;
2215
2216         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2217         if (ret)
2218                 return ret;
2219         intel_runtime_pm_get(dev_priv);
2220
2221         if (INTEL_INFO(dev)->gen >= 8)
2222                 gen8_ppgtt_info(m, dev);
2223         else if (INTEL_INFO(dev)->gen >= 6)
2224                 gen6_ppgtt_info(m, dev);
2225
2226         intel_runtime_pm_put(dev_priv);
2227         mutex_unlock(&dev->struct_mutex);
2228
2229         return 0;
2230 }
2231
2232 static int i915_llc(struct seq_file *m, void *data)
2233 {
2234         struct drm_info_node *node = m->private;
2235         struct drm_device *dev = node->minor->dev;
2236         struct drm_i915_private *dev_priv = dev->dev_private;
2237
2238         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2239         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2240         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2241
2242         return 0;
2243 }
2244
2245 static int i915_edp_psr_status(struct seq_file *m, void *data)
2246 {
2247         struct drm_info_node *node = m->private;
2248         struct drm_device *dev = node->minor->dev;
2249         struct drm_i915_private *dev_priv = dev->dev_private;
2250         u32 psrperf = 0;
2251         u32 stat[3];
2252         enum pipe pipe;
2253         bool enabled = false;
2254
2255         if (!HAS_PSR(dev)) {
2256                 seq_puts(m, "PSR not supported\n");
2257                 return 0;
2258         }
2259
2260         intel_runtime_pm_get(dev_priv);
2261
2262         mutex_lock(&dev_priv->psr.lock);
2263         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2264         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2265         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2266         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2267         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2268                    dev_priv->psr.busy_frontbuffer_bits);
2269         seq_printf(m, "Re-enable work scheduled: %s\n",
2270                    yesno(work_busy(&dev_priv->psr.work.work)));
2271
2272         if (HAS_DDI(dev))
2273                 enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2274         else {
2275                 for_each_pipe(dev_priv, pipe) {
2276                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2277                                 VLV_EDP_PSR_CURR_STATE_MASK;
2278                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2279                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2280                                 enabled = true;
2281                 }
2282         }
2283         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2284
2285         if (!HAS_DDI(dev))
2286                 for_each_pipe(dev_priv, pipe) {
2287                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2288                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2289                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2290                 }
2291         seq_puts(m, "\n");
2292
2293         seq_printf(m, "Link standby: %s\n",
2294                    yesno((bool)dev_priv->psr.link_standby));
2295
2296         /* CHV PSR has no kind of performance counter */
2297         if (HAS_DDI(dev)) {
2298                 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2299                         EDP_PSR_PERF_CNT_MASK;
2300
2301                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2302         }
2303         mutex_unlock(&dev_priv->psr.lock);
2304
2305         intel_runtime_pm_put(dev_priv);
2306         return 0;
2307 }
2308
2309 static int i915_sink_crc(struct seq_file *m, void *data)
2310 {
2311         struct drm_info_node *node = m->private;
2312         struct drm_device *dev = node->minor->dev;
2313         struct intel_encoder *encoder;
2314         struct intel_connector *connector;
2315         struct intel_dp *intel_dp = NULL;
2316         int ret;
2317         u8 crc[6];
2318
2319         drm_modeset_lock_all(dev);
2320         for_each_intel_connector(dev, connector) {
2321
2322                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2323                         continue;
2324
2325                 if (!connector->base.encoder)
2326                         continue;
2327
2328                 encoder = to_intel_encoder(connector->base.encoder);
2329                 if (encoder->type != INTEL_OUTPUT_EDP)
2330                         continue;
2331
2332                 intel_dp = enc_to_intel_dp(&encoder->base);
2333
2334                 ret = intel_dp_sink_crc(intel_dp, crc);
2335                 if (ret)
2336                         goto out;
2337
2338                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2339                            crc[0], crc[1], crc[2],
2340                            crc[3], crc[4], crc[5]);
2341                 goto out;
2342         }
2343         ret = -ENODEV;
2344 out:
2345         drm_modeset_unlock_all(dev);
2346         return ret;
2347 }
2348
2349 static int i915_energy_uJ(struct seq_file *m, void *data)
2350 {
2351         struct drm_info_node *node = m->private;
2352         struct drm_device *dev = node->minor->dev;
2353         struct drm_i915_private *dev_priv = dev->dev_private;
2354         u64 power;
2355         u32 units;
2356
2357         if (INTEL_INFO(dev)->gen < 6)
2358                 return -ENODEV;
2359
2360         intel_runtime_pm_get(dev_priv);
2361
2362         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2363         power = (power & 0x1f00) >> 8;
2364         units = 1000000 / (1 << power); /* convert to uJ */
2365         power = I915_READ(MCH_SECP_NRG_STTS);
2366         power *= units;
2367
2368         intel_runtime_pm_put(dev_priv);
2369
2370         seq_printf(m, "%llu", (long long unsigned)power);
2371
2372         return 0;
2373 }
2374
2375 static int i915_pc8_status(struct seq_file *m, void *unused)
2376 {
2377         struct drm_info_node *node = m->private;
2378         struct drm_device *dev = node->minor->dev;
2379         struct drm_i915_private *dev_priv = dev->dev_private;
2380
2381         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2382                 seq_puts(m, "not supported\n");
2383                 return 0;
2384         }
2385
2386         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2387         seq_printf(m, "IRQs disabled: %s\n",
2388                    yesno(!intel_irqs_enabled(dev_priv)));
2389
2390         return 0;
2391 }
2392
2393 static const char *power_domain_str(enum intel_display_power_domain domain)
2394 {
2395         switch (domain) {
2396         case POWER_DOMAIN_PIPE_A:
2397                 return "PIPE_A";
2398         case POWER_DOMAIN_PIPE_B:
2399                 return "PIPE_B";
2400         case POWER_DOMAIN_PIPE_C:
2401                 return "PIPE_C";
2402         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2403                 return "PIPE_A_PANEL_FITTER";
2404         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2405                 return "PIPE_B_PANEL_FITTER";
2406         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2407                 return "PIPE_C_PANEL_FITTER";
2408         case POWER_DOMAIN_TRANSCODER_A:
2409                 return "TRANSCODER_A";
2410         case POWER_DOMAIN_TRANSCODER_B:
2411                 return "TRANSCODER_B";
2412         case POWER_DOMAIN_TRANSCODER_C:
2413                 return "TRANSCODER_C";
2414         case POWER_DOMAIN_TRANSCODER_EDP:
2415                 return "TRANSCODER_EDP";
2416         case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2417                 return "PORT_DDI_A_2_LANES";
2418         case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2419                 return "PORT_DDI_A_4_LANES";
2420         case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2421                 return "PORT_DDI_B_2_LANES";
2422         case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2423                 return "PORT_DDI_B_4_LANES";
2424         case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2425                 return "PORT_DDI_C_2_LANES";
2426         case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2427                 return "PORT_DDI_C_4_LANES";
2428         case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2429                 return "PORT_DDI_D_2_LANES";
2430         case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2431                 return "PORT_DDI_D_4_LANES";
2432         case POWER_DOMAIN_PORT_DSI:
2433                 return "PORT_DSI";
2434         case POWER_DOMAIN_PORT_CRT:
2435                 return "PORT_CRT";
2436         case POWER_DOMAIN_PORT_OTHER:
2437                 return "PORT_OTHER";
2438         case POWER_DOMAIN_VGA:
2439                 return "VGA";
2440         case POWER_DOMAIN_AUDIO:
2441                 return "AUDIO";
2442         case POWER_DOMAIN_PLLS:
2443                 return "PLLS";
2444         case POWER_DOMAIN_AUX_A:
2445                 return "AUX_A";
2446         case POWER_DOMAIN_AUX_B:
2447                 return "AUX_B";
2448         case POWER_DOMAIN_AUX_C:
2449                 return "AUX_C";
2450         case POWER_DOMAIN_AUX_D:
2451                 return "AUX_D";
2452         case POWER_DOMAIN_INIT:
2453                 return "INIT";
2454         default:
2455                 MISSING_CASE(domain);
2456                 return "?";
2457         }
2458 }
2459
2460 static int i915_power_domain_info(struct seq_file *m, void *unused)
2461 {
2462         struct drm_info_node *node = m->private;
2463         struct drm_device *dev = node->minor->dev;
2464         struct drm_i915_private *dev_priv = dev->dev_private;
2465         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2466         int i;
2467
2468         mutex_lock(&power_domains->lock);
2469
2470         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2471         for (i = 0; i < power_domains->power_well_count; i++) {
2472                 struct i915_power_well *power_well;
2473                 enum intel_display_power_domain power_domain;
2474
2475                 power_well = &power_domains->power_wells[i];
2476                 seq_printf(m, "%-25s %d\n", power_well->name,
2477                            power_well->count);
2478
2479                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2480                      power_domain++) {
2481                         if (!(BIT(power_domain) & power_well->domains))
2482                                 continue;
2483
2484                         seq_printf(m, "  %-23s %d\n",
2485                                  power_domain_str(power_domain),
2486                                  power_domains->domain_use_count[power_domain]);
2487                 }
2488         }
2489
2490         mutex_unlock(&power_domains->lock);
2491
2492         return 0;
2493 }
2494
2495 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2496                                  struct drm_display_mode *mode)
2497 {
2498         int i;
2499
2500         for (i = 0; i < tabs; i++)
2501                 seq_putc(m, '\t');
2502
2503         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2504                    mode->base.id, mode->name,
2505                    mode->vrefresh, mode->clock,
2506                    mode->hdisplay, mode->hsync_start,
2507                    mode->hsync_end, mode->htotal,
2508                    mode->vdisplay, mode->vsync_start,
2509                    mode->vsync_end, mode->vtotal,
2510                    mode->type, mode->flags);
2511 }
2512
2513 static void intel_encoder_info(struct seq_file *m,
2514                                struct intel_crtc *intel_crtc,
