These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / gpu / drm / amd / amdkfd / kfd_device_queue_manager.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include <linux/slab.h>
25 #include <linux/list.h>
26 #include <linux/types.h>
27 #include <linux/printk.h>
28 #include <linux/bitops.h>
29 #include <linux/sched.h>
30 #include "kfd_priv.h"
31 #include "kfd_device_queue_manager.h"
32 #include "kfd_mqd_manager.h"
33 #include "cik_regs.h"
34 #include "kfd_kernel_queue.h"
35
36 /* Size of the per-pipe EOP queue */
37 #define CIK_HPD_EOP_BYTES_LOG2 11
38 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
39
40 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
41                                         unsigned int pasid, unsigned int vmid);
42
43 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
44                                         struct queue *q,
45                                         struct qcm_process_device *qpd);
46
47 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
48 static int destroy_queues_cpsch(struct device_queue_manager *dqm,
49                                 bool preempt_static_queues, bool lock);
50
51 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
52                                         struct queue *q,
53                                         struct qcm_process_device *qpd);
54
55 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
56                                 unsigned int sdma_queue_id);
57
58 static inline
59 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
60 {
61         if (type == KFD_QUEUE_TYPE_SDMA)
62                 return KFD_MQD_TYPE_SDMA;
63         return KFD_MQD_TYPE_CP;
64 }
65
66 unsigned int get_first_pipe(struct device_queue_manager *dqm)
67 {
68         BUG_ON(!dqm || !dqm->dev);
69         return dqm->dev->shared_resources.first_compute_pipe;
70 }
71
72 unsigned int get_pipes_num(struct device_queue_manager *dqm)
73 {
74         BUG_ON(!dqm || !dqm->dev);
75         return dqm->dev->shared_resources.compute_pipe_count;
76 }
77
78 static inline unsigned int get_pipes_num_cpsch(void)
79 {
80         return PIPE_PER_ME_CP_SCHEDULING;
81 }
82
83 void program_sh_mem_settings(struct device_queue_manager *dqm,
84                                         struct qcm_process_device *qpd)
85 {
86         return dqm->dev->kfd2kgd->program_sh_mem_settings(
87                                                 dqm->dev->kgd, qpd->vmid,
88                                                 qpd->sh_mem_config,
89                                                 qpd->sh_mem_ape1_base,
90                                                 qpd->sh_mem_ape1_limit,
91                                                 qpd->sh_mem_bases);
92 }
93
94 static int allocate_vmid(struct device_queue_manager *dqm,
95                         struct qcm_process_device *qpd,
96                         struct queue *q)
97 {
98         int bit, allocated_vmid;
99
100         if (dqm->vmid_bitmap == 0)
101                 return -ENOMEM;
102
103         bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
104         clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
105
106         /* Kaveri kfd vmid's starts from vmid 8 */
107         allocated_vmid = bit + KFD_VMID_START_OFFSET;
108         pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
109         qpd->vmid = allocated_vmid;
110         q->properties.vmid = allocated_vmid;
111
112         set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
113         program_sh_mem_settings(dqm, qpd);
114
115         return 0;
116 }
117
118 static void deallocate_vmid(struct device_queue_manager *dqm,
119                                 struct qcm_process_device *qpd,
120                                 struct queue *q)
121 {
122         int bit = qpd->vmid - KFD_VMID_START_OFFSET;
123
124         /* Release the vmid mapping */
125         set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
126
127         set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
128         qpd->vmid = 0;
129         q->properties.vmid = 0;
130 }
131
132 static int create_queue_nocpsch(struct device_queue_manager *dqm,
133                                 struct queue *q,
134                                 struct qcm_process_device *qpd,
135                                 int *allocated_vmid)
136 {
137         int retval;
138
139         BUG_ON(!dqm || !q || !qpd || !allocated_vmid);
140
141         pr_debug("kfd: In func %s\n", __func__);
142         print_queue(q);
143
144         mutex_lock(&dqm->lock);
145
146         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
147                 pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
148                                 dqm->total_queue_count);
149                 mutex_unlock(&dqm->lock);
150                 return -EPERM;
151         }
152
153         if (list_empty(&qpd->queues_list)) {
154                 retval = allocate_vmid(dqm, qpd, q);
155                 if (retval != 0) {
156                         mutex_unlock(&dqm->lock);
157                         return retval;
158                 }
159         }
160         *allocated_vmid = qpd->vmid;
161         q->properties.vmid = qpd->vmid;
162
163         if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
164                 retval = create_compute_queue_nocpsch(dqm, q, qpd);
165         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
166                 retval = create_sdma_queue_nocpsch(dqm, q, qpd);
167
168         if (retval != 0) {
169                 if (list_empty(&qpd->queues_list)) {
170                         deallocate_vmid(dqm, qpd, q);
171                         *allocated_vmid = 0;
172                 }
173                 mutex_unlock(&dqm->lock);
174                 return retval;
175         }
176
177         list_add(&q->list, &qpd->queues_list);
178         if (q->properties.is_active)
179                 dqm->queue_count++;
180
181         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
182                 dqm->sdma_queue_count++;
183
184         /*
185          * Unconditionally increment this counter, regardless of the queue's
186          * type or whether the queue is active.