2515                                struct intel_encoder *intel_encoder)
2516 {
2517         struct drm_info_node *node = m->private;
2518         struct drm_device *dev = node->minor->dev;
2519         struct drm_crtc *crtc = &intel_crtc->base;
2520         struct intel_connector *intel_connector;
2521         struct drm_encoder *encoder;
2522
2523         encoder = &intel_encoder->base;
2524         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2525                    encoder->base.id, encoder->name);
2526         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2527                 struct drm_connector *connector = &intel_connector->base;
2528                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2529                            connector->base.id,
2530                            connector->name,
2531                            drm_get_connector_status_name(connector->status));
2532                 if (connector->status == connector_status_connected) {
2533                         struct drm_display_mode *mode = &crtc->mode;
2534                         seq_printf(m, ", mode:\n");
2535                         intel_seq_print_mode(m, 2, mode);
2536                 } else {
2537                         seq_putc(m, '\n');
2538                 }
2539         }
2540 }
2541
2542 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2543 {
2544         struct drm_info_node *node = m->private;
2545         struct drm_device *dev = node->minor->dev;
2546         struct drm_crtc *crtc = &intel_crtc->base;
2547         struct intel_encoder *intel_encoder;
2548
2549         if (crtc->primary->fb)
2550                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2551                            crtc->primary->fb->base.id, crtc->x, crtc->y,
2552                            crtc->primary->fb->width, crtc->primary->fb->height);
2553         else
2554                 seq_puts(m, "\tprimary plane disabled\n");
2555         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2556                 intel_encoder_info(m, intel_crtc, intel_encoder);
2557 }
2558
2559 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2560 {
2561         struct drm_display_mode *mode = panel->fixed_mode;
2562
2563         seq_printf(m, "\tfixed mode:\n");
2564         intel_seq_print_mode(m, 2, mode);
2565 }
2566
2567 static void intel_dp_info(struct seq_file *m,
2568                           struct intel_connector *intel_connector)
2569 {
2570         struct intel_encoder *intel_encoder = intel_connector->encoder;
2571         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2572
2573         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2574         seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2575                    "no");
2576         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2577                 intel_panel_info(m, &intel_connector->panel);
2578 }
2579
2580 static void intel_hdmi_info(struct seq_file *m,
2581                             struct intel_connector *intel_connector)
2582 {
2583         struct intel_encoder *intel_encoder = intel_connector->encoder;
2584         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2585
2586         seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2587                    "no");
2588 }
2589
2590 static void intel_lvds_info(struct seq_file *m,
2591                             struct intel_connector *intel_connector)
2592 {
2593         intel_panel_info(m, &intel_connector->panel);
2594 }
2595
2596 static void intel_connector_info(struct seq_file *m,
2597                                  struct drm_connector *connector)
2598 {
2599         struct intel_connector *intel_connector = to_intel_connector(connector);
2600         struct intel_encoder *intel_encoder = intel_connector->encoder;
2601         struct drm_display_mode *mode;
2602
2603         seq_printf(m, "connector %d: type %s, status: %s\n",
2604                    connector->base.id, connector->name,
2605                    drm_get_connector_status_name(connector->status));
2606         if (connector->status == connector_status_connected) {
2607                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2608                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2609                            connector->display_info.width_mm,
2610                            connector->display_info.height_mm);
2611                 seq_printf(m, "\tsubpixel order: %s\n",
2612                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2613                 seq_printf(m, "\tCEA rev: %d\n",
2614                            connector->display_info.cea_rev);
2615         }
2616         if (intel_encoder) {
2617                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2618                     intel_encoder->type == INTEL_OUTPUT_EDP)
2619                         intel_dp_info(m, intel_connector);
2620                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2621                         intel_hdmi_info(m, intel_connector);
2622                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2623                         intel_lvds_info(m, intel_connector);
2624         }
2625
2626         seq_printf(m, "\tmodes:\n");
2627         list_for_each_entry(mode, &connector->modes, head)
2628                 intel_seq_print_mode(m, 2, mode);
2629 }
2630
2631 static bool cursor_active(struct drm_device *dev, int pipe)
2632 {
2633         struct drm_i915_private *dev_priv = dev->dev_private;
2634         u32 state;
2635
2636         if (IS_845G(dev) || IS_I865G(dev))
2637                 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2638         else
2639                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2640
2641         return state;
2642 }
2643
2644 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2645 {
2646         struct drm_i915_private *dev_priv = dev->dev_private;
2647         u32 pos;
2648
2649         pos = I915_READ(CURPOS(pipe));
2650
2651         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2652         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2653                 *x = -*x;
2654
2655         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2656         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2657                 *y = -*y;
2658
2659         return cursor_active(dev, pipe);
2660 }
2661
2662 static int i915_display_info(struct seq_file *m, void *unused)
2663 {
2664         struct drm_info_node *node = m->private;
2665         struct drm_device *dev = node->minor->dev;
2666         struct drm_i915_private *dev_priv = dev->dev_private;
2667         struct intel_crtc *crtc;
2668         struct drm_connector *connector;
2669
2670         intel_runtime_pm_get(dev_priv);
2671         drm_modeset_lock_all(dev);
2672         seq_printf(m, "CRTC info\n");
2673         seq_printf(m, "---------\n");
2674         for_each_intel_crtc(dev, crtc) {
2675                 bool active;
2676                 int x, y;
2677
2678                 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2679                            crtc->base.base.id, pipe_name(crtc->pipe),
2680                            yesno(crtc->active), crtc->config->pipe_src_w,
2681                            crtc->config->pipe_src_h);
2682                 if (crtc->active) {
2683                         intel_crtc_info(m, crtc);
2684
2685                         active = cursor_position(dev, crtc->pipe, &x, &y);
2686                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2687                                    yesno(crtc->cursor_base),
2688                                    x, y, crtc->base.cursor->state->crtc_w,
2689                                    crtc->base.cursor->state->crtc_h,
2690                                    crtc->cursor_addr, yesno(active));
2691                 }
2692
2693                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2694                            yesno(!crtc->cpu_fifo_underrun_disabled),
2695                            yesno(!crtc->pch_fifo_underrun_disabled));
2696         }
2697
2698         seq_printf(m, "\n");
2699         seq_printf(m, "Connector info\n");
2700         seq_printf(m, "--------------\n");
2701         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2702                 intel_connector_info(m, connector);
2703         }
2704         drm_modeset_unlock_all(dev);
2705         intel_runtime_pm_put(dev_priv);
2706
2707         return 0;
2708 }
2709
2710 static int i915_semaphore_status(struct seq_file *m, void *unused)
2711 {
2712         struct drm_info_node *node = (struct drm_info_node *) m->private;
2713         struct drm_device *dev = node->minor->dev;
2714         struct drm_i915_private *dev_priv = dev->dev_private;
2715         struct intel_engine_cs *ring;
2716         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2717         int i, j, ret;
2718
2719         if (!i915_semaphore_is_enabled(dev)) {
2720                 seq_puts(m, "Semaphores are disabled\n");
2721                 return 0;
2722         }
2723
2724         ret = mutex_lock_interruptible(&dev->struct_mutex);
2725         if (ret)
2726                 return ret;
2727         intel_runtime_pm_get(dev_priv);
2728
2729         if (IS_BROADWELL(dev)) {
2730                 struct page *page;
2731                 uint64_t *seqno;
2732
2733                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2734
2735                 seqno = (uint64_t *)kmap_atomic(page);
2736                 for_each_ring(ring, dev_priv, i) {
2737                         uint64_t offset;
2738
2739                         seq_printf(m, "%s\n", ring->name);
2740
2741                         seq_puts(m, "  Last signal:");
2742                         for (j = 0; j < num_rings; j++) {
2743                                 offset = i * I915_NUM_RINGS + j;
2744                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2745                                            seqno[offset], offset * 8);
2746                         }
2747                         seq_putc(m, '\n');
2748
2749                         seq_puts(m, "  Last wait:  ");
2750                         for (j = 0; j < num_rings; j++) {
2751                                 offset = i + (j * I915_NUM_RINGS);
2752                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2753                                            seqno[offset], offset * 8);
2754                         }
2755                         seq_putc(m, '\n');
2756
2757                 }
2758                 kunmap_atomic(seqno);
2759         } else {
2760                 seq_puts(m, "  Last signal:");
2761                 for_each_ring(ring, dev_priv, i)
2762                         for (j = 0; j < num_rings; j++)
2763                                 seq_printf(m, "0x%08x\n",
2764                                            I915_READ(ring->semaphore.mbox.signal[j]));
2765                 seq_putc(m, '\n');
2766         }
2767
2768         seq_puts(m, "\nSync seqno:\n");
2769         for_each_ring(ring, dev_priv, i) {
2770                 for (j = 0; j < num_rings; j++) {
2771                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
2772                 }
2773                 seq_putc(m, '\n');
2774         }
2775         seq_putc(m, '\n');
2776
2777         intel_runtime_pm_put(dev_priv);
2778         mutex_unlock(&dev->struct_mutex);
2779         return 0;
2780 }
2781
2782 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2783 {
2784         struct drm_info_node *node = (struct drm_info_node *) m->private;
2785         struct drm_device *dev = node->minor->dev;
2786         struct drm_i915_private *dev_priv = dev->dev_private;
2787         int i;
2788
2789         drm_modeset_lock_all(dev);
2790         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2791                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2792
2793                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2794                 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
2795                            pll->config.crtc_mask, pll->active, yesno(pll->on));
2796                 seq_printf(m, " tracked hardware state:\n");
2797                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
2798                 seq_printf(m, " dpll_md: 0x%08x\n",
2799                            pll->config.hw_state.dpll_md);
2800                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
2801                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
2802                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
2803         }
2804         drm_modeset_unlock_all(dev);
2805
2806         return 0;
2807 }
2808
2809 static int i915_wa_registers(struct seq_file *m, void *unused)
2810 {
2811         int i;
2812         int ret;
2813         struct drm_info_node *node = (struct drm_info_node *) m->private;
2814         struct drm_device *dev = node->minor->dev;
2815         struct drm_i915_private *dev_priv = dev->dev_private;
2816
2817         ret = mutex_lock_interruptible(&dev->struct_mutex);
2818         if (ret)
2819                 return ret;
2820
2821         intel_runtime_pm_get(dev_priv);
2822
2823         seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
2824         for (i = 0; i < dev_priv->workarounds.count; ++i) {
2825                 u32 addr, mask, value, read;
2826                 bool ok;
2827
2828                 addr = dev_priv->workarounds.reg[i].addr;
2829                 mask = dev_priv->workarounds.reg[i].mask;
2830                 value = dev_priv->workarounds.reg[i].value;
2831                 read = I915_READ(addr);
2832                 ok = (value & mask) == (read & mask);
2833                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
2834                            addr, value, mask, read, ok ? "OK" : "FAIL");
2835         }
2836
2837         intel_runtime_pm_put(dev_priv);
2838         mutex_unlock(&dev->struct_mutex);
2839
2840         return 0;
2841 }
2842
2843 static int i915_ddb_info(struct seq_file *m, void *unused)
2844 {
2845         struct drm_info_node *node = m->private;
2846         struct drm_device *dev = node->minor->dev;
2847         struct drm_i915_private *dev_priv = dev->dev_private;
2848         struct skl_ddb_allocation *ddb;
2849         struct skl_ddb_entry *entry;
2850         enum pipe pipe;
2851         int plane;
2852
2853         if (INTEL_INFO(dev)->gen < 9)
2854                 return 0;
2855
2856         drm_modeset_lock_all(dev);
2857
2858         ddb = &dev_priv->wm.skl_hw.ddb;
2859
2860         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
2861
2862         for_each_pipe(dev_priv, pipe) {
2863                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
2864
2865                 for_each_plane(dev_priv, pipe, plane) {
2866                         entry = &ddb->plane[pipe][plane];
2867                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
2868                                    entry->start, entry->end,
2869                                    skl_ddb_entry_size(entry));
2870                 }
2871
2872                 entry = &ddb->cursor[pipe];
2873                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
2874                            entry->end, skl_ddb_entry_size(entry));
2875         }
2876
2877         drm_modeset_unlock_all(dev);
2878
2879         return 0;
2880 }
2881
2882 static void drrs_status_per_crtc(struct seq_file *m,
2883                 struct drm_device *dev, struct intel_crtc *intel_crtc)
2884 {
2885         struct intel_encoder *intel_encoder;
2886         struct drm_i915_private *dev_priv = dev->dev_private;
2887         struct i915_drrs *drrs = &dev_priv->drrs;
2888         int vrefresh = 0;
2889
2890         for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
2891                 /* Encoder connected on this CRTC */
2892                 switch (intel_encoder->type) {
2893                 case INTEL_OUTPUT_EDP:
2894                         seq_puts(m, "eDP:\n");
2895                         break;
2896                 case INTEL_OUTPUT_DSI:
2897                         seq_puts(m, "DSI:\n");
2898                         break;
2899                 case INTEL_OUTPUT_HDMI:
2900                         seq_puts(m, "HDMI:\n");
2901                         break;
2902                 case INTEL_OUTPUT_DISPLAYPORT:
2903                         seq_puts(m, "DP:\n");
2904                         break;
2905                 default:
2906                         seq_printf(m, "Other encoder (id=%d).\n",
2907                                                 intel_encoder->type);
2908                         return;
2909                 }
2910         }
2911
2912         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
2913                 seq_puts(m, "\tVBT: DRRS_type: Static");
2914         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
2915                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
2916         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
2917                 seq_puts(m, "\tVBT: DRRS_type: None");
2918         else
2919                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
2920
2921         seq_puts(m, "\n\n");
2922
2923         if (intel_crtc->config->has_drrs) {
2924                 struct intel_panel *panel;
2925
2926                 mutex_lock(&drrs->mutex);
2927                 /* DRRS Supported */
2928                 seq_puts(m, "\tDRRS Supported: Yes\n");
2929
2930                 /* disable_drrs() will make drrs->dp NULL */
2931                 if (!drrs->dp) {
2932                         seq_puts(m, "Idleness DRRS: Disabled");
2933                         mutex_unlock(&drrs->mutex);
2934                         return;
2935                 }
2936
2937                 panel = &drrs->dp->attached_connector->panel;
2938                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
2939                                         drrs->busy_frontbuffer_bits);
2940
2941                 seq_puts(m, "\n\t\t");
2942                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
2943                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
2944                         vrefresh = panel->fixed_mode->vrefresh;
2945                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
2946                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
2947                         vrefresh = panel->downclock_mode->vrefresh;
2948                 } else {
2949                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
2950                                                 drrs->refresh_rate_type);
2951                         mutex_unlock(&drrs->mutex);
2952                         return;
2953                 }
2954                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
2955
2956                 seq_puts(m, "\n\t\t");
2957                 mutex_unlock(&drrs->mutex);
2958         } else {
2959                 /* DRRS not supported. Print the VBT parameter*/
2960                 seq_puts(m, "\tDRRS Supported : No");
2961         }
2962         seq_puts(m, "\n");
2963 }
2964
2965 static int i915_drrs_status(struct seq_file *m, void *unused)
2966 {
2967         struct drm_info_node *node = m->private;
2968         struct drm_device *dev = node->minor->dev;
2969         struct intel_crtc *intel_crtc;
2970         int active_crtc_cnt = 0;
2971
2972         for_each_intel_crtc(dev, intel_crtc) {
2973                 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
2974
2975                 if (intel_crtc->active) {
2976                         active_crtc_cnt++;
2977                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
2978
2979                         drrs_status_per_crtc(m, dev, intel_crtc);
2980                 }
2981
2982                 drm_modeset_unlock(&intel_crtc->base.mutex);
2983         }
2984
2985         if (!active_crtc_cnt)
2986                 seq_puts(m, "No active crtc found\n");
2987
2988         return 0;
2989 }
2990
2991 struct pipe_crc_info {
2992         const char *name;
2993         struct drm_device *dev;
2994         enum pipe pipe;
2995 };
2996
2997 static int i915_dp_mst_info(struct seq_file *m, void *unused)
2998 {
2999         struct drm_info_node *node = (struct drm_info_node *) m->private;
3000         struct drm_device *dev = node->minor->dev;
3001         struct drm_encoder *encoder;
3002         struct intel_encoder *intel_encoder;
3003         struct intel_digital_port *intel_dig_port;
3004         drm_modeset_lock_all(dev);
3005         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3006                 intel_encoder = to_intel_encoder(encoder);
3007                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3008                         continue;
3009                 intel_dig_port = enc_to_dig_port(encoder);
3010                 if (!intel_dig_port->dp.can_mst)
3011                         continue;
3012
3013                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3014         }
3015         drm_modeset_unlock_all(dev);
3016         return 0;
3017 }
3018
3019 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3020 {
3021         struct pipe_crc_info *info = inode->i_private;
3022         struct drm_i915_private *dev_priv = info->dev->dev_private;
3023         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3024
3025         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3026                 return -ENODEV;
3027
3028         spin_lock_irq(&pipe_crc->lock);
3029
3030         if (pipe_crc->opened) {
3031                 spin_unlock_irq(&pipe_crc->lock);
3032                 return -EBUSY; /* already open */
3033         }
3034
3035         pipe_crc->opened = true;
3036         filep->private_data = inode->i_private;
3037
3038         spin_unlock_irq(&pipe_crc->lock);
3039
3040         return 0;
3041 }
3042
3043 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3044 {
3045         struct pipe_crc_info *info = inode->i_private;
3046         struct drm_i915_private *dev_priv = info->dev->dev_private;
3047         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3048
3049         spin_lock_irq(&pipe_crc->lock);
3050         pipe_crc->opened = false;
3051         spin_unlock_irq(&pipe_crc->lock);
3052
3053         return 0;
3054 }
3055
3056 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3057 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3058 /* account for \'0' */
3059 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3060
3061 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3062 {
3063         assert_spin_locked(&pipe_crc->lock);
3064         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3065                         INTEL_PIPE_CRC_ENTRIES_NR);
3066 }
3067
3068 static ssize_t
3069 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3070                    loff_t *pos)
3071 {
3072         struct pipe_crc_info *info = filep->private_data;
3073         struct drm_device *dev = info->dev;
3074         struct drm_i915_private *dev_priv = dev->dev_private;
3075         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3076         char buf[PIPE_CRC_BUFFER_LEN];
3077         int n_entries;
3078         ssize_t bytes_read;
3079
3080         /*
3081          * Don't allow user space to provide buffers not big enough to hold
3082          * a line of data.