187          */
188         dqm->total_queue_count++;
189         pr_debug("Total of %d queues are accountable so far\n",
190                         dqm->total_queue_count);
191
192         mutex_unlock(&dqm->lock);
193         return 0;
194 }
195
196 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
197 {
198         bool set;
199         int pipe, bit, i;
200
201         set = false;
202
203         for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_num(dqm);
204                         pipe = ((pipe + 1) % get_pipes_num(dqm)), ++i) {
205                 if (dqm->allocated_queues[pipe] != 0) {
206                         bit = find_first_bit(
207                                 (unsigned long *)&dqm->allocated_queues[pipe],
208                                 QUEUES_PER_PIPE);
209
210                         clear_bit(bit,
211                                 (unsigned long *)&dqm->allocated_queues[pipe]);
212                         q->pipe = pipe;
213                         q->queue = bit;
214                         set = true;
215                         break;
216                 }
217         }
218
219         if (set == false)
220                 return -EBUSY;
221
222         pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
223                                 __func__, q->pipe, q->queue);
224         /* horizontal hqd allocation */
225         dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);
226
227         return 0;
228 }
229
230 static inline void deallocate_hqd(struct device_queue_manager *dqm,
231                                 struct queue *q)
232 {
233         set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
234 }
235
236 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
237                                         struct queue *q,
238                                         struct qcm_process_device *qpd)
239 {
240         int retval;
241         struct mqd_manager *mqd;
242
243         BUG_ON(!dqm || !q || !qpd);
244
245         mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
246         if (mqd == NULL)
247                 return -ENOMEM;
248
249         retval = allocate_hqd(dqm, q);
250         if (retval != 0)
251                 return retval;
252
253         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
254                                 &q->gart_mqd_addr, &q->properties);
255         if (retval != 0) {
256                 deallocate_hqd(dqm, q);
257                 return retval;
258         }
259
260         pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
261                         q->pipe,
262                         q->queue);
263
264         retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
265                         q->queue, (uint32_t __user *) q->properties.write_ptr);
266         if (retval != 0) {
267                 deallocate_hqd(dqm, q);
268                 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
269                 return retval;
270         }
271
272         return 0;
273 }
274
275 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
276                                 struct qcm_process_device *qpd,
277                                 struct queue *q)
278 {
279         int retval;
280         struct mqd_manager *mqd;
281
282         BUG_ON(!dqm || !q || !q->mqd || !qpd);
283
284         retval = 0;
285
286         pr_debug("kfd: In Func %s\n", __func__);
287
288         mutex_lock(&dqm->lock);
289
290         if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
291                 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
292                 if (mqd == NULL) {
293                         retval = -ENOMEM;
294                         goto out;
295                 }
296                 deallocate_hqd(dqm, q);
297         } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
298                 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
299                 if (mqd == NULL) {
300                         retval = -ENOMEM;
301                         goto out;
302                 }
303                 dqm->sdma_queue_count--;
304                 deallocate_sdma_queue(dqm, q->sdma_id);
305         } else {
306                 pr_debug("q->properties.type is invalid (%d)\n",
307                                 q->properties.type);
308                 retval = -EINVAL;
309                 goto out;
310         }
311
312         retval = mqd->destroy_mqd(mqd, q->mqd,
313                                 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
314                                 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
315                                 q->pipe, q->queue);
316
317         if (retval != 0)
318                 goto out;
319
320         mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
321
322         list_del(&q->list);
323         if (list_empty(&qpd->queues_list))
324                 deallocate_vmid(dqm, qpd, q);
325         if (q->properties.is_active)
326                 dqm->queue_count--;
327
328         /*