3083          */
3084         if (count < PIPE_CRC_LINE_LEN)
3085                 return -EINVAL;
3086
3087         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3088                 return 0;
3089
3090         /* nothing to read */
3091         spin_lock_irq(&pipe_crc->lock);
3092         while (pipe_crc_data_count(pipe_crc) == 0) {
3093                 int ret;
3094
3095                 if (filep->f_flags & O_NONBLOCK) {
3096                         spin_unlock_irq(&pipe_crc->lock);
3097                         return -EAGAIN;
3098                 }
3099
3100                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3101                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3102                 if (ret) {
3103                         spin_unlock_irq(&pipe_crc->lock);
3104                         return ret;
3105                 }
3106         }
3107
3108         /* We now have one or more entries to read */
3109         n_entries = count / PIPE_CRC_LINE_LEN;
3110
3111         bytes_read = 0;
3112         while (n_entries > 0) {
3113                 struct intel_pipe_crc_entry *entry =
3114                         &pipe_crc->entries[pipe_crc->tail];
3115                 int ret;
3116
3117                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3118                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3119                         break;
3120
3121                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3122                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3123
3124                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3125                                        "%8u %8x %8x %8x %8x %8x\n",
3126                                        entry->frame, entry->crc[0],
3127                                        entry->crc[1], entry->crc[2],
3128                                        entry->crc[3], entry->crc[4]);
3129
3130                 spin_unlock_irq(&pipe_crc->lock);
3131
3132                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3133                 if (ret == PIPE_CRC_LINE_LEN)
3134                         return -EFAULT;
3135
3136                 user_buf += PIPE_CRC_LINE_LEN;
3137                 n_entries--;
3138
3139                 spin_lock_irq(&pipe_crc->lock);
3140         }
3141
3142         spin_unlock_irq(&pipe_crc->lock);
3143
3144         return bytes_read;
3145 }
3146
3147 static const struct file_operations i915_pipe_crc_fops = {
3148         .owner = THIS_MODULE,
3149         .open = i915_pipe_crc_open,
3150         .read = i915_pipe_crc_read,
3151         .release = i915_pipe_crc_release,
3152 };
3153
3154 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3155         {
3156                 .name = "i915_pipe_A_crc",
3157                 .pipe = PIPE_A,
3158         },
3159         {
3160                 .name = "i915_pipe_B_crc",
3161                 .pipe = PIPE_B,
3162         },
3163         {
3164                 .name = "i915_pipe_C_crc",
3165                 .pipe = PIPE_C,
3166         },
3167 };
3168
3169 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3170                                 enum pipe pipe)
3171 {
3172         struct drm_device *dev = minor->dev;
3173         struct dentry *ent;
3174         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3175
3176         info->dev = dev;
3177         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3178                                   &i915_pipe_crc_fops);
3179         if (!ent)
3180                 return -ENOMEM;
3181
3182         return drm_add_fake_info_node(minor, ent, info);
3183 }
3184
3185 static const char * const pipe_crc_sources[] = {
3186         "none",
3187         "plane1",
3188         "plane2",
3189         "pf",
3190         "pipe",
3191         "TV",
3192         "DP-B",
3193         "DP-C",
3194         "DP-D",
3195         "auto",
3196 };
3197
3198 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3199 {
3200         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3201         return pipe_crc_sources[source];
3202 }
3203
3204 static int display_crc_ctl_show(struct seq_file *m, void *data)
3205 {
3206         struct drm_device *dev = m->private;
3207         struct drm_i915_private *dev_priv = dev->dev_private;
3208         int i;
3209
3210         for (i = 0; i < I915_MAX_PIPES; i++)
3211                 seq_printf(m, "%c %s\n", pipe_name(i),
3212                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3213
3214         return 0;
3215 }
3216
3217 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3218 {
3219         struct drm_device *dev = inode->i_private;
3220
3221         return single_open(file, display_crc_ctl_show, dev);
3222 }
3223
3224 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3225                                  uint32_t *val)
3226 {
3227         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3228                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3229
3230         switch (*source) {
3231         case INTEL_PIPE_CRC_SOURCE_PIPE:
3232                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3233                 break;
3234         case INTEL_PIPE_CRC_SOURCE_NONE:
3235                 *val = 0;
3236                 break;
3237         default:
3238                 return -EINVAL;
3239         }
3240
3241         return 0;
3242 }
3243
3244 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3245                                      enum intel_pipe_crc_source *source)
3246 {
3247         struct intel_encoder *encoder;
3248         struct intel_crtc *crtc;
3249         struct intel_digital_port *dig_port;
3250         int ret = 0;
3251
3252         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3253
3254         drm_modeset_lock_all(dev);
3255         for_each_intel_encoder(dev, encoder) {
3256                 if (!encoder->base.crtc)
3257                         continue;
3258
3259                 crtc = to_intel_crtc(encoder->base.crtc);
3260
3261                 if (crtc->pipe != pipe)
3262                         continue;
3263
3264                 switch (encoder->type) {
3265                 case INTEL_OUTPUT_TVOUT:
3266                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3267                         break;
3268                 case INTEL_OUTPUT_DISPLAYPORT:
3269                 case INTEL_OUTPUT_EDP:
3270                         dig_port = enc_to_dig_port(&encoder->base);
3271                         switch (dig_port->port) {
3272                         case PORT_B:
3273                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3274                                 break;
3275                         case PORT_C:
3276                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3277                                 break;
3278                         case PORT_D:
3279                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3280                                 break;
3281                         default:
3282                                 WARN(1, "nonexisting DP port %c\n",
3283                                      port_name(dig_port->port));
3284                                 break;
3285                         }
3286                         break;
3287                 default:
3288                         break;
3289                 }
3290         }
3291         drm_modeset_unlock_all(dev);
3292
3293         return ret;
3294 }
3295
3296 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3297                                 enum pipe pipe,
3298                                 enum intel_pipe_crc_source *source,
3299                                 uint32_t *val)
3300 {
3301         struct drm_i915_private *dev_priv = dev->dev_private;
3302         bool need_stable_symbols = false;
3303
3304         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3305                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3306                 if (ret)
3307                         return ret;
3308         }
3309
3310         switch (*source) {
3311         case INTEL_PIPE_CRC_SOURCE_PIPE:
3312                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3313                 break;
3314         case INTEL_PIPE_CRC_SOURCE_DP_B:
3315                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3316                 need_stable_symbols = true;
3317                 break;
3318         case INTEL_PIPE_CRC_SOURCE_DP_C:
3319                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3320                 need_stable_symbols = true;
3321                 break;
3322         case INTEL_PIPE_CRC_SOURCE_DP_D:
3323                 if (!IS_CHERRYVIEW(dev))
3324                         return -EINVAL;
3325                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3326                 need_stable_symbols = true;
3327                 break;
3328         case INTEL_PIPE_CRC_SOURCE_NONE:
3329                 *val = 0;
3330                 break;
3331         default:
3332                 return -EINVAL;
3333         }
3334
3335         /*
3336          * When the pipe CRC tap point is after the transcoders we need
3337          * to tweak symbol-level features to produce a deterministic series of
3338          * symbols for a given frame. We need to reset those features only once
3339          * a frame (instead of every nth symbol):
3340          *   - DC-balance: used to ensure a better clock recovery from the data
3341          *     link (SDVO)
3342          *   - DisplayPort scrambling: used for EMI reduction
3343          */
3344         if (need_stable_symbols) {
3345                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3346
3347                 tmp |= DC_BALANCE_RESET_VLV;
3348                 switch (pipe) {
3349                 case PIPE_A:
3350                         tmp |= PIPE_A_SCRAMBLE_RESET;
3351                         break;
3352                 case PIPE_B:
3353                         tmp |= PIPE_B_SCRAMBLE_RESET;
3354                         break;
3355                 case PIPE_C:
3356                         tmp |= PIPE_C_SCRAMBLE_RESET;
3357                         break;
3358                 default:
3359                         return -EINVAL;
3360                 }
3361                 I915_WRITE(PORT_DFT2_G4X, tmp);
3362         }
3363
3364         return 0;
3365 }
3366
3367 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3368                                  enum pipe pipe,
3369                                  enum intel_pipe_crc_source *source,
3370                                  uint32_t *val)
3371 {
3372         struct drm_i915_private *dev_priv = dev->dev_private;
3373         bool need_stable_symbols = false;
3374
3375         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3376                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3377                 if (ret)
3378                         return ret;
3379         }
3380
3381         switch (*source) {
3382         case INTEL_PIPE_CRC_SOURCE_PIPE:
3383                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3384                 break;
3385         case INTEL_PIPE_CRC_SOURCE_TV:
3386                 if (!SUPPORTS_TV(dev))
3387                         return -EINVAL;
3388                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3389                 break;
3390         case INTEL_PIPE_CRC_SOURCE_DP_B:
3391                 if (!IS_G4X(dev))
3392                         return -EINVAL;
3393                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3394                 need_stable_symbols = true;
3395                 break;
3396         case INTEL_PIPE_CRC_SOURCE_DP_C:
3397                 if (!IS_G4X(dev))
3398                         return -EINVAL;
3399                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3400                 need_stable_symbols = true;
3401                 break;
3402         case INTEL_PIPE_CRC_SOURCE_DP_D:
3403                 if (!IS_G4X(dev))
3404                         return -EINVAL;
3405                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3406                 need_stable_symbols = true;
3407                 break;
3408         case INTEL_PIPE_CRC_SOURCE_NONE:
3409                 *val = 0;
3410                 break;
3411         default:
3412                 return -EINVAL;
3413         }
3414
3415         /*
3416          * When the pipe CRC tap point is after the transcoders we need
3417          * to tweak symbol-level features to produce a deterministic series of
3418          * symbols for a given frame. We need to reset those features only once
3419          * a frame (instead of every nth symbol):
3420          *   - DC-balance: used to ensure a better clock recovery from the data
3421          *     link (SDVO)
3422          *   - DisplayPort scrambling: used for EMI reduction
3423          */
3424         if (need_stable_symbols) {
3425                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3426
3427                 WARN_ON(!IS_G4X(dev));
3428
3429                 I915_WRITE(PORT_DFT_I9XX,
3430                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3431
3432                 if (pipe == PIPE_A)
3433                         tmp |= PIPE_A_SCRAMBLE_RESET;
3434                 else
3435                         tmp |= PIPE_B_SCRAMBLE_RESET;
3436
3437                 I915_WRITE(PORT_DFT2_G4X, tmp);
3438         }
3439
3440         return 0;
3441 }
3442
3443 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3444                                          enum pipe pipe)
3445 {
3446         struct drm_i915_private *dev_priv = dev->dev_private;
3447         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3448
3449         switch (pipe) {
3450         case PIPE_A:
3451                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3452                 break;
3453         case PIPE_B:
3454                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3455                 break;
3456         case PIPE_C:
3457                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3458                 break;
3459         default:
3460                 return;
3461         }
3462         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3463                 tmp &= ~DC_BALANCE_RESET_VLV;
3464         I915_WRITE(PORT_DFT2_G4X, tmp);
3465
3466 }
3467
3468 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3469                                          enum pipe pipe)
3470 {
3471         struct drm_i915_private *dev_priv = dev->dev_private;
3472         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3473
3474         if (pipe == PIPE_A)
3475                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3476         else
3477                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3478         I915_WRITE(PORT_DFT2_G4X, tmp);
3479
3480         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3481                 I915_WRITE(PORT_DFT_I9XX,
3482                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3483         }
3484 }
3485
3486 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3487                                 uint32_t *val)
3488 {
3489         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3490                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3491
3492         switch (*source) {
3493         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3494                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3495                 break;
3496         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3497                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3498                 break;
3499         case INTEL_PIPE_CRC_SOURCE_PIPE:
3500                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3501                 break;
3502         case INTEL_PIPE_CRC_SOURCE_NONE:
3503                 *val = 0;
3504                 break;
3505         default:
3506                 return -EINVAL;
3507         }
3508
3509         return 0;
3510 }
3511
3512 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3513 {
3514         struct drm_i915_private *dev_priv = dev->dev_private;
3515         struct intel_crtc *crtc =
3516                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3517
3518         drm_modeset_lock_all(dev);
3519         /*
3520          * If we use the eDP transcoder we need to make sure that we don't
3521          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3522          * relevant on hsw with pipe A when using the always-on power well
3523          * routing.
3524          */
3525         if (crtc->config->cpu_transcoder == TRANSCODER_EDP &&
3526             !crtc->config->pch_pfit.enabled) {
3527                 crtc->config->pch_pfit.force_thru = true;
3528
3529                 intel_display_power_get(dev_priv,
3530                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3531
3532                 dev_priv->display.crtc_disable(&crtc->base);
3533                 dev_priv->display.crtc_enable(&crtc->base);
3534         }
3535         drm_modeset_unlock_all(dev);
3536 }
3537
3538 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3539 {
3540         struct drm_i915_private *dev_priv = dev->dev_private;
3541         struct intel_crtc *crtc =
3542                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3543
3544         drm_modeset_lock_all(dev);
3545         /*
3546          * If we use the eDP transcoder we need to make sure that we don't
3547          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3548          * relevant on hsw with pipe A when using the always-on power well
3549          * routing.
3550          */
3551         if (crtc->config->pch_pfit.force_thru) {
3552                 crtc->config->pch_pfit.force_thru = false;
3553
3554                 dev_priv->display.crtc_disable(&crtc->base);
3555                 dev_priv->display.crtc_enable(&crtc->base);
3556
3557                 intel_display_power_put(dev_priv,
3558                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3559         }
3560         drm_modeset_unlock_all(dev);
3561 }
3562
3563 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3564                                 enum pipe pipe,
3565                                 enum intel_pipe_crc_source *source,
3566                                 uint32_t *val)
3567 {
3568         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3569                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3570
3571         switch (*source) {
3572         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3573                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3574                 break;
3575         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3576                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3577                 break;
3578         case INTEL_PIPE_CRC_SOURCE_PF:
3579                 if (IS_HASWELL(dev) && pipe == PIPE_A)
3580                         hsw_trans_edp_pipe_A_crc_wa(dev);
3581
3582                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3583                 break;
3584         case INTEL_PIPE_CRC_SOURCE_NONE:
3585                 *val = 0;
3586                 break;
3587         default:
3588                 return -EINVAL;
3589         }
3590
3591         return 0;
3592 }
3593
3594 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3595                                enum intel_pipe_crc_source source)
3596 {
3597         struct drm_i915_private *dev_priv = dev->dev_private;
3598         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3599         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3600                                                                         pipe));
3601         u32 val = 0; /* shut up gcc */
3602         int ret;
3603
3604         if (pipe_crc->source == source)
3605                 return 0;
3606
3607         /* forbid changing the source without going back to 'none' */
3608         if (pipe_crc->source && source)
3609                 return -EINVAL;
3610
3611         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3612                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3613                 return -EIO;
3614         }
3615
3616         if (IS_GEN2(dev))
3617                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3618         else if (INTEL_INFO(dev)->gen < 5)
3619                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3620         else if (IS_VALLEYVIEW(dev))
3621                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3622         else if (IS_GEN5(dev) || IS_GEN6(dev))
3623                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3624         else
3625                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3626
3627         if (ret != 0)
3628                 return ret;
3629
3630         /* none -> real source transition */
3631         if (source) {
3632                 struct intel_pipe_crc_entry *entries;
3633
3634                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3635                                  pipe_name(pipe), pipe_crc_source_name(source));
3636
3637                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
3638                                   sizeof(pipe_crc->entries[0]),
3639                                   GFP_KERNEL);
3640                 if (!entries)
3641                         return -ENOMEM;
3642
3643                 /*
3644                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3645                  * enabled and disabled dynamically based on package C states,
3646                  * user space can't make reliable use of the CRCs, so let's just
3647                  * completely disable it.
3648                  */
3649                 hsw_disable_ips(crtc);
3650
3651                 spin_lock_irq(&pipe_crc->lock);
3652                 kfree(pipe_crc->entries);
3653                 pipe_crc->entries = entries;
3654                 pipe_crc->head = 0;
3655                 pipe_crc->tail = 0;
3656                 spin_unlock_irq(&pipe_crc->lock);
3657         }
3658
3659         pipe_crc->source = source;
3660
3661         I915_WRITE(PIPE_CRC_CTL(pipe), val);
3662         POSTING_READ(PIPE_CRC_CTL(pipe));
3663
3664         /* real source -> none transition */
3665         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3666                 struct intel_pipe_crc_entry *entries;
3667                 struct intel_crtc *crtc =
3668                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3669
3670                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3671                                  pipe_name(pipe));
3672
3673                 drm_modeset_lock(&crtc->base.mutex, NULL);
3674                 if (crtc->active)
3675                         intel_wait_for_vblank(dev, pipe);
3676                 drm_modeset_unlock(&crtc->base.mutex);
3677
3678                 spin_lock_irq(&pipe_crc->lock);
3679                 entries = pipe_crc->entries;
3680                 pipe_crc->entries = NULL;
3681                 pipe_crc->head = 0;
3682                 pipe_crc->tail = 0;
3683                 spin_unlock_irq(&pipe_crc->lock);
3684
3685                 kfree(entries);
3686
3687                 if (IS_G4X(dev))
3688                         g4x_undo_pipe_scramble_reset(dev, pipe);
3689                 else if (IS_VALLEYVIEW(dev))
3690                         vlv_undo_pipe_scramble_reset(dev, pipe);
3691                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3692                         hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3693
3694                 hsw_enable_ips(crtc);
3695         }
3696
3697         return 0;
3698 }
3699
3700 /*
3701  * Parse pipe CRC command strings:
3702  *   command: wsp* object wsp+ name wsp+ source wsp*
3703  *   object: 'pipe'
3704  *   name: (A | B | C)
3705  *   source: (none | plane1 | plane2 | pf)
3706  *   wsp: (#0x20 | #0x9 | #0xA)+
3707  *
3708  * eg.:
3709  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3710  *  "pipe A none"    ->  Stop CRC
3711  */
3712 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3713 {
3714         int n_words = 0;
3715
3716         while (*buf) {
3717                 char *end;
3718
3719                 /* skip leading white space */
3720                 buf = skip_spaces(buf);
3721                 if (!*buf)
3722                         break;  /* end of buffer */
3723
3724                 /* find end of word */
3725                 for (end = buf; *end && !isspace(*end); end++)
3726                         ;
3727
3728                 if (n_words == max_words) {
3729                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3730                                          max_words);
3731                         return -EINVAL; /* ran out of words[] before bytes */
3732                 }
3733
3734                 if (*end)
3735                         *end++ = '\0';
3736                 words[n_words++] = buf;
3737                 buf = end;
3738         }
3739
3740         return n_words;
3741 }
3742
3743 enum intel_pipe_crc_object {
3744         PIPE_CRC_OBJECT_PIPE,
3745 };
3746
3747 static const char * const pipe_crc_objects[] = {
3748         "pipe",
3749 };
3750
3751 static int
3752 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3753 {
3754         int i;
3755
3756         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3757                 if (!strcmp(buf, pipe_crc_objects[i])) {
3758                         *o = i;
3759                         return 0;
3760                     }
3761
3762         return -EINVAL;
3763 }
3764
3765 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3766 {
3767         const char name = buf[0];
3768
3769         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3770                 return -EINVAL;
3771
3772         *pipe = name - 'A';
3773
3774         return 0;
3775 }
3776
3777 static int
3778 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3779 {
3780         int i;
3781
3782         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3783                 if (!strcmp(buf, pipe_crc_sources[i])) {
3784                         *s = i;
3785                         return 0;
3786                     }
3787
3788         return -EINVAL;
3789 }
3790
3791 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3792 {
3793 #define N_WORDS 3
3794         int n_words;
3795         char *words[N_WORDS];
3796         enum pipe pipe;
3797         enum intel_pipe_crc_object object;
3798         enum intel_pipe_crc_source source;
3799
3800         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3801         if (n_words != N_WORDS) {
3802                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3803                                  N_WORDS);
3804                 return -EINVAL;
3805         }
3806
3807         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3808                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3809                 return -EINVAL;
3810         }
3811
3812         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3813                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3814                 return -EINVAL;
3815         }
3816
3817         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3818                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3819                 return -EINVAL;
3820         }
3821
3822         return pipe_crc_set_source(dev, pipe, source);
3823 }
3824
3825 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3826                                      size_t len, loff_t *offp)
3827 {
3828         struct seq_file *m = file->private_data;
3829         struct drm_device *dev = m->private;
3830         char *tmpbuf;
3831         int ret;
3832
3833         if (len == 0)
3834                 return 0;
3835
3836         if (len > PAGE_SIZE - 1) {