329          * Unconditionally decrement this counter, regardless of the queue's
330          * type
331          */
332         dqm->total_queue_count--;
333         pr_debug("Total of %d queues are accountable so far\n",
334                         dqm->total_queue_count);
335
336 out:
337         mutex_unlock(&dqm->lock);
338         return retval;
339 }
340
341 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
342 {
343         int retval;
344         struct mqd_manager *mqd;
345         bool prev_active = false;
346
347         BUG_ON(!dqm || !q || !q->mqd);
348
349         mutex_lock(&dqm->lock);
350         mqd = dqm->ops.get_mqd_manager(dqm,
351                         get_mqd_type_from_queue_type(q->properties.type));
352         if (mqd == NULL) {
353                 mutex_unlock(&dqm->lock);
354                 return -ENOMEM;
355         }
356
357         if (q->properties.is_active == true)
358                 prev_active = true;
359
360         /*
361          *
362          * check active state vs. the previous state
363          * and modify counter accordingly
364          */
365         retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
366         if ((q->properties.is_active == true) && (prev_active == false))
367                 dqm->queue_count++;
368         else if ((q->properties.is_active == false) && (prev_active == true))
369                 dqm->queue_count--;
370
371         if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
372                 retval = execute_queues_cpsch(dqm, false);
373
374         mutex_unlock(&dqm->lock);
375         return retval;
376 }
377
378 static struct mqd_manager *get_mqd_manager_nocpsch(
379                 struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
380 {
381         struct mqd_manager *mqd;
382
383         BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);
384
385         pr_debug("kfd: In func %s mqd type %d\n", __func__, type);
386
387         mqd = dqm->mqds[type];
388         if (!mqd) {
389                 mqd = mqd_manager_init(type, dqm->dev);
390                 if (mqd == NULL)
391                         pr_err("kfd: mqd manager is NULL");
392                 dqm->mqds[type] = mqd;
393         }
394
395         return mqd;
396 }
397
398 static int register_process_nocpsch(struct device_queue_manager *dqm,
399                                         struct qcm_process_device *qpd)
400 {
401         struct device_process_node *n;
402         int retval;
403
404         BUG_ON(!dqm || !qpd);
405
406         pr_debug("kfd: In func %s\n", __func__);
407
408         n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
409         if (!n)
410                 return -ENOMEM;
411
412         n->qpd = qpd;
413
414         mutex_lock(&dqm->lock);
415         list_add(&n->list, &dqm->queues);
416
417         retval = dqm->ops_asic_specific.register_process(dqm, qpd);
418
419         dqm->processes_count++;
420
421         mutex_unlock(&dqm->lock);
422
423         return retval;
424 }
425
426 static int unregister_process_nocpsch(struct device_queue_manager *dqm,
427                                         struct qcm_process_device *qpd)
428 {
429         int retval;
430         struct device_process_node *cur, *next;
431
432         BUG_ON(!dqm || !qpd);
433
434         pr_debug("In func %s\n", __func__);
435
436         pr_debug("qpd->queues_list is %s\n",
437                         list_empty(&qpd->queues_list) ? "empty" : "not empty");
438
439         retval = 0;
440         mutex_lock(&dqm->lock);
441
442         list_for_each_entry_safe(cur, next, &dqm->queues, list) {
443                 if (qpd == cur->qpd) {
444                         list_del(&cur->list);
445                         kfree(cur);
446                         dqm->processes_count--;
447                         goto out;
448                 }
449         }
450         /* qpd not found in dqm list */
451         retval = 1;
452 out:
453         mutex_unlock(&dqm->lock);
454         return retval;
455 }
456
457 static int
458 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
459                         unsigned int vmid)
460 {
461         uint32_t pasid_mapping;
462
463         pasid_mapping = (pasid == 0) ? 0 :
464                 (uint32_t)pasid |
465                 ATC_VMID_PASID_MAPPING_VALID;
466
467         return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
468                                                 dqm->dev->kgd, pasid_mapping,
469                                                 vmid);
470 }
471
472 int init_pipelines(struct device_queue_manager *dqm,
473                         unsigned int pipes_num, unsigned int first_pipe)
474 {
475         void *hpdptr;
476         struct mqd_manager *mqd;
477         unsigned int i, err, inx;
478         uint64_t pipe_hpd_addr;
479
480         BUG_ON(!dqm || !dqm->dev);
481
482         pr_debug("kfd: In func %s\n", __func__);
483
484         /*
485          * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
486          * The driver never accesses this memory after zeroing it.
487          * It doesn't even have to be saved/restored on suspend/resume
488          * because it contains no data when there are no active queues.
489          */
490
491         err = kfd_gtt_sa_allocate(dqm->dev, CIK_HPD_EOP_BYTES * pipes_num,
492                                         &dqm->pipeline_mem);
493
494         if (err) {
495                 pr_err("kfd: error allocate vidmem num pipes: %d\n",
496                         pipes_num);
497                 return -ENOMEM;
498         }
499
500         hpdptr = dqm->pipeline_mem->cpu_ptr;
501         dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;
502
503         memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);
504
505         mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
506         if (mqd == NULL) {
507                 kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
508                 return -ENOMEM;
509         }
510
511         for (i = 0; i < pipes_num; i++) {
512                 inx = i + first_pipe;
513                 /*
514                  * HPD buffer on GTT is allocated by amdkfd, no need to waste
515                  * space in GTT for pipelines we don't initialize
516                  */
517                 pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
518                 pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
519                 /* = log2(bytes/4)-1 */
520                 dqm->dev->kfd2kgd->init_pipeline(dqm->dev->kgd, inx,
521                                 CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
522         }
523
524         return 0;
525 }
526
527 static void init_interrupts(struct device_queue_manager *dqm)
528 {
529         unsigned int i;
530
531         BUG_ON(dqm == NULL);
532
533         for (i = 0 ; i < get_pipes_num(dqm) ; i++)
534                 dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd,
535                                 i + get_first_pipe(dqm));
536 }
537
538 static int init_scheduler(struct device_queue_manager *dqm)
539 {
540         int retval;
541
542         BUG_ON(!dqm);
543
544         pr_debug("kfd: In %s\n", __func__);
545
546         retval = init_pipelines(dqm, get_pipes_num(dqm), get_first_pipe(dqm));
547         return retval;
548 }
549
550 static int initialize_nocpsch(struct device_queue_manager *dqm)
551 {
552         int i;
553
554         BUG_ON(!dqm);
555
556         pr_debug("kfd: In func %s num of pipes: %d\n",
557                         __func__, get_pipes_num(dqm));
558
559         mutex_init(&dqm->lock);
560         INIT_LIST_HEAD(&dqm->queues);
561         dqm->queue_count = dqm->next_pipe_to_allocate = 0;
562         dqm->sdma_queue_count = 0;
563         dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
564                                         sizeof(unsigned int), GFP_KERNEL);
565         if (!dqm->allocated_queues) {
566                 mutex_destroy(&dqm->lock);
567                 return -ENOMEM;
568         }
569
570         for (i = 0; i < get_pipes_num(dqm); i++)
571                 dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;
572
573         dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
574         dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
575
576         init_scheduler(dqm);
577         return 0;
578 }
579
580 static void uninitialize_nocpsch(struct device_queue_manager *dqm)
581 {
582         int i;
583
584         BUG_ON(!dqm);
585
586         BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
587
588         kfree(dqm->allocated_queues);
589         for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
590                 kfree(dqm->mqds[i]);
591         mutex_destroy(&dqm->lock);
592         kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
593 }
594
595 static int start_nocpsch(struct device_queue_manager *dqm)
596 {
597         init_interrupts(dqm);
598         return 0;
599 }
600
601 static int stop_nocpsch(struct device_queue_manager *dqm)
602 {
603         return 0;
604 }
605
606 static int allocate_sdma_queue(struct device_queue_manager *dqm,
607                                 unsigned int *sdma_queue_id)
608 {
609         int bit;
610
611         if (dqm->sdma_bitmap == 0)
612                 return -ENOMEM;
613
614         bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap,
615                                 CIK_SDMA_QUEUES);
616
617         clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap);
618         *sdma_queue_id = bit;
619
620         return 0;
621 }
622
623 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
624                                 unsigned int sdma_queue_id)
625 {
626         if (sdma_queue_id >= CIK_SDMA_QUEUES)
627                 return;
628         set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap);
629 }
630
631 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
632                                         struct queue *q,
633                                         struct qcm_process_device *qpd)
634 {
635         struct mqd_manager *mqd;
636         int retval;
637
638         mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
639         if (!mqd)
640                 return -ENOMEM;
641
642         retval = allocate_sdma_queue(dqm, &q->sdma_id);
643         if (retval != 0)
644                 return retval;
645
646         q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
647         q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM;
648
649         pr_debug("kfd: sdma id is:    %d\n", q->sdma_id);