3837                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3838                                  PAGE_SIZE);
3839                 return -E2BIG;
3840         }
3841
3842         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3843         if (!tmpbuf)
3844                 return -ENOMEM;
3845
3846         if (copy_from_user(tmpbuf, ubuf, len)) {
3847                 ret = -EFAULT;
3848                 goto out;
3849         }
3850         tmpbuf[len] = '\0';
3851
3852         ret = display_crc_ctl_parse(dev, tmpbuf, len);
3853
3854 out:
3855         kfree(tmpbuf);
3856         if (ret < 0)
3857                 return ret;
3858
3859         *offp += len;
3860         return len;
3861 }
3862
3863 static const struct file_operations i915_display_crc_ctl_fops = {
3864         .owner = THIS_MODULE,
3865         .open = display_crc_ctl_open,
3866         .read = seq_read,
3867         .llseek = seq_lseek,
3868         .release = single_release,
3869         .write = display_crc_ctl_write
3870 };
3871
3872 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3873 {
3874         struct drm_device *dev = m->private;
3875         int num_levels = ilk_wm_max_level(dev) + 1;
3876         int level;
3877
3878         drm_modeset_lock_all(dev);
3879
3880         for (level = 0; level < num_levels; level++) {
3881                 unsigned int latency = wm[level];
3882
3883                 /*
3884                  * - WM1+ latency values in 0.5us units
3885                  * - latencies are in us on gen9
3886                  */
3887                 if (INTEL_INFO(dev)->gen >= 9)
3888                         latency *= 10;
3889                 else if (level > 0)
3890                         latency *= 5;
3891
3892                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3893                            level, wm[level], latency / 10, latency % 10);
3894         }
3895
3896         drm_modeset_unlock_all(dev);
3897 }
3898
3899 static int pri_wm_latency_show(struct seq_file *m, void *data)
3900 {
3901         struct drm_device *dev = m->private;
3902         struct drm_i915_private *dev_priv = dev->dev_private;
3903         const uint16_t *latencies;
3904
3905         if (INTEL_INFO(dev)->gen >= 9)
3906                 latencies = dev_priv->wm.skl_latency;
3907         else
3908                 latencies = to_i915(dev)->wm.pri_latency;
3909
3910         wm_latency_show(m, latencies);
3911
3912         return 0;
3913 }
3914
3915 static int spr_wm_latency_show(struct seq_file *m, void *data)
3916 {
3917         struct drm_device *dev = m->private;
3918         struct drm_i915_private *dev_priv = dev->dev_private;
3919         const uint16_t *latencies;
3920
3921         if (INTEL_INFO(dev)->gen >= 9)
3922                 latencies = dev_priv->wm.skl_latency;
3923         else
3924                 latencies = to_i915(dev)->wm.spr_latency;
3925
3926         wm_latency_show(m, latencies);
3927
3928         return 0;
3929 }
3930
3931 static int cur_wm_latency_show(struct seq_file *m, void *data)
3932 {
3933         struct drm_device *dev = m->private;
3934         struct drm_i915_private *dev_priv = dev->dev_private;
3935         const uint16_t *latencies;
3936
3937         if (INTEL_INFO(dev)->gen >= 9)
3938                 latencies = dev_priv->wm.skl_latency;
3939         else
3940                 latencies = to_i915(dev)->wm.cur_latency;
3941
3942         wm_latency_show(m, latencies);
3943
3944         return 0;
3945 }
3946
3947 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3948 {
3949         struct drm_device *dev = inode->i_private;
3950
3951         if (HAS_GMCH_DISPLAY(dev))
3952                 return -ENODEV;
3953
3954         return single_open(file, pri_wm_latency_show, dev);
3955 }
3956
3957 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3958 {
3959         struct drm_device *dev = inode->i_private;
3960
3961         if (HAS_GMCH_DISPLAY(dev))
3962                 return -ENODEV;
3963
3964         return single_open(file, spr_wm_latency_show, dev);
3965 }
3966
3967 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3968 {
3969         struct drm_device *dev = inode->i_private;
3970
3971         if (HAS_GMCH_DISPLAY(dev))
3972                 return -ENODEV;
3973
3974         return single_open(file, cur_wm_latency_show, dev);
3975 }
3976
3977 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3978                                 size_t len, loff_t *offp, uint16_t wm[8])
3979 {
3980         struct seq_file *m = file->private_data;
3981         struct drm_device *dev = m->private;
3982         uint16_t new[8] = { 0 };
3983         int num_levels = ilk_wm_max_level(dev) + 1;
3984         int level;
3985         int ret;
3986         char tmp[32];
3987
3988         if (len >= sizeof(tmp))
3989                 return -EINVAL;
3990
3991         if (copy_from_user(tmp, ubuf, len))
3992                 return -EFAULT;
3993
3994         tmp[len] = '\0';
3995
3996         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
3997                      &new[0], &new[1], &new[2], &new[3],
3998                      &new[4], &new[5], &new[6], &new[7]);
3999         if (ret != num_levels)
4000                 return -EINVAL;
4001
4002         drm_modeset_lock_all(dev);
4003
4004         for (level = 0; level < num_levels; level++)
4005                 wm[level] = new[level];
4006
4007         drm_modeset_unlock_all(dev);
4008
4009         return len;
4010 }
4011
4012
4013 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4014                                     size_t len, loff_t *offp)
4015 {
4016         struct seq_file *m = file->private_data;
4017         struct drm_device *dev = m->private;
4018         struct drm_i915_private *dev_priv = dev->dev_private;
4019         uint16_t *latencies;
4020
4021         if (INTEL_INFO(dev)->gen >= 9)
4022                 latencies = dev_priv->wm.skl_latency;
4023         else
4024                 latencies = to_i915(dev)->wm.pri_latency;
4025
4026         return wm_latency_write(file, ubuf, len, offp, latencies);
4027 }
4028
4029 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4030                                     size_t len, loff_t *offp)
4031 {
4032         struct seq_file *m = file->private_data;
4033         struct drm_device *dev = m->private;
4034         struct drm_i915_private *dev_priv = dev->dev_private;
4035         uint16_t *latencies;
4036
4037         if (INTEL_INFO(dev)->gen >= 9)
4038                 latencies = dev_priv->wm.skl_latency;
4039         else
4040                 latencies = to_i915(dev)->wm.spr_latency;
4041
4042         return wm_latency_write(file, ubuf, len, offp, latencies);
4043 }
4044
4045 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4046                                     size_t len, loff_t *offp)
4047 {
4048         struct seq_file *m = file->private_data;
4049         struct drm_device *dev = m->private;
4050         struct drm_i915_private *dev_priv = dev->dev_private;
4051         uint16_t *latencies;
4052
4053         if (INTEL_INFO(dev)->gen >= 9)
4054                 latencies = dev_priv->wm.skl_latency;
4055         else
4056                 latencies = to_i915(dev)->wm.cur_latency;
4057
4058         return wm_latency_write(file, ubuf, len, offp, latencies);
4059 }
4060
4061 static const struct file_operations i915_pri_wm_latency_fops = {
4062         .owner = THIS_MODULE,
4063         .open = pri_wm_latency_open,
4064         .read = seq_read,
4065         .llseek = seq_lseek,
4066         .release = single_release,
4067         .write = pri_wm_latency_write
4068 };
4069
4070 static const struct file_operations i915_spr_wm_latency_fops = {
4071         .owner = THIS_MODULE,
4072         .open = spr_wm_latency_open,
4073         .read = seq_read,
4074         .llseek = seq_lseek,
4075         .release = single_release,
4076         .write = spr_wm_latency_write
4077 };
4078
4079 static const struct file_operations i915_cur_wm_latency_fops = {
4080         .owner = THIS_MODULE,
4081         .open = cur_wm_latency_open,
4082         .read = seq_read,
4083         .llseek = seq_lseek,
4084         .release = single_release,
4085         .write = cur_wm_latency_write
4086 };
4087
4088 static int
4089 i915_wedged_get(void *data, u64 *val)
4090 {
4091         struct drm_device *dev = data;
4092         struct drm_i915_private *dev_priv = dev->dev_private;
4093
4094         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4095
4096         return 0;
4097 }
4098
4099 static int
4100 i915_wedged_set(void *data, u64 val)
4101 {
4102         struct drm_device *dev = data;
4103         struct drm_i915_private *dev_priv = dev->dev_private;
4104
4105         /*
4106          * There is no safeguard against this debugfs entry colliding
4107          * with the hangcheck calling same i915_handle_error() in
4108          * parallel, causing an explosion. For now we assume that the
4109          * test harness is responsible enough not to inject gpu hangs
4110          * while it is writing to 'i915_wedged'
4111          */
4112
4113         if (i915_reset_in_progress(&dev_priv->gpu_error))
4114                 return -EAGAIN;
4115
4116         intel_runtime_pm_get(dev_priv);
4117
4118         i915_handle_error(dev, val,
4119                           "Manually setting wedged to %llu", val);
4120
4121         intel_runtime_pm_put(dev_priv);
4122
4123         return 0;
4124 }
4125
4126 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4127                         i915_wedged_get, i915_wedged_set,
4128                         "%llu\n");
4129
4130 static int
4131 i915_ring_stop_get(void *data, u64 *val)
4132 {
4133         struct drm_device *dev = data;
4134         struct drm_i915_private *dev_priv = dev->dev_private;
4135
4136         *val = dev_priv->gpu_error.stop_rings;
4137
4138         return 0;
4139 }
4140
4141 static int
4142 i915_ring_stop_set(void *data, u64 val)
4143 {
4144         struct drm_device *dev = data;
4145         struct drm_i915_private *dev_priv = dev->dev_private;
4146         int ret;
4147
4148         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4149
4150         ret = mutex_lock_interruptible(&dev->struct_mutex);
4151         if (ret)
4152                 return ret;
4153
4154         dev_priv->gpu_error.stop_rings = val;
4155         mutex_unlock(&dev->struct_mutex);
4156
4157         return 0;
4158 }
4159
4160 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4161                         i915_ring_stop_get, i915_ring_stop_set,
4162                         "0x%08llx\n");
4163
4164 static int
4165 i915_ring_missed_irq_get(void *data, u64 *val)
4166 {
4167         struct drm_device *dev = data;
4168         struct drm_i915_private *dev_priv = dev->dev_private;
4169
4170         *val = dev_priv->gpu_error.missed_irq_rings;
4171         return 0;
4172 }
4173
4174 static int
4175 i915_ring_missed_irq_set(void *data, u64 val)
4176 {
4177         struct drm_device *dev = data;
4178         struct drm_i915_private *dev_priv = dev->dev_private;
4179         int ret;
4180
4181         /* Lock against concurrent debugfs callers */
4182         ret = mutex_lock_interruptible(&dev->struct_mutex);
4183         if (ret)
4184                 return ret;
4185         dev_priv->gpu_error.missed_irq_rings = val;
4186         mutex_unlock(&dev->struct_mutex);
4187
4188         return 0;
4189 }
4190
4191 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4192                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4193                         "0x%08llx\n");