650         pr_debug("     sdma queue id: %d\n", q->properties.sdma_queue_id);
651         pr_debug("     sdma engine id: %d\n", q->properties.sdma_engine_id);
652
653         dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd);
654         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
655                                 &q->gart_mqd_addr, &q->properties);
656         if (retval != 0) {
657                 deallocate_sdma_queue(dqm, q->sdma_id);
658                 return retval;
659         }
660
661         retval = mqd->load_mqd(mqd, q->mqd, 0,
662                                 0, NULL);
663         if (retval != 0) {
664                 deallocate_sdma_queue(dqm, q->sdma_id);
665                 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
666                 return retval;
667         }
668
669         return 0;
670 }
671
672 /*
673  * Device Queue Manager implementation for cp scheduler
674  */
675
676 static int set_sched_resources(struct device_queue_manager *dqm)
677 {
678         struct scheduling_resources res;
679         unsigned int queue_num, queue_mask;
680
681         BUG_ON(!dqm);
682
683         pr_debug("kfd: In func %s\n", __func__);
684
685         queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
686         queue_mask = (1 << queue_num) - 1;
687         res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
688         res.vmid_mask <<= KFD_VMID_START_OFFSET;
689         res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
690         res.gws_mask = res.oac_mask = res.gds_heap_base =
691                                                 res.gds_heap_size = 0;
692
693         pr_debug("kfd: scheduling resources:\n"
694                         "      vmid mask: 0x%8X\n"
695                         "      queue mask: 0x%8llX\n",
696                         res.vmid_mask, res.queue_mask);
697
698         return pm_send_set_resources(&dqm->packets, &res);
699 }
700
701 static int initialize_cpsch(struct device_queue_manager *dqm)
702 {
703         int retval;
704
705         BUG_ON(!dqm);
706
707         pr_debug("kfd: In func %s num of pipes: %d\n",
708                         __func__, get_pipes_num_cpsch());
709
710         mutex_init(&dqm->lock);
711         INIT_LIST_HEAD(&dqm->queues);
712         dqm->queue_count = dqm->processes_count = 0;
713         dqm->sdma_queue_count = 0;
714         dqm->active_runlist = false;
715         retval = dqm->ops_asic_specific.initialize(dqm);
716         if (retval != 0)
717                 goto fail_init_pipelines;
718
719         return 0;
720
721 fail_init_pipelines:
722         mutex_destroy(&dqm->lock);
723         return retval;
724 }
725
726 static int start_cpsch(struct device_queue_manager *dqm)
727 {
728         struct device_process_node *node;
729         int retval;
730
731         BUG_ON(!dqm);
732
733         retval = 0;
734
735         retval = pm_init(&dqm->packets, dqm);
736         if (retval != 0)
737                 goto fail_packet_manager_init;
738
739         retval = set_sched_resources(dqm);
740         if (retval != 0)
741                 goto fail_set_sched_resources;
742
743         pr_debug("kfd: allocating fence memory\n");
744
745         /* allocate fence memory on the gart */
746         retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
747                                         &dqm->fence_mem);
748
749         if (retval != 0)
750                 goto fail_allocate_vidmem;
751
752         dqm->fence_addr = dqm->fence_mem->cpu_ptr;
753         dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
754
755         init_interrupts(dqm);
756
757         list_for_each_entry(node, &dqm->queues, list)
758                 if (node->qpd->pqm->process && dqm->dev)
759                         kfd_bind_process_to_device(dqm->dev,
760                                                 node->qpd->pqm->process);
761
762         execute_queues_cpsch(dqm, true);
763
764         return 0;
765 fail_allocate_vidmem:
766 fail_set_sched_resources:
767         pm_uninit(&dqm->packets);
768 fail_packet_manager_init:
769         return retval;
770 }
771
772 static int stop_cpsch(struct device_queue_manager *dqm)
773 {
774         struct device_process_node *node;
775         struct kfd_process_device *pdd;
776
777         BUG_ON(!dqm);
778
779         destroy_queues_cpsch(dqm, true, true);
780
781         list_for_each_entry(node, &dqm->queues, list) {
782                 pdd = qpd_to_pdd(node->qpd);
783                 pdd->bound = false;
784         }
785         kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
786         pm_uninit(&dqm->packets);
787
788         return 0;
789 }
790
791 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
792                                         struct kernel_queue *kq,
793                                         struct qcm_process_device *qpd)
794 {
795         BUG_ON(!dqm || !kq || !qpd);
796
797         pr_debug("kfd: In func %s\n", __func__);
798
799         mutex_lock(&dqm->lock);
800         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
801                 pr_warn("amdkfd: Can't create new kernel queue because %d queues were already created\n",
802                                 dqm->total_queue_count);
803                 mutex_unlock(&dqm->lock);
804                 return -EPERM;
805         }
806
807         /*
808          * Unconditionally increment this counter, regardless of the queue's
809          * type or whether the queue is active.
810          */
811         dqm->total_queue_count++;
812         pr_debug("Total of %d queues are accountable so far\n",
813                         dqm->total_queue_count);
814
815         list_add(&kq->list, &qpd->priv_queue_list);
816         dqm->queue_count++;
817         qpd->is_debug = true;
818         execute_queues_cpsch(dqm, false);
819         mutex_unlock(&dqm->lock);
820
821         return 0;
822 }
823
824 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
825                                         struct kernel_queue *kq,
826                                         struct qcm_process_device *qpd)
827 {
828         BUG_ON(!dqm || !kq);
829
830         pr_debug("kfd: In %s\n", __func__);
831
832         mutex_lock(&dqm->lock);
833         /* here we actually preempt the DIQ */
834         destroy_queues_cpsch(dqm, true, false);
835         list_del(&kq->list);
836         dqm->queue_count--;
837         qpd->is_debug = false;
838         execute_queues_cpsch(dqm, false);
839         /*
840          * Unconditionally decrement this counter, regardless of the queue's
841          * type.
842          */
843         dqm->total_queue_count--;
844         pr_debug("Total of %d queues are accountable so far\n",
845                         dqm->total_queue_count);
846         mutex_unlock(&dqm->lock);
847 }
848
849 static void select_sdma_engine_id(struct queue *q)
850 {
851         static int sdma_id;
852
853         q->sdma_id = sdma_id;
854         sdma_id = (sdma_id + 1) % 2;
855 }
856
857 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
858                         struct qcm_process_device *qpd, int *allocate_vmid)
859 {
860         int retval;
861         struct mqd_manager *mqd;
862
863         BUG_ON(!dqm || !q || !qpd);
864
865         retval = 0;
866
867         if (allocate_vmid)
868                 *allocate_vmid = 0;
869
870         mutex_lock(&dqm->lock);
871
872         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
873                 pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
874                                 dqm->total_queue_count);
875                 retval = -EPERM;
876                 goto out;
877         }
878
879         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
880                 select_sdma_engine_id(q);
881
882         mqd = dqm->ops.get_mqd_manager(dqm,
883                         get_mqd_type_from_queue_type(q->properties.type));
884
885         if (mqd == NULL) {
886                 mutex_unlock(&dqm->lock);
887                 return -ENOMEM;
888         }
889
890         dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd);
891         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
892                                 &q->gart_mqd_addr, &q->properties);
893         if (retval != 0)
894                 goto out;
895
896         list_add(&q->list, &qpd->queues_list);
897         if (q->properties.is_active) {
898                 dqm->queue_count++;
899                 retval = execute_queues_cpsch(dqm, false);
900         }
901
902         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
903                         dqm->sdma_queue_count++;
904         /*
905          * Unconditionally increment this counter, regardless of the queue's
906          * type or whether the queue is active.
907          */
908         dqm->total_queue_count++;
909
910         pr_debug("Total of %d queues are accountable so far\n",
911                         dqm->total_queue_count);
912
913 out:
914         mutex_unlock(&dqm->lock);
915         return retval;
916 }
917
918 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
919                                 unsigned int fence_value,
920                                 unsigned long timeout)
921 {
922         BUG_ON(!fence_addr);
923         timeout += jiffies;
924
925         while (*fence_addr != fence_value) {
926                 if (time_after(jiffies, timeout)) {
927                         pr_err("kfd: qcm fence wait loop timeout expired\n");
928                         return -ETIME;
929                 }
930                 schedule();
931         }
932
933         return 0;
934 }
935
936 static int destroy_sdma_queues(struct device_queue_manager *dqm,
937                                 unsigned int sdma_engine)
938 {
939         return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
940                         KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES, 0, false,
941                         sdma_engine);
942 }
943
944 static int destroy_queues_cpsch(struct device_queue_manager *dqm,
945                                 bool preempt_static_queues, bool lock)
946 {
947         int retval;
948         enum kfd_preempt_type_filter preempt_type;
949         struct kfd_process_device *pdd;
950
951         BUG_ON(!dqm);
952
953         retval = 0;
954
955         if (lock)
956                 mutex_lock(&dqm->lock);
957         if (dqm->active_runlist == false)
958                 goto out;
959
960         pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n",
961                 dqm->sdma_queue_count);
962
963         if (dqm->sdma_queue_count > 0) {
964                 destroy_sdma_queues(dqm, 0);
965                 destroy_sdma_queues(dqm, 1);
966         }
967
968         preempt_type = preempt_static_queues ?