4194
4195 static int
4196 i915_ring_test_irq_get(void *data, u64 *val)
4197 {
4198         struct drm_device *dev = data;
4199         struct drm_i915_private *dev_priv = dev->dev_private;
4200
4201         *val = dev_priv->gpu_error.test_irq_rings;
4202
4203         return 0;
4204 }
4205
4206 static int
4207 i915_ring_test_irq_set(void *data, u64 val)
4208 {
4209         struct drm_device *dev = data;
4210         struct drm_i915_private *dev_priv = dev->dev_private;
4211         int ret;
4212
4213         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4214
4215         /* Lock against concurrent debugfs callers */
4216         ret = mutex_lock_interruptible(&dev->struct_mutex);
4217         if (ret)
4218                 return ret;
4219
4220         dev_priv->gpu_error.test_irq_rings = val;
4221         mutex_unlock(&dev->struct_mutex);
4222
4223         return 0;
4224 }
4225
4226 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4227                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4228                         "0x%08llx\n");
4229
4230 #define DROP_UNBOUND 0x1
4231 #define DROP_BOUND 0x2
4232 #define DROP_RETIRE 0x4
4233 #define DROP_ACTIVE 0x8
4234 #define DROP_ALL (DROP_UNBOUND | \
4235                   DROP_BOUND | \
4236                   DROP_RETIRE | \
4237                   DROP_ACTIVE)
4238 static int
4239 i915_drop_caches_get(void *data, u64 *val)
4240 {
4241         *val = DROP_ALL;
4242
4243         return 0;
4244 }
4245
4246 static int
4247 i915_drop_caches_set(void *data, u64 val)
4248 {
4249         struct drm_device *dev = data;
4250         struct drm_i915_private *dev_priv = dev->dev_private;
4251         int ret;
4252
4253         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4254
4255         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4256          * on ioctls on -EAGAIN. */
4257         ret = mutex_lock_interruptible(&dev->struct_mutex);
4258         if (ret)
4259                 return ret;
4260
4261         if (val & DROP_ACTIVE) {
4262                 ret = i915_gpu_idle(dev);
4263                 if (ret)
4264                         goto unlock;
4265         }
4266
4267         if (val & (DROP_RETIRE | DROP_ACTIVE))
4268                 i915_gem_retire_requests(dev);
4269
4270         if (val & DROP_BOUND)
4271                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4272
4273         if (val & DROP_UNBOUND)
4274                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4275
4276 unlock:
4277         mutex_unlock(&dev->struct_mutex);
4278
4279         return ret;
4280 }
4281
4282 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4283                         i915_drop_caches_get, i915_drop_caches_set,
4284                         "0x%08llx\n");
4285
4286 static int
4287 i915_max_freq_get(void *data, u64 *val)
4288 {
4289         struct drm_device *dev = data;
4290         struct drm_i915_private *dev_priv = dev->dev_private;
4291         int ret;
4292
4293         if (INTEL_INFO(dev)->gen < 6)
4294                 return -ENODEV;
4295
4296         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4297
4298         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4299         if (ret)
4300                 return ret;
4301
4302         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4303         mutex_unlock(&dev_priv->rps.hw_lock);
4304
4305         return 0;
4306 }
4307
4308 static int
4309 i915_max_freq_set(void *data, u64 val)
4310 {
4311         struct drm_device *dev = data;
4312         struct drm_i915_private *dev_priv = dev->dev_private;
4313         u32 hw_max, hw_min;
4314         int ret;
4315
4316         if (INTEL_INFO(dev)->gen < 6)
4317                 return -ENODEV;
4318
4319         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4320
4321         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4322
4323         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4324         if (ret)
4325                 return ret;
4326
4327         /*
4328          * Turbo will still be enabled, but won't go above the set value.
4329          */
4330         val = intel_freq_opcode(dev_priv, val);
4331
4332         hw_max = dev_priv->rps.max_freq;
4333         hw_min = dev_priv->rps.min_freq;
4334
4335         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4336                 mutex_unlock(&dev_priv->rps.hw_lock);
4337                 return -EINVAL;
4338         }
4339
4340         dev_priv->rps.max_freq_softlimit = val;
4341
4342         intel_set_rps(dev, val);
4343
4344         mutex_unlock(&dev_priv->rps.hw_lock);
4345
4346         return 0;
4347 }
4348
4349 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4350                         i915_max_freq_get, i915_max_freq_set,
4351                         "%llu\n");
4352
4353 static int
4354 i915_min_freq_get(void *data, u64 *val)
4355 {
4356         struct drm_device *dev = data;
4357         struct drm_i915_private *dev_priv = dev->dev_private;
4358         int ret;
4359
4360         if (INTEL_INFO(dev)->gen < 6)
4361                 return -ENODEV;
4362
4363         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4364
4365         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4366         if (ret)
4367                 return ret;
4368
4369         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4370         mutex_unlock(&dev_priv->rps.hw_lock);
4371
4372         return 0;
4373 }
4374
4375 static int
4376 i915_min_freq_set(void *data, u64 val)
4377 {
4378         struct drm_device *dev = data;
4379         struct drm_i915_private *dev_priv = dev->dev_private;
4380         u32 hw_max, hw_min;
4381         int ret;
4382
4383         if (INTEL_INFO(dev)->gen < 6)
4384                 return -ENODEV;
4385
4386         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4387
4388         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4389
4390         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4391         if (ret)
4392                 return ret;
4393
4394         /*
4395          * Turbo will still be enabled, but won't go below the set value.
4396          */
4397         val = intel_freq_opcode(dev_priv, val);
4398
4399         hw_max = dev_priv->rps.max_freq;
4400         hw_min = dev_priv->rps.min_freq;
4401
4402         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4403                 mutex_unlock(&dev_priv->rps.hw_lock);
4404                 return -EINVAL;
4405         }
4406
4407         dev_priv->rps.min_freq_softlimit = val;
4408
4409         intel_set_rps(dev, val);
4410
4411         mutex_unlock(&dev_priv->rps.hw_lock);
4412
4413         return 0;
4414 }
4415
4416 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4417                         i915_min_freq_get, i915_min_freq_set,
4418                         "%llu\n");
4419
4420 static int
4421 i915_cache_sharing_get(void *data, u64 *val)
4422 {
4423         struct drm_device *dev = data;
4424         struct drm_i915_private *dev_priv = dev->dev_private;
4425         u32 snpcr;
4426         int ret;
4427
4428         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4429                 return -ENODEV;
4430
4431         ret = mutex_lock_interruptible(&dev->struct_mutex);
4432         if (ret)
4433                 return ret;
4434         intel_runtime_pm_get(dev_priv);
4435
4436         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4437
4438         intel_runtime_pm_put(dev_priv);
4439         mutex_unlock(&dev_priv->dev->struct_mutex);
4440
4441         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4442
4443         return 0;
4444 }
4445
4446 static int
4447 i915_cache_sharing_set(void *data, u64 val)
4448 {
4449         struct drm_device *dev = data;
4450         struct drm_i915_private *dev_priv = dev->dev_private;
4451         u32 snpcr;
4452
4453         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4454                 return -ENODEV;
4455
4456         if (val > 3)
4457                 return -EINVAL;
4458
4459         intel_runtime_pm_get(dev_priv);
4460         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4461
4462         /* Update the cache sharing policy here as well */
4463         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4464         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4465         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4466         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4467
4468         intel_runtime_pm_put(dev_priv);
4469         return 0;
4470 }
4471
4472 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4473                         i915_cache_sharing_get, i915_cache_sharing_set,
4474                         "%llu\n");
4475
4476 static int i915_sseu_status(struct seq_file *m, void *unused)
4477 {
4478         struct drm_info_node *node = (struct drm_info_node *) m->private;
4479         struct drm_device *dev = node->minor->dev;
4480         struct drm_i915_private *dev_priv = dev->dev_private;
4481         unsigned int s_tot = 0, ss_tot = 0, ss_per = 0, eu_tot = 0, eu_per = 0;
4482
4483         if ((INTEL_INFO(dev)->gen < 8) || IS_BROADWELL(dev))
4484                 return -ENODEV;
4485
4486         seq_puts(m, "SSEU Device Info\n");
4487         seq_printf(m, "  Available Slice Total: %u\n",
4488                    INTEL_INFO(dev)->slice_total);
4489         seq_printf(m, "  Available Subslice Total: %u\n",
4490                    INTEL_INFO(dev)->subslice_total);
4491         seq_printf(m, "  Available Subslice Per Slice: %u\n",
4492                    INTEL_INFO(dev)->subslice_per_slice);
4493         seq_printf(m, "  Available EU Total: %u\n",
4494                    INTEL_INFO(dev)->eu_total);
4495         seq_printf(m, "  Available EU Per Subslice: %u\n",
4496                    INTEL_INFO(dev)->eu_per_subslice);
4497         seq_printf(m, "  Has Slice Power Gating: %s\n",
4498                    yesno(INTEL_INFO(dev)->has_slice_pg));
4499         seq_printf(m, "  Has Subslice Power Gating: %s\n",
4500                    yesno(INTEL_INFO(dev)->has_subslice_pg));
4501         seq_printf(m, "  Has EU Power Gating: %s\n",
4502                    yesno(INTEL_INFO(dev)->has_eu_pg));
4503
4504         seq_puts(m, "SSEU Device Status\n");
4505         if (IS_CHERRYVIEW(dev)) {
4506                 const int ss_max = 2;
4507                 int ss;
4508                 u32 sig1[ss_max], sig2[ss_max];
4509
4510                 sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4511                 sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4512                 sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4513                 sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4514
4515                 for (ss = 0; ss < ss_max; ss++) {
4516                         unsigned int eu_cnt;
4517
4518                         if (sig1[ss] & CHV_SS_PG_ENABLE)
4519                                 /* skip disabled subslice */
4520                                 continue;
4521
4522                         s_tot = 1;
4523                         ss_per++;
4524                         eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4525                                  ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4526                                  ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4527                                  ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4528                         eu_tot += eu_cnt;