969                         KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES :
970                         KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES;
971
972         retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
973                         preempt_type, 0, false, 0);
974         if (retval != 0)
975                 goto out;
976
977         *dqm->fence_addr = KFD_FENCE_INIT;
978         pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
979                                 KFD_FENCE_COMPLETED);
980         /* should be timed out */
981         retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
982                                 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
983         if (retval != 0) {
984                 pdd = kfd_get_process_device_data(dqm->dev,
985                                 kfd_get_process(current));
986                 pdd->reset_wavefronts = true;
987                 goto out;
988         }
989         pm_release_ib(&dqm->packets);
990         dqm->active_runlist = false;
991
992 out:
993         if (lock)
994                 mutex_unlock(&dqm->lock);
995         return retval;
996 }
997
998 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
999 {
1000         int retval;
1001
1002         BUG_ON(!dqm);
1003
1004         if (lock)
1005                 mutex_lock(&dqm->lock);
1006
1007         retval = destroy_queues_cpsch(dqm, false, false);
1008         if (retval != 0) {
1009                 pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
1010                 goto out;
1011         }
1012
1013         if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
1014                 retval = 0;
1015                 goto out;
1016         }
1017
1018         if (dqm->active_runlist) {
1019                 retval = 0;
1020                 goto out;
1021         }
1022
1023         retval = pm_send_runlist(&dqm->packets, &dqm->queues);
1024         if (retval != 0) {
1025                 pr_err("kfd: failed to execute runlist");
1026                 goto out;
1027         }
1028         dqm->active_runlist = true;
1029
1030 out:
1031         if (lock)
1032                 mutex_unlock(&dqm->lock);
1033         return retval;
1034 }
1035
1036 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1037                                 struct qcm_process_device *qpd,
1038                                 struct queue *q)
1039 {
1040         int retval;
1041         struct mqd_manager *mqd;
1042         bool preempt_all_queues;
1043
1044         BUG_ON(!dqm || !qpd || !q);
1045
1046         preempt_all_queues = false;
1047
1048         retval = 0;
1049
1050         /* remove queue from list to prevent rescheduling after preemption */
1051         mutex_lock(&dqm->lock);
1052
1053         if (qpd->is_debug) {
1054                 /*
1055                  * error, currently we do not allow to destroy a queue
1056                  * of a currently debugged process
1057                  */
1058                 retval = -EBUSY;
1059                 goto failed_try_destroy_debugged_queue;
1060
1061         }
1062
1063         mqd = dqm->ops.get_mqd_manager(dqm,
1064                         get_mqd_type_from_queue_type(q->properties.type));
1065         if (!mqd) {
1066                 retval = -ENOMEM;
1067                 goto failed;
1068         }
1069
1070         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1071                 dqm->sdma_queue_count--;
1072
1073         list_del(&q->list);
1074         if (q->properties.is_active)
1075                 dqm->queue_count--;
1076
1077         execute_queues_cpsch(dqm, false);
1078
1079         mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
1080
1081         /*
1082          * Unconditionally decrement this counter, regardless of the queue's
1083          * type
1084          */
1085         dqm->total_queue_count--;
1086         pr_debug("Total of %d queues are accountable so far\n",
1087                         dqm->total_queue_count);
1088
1089         mutex_unlock(&dqm->lock);
1090
1091         return 0;
1092
1093 failed:
1094 failed_try_destroy_debugged_queue:
1095
1096         mutex_unlock(&dqm->lock);
1097         return retval;
1098 }
1099
1100 /*
1101  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1102  * stay in user mode.
1103  */
1104 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1105 /* APE1 limit is inclusive and 64K aligned. */
1106 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1107
1108 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1109                                    struct qcm_process_device *qpd,
1110                                    enum cache_policy default_policy,
1111                                    enum cache_policy alternate_policy,
1112                                    void __user *alternate_aperture_base,
1113                                    uint64_t alternate_aperture_size)
1114 {
1115         bool retval;
1116
1117         pr_debug("kfd: In func %s\n", __func__);
1118
1119         mutex_lock(&dqm->lock);
1120
1121         if (alternate_aperture_size == 0) {
1122                 /* base > limit disables APE1 */
1123                 qpd->sh_mem_ape1_base = 1;
1124                 qpd->sh_mem_ape1_limit = 0;
1125         } else {
1126                 /*
1127                  * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1128                  *                      SH_MEM_APE1_BASE[31:0], 0x0000 }
1129                  * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1130                  *                      SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1131                  * Verify that the base and size parameters can be
1132                  * represented in this format and convert them.
1133                  * Additionally restrict APE1 to user-mode addresses.
1134                  */
1135
1136                 uint64_t base = (uintptr_t)alternate_aperture_base;
1137                 uint64_t limit = base + alternate_aperture_size - 1;
1138
1139                 if (limit <= base)
1140                         goto out;
1141
1142                 if ((base & APE1_FIXED_BITS_MASK) != 0)
1143                         goto out;
1144
1145                 if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
1146                         goto out;
1147
1148                 qpd->sh_mem_ape1_base = base >> 16;
1149                 qpd->sh_mem_ape1_limit = limit >> 16;
1150         }
1151
1152         retval = dqm->ops_asic_specific.set_cache_memory_policy(
1153                         dqm,
1154                         qpd,
1155                         default_policy,
1156                         alternate_policy,
1157                         alternate_aperture_base,
1158                         alternate_aperture_size);
1159
1160         if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1161                 program_sh_mem_settings(dqm, qpd);
1162
1163         pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1164                 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1165                 qpd->sh_mem_ape1_limit);
1166
1167         mutex_unlock(&dqm->lock);
1168         return retval;
1169
1170 out:
1171         mutex_unlock(&dqm->lock);
1172         return false;
1173 }
1174
1175 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1176 {
1177         struct device_queue_manager *dqm;
1178
1179         BUG_ON(!dev);
1180
1181         pr_debug("kfd: loading device queue manager\n");
1182
1183         dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
1184         if (!dqm)
1185                 return NULL;
1186
1187         dqm->dev = dev;
1188         switch (sched_policy) {
1189         case KFD_SCHED_POLICY_HWS:
1190         case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1191                 /* initialize dqm for cp scheduling */
1192                 dqm->ops.create_queue = create_queue_cpsch;
1193                 dqm->ops.initialize = initialize_cpsch;
1194                 dqm->ops.start = start_cpsch;
1195                 dqm->ops.stop = stop_cpsch;
1196                 dqm->ops.destroy_queue = destroy_queue_cpsch;
1197                 dqm->ops.update_queue = update_queue;
1198                 dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1199                 dqm->ops.register_process = register_process_nocpsch;
1200                 dqm->ops.unregister_process = unregister_process_nocpsch;
1201                 dqm->ops.uninitialize = uninitialize_nocpsch;
1202                 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1203                 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1204                 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1205                 break;
1206         case KFD_SCHED_POLICY_NO_HWS:
1207                 /* initialize dqm for no cp scheduling */
1208                 dqm->ops.start = start_nocpsch;
1209                 dqm->ops.stop = stop_nocpsch;
1210                 dqm->ops.create_queue = create_queue_nocpsch;
1211                 dqm->ops.destroy_queue = destroy_queue_nocpsch;
1212                 dqm->ops.update_queue = update_queue;
1213                 dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1214                 dqm->ops.register_process = register_process_nocpsch;
1215                 dqm->ops.unregister_process = unregister_process_nocpsch;
1216                 dqm->ops.initialize = initialize_nocpsch;
1217                 dqm->ops.uninitialize = uninitialize_nocpsch;
1218                 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1219                 break;
1220         default:
1221                 BUG();
1222                 break;
1223         }
1224
1225         switch (dev->device_info->asic_family) {
1226         case CHIP_CARRIZO:
1227                 device_queue_manager_init_vi(&dqm->ops_asic_specific);
1228                 break;
1229
1230         case CHIP_KAVERI:
1231                 device_queue_manager_init_cik(&dqm->ops_asic_specific);
1232                 break;
1233         }
1234
1235         if (dqm->ops.initialize(dqm) != 0) {
1236                 kfree(dqm);
1237                 return NULL;
1238         }
1239
1240         return dqm;
1241 }
1242
1243 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1244 {
1245         BUG_ON(!dqm);
1246
1247         dqm->ops.uninitialize(dqm);
1248         kfree(dqm);
1249 }