4529                         eu_per = max(eu_per, eu_cnt);
4530                 }
4531                 ss_tot = ss_per;
4532         } else if (IS_SKYLAKE(dev)) {
4533                 const int s_max = 3, ss_max = 4;
4534                 int s, ss;
4535                 u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4536
4537                 s_reg[0] = I915_READ(GEN9_SLICE0_PGCTL_ACK);
4538                 s_reg[1] = I915_READ(GEN9_SLICE1_PGCTL_ACK);
4539                 s_reg[2] = I915_READ(GEN9_SLICE2_PGCTL_ACK);
4540                 eu_reg[0] = I915_READ(GEN9_SLICE0_SS01_EU_PGCTL_ACK);
4541                 eu_reg[1] = I915_READ(GEN9_SLICE0_SS23_EU_PGCTL_ACK);
4542                 eu_reg[2] = I915_READ(GEN9_SLICE1_SS01_EU_PGCTL_ACK);
4543                 eu_reg[3] = I915_READ(GEN9_SLICE1_SS23_EU_PGCTL_ACK);
4544                 eu_reg[4] = I915_READ(GEN9_SLICE2_SS01_EU_PGCTL_ACK);
4545                 eu_reg[5] = I915_READ(GEN9_SLICE2_SS23_EU_PGCTL_ACK);
4546                 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4547                              GEN9_PGCTL_SSA_EU19_ACK |
4548                              GEN9_PGCTL_SSA_EU210_ACK |
4549                              GEN9_PGCTL_SSA_EU311_ACK;
4550                 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4551                              GEN9_PGCTL_SSB_EU19_ACK |
4552                              GEN9_PGCTL_SSB_EU210_ACK |
4553                              GEN9_PGCTL_SSB_EU311_ACK;
4554
4555                 for (s = 0; s < s_max; s++) {
4556                         if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4557                                 /* skip disabled slice */
4558                                 continue;
4559
4560                         s_tot++;
4561                         ss_per = INTEL_INFO(dev)->subslice_per_slice;
4562                         ss_tot += ss_per;
4563                         for (ss = 0; ss < ss_max; ss++) {
4564                                 unsigned int eu_cnt;
4565
4566                                 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4567                                                        eu_mask[ss%2]);
4568                                 eu_tot += eu_cnt;
4569                                 eu_per = max(eu_per, eu_cnt);
4570                         }
4571                 }
4572         }
4573         seq_printf(m, "  Enabled Slice Total: %u\n", s_tot);
4574         seq_printf(m, "  Enabled Subslice Total: %u\n", ss_tot);
4575         seq_printf(m, "  Enabled Subslice Per Slice: %u\n", ss_per);
4576         seq_printf(m, "  Enabled EU Total: %u\n", eu_tot);
4577         seq_printf(m, "  Enabled EU Per Subslice: %u\n", eu_per);
4578
4579         return 0;
4580 }
4581
4582 static int i915_forcewake_open(struct inode *inode, struct file *file)
4583 {
4584         struct drm_device *dev = inode->i_private;
4585         struct drm_i915_private *dev_priv = dev->dev_private;
4586
4587         if (INTEL_INFO(dev)->gen < 6)
4588                 return 0;
4589
4590         intel_runtime_pm_get(dev_priv);
4591         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4592
4593         return 0;
4594 }
4595
4596 static int i915_forcewake_release(struct inode *inode, struct file *file)
4597 {
4598         struct drm_device *dev = inode->i_private;
4599         struct drm_i915_private *dev_priv = dev->dev_private;
4600
4601         if (INTEL_INFO(dev)->gen < 6)
4602                 return 0;
4603
4604         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4605         intel_runtime_pm_put(dev_priv);
4606
4607         return 0;
4608 }
4609
4610 static const struct file_operations i915_forcewake_fops = {
4611         .owner = THIS_MODULE,
4612         .open = i915_forcewake_open,
4613         .release = i915_forcewake_release,
4614 };
4615
4616 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4617 {
4618         struct drm_device *dev = minor->dev;
4619         struct dentry *ent;
4620
4621         ent = debugfs_create_file("i915_forcewake_user",
4622                                   S_IRUSR,
4623                                   root, dev,
4624                                   &i915_forcewake_fops);
4625         if (!ent)
4626                 return -ENOMEM;
4627
4628         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4629 }
4630
4631 static int i915_debugfs_create(struct dentry *root,
4632                                struct drm_minor *minor,
4633                                const char *name,
4634                                const struct file_operations *fops)
4635 {
4636         struct drm_device *dev = minor->dev;
4637         struct dentry *ent;
4638
4639         ent = debugfs_create_file(name,
4640                                   S_IRUGO | S_IWUSR,
4641                                   root, dev,
4642                                   fops);
4643         if (!ent)
4644                 return -ENOMEM;
4645
4646         return drm_add_fake_info_node(minor, ent, fops);
4647 }
4648
4649 static const struct drm_info_list i915_debugfs_list[] = {
4650         {"i915_capabilities", i915_capabilities, 0},
4651         {"i915_gem_objects", i915_gem_object_info, 0},
4652         {"i915_gem_gtt", i915_gem_gtt_info, 0},
4653         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
4654         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
4655         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
4656         {"i915_gem_stolen", i915_gem_stolen_list_info },
4657         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4658         {"i915_gem_request", i915_gem_request_info, 0},
4659         {"i915_gem_seqno", i915_gem_seqno_info, 0},
4660         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4661         {"i915_gem_interrupt", i915_interrupt_info, 0},
4662         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
4663         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
4664         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
4665         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
4666         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4667         {"i915_frequency_info", i915_frequency_info, 0},
4668         {"i915_hangcheck_info", i915_hangcheck_info, 0},
4669         {"i915_drpc_info", i915_drpc_info, 0},
4670         {"i915_emon_status", i915_emon_status, 0},
4671         {"i915_ring_freq_table", i915_ring_freq_table, 0},
4672         {"i915_fbc_status", i915_fbc_status, 0},
4673         {"i915_ips_status", i915_ips_status, 0},
4674         {"i915_sr_status", i915_sr_status, 0},
4675         {"i915_opregion", i915_opregion, 0},
4676         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4677         {"i915_context_status", i915_context_status, 0},
4678         {"i915_dump_lrc", i915_dump_lrc, 0},
4679         {"i915_execlists", i915_execlists, 0},
4680         {"i915_forcewake_domains", i915_forcewake_domains, 0},
4681         {"i915_swizzle_info", i915_swizzle_info, 0},
4682         {"i915_ppgtt_info", i915_ppgtt_info, 0},
4683         {"i915_llc", i915_llc, 0},
4684         {"i915_edp_psr_status", i915_edp_psr_status, 0},
4685         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
4686         {"i915_energy_uJ", i915_energy_uJ, 0},
4687         {"i915_pc8_status", i915_pc8_status, 0},
4688         {"i915_power_domain_info", i915_power_domain_info, 0},
4689         {"i915_display_info", i915_display_info, 0},
4690         {"i915_semaphore_status", i915_semaphore_status, 0},
4691         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4692         {"i915_dp_mst_info", i915_dp_mst_info, 0},
4693         {"i915_wa_registers", i915_wa_registers, 0},
4694         {"i915_ddb_info", i915_ddb_info, 0},
4695         {"i915_sseu_status", i915_sseu_status, 0},
4696         {"i915_drrs_status", i915_drrs_status, 0},
4697 };
4698 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4699
4700 static const struct i915_debugfs_files {
4701         const char *name;
4702         const struct file_operations *fops;
4703 } i915_debugfs_files[] = {
4704         {"i915_wedged", &i915_wedged_fops},
4705         {"i915_max_freq", &i915_max_freq_fops},
4706         {"i915_min_freq", &i915_min_freq_fops},
4707         {"i915_cache_sharing", &i915_cache_sharing_fops},
4708         {"i915_ring_stop", &i915_ring_stop_fops},
4709         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4710         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
4711         {"i915_gem_drop_caches", &i915_drop_caches_fops},
4712         {"i915_error_state", &i915_error_state_fops},
4713         {"i915_next_seqno", &i915_next_seqno_fops},
4714         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4715         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4716         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4717         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4718         {"i915_fbc_false_color", &i915_fbc_fc_fops},
4719 };
4720
4721 void intel_display_crc_init(struct drm_device *dev)
4722 {
4723         struct drm_i915_private *dev_priv = dev->dev_private;
4724         enum pipe pipe;
4725
4726         for_each_pipe(dev_priv, pipe) {
4727                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4728
4729                 pipe_crc->opened = false;
4730                 spin_lock_init(&pipe_crc->lock);
4731                 init_waitqueue_head(&pipe_crc->wq);
4732         }
4733 }
4734
4735 int i915_debugfs_init(struct drm_minor *minor)
4736 {
4737         int ret, i;
4738
4739         ret = i915_forcewake_create(minor->debugfs_root, minor);
4740         if (ret)
4741                 return ret;
4742
4743         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4744                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
4745                 if (ret)
4746                         return ret;
4747         }
4748
4749         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4750                 ret = i915_debugfs_create(minor->debugfs_root, minor,
4751                                           i915_debugfs_files[i].name,
4752                                           i915_debugfs_files[i].fops);
4753                 if (ret)
4754                         return ret;
4755         }
4756
4757         return drm_debugfs_create_files(i915_debugfs_list,
4758                                         I915_DEBUGFS_ENTRIES,
4759                                         minor->debugfs_root, minor);
4760 }
4761
4762 void i915_debugfs_cleanup(struct drm_minor *minor)
4763 {
4764         int i;
4765
4766         drm_debugfs_remove_files(i915_debugfs_list,
4767                                  I915_DEBUGFS_ENTRIES, minor);
4768
4769         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
4770                                  1, minor);
4771
4772         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4773                 struct drm_info_list *info_list =
4774                         (struct drm_info_list *)&i915_pipe_crc_data[i];
4775
4776                 drm_debugfs_remove_files(info_list, 1, minor);
4777         }
4778
4779         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4780                 struct drm_info_list *info_list =
4781                         (struct drm_info_list *) i915_debugfs_files[i].fops;
4782
4783                 drm_debugfs_remove_files(info_list, 1, minor);
4784         }
4785 